
The Relative Merits of Openness in Voting Systems
California Senate Elections Committee

Hearing, February 8, 2006

Peter G. Neumann
Principal Scientist, Computer Science Lab
SRI International, Menlo Park, California

333 Ravenswood Ave, Menlo Park CA 94025-3493
Telephone: 1-650-859-2375; Fax: 1-650-859-2844

Neumann@CSL.sri.com; http://www.csl.sri.com/neumann

Abstract: In my testimony today, I consider the relative potential advantages and
disadvantages of voting systems that can be subjected to objective independent anal-
ysis. I emphasize that openness in the design, development, and operation of voting
machines can significantly enhance the integrity, transparency, and accountability of
the election process. However, openness by itself is not a cure for voting errors and
clandestine manipulation, because additional discipline is required throughout the en-
tire process. Nevertheless, openness has significant potential to promote democratic
values and enhance reliability and accuracy, which at present are very difficult to
ensure with closed proprietary systems (which thus far have not exerted the requisite
discipline).

Introduction

To begin, I would like to express my thanks to State Senator Debra Bowen, Chair of the California Senate
Elections Committee, for this opportunity to testify on the Relative Merits of Openness in Voting Systems
at a hearing that is important both for its consideration of electronic voting systems and for its recognition
of the vital needs for greater openness and transparency throughout the election process.

As a computer professional (since 1953), I have been involved with election system integrity, security, and
privacy for almost 20 years, specifying requirements and evaluating systems, as well as analyzing system
failures, alleged fraud, and human errors. This included extensive participation over a decade ago in New
York City’s subsequently canceled project to upgrade from lever machines to electronic voting systems.

My testimony to the California Assembly Committee on Elections and Reapportionment and Constitu-
tional Amendments on January 17, 2001 (http://www.csl.sri.com/neumann/calvot01.pdf) stated that “The
election process is inherently subject to errors, manipulation, and fraud. It is a process that demands ex-
traordinary integrity of any computerized systems involved, as well as honesty and experience of the people
involved in administering elections. Evidently, it may require considerable sophistication on the part of
voters as well.”

My testimony to the same committee on June 15, 2004 (http://www.csl.sri.com/neumann/calvot04.pdf)
reiterated some of the points from the earlier testimony, and concluded that the criticality of the system
integrity problems has evidently intensified in the interim rather than abated. This is partly a result of the
post-2000 feeding frenzy to acquire all-electronic voting machines that, in the absence of voter-verified audit
trails, provide no substantive assurances that votes are correctly processed. Vendor claims to the contrary
are disingenuous and not credible, for a variety of reasons: voluntary lax evaluation criteria, proprietary
software, proprietary interfaces, evaluations that are proprietary and commissioned by the vendors, and
the reported presence of convicted felons in company personnel, along with other clear evidence in recent
elections of claims that are not justified.

1



Unfortunately, voting is a process in which there are many weak links throughout; of particular concern
here is the reality that all voting systems today are subject to varying degrees of errors, manipulation,
and nonaccountability — especially where there is a serious lack of oversight and definitive audit trails.
As a technologist, I strive to establish checks and balances not only on the technology but also on the
voting process as a whole. As legislators, you have an obligation to ensure that you do not endorse
simplistic solutions that could in actuality further weaken the integrity of the election process, with even
greater opportunities for fraud, subversion, and undetected errors. Fortunately, government executives and
legislators, election commissioners, voters, and system developers are slowly comprehending the extent of
the risks involved in having election systems without pervasive systemic attention to overall integrity and
operational oversight.

Some important goals are that voting systems should be easy to use by all eligible voters, should be
extensively evaluated against rigorous standards, and should be demonstrably capable of satisfying certain
critical requirements — not merely for system security but also for voter privacy, system reliability and
fault tolerance, and system survivability in the face of a wide range of realistic adversities that include
hardware malfunctions, software glitches, inadvertent human actions, coordinated attacks, and acts of
God. Also relevant are additional operational requirements such as system usability by communities that
are linguistically diverse, disabled, or otherwise disadvantaged, system interoperability among different
vendors’ products to avoid putting all your eggs in one basket, rapid maintainability, and long-term ease
of evolvability, as well as the enforcement of appropriate discipline throughout software development and
administration.

Openness in Voting Systems

Despite considerable past research in the design, implementation, and operation of high-assurance trustwor-
thy systems, development of commercial systems is decidedly suboptimal with respect to meeting stringent
critical requirements that include security and privacy. Primary concerns include the transparency of
system development and use, and especially the extent to which the software itself is open to thorough
independent inspection.

As used here, the word openness has a straightforward natural meaning, implying the ability to conduct
impartial and objective oversight. Various needs for openness exist throughout the entire election process,
from voter registration to voter authentication to voting itself and the collection and canvassing of the
results, and — in particular in the present context — throughout the entire life cycle of the computer
systems and other equipment used in the process.

To be precise about our terminology, we distinguish here between black-box (that is, closed-box) systems
in which source code is not available for inspection, and open-box systems in which source code is available
under a set of specified conditions that may apply to its use, modification, reuse, and further distribution,
as well as to the relative openness of the development process itself. Black-box software is often considered
advantageous by vendors and believers in security by obscurity (“just trust us”). However, black-box soft-
ware makes it much more difficult for anyone other than the original developers to discover vulnerabilities
and surmount them. It also hinders open analysis of the development process (which is something many
developers are usually happy to hide). Overall, it can be a serious obstacle to having unbiased confidence
in the ability of a system to fulfill its requirements for integrity, security, privacy, reliability, correctness,
and so on, as applicable.

We also distinguish here between proprietary and nonproprietary software. As noted above, open-box
software can come in various proprietary and nonproprietary flavors, with various licensing agreements.
Examples of nonproprietary open-box software are found in the Free Software Movement (such as the Free

2



Software Foundation’s GNU system with Linux, and its General Public License) and the Open Source
Movement [1], although discussions of the distinctions between those two movements and their respective
nonrestrictive licensing policies are beyond the scope of this brief testimony. In essence, both movements
believe in and actively promote unconstrained rights to modification and redistribution of open-box soft-
ware, and use of nonproprietary interfaces. However, internal confusions among the different communities
tend to mask the more important issues discussed here. Furthermore, the question of who can do what to
the source code is less important to the voting process than the question of what is hidden from view.

The potential benefits of open-box software include the ability of external experts to carry out peer re-
views, identify flaws, get them fixed rapidly, and perhaps even add improved functionality — for example,
through collaborative efforts of a wider community. Open specifications and nonproprietary interfaces are
particularly relevant when critical responsibilities are outsourced, although then oversight of trusted (but
potentially untrustworthy) outsourcees becomes critical as well. Of course, the risks include increased
opportunities for evil-doers to discover flaws that can be exploited, and to insert malicious code into flawed
software. Clearly, certain controls must be exerted over software developers, certified source-code reposi-
tories, and trustworthy software distribution, Especially important are issues of trustworthy configuration
management — for example, with rigorous assurances that any software that is actually used in elections
is precisely the same software that has been subject to scrutiny. This must include operating systems,
compilers, source code, and executable code for the entirety of any voting system.

Of particular interest is the potential for the use of disclosable software in extremely trustworthy systems,
in light of (for example) the Internet, typically flawed operating systems, vulnerable system embeddings of
strong cryptography, and the presence of internal potentially hostile code and remotely insertable malware.
A system architecture question involves where trustworthiness must be placed to minimize the amount of
critical code and to achieve robustness in the face of specified adversities. For example, it is possible to
develop systems in which vote preparation systems do not have to be trusted, because of other checks and
balances. This follows the architectural approach described in [2] of isolating a minimal disclosable portion
of a system that must be trustworthy, which is vastly preferable to a nondisclosed proprietary system that
must be blindly trusted.

A frequently asked question is “Can open-box software really improve system security?” The answer is
that it does not necessarily do so by itself, although the potential is considerable. Many other factors
must also be considered. Indeed, many of the problems of black-box software can also be present in
open-box software, and vice versa (for example, flawed designs, the risks of mobile code, difficulties in
finding gifted system administrators, and so on). In the absence of significant discipline and inherently
better system architectures, opportunities may be even more widespread for insertion of malicious code in
the development process, and for uncontrolled subversions of the operational process. But perhaps most
important is the need for both openness and discipline throughout the election process — particularly with
respect to disclosure and independent analysis of source code and even object code, and irrespective of any
particular open-box licensing model.

We face a basic conflict between (a) security by obscurity that is supposed to slow down the adversaries,
and (b) security by open design that allows for independent analysis [3] and collaborative improvement of
critical systems – as well as providing a forcing function to inspire improvements in the face of discovered
attack scenarios. Ideally, if a system has been designed carefully to be meaningfully secure, an open
development process, open specifications, disclosable source code, and even open evaluations should not be
a significant benefit to attackers, and the defenders should be able to maintain a competitive advantage!
For example, this is the principle behind using strong openly published cryptographic algorithms — for
which open analysis of algorithms and their implementations is very valuable, and where only the private
keys need to be hidden. Other examples of obscurity include tamper-resistance and obfuscation. (Note that
tamperproofing is basically impossible, especially in the presence of untrustworthy insiders and outsourcees.)

3



Unfortunately, many existing systems tend to be poorly designed and poorly implemented, with respect
to incomplete and inadequately specified requirements, and are therefore susceptible to insider misuse and
undetected errors, and perhaps also to outsider misuse. Developers are then at a decided disadvantage,
even with black-box systems.

Unfortunately, in poorly designed and poorly implemented systems, the flaws may be identifiable whether
or not the system is open for external analysis, in which case security by obscurity is essentially a sham.
The most glaring deficiency in today’s direct-recording (e.g., touch-screen) voting systems is the total
absence of any ability for voters to verify that their votes are correctly recorded and processed throughout
an election. (The most obvious short-term approach to overcome this fundamental defect is the so-called
voter-verified audit trail [4], which can detect inconsistencies between cast ballots and recorded ballots,
and can in effect independently overcome failures in the rest of the system.) For this reason, researchers
and developers with significant expertise in computer security and voting systems vastly prefer inherently
sound system designs, open disclosure of the design process and of the source code, extensive open analysis
of the software, and avoidance of misguided security by obscurity.

Development, Evaluation, and Operation of Trustworthy Voting Systems

Behavioral application requirements such as reliability, real-time performance, and usability cannot be re-
alistically achieved unless the systems are adequately secure. It is very difficult to build robust applications
based on proprietary black-box software that is not sufficiently trustworthy. It is even more difficult to do
so when the full set of requirements is not considered from the outset.

Several 1956 papers, by Edward F. Moore, Claude Shannon, and John von Neumann, showed how to
construct reliable components out of less reliable components. Later work on correct behavior despite
some number of arbitrarily perverse faults followed along those lines. In that context, building a fault-
tolerant silk purse out of less robust sow’s ears is indeed possible in some cases. But constructing more
trustworthy secure systems out of less trustworthy subsystems does not seem realistic when the underlying
components are fundamentally compromisible, despite various palliative technological efforts.

There are many arguments in favor of allowing various forms of open review — for example, oversight and
analysis of requirements, designs, specifications, source code, executable code, and operational practices.
Even when some obscurity or proprietary nondisclosure is deemed acceptable, wider-community approaches
to openness should be considered. For software and system applications in which security can be assured
by other means and is not compromisible within the application itself, openness has particularly great
appeal. In any event, it is always unwise to rely solely on security by obscurity.

So, what else is needed to achieve robust systems that are predictably trustworthy? The first-level an-
swer is the same for open-box systems as well as closed-box systems: serious discipline throughout the
development cycle and operational practice, use of good system architectures that inherently reduce the
critical dependence on potentially untrustworthy components (or otherwise compensate for inconsistencies
in those components), good software engineering practices, rigorous evaluations of systems in their entirety
throughout their life cycles, and enlightened management can all help.

A second-level and rather more technological answer involves inherently robust and secure evolvable archi-
tectures with open interfaces that enable interoperability among different vendor products, that avoid ex-
cessive dependence on potentially untrustworthy components, and that ensure that the critical components
are indeed trustworthy (for example, servers, firewalls, code distribution paths, nonspoofable provenance
for critical software, cryptographic coprocessors, tamper-resistant embeddings, preventing denial-of-service
attacks, runtime detection of malicious code and deviant misuse, and so on). Of particular relevance to
both black-box and open-box software in that context is a report [2] on how to develop complex sys-

4



tems as predictable compositions of well-analyzed components. A recent book [5] provides a compendium
of diverse chapters on “Free and Open-Source Software” and is recommended reading. Also relevant is
the Open Voting Consortium (openvotingconsortium.org), which is dedicated to transparent democracy
through accountable election systems.

A third-level answer is that there is still much research yet to be done (such as on inherently sound architec-
tures that starkly minimize what must be trustworthy [2], realistic predictable composition of systems out
of carefully evaluated components [2], trustworthy configuration management, rigorous vulnerability and
risk analysis, and open-box business models), as well as more efforts to bring that research into practice. It
must be more widely recognized that every step in the process is a potential weak link, and that aggressive
measures must be taken to ensure adequate oversight. In the long run, effective technology transfer seems
more likely to happen in systems that can be subjected to independent scrutiny.

Conclusion

Nonproprietary open-box systems are by themselves certainly not a panacea, either in general or as applied
specifically to electronic voting systems. However, openness has many potential benefits throughout the
process of developing and operating critical systems. Impressive beginnings already exist in communi-
ties that pursue various forms of open-box software. Nevertheless, much effort remains in providing the
necessary development discipline, adequate controls over the integrity of the emerging software, system
architectures that can evolvably satisfy critical requirements, and well documented demonstrations of the
benefits of openness in the real world. If nothing else, openness successes may have a forcing function
on closed-box developers, who could if suitably motivated rapidly adopt the best of the results. In any
event, openness will remain the ultimate need if we are to attain correct, usable, reliable, auditable, and
transparent elections.

References

[1] The Free Software Foundation website is http://www.fsf.org, and contains software, projects, licens-
ing procedures, etc. The Open Source Movement website is http://www.opensource.org/, which includes
Eric Raymond’s The Cathedral and the Bazaar and the Open Source Definition.

[2] Peter G. Neumann, Principled Assuredly Trustworthy Composable Architectures, Computer Science
Laboratory, SRI International, Final report, SRI Project 11459, Menlo Park, California, December, 2004.
(This report enumerates various approaches to developing predictably dependable systems. It also includes
discussion of the potential risks and benefits of outsourcing, which are relevant to voting systems.)
(http://www.csl.sri.com/neumann/chats4.html, .pdf, and .ps).

[3] Representative analytic tools applicable to source code analysis include Crispin Cowan’s StackGuard
(http://immunix.org), David Wagner’s buffer overflow analyzer
(http://www.cs.berkeley.edu/~daw/papers/), Cigital’s ITS4 function-call analyzer for C and C++ code
(http://www.cigital.com/its4/), and @Stake’s L0pht security review analyzer slint.

[4] Rebecca Mercuri, Electronic Vote Tabulation Checks and Balances, Department of Computer Science,
University of Pennsylvania, 2001 (http://www.notablesoftware.com/evote.html).

[5] Joseph Feller, Brian Fitzgerald, Scott A. Hissam, and Karim R. Lakhani, editors, Perspectives on Free
and Open Source Software, MIT Press, Cambridge, Massachusetts, 2005.

5



Biographical and Organizational Information

Peter G. Neumann (Neumann@CSL.sri.com) has doctorates from Harvard and Darmstadt. After 10 years
at Bell Labs in Murray Hill, New Jersey, in the 1960s, during which he was heavily involved in the Multics
development jointly with MIT and Honeywell, he has been in SRI International’s Computer Science Labo-
ratory since September 1971. (SRI is a not-for-profit R&D institute founded in 1946.) Neumann has long
been concerned with computer systems and networks, trustworthiness/dependability, high assurance, se-
curity, reliability, survivability, safety, and many risks-related issues such as voting-system integrity, crypto
policy, social implications, and human needs including privacy. He moderates the ACM Risks Forum,
edits CACM’s monthly Inside Risks column, chairs the ACM Committee on Computers and Public Policy,
and chairs the National Committee for Voting Integrity, NCVI (http://www.epic.org/privacy/voting). He
created ACM SIGSOFT’s Software Engineering Notes in 1976, and was its editor for 19 years — and still
contributes the RISKS section. His 1995 book, Computer-Related Risks, is still in print. He is a Fellow of
the ACM, IEEE, and AAAS, and is also an SRI Fellow. He received the National Computer System Security
Award in 2002 and the ACM SIGSAC Outstanding Contributions Award in 2005. He is a member of the
U.S. Government Accountability Office Executive Council on Information Management and Technology,
and the California Office of Privacy Protection advisory council. He has taught courses at Darmstadt, Stan-
ford, U.C. Berkeley, and the University of Maryland. See his website (http://www.csl.sri.com/neumann)
for further background, U.S. Senate and House testimonies, papers, bibliography, etc.

Neumann is currently one of the principal investigators of the NSF-sponsored ACCURATE project (A
Center for Correct, Usable, Reliable, Auditable and Transparent Elections), which also includes faculty and
students at the University of California at Berkeley, the University of Iowa, Johns Hopkins University, Rice
University, and Stanford University as well as SRI International. The ACCURATE effort is considering
a wide range of fundamental research directly relevant to voting systems, but also much more widely
applicable to accountable trustworthy systems.

The National Committee for Voting Integrity (NCVI) brings together experts on voting issues from across
the country to promote constructive dialogue among computer scientists, elections administrators, voting
rights advocates, policymakers, the media and the public on the best methods for achieving in practice:
fair, reliable, secure, accessible, transparent, accurate, accountable, and auditable public elections. NCVI is
a project of the Electronic Privacy Information Center (EPIC), which is a public interest research center in
Washington, D.C. EPIC was established in 1994 to focus public attention on emerging civil liberties issues
and to protect privacy, the First Amendment, and constitutional values. One fundamental constitutional
value is the right to vote, and for this reason EPIC began the NCVI project in 2003 when discussions
about remedies for the failures of the nation’s election process during the 2000 election rested solely on the
adoption of electronic voting systems.

6


