Risks of Untrustworthiness

Peter (G. Neumann

Principal Scientist

SRI International ComputerSciLab
Menlo Park, CA 94025-3493
Neumann@CSL.sri.com

http://www.csl.sri.com/neumann
Tel 1-650-859-2375
ACSAC 2006, Miami, 14 Dec 2006



Complexity

e “Everything should be made as
simple as possible, but no simpler.’
Albert Einstein

e Simplicity is highly praised, but
Security is Inherently Complex.
Oversimplifying it creates flaws.

e How can we manage complexity?

9



Security

e Security is a set of end-to-end
total-system emergent properties,
some of which must be avoided.

e Strength in Depth is desirable,
but we have Weakness in Depth.

e Achieving better security is only
part of the problem.

e We need Trustworthiness.



Trustworthiness

e Trustworthiness of S (a system,
network, subsystem, enterprise, ...)
implies S is worthy of being trusted
to satisfy its specified requirements
R (for security, reliability, human
safety, system survivability despite
a realistic range of adversities, ...),
with some measures of assurance Q).



Trustworthiness is Holistic 1

e Holistic approaches consider
systems and enterprises in their
entirety in the context of their
environments, lifetimes, and
total ranges of uses.

e Trustworthiness involves many
end-to-end emergent properties,
many of which must be avoided.



Trustworthiness Is Holistic 2

e Trustworthiness is Pervasive.
Systems need to satisfy all critical
requirements, not just security.

e Trustworthiness is highly
multidimensional. It is not a
local property, especially for
applications. Total-system
analysis is needed.



Trustworthiness Is Holistic 3

e Security, reliability, and other
critical requirements interact,
and can be incompatible.

e Effects of flaws and bugs can
propagate widely.

e Application security is easily
undermined by poor OS security.

e Outages must be anticipated.



Systems Need Holistic Analysis

e Energy: future-oriented/
short-sighted optimization

e Agriculture: natural/industrial
e Health care: prevention/“cure”
e Systems: principled/unprincipled
See PGN, Holistic Systems, ACM
SIGSOFT Softw.Eng.Notes, Nov. 2006



e Fossil fuels are short-sighted,
nonenvironmental, nonrenewable,
contribute to global warming.
Nuclear waste has long life.



Agriculture

e Sustainable agriculture uses
natural fertilizers/pest-controls,
crop rotations. It is healthful.

e Industrial agriculture causes soil
depletion, toxic runoffs, worker
and consumer health problems.

10



Health Care

e “Modern” medicine seeks quick
fixes that suppress symptoms rather
than eliminating causes. It may

be iatrogenic, trigger bacterial
mutations, ...

11



System /Network Development

e Bad practices include monolithic
nondecomposable systems, poor
software engineering, sloppy
software, unsafe languages,
overdependence on patches,
and create many problems.

12



Avoiding System Risks

e Build constructively trustworthy
systems with predictable
composability and interoperability.

e Ted Glaser: “A modular system
is one that falls apart easily.”

e Modularity is not enough; we need
encapsulation, compatibility,
interoperability, noninterference...

13



Holistic Analysis Is Needed

e Principled development of
trustworthy systems must be
demonstrably cost-effective
before it can become pervasive.
How can this be accomplished?

14



Principled System Development:

e Holistic approaches to complexity:
sound requirements, structured
architectures, principles, good
software engineering practice,
design for trustworthiness,
usability and administrability,
pervasive assurance analysis,
formal methods, and lots more.

15



Principled System Design

e Management of complexity through
constructive architectures that

modularly localize what must be
trustworthy, such as separation
kernels, virtualization, alternative
approaches to multiple security
levels, and so on.

16



Principled System Implementation

e Property-preserving refinements
e Sound software engineering

e Sound programming languages
e Invariant design composability

e Proactive code analysis

e End-to-end self-checking

17



Principled System Assurance

e Pervasive assurance throughout
development /use cycles.

e Assured composability, with
with hierarchical closure as
in the Boyer-Moore stack,
Robinson-Levitt (PSOS),

Rushby-DelLong (new work).
e Assured multilevel security?

18



Deja Vu All Over Again, Yogi Berra

e Unfortunately, the same types of
mistakes (design flaws, software
bugs, operational errors) recur.

e There is much to be learned,
from many past mistakes.
Educational is crucial.

e Various examples follow.

19



Backup and Recovery Risks 1:
Air-Traffic Control Failures

e LA Palmdale ATC Jul 2006 power
e Reagan National Apr 2000 power
e LINY ATC SW upgrade Jun 1998

e LA ElToro ATC 104 failures/day
1989 (no previous system saved)

e 3 NY airports 1991 (on batteries)

20



Backup and Recovery Risks 2
More total system /backup failures:

e Swedish central train res system
e Washington Metro Blue Line 1997

e SFF BART SW upgrades Apr 2006
e Japanese stock exchange Nov 2005

Cases of losses with no backup:
e NY Public library references
e Dutch criminal mgmt system

21



Propagation Risks 1:
Widespread Network Outages

e 1980 ARPANET collapse: router
memory errors, weak garbage
collection of old status messages,
memory overflow in every node

e 1990 AT&T longlines collapse:
untested change in recovery code,
repeated crashing for half a day.

22



Propagation Risks 2:
Widespread power outages

e Northeast US, Nov 1965

e Lower NY State, Jul 1977, >26 hrs

e Ten Western states, Oct 1984

e Western US, Jul 1996, heat /tree

e Western US/Canada/Baja, Aug 1996
e Northeast, Aug 2003, >2 days

23



Propagation Risks 3:
Power outages in 2006

e Queens, NY, week-long, wiring
e Portland, Oregon, October

e Ems River, Germany, November.
preventive shutdown failed to
consider iterative implications
(N-1), affecting 10 million in 6
countries from Austria to Spain.

24



Software Flaws 1

e Buffer/stack overflows, missing
bounds checks, type mismatches,
and other flaws are ubiquitous
and keep recurring. This seems
rather ridiculous.

25



Software Flaws 2

e Multics prevented stack overflows.
e Progr. languages are a mixed bag.

e Analysis tools: StackGuard (Cowan),
buffer overflow analyzer (Wagner),
lint family, Coverity (Engler),
Fortify (Chess), MOPS (Chen);
Microsoft: Spec# /Boogie,

PREfast /PREfix, RaceTrack, ...

26



Election Systems 1

e Elections should have end-to-end
integrity /reliability /accountability,
nonsubvertible audit trails,
uncompromised voter privacy, etc.

e The entire process is vulnerable:
registration, voter authentication,
authorization, voting, counting,
certifying, recounting, etc.

27



Election Systems 2

e Weakness in depth: every step
is a potential weak link.

e All-electronic paperless systems
are unauditable, lacking integrity,
and subject to errors, fraud,

and nontechnological problems,
as seen in 2000, 2004, 2006.

e HAVA, EAC, evals: simplistic.

28



Conclusions 1

e The individual cases may be less
important than the fact that
we repeatedly see the same
types of problems.

e Many common vulnerabilities can
be relatively easily avoided
with more principled approaches.

29



Conclusions 2

e Computer development is mostly
an incremental process, driven by
marketplace forces. But security
research and assurance are slow
to be adopted, despite vital needs.

e Incentives are needed to make
better use of past lessons.

30



Conclusions 3

e Better trustworthiness is urgently,
needed, and should be approached
holistically, with composable
architectures and principled
system developments.

e Development and operation of
trustworthy critical systems
require massive cultural changes.

31



A Few Relevant References

e Principled Assuredly Trustworthy
Composable Architectures:

www.CSL.sri.com/neumann/
chats4.html, .pdf, .ps

e PSOS Revisited, ACSAC 2003:

www.csl.sri.com/neumann/psos03.pdf

e ACM Risks Forum, www.risks.org

e PGN, www.CSL.sri.com/neumann

32



Old PSOS/HDM References

e .. Robinson, K.N. Levitt, Proof
Techniques for Hierarchically Struc-
tured Programs, CACM, Apr 1977.

e Neumann, Boyer, Feiertag, Levitt,
Robinson, A Provably Secure Oper-
ating System: The System, Its Ap-

plications, and Proofs, SRI CSL-116,
May 1980, large .ps file online.

33



Early Alternative-MLS References

e J.M. Rushby and B. Randell

A distributed secure system, /[FEE
Computer, 16(7):55—67, Jul 1983

e N.E. Proctor and P.GG. Neumann,
Architectural implications of covert
channels, 15th National Computer
Security Conference, 13-16 Oct 1992
...csl.sri.com/neumann /ncs92.html

34



