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Complexity

e “Everything should be made as
simple as possible, but no simpler.’
Albert Einstein

e Simplicity is highly praised, but
Security is Inherently Complex.
Oversimplifying it creates flaws.

e How can we manage complexity?
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Security

e Security is a set of end-to-end
total-system emergent properties,
some of which must be avoided.

e Strength in Depth is desirable,
but we have Weakness in Depth.

e Achieving better security is only
part of the problem.

e We need Trustworthiness.



Trustworthiness

e Trustworthiness of S (a system,
network, subsystem, enterprise, ...)
implies S is worthy of being trusted
to satisfy its specified requirements
R (for security, reliability, human
safety, system survivability despite
a realistic range of adversities, ...),
with some measures of assurance Q).



Trustworthiness is Holistic 1

e Holistic approaches consider
systems and enterprises in their
entirety in the context of their
environments, lifetimes, and
total ranges of uses.

e Trustworthiness involves many
end-to-end emergent properties,
many of which must be avoided.



Trustworthiness Is Holistic 2

e Trustworthiness is Pervasive.
Systems need to satisfy all critical
requirements, not just security.

e Trustworthiness is highly
multidimensional. It is not a
local property, especially for
applications. Total-system
analysis is needed.



Trustworthiness Is Holistic 3

e Security, reliability, and other
critical requirements interact,
and can be incompatible.

e Effects of flaws and bugs can
propagate widely.

e Application security is easily
undermined by poor OS security.

e Outages must be anticipated.



Systems Need Holistic Analysis

e Energy: future-oriented/
short-sighted optimization

e Agriculture: natural/industrial
e Health care: prevention/“cure”
e Systems: principled/unprincipled
See PGN, Holistic Systems, ACM
SIGSOFT Softw.Eng.Notes, Nov. 2006



e Fossil fuels are short-sighted,
nonenvironmental, nonrenewable,
contribute to global warming.
Nuclear waste has long life.



Agriculture

e Sustainable agriculture uses
natural fertilizers/pest-controls,
crop rotations. It is healthful.

e Industrial agriculture causes soil
depletion, toxic runoffs, worker
and consumer health problems.
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Health Care

e “Modern” medicine seeks quick
fixes that suppress symptoms rather
than eliminating causes. It may

be iatrogenic, trigger bacterial
mutations, ...
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System /Network Development

e Bad practices include monolithic
nondecomposable systems, poor
software engineering, sloppy
software, unsafe languages,
overdependence on patches,
and create many problems.
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Avoiding System Risks

e Build constructively trustworthy
systems with predictable
composability and interoperability.

e Ted Glaser: “A modular system
is one that falls apart easily.”

e Modularity is not enough; we need
encapsulation, compatibility,
interoperability, noninterference...
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Holistic Analysis Is Needed

e Principled development of
trustworthy systems must be
demonstrably cost-effective
before it can become pervasive.
How can this be accomplished?
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Principled System Development:

e Holistic approaches to complexity:
sound requirements, structured
architectures, principles, good
software engineering practice,
design for trustworthiness,
usability and administrability,
pervasive assurance analysis,
formal methods, and lots more.
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Principled System Design

e Management of complexity through
constructive architectures that

modularly localize what must be
trustworthy, such as separation
kernels, virtualization, alternative
approaches to multiple security
levels, and so on.
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Principled System Implementation

e Property-preserving refinements
e Sound software engineering

e Sound programming languages
e Invariant design composability

e Proactive code analysis

e End-to-end self-checking
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Principled System Assurance

e Pervasive assurance throughout
development /use cycles.

e Assured composability, with
with hierarchical closure as
in the Boyer-Moore stack,
Robinson-Levitt (PSOS),

Rushby-DelLong (new work).
e Assured multilevel security?
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Deja Vu All Over Again, Yogi Berra

e Unfortunately, the same types of
mistakes (design flaws, software
bugs, operational errors) recur.

e There is much to be learned,
from many past mistakes.
Educational is crucial.

e Various examples follow.
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Backup and Recovery Risks 1:
Air-Traffic Control Failures

e LA Palmdale ATC Jul 2006 power
e Reagan National Apr 2000 power
e LINY ATC SW upgrade Jun 1998

e LA ElToro ATC 104 failures/day
1989 (no previous system saved)

e 3 NY airports 1991 (on batteries)

20



Backup and Recovery Risks 2
More total system /backup failures:

e Swedish central train res system
e Washington Metro Blue Line 1997

e SFF BART SW upgrades Apr 2006
e Japanese stock exchange Nov 2005

Cases of losses with no backup:
e NY Public library references
e Dutch criminal mgmt system
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Propagation Risks 1:
Widespread Network Outages

e 1980 ARPANET collapse: router
memory errors, weak garbage
collection of old status messages,
memory overflow in every node

e 1990 AT&T longlines collapse:
untested change in recovery code,
repeated crashing for half a day.
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Propagation Risks 2:
Widespread power outages

e Northeast US, Nov 1965

e Lower NY State, Jul 1977, >26 hrs

e Ten Western states, Oct 1984

e Western US, Jul 1996, heat /tree

e Western US/Canada/Baja, Aug 1996
e Northeast, Aug 2003, >2 days
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Propagation Risks 3:
Power outages in 2006

e Queens, NY, week-long, wiring
e Portland, Oregon, October

e Ems River, Germany, November.
preventive shutdown failed to
consider iterative implications
(N-1), affecting 10 million in 6
countries from Austria to Spain.
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Software Flaws 1

e Buffer/stack overflows, missing
bounds checks, type mismatches,
and other flaws are ubiquitous
and keep recurring. This seems
rather ridiculous.
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Software Flaws 2

e Multics prevented stack overflows.
e Progr. languages are a mixed bag.

e Analysis tools: StackGuard (Cowan),
buffer overflow analyzer (Wagner),
lint family, Coverity (Engler),
Fortify (Chess), MOPS (Chen);
Microsoft: Spec# /Boogie,

PREfast /PREfix, RaceTrack, ...
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Election Systems 1

e Elections should have end-to-end
integrity /reliability /accountability,
nonsubvertible audit trails,
uncompromised voter privacy, etc.

e The entire process is vulnerable:
registration, voter authentication,
authorization, voting, counting,
certifying, recounting, etc.
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Election Systems 2

e Weakness in depth: every step
is a potential weak link.

e All-electronic paperless systems
are unauditable, lacking integrity,
and subject to errors, fraud,

and nontechnological problems,
as seen in 2000, 2004, 2006.

e HAVA, EAC, evals: simplistic.

28



Conclusions 1

e The individual cases may be less
important than the fact that
we repeatedly see the same
types of problems.

e Many common vulnerabilities can
be relatively easily avoided
with more principled approaches.
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Conclusions 2

e Computer development is mostly
an incremental process, driven by
marketplace forces. But security
research and assurance are slow
to be adopted, despite vital needs.

e Incentives are needed to make
better use of past lessons.
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Conclusions 3

e Better trustworthiness is urgently,
needed, and should be approached
holistically, with composable
architectures and principled
system developments.

e Development and operation of
trustworthy critical systems
require massive cultural changes.
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A Few Relevant References

e Principled Assuredly Trustworthy
Composable Architectures:

www.CSL.sri.com/neumann/
chats4.html, .pdf, .ps

e PSOS Revisited, ACSAC 2003:

www.csl.sri.com/neumann/psos03.pdf

e ACM Risks Forum, www.risks.org

e PGN, www.CSL.sri.com/neumann
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Old PSOS/HDM References

e .. Robinson, K.N. Levitt, Proof
Techniques for Hierarchically Struc-
tured Programs, CACM, Apr 1977.

e Neumann, Boyer, Feiertag, Levitt,
Robinson, A Provably Secure Oper-
ating System: The System, Its Ap-

plications, and Proofs, SRI CSL-116,
May 1980, large .ps file online.
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Early Alternative-MLS References

e J.M. Rushby and B. Randell

A distributed secure system, /[FEE
Computer, 16(7):55—67, Jul 1983

e N.E. Proctor and P.GG. Neumann,
Architectural implications of covert
channels, 15th National Computer
Security Conference, 13-16 Oct 1992
...csl.sri.com/neumann /ncs92.html
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