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Implementation of Lattice Operations 1There is a greatest cardinal in each type, namely, the car-dinal number of the whole of the type; but this is alwayssurpassed by the cardinal number of the next type, since,if � is the cardinal number of one type, that of the nexttype is 2�, which, as Cantor has shown, is always greaterthan �.Bertrand Russell, The Theory of Types.1 IntroductionObject inheritance is semantically and pragmatically useful. Novel programming languagesare being designed which allow the user to specify type hierarchies. Examples of these areclass inheritance in Common Loops [9] and SmallTalk [12], 
avor inheritance in ZetaLisp [20],subsorts in Theorem Proving [18, 19], type checking in Amber [10], Galileo [2], and more recentlyobject-oriented programming formulated as order-sorted algebraic abstract data-typing [11, 17],and David McAllester's work on boolean class expressions [14].In general, objects which are instance of classes organized in a partial order, are manipulatedas constraint expressions specifying conjunction, disjunction, or exclusion of certain class prop-erties. Languages which support multiple inheritance (i.e., where a class may have more thanone superclass) such as ZetaLisp [20] or Smalltalk [12] use an ad hoc solution for combiningclass properties which depend on the temporal total order in which the classes are de�ned or ap-pear in an expression. This is clearly semantically unclean and pragmatically hazardous. Otherproposals [3, 19, 14] have formalized the concept of class inheritance in lattice-theoretic terms.This captures the essential properties useful in practice for object-oriented languages, and allowsa better handling of class expressions for e�cient implementation. E.g., given a taxonomy ofobjects|a subsumption partial ordering|how expensive is it to compute the greatest commonlower bounds of two objects?In this paper, we present a method which can be used as a static (i.e., at compilation time)procedure based on an idea of carrying the order-theoretic information of the object taxonomyinto a homomorphic image where GLB computation is e�cient. Although the method is generalas far as which codes are used, this study focuses on the code space of (unbounded) binary words,which is the canonical boolean lattice under the cartesian extension of the 0 < 1 ordering. Thecomputation of greatest lower bounds, for example, is thus reduced to a binary and.We developed this technique implementing the particular mechanism of object inheritanceof LogIn [6] and further extended in Life [5]. Another promising prospect of relevance for thetechniques we describe seems to be the fast implementation of other constraint programmingmodels strongly related to ours such as [13, 15, 16].Section 2 states the problem in general terms. We �rst focus on the GLB operation, the mostcommonly used operation. Given that in arbitrary posets such an operation is not necessarilyde�ned, Section 3 recalls a simple semi-lattice embedding construction to palliate this. Then, a�rst method based on transitive closure is presented in Section 4. This method is altered to yielda more space-e�cient encoding algorithm in Section 5. In Section 6, other lattice operations areconsidered; i.e., how the method may be extended to support object disjunction and comple-mentation. Finally, Section 7 elaborates a more sophisticated technique called modulation. Theidea is that in pratice related elements come in \blobs" (which we call modules) such that it ispossible to encode elements locally within a module, these being themselves partially-orderedand encoded. A comparative study of all three methods on large posets illustrates the gains in
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Figure 1: A poset with multiple inheritancefunction GLB(s; t : element) returns : element;beginLBs fx 2 � j x �sg;LBt  fx 2 � j x �tg;CLB  LBs \ LBt;return max(CLB)endFigure 2: The \brute-force" GLB algorithmspace and time incurred.2 The ProblemConsider the object taxonomy|henceforth referred to as a (object) poset|of Figure 1. Let ussuppose that some object is determined to be both of type student and type employee; i.e., itinherits from both types. Object inheritance as type coercion is thus the operation of �ndingthe greatest type, with respect to the subsumption ordering, which is a subtype of both studentand employee; in this case, workstudy.Given that the GLB of any two elements exists and is unique|i.e., that the poset is a lowersemi-lattice (LSL)|we need an algorithm to compute it. A general, albeit na��ve, algorithm tocompute the GLB of two elements of a �nite LSL �, is given in Figure 2. That is, the GLB oftwo elements s and t is the greatest element of the set of common lower bounds of s and t in�. This algorithm is probably not the most e�cient one could �nd. However, it is undoubtedlycorrect.Let us suppose now that there exists a LSL L;v;u for which we know how to compute GLB'se�ciently. Now, given some LSL �;�;^, let us also suppose that there exists a function 
 from



Implementation of Lattice Operations 3� to L such that, for any two elements s and t in �:
(s ^ t) = 
(s) u 
(t) (1)i.e., 
 is a LSL homomorphism. Finally, let us also assume that the function 
 is invertible; i.e.,that there exists a function 
�1 from L to � such that, for any s in �:
�1(
(s)) = s (2)Then, a way of computing the GLB of two elements s and t in the semi-lattice � is to combineEquations (1) and (2): s ^ t = 
�1(
(s) u 
(t)) (3)More precisely, Equation (3) is an e�cient way to compute GLB's in � only if the function 
 andits inverse are also e�ciently computable. And this is not an assumption we may realisticallymake. However, we need not really use Equation (3) literally. The function 
 may be relativelyexpensive, as long as we can compute it statically. Indeed, a compile-time computation couldthus compute all the 
-images of the elements in �, so that all the run-time GLB computationsbe carried out in L, and only pay the price of computing the inverse image by 
 of the ultimateresult. This idea is invaluable for a language like LogIn [6] where run-time computation consistsessentially of very high number of such GLB operations, and decoding with 
�1 is needed onlyto print out the result|obviously a small price to pay.This is indeed the gist of the technique we are to propose. We suggest viewing such a 
 functionas a code, and compilation of the object inheritance operation thus becomes an encoding process.Naturally, we need to explicate other wild assumptions made above, such as the LSL structureof �, and the decoding function 
�1. We next dismiss the former by recalling a semi-latticeembedding. As for the latter, a simple decoding follows from the LSL embedding interpretation.3 A Semi-Lattice ConstructionThe foregoing simple analysis relies on the assumption that the poset � must be a lower semi-lattice; i.e., that a unique GLB exists in � for any two object symbols in � (given by the ^operation). However, in practice this is not quite a reasonable assumption to make. Indeed,in order to maintain this assumption valid, as the size of the poset grows, there must be anexponential number of pairwise GLB's to be speci�ed|clearly, an inappropriate demand on aprogrammer.Instead, it would be simpler to embed a partially-ordered object set � which is not a LSLinto the least such structure which contains it|up to some isomorphism. This embedding mustpreserve the order structure of �, and in particular, existing GLB's. Such an embedding mustalso be semantically sound, in that the operational logic it implements must be consistent|inour case, all or some consistent restrictions of propositional logic implemented as boolean codesand operations.The idea is rather simple, and makes intuitive sense. Let us consider for example the posetof Figure 3. Objects w1; : : : ; wk are both students and employees. However, there is nota common object symbol to designate the set of students and employees. Thus, taking theGLB of student and employee in this poset cannot be de�ned as a unique element of the poset.Nevertheless, it makes sense to say that the GLB of student and employee ought to be the set
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Figure 3: A poset which is not a semi-latticefw1; : : : ; wkg. This is precisely the e�ect that the following construction achieves. To ourknowledge, this construction is not conventional. It is related to what is known as completionby ideals [8], and detailed in the particular following form in [3] and [4].In what follows, we make the assumption that the poset is �nite.1 First, we need somede�nitions.The restricted powerset of a poset S;� is the set 2(S)of non-empty �nite subsets of pairwiseincomparable elements of S. Such subsets are called cochains|or, more �guratively, crowns|and are partially-ordered by a relation v de�ned by:X v Y i� 8x 2 X;9y 2 Y; x � y:Given a poset S;�, the canonical injection (written �) from S into 2(S)is the function whichtakes every element x of S into the singleton �(x) = fxg. This simple function has the niceproperty that : 8x 2 S;8y 2 S; �(x) v �(y) i� x � y:That is, � is an order homomorphism. Given any subset X of S, we de�ne its maximal restrictiondXe as the set of maximal elements of X. Clearly, dXe is in 2(S), and de�ned for all subsets ofa �nite poset S. Given some element x of S, we note by x the subset of S of all lower boundsof x. That is, x = fy 2 S j y � xg:Then, for any two elements a; b in S, a \ b is the set of common lower bounds of a and b in S.Finally, the following binary operation u can be de�ned on 2(S)for any pair of subsets X;Y :X u Y = lSb2Ya2X a \ bm (4)1In fact, as shown in [3], such a construction can be performed for an in�nite poset which is Noetherian|i.e.,one which does not contain in�nite ascending chains.



Implementation of Lattice Operations 5and this operation is a GLB operation in 2(S).As a result, 2(S);v;u is a lower semi-lattice. Furthermore, we observe that if two elements xand y in S already have a unique GLB z in S, it follows that:fxg u fyg = fzg:Hence, this construction is a structure embedding, in that it preserves the ordering and theGLB's when they exist in S. Now, we are justi�ed to take the freedom of writing simply xrather than fxg for any single element of an object poset �, and extend the poset to 2(�) theGLB preserving lower semi-lattice extension of �. And this is the \least" such possible structure,since if � is already a lower semi-lattice then it is isomorphic to its canonical injection into 2(�).This construction is our formal justi�cation of the fact that we need only deal with posetswhich are LSL's. In addition to being a universal embedding, this restricted powerset con-struction also permits the manipulation of disjunctive objects. This brings the problem of thedecoding function 
�1.A convenient consequence of plunging the poset � in its restricted powerset 2(�) with �, isthat an inverse 
�1 for the the encoding function 
 may be extracted as follows. Namely, 
�1may be seen as the restriction of a function 
�1s from L to 2(�) such that, for any c in L:
�1s (c) = dfx 2 � j 
(x) v cge (5)In words, 
�1s (c) is the set of maximal elements of � whose codes are less than c. What wouldthen 
s, the inverse of 
�1s be? As we shall see, if L has the additional property of being adistributive lattice, 
 may be extended to such a 
s from 2(�) to L, thus becoming alwaysinvertible.4 Transitive ClosureFirst of all, let us remark that even if �, the object poset, is not a LSL, then the brute-forcealgorithm of Figure 2 remains correct. Then indeed, it yields the set of maximal common lowerbounds of the input elements|the maximal simultaneously subsumed objects.The two approaches described in the previous section are each obviously correct. However, asthey stand, they are also impractical. The brute-force method would clearly lead to exponentialcomputations, and it is not obvious how one could �nd an appropriate code function if onewere to use the coding approach. Nevertheless, both ideas may be combined based on twoobservations:1. Much redundant work in computing the sets of all lower bounds of poset elements couldbe performed statically, and saved for run-time use.2. A simple code for a poset element could be a representation of the set of all its lowerbounds.The �rst of these remarks is achieved by computing a re
exive and transitive closure of the\immediately greater than" relation. The second, by using a well-known representation of setsas bit-vectors. The trick is that bit-vectors implement both 2(�) and L, thus realizing theisomorphism between the two sets. This yields the simple encoding method explained next.
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Figure 4: A Hasse diagram of a poseta b c d e fa 0 0 0 0 0 0b 1 0 0 0 0 0c 1 0 0 0 0 0d 0 1 1 0 0 0e 0 0 1 0 0 0f 0 1 0 0 1 0Figure 5: Bit-array of Hasse diagram4.1 ExampleLet us consider the 6-element poset of Figure 4. The \immediately greater than" relation coveredby this ordering can be represented in a 6� 6 array as shown in Figure 5. Each row contains 1'sonly in those columns headed by elements which are immediately less than the element headingthe row; and it contains 0's otherwise. Thus, a row headed by an element x can be viewed as acharacteristic boolean vector representation of the set of all the immediate strict lower boundsof x.Now, taking the re
exive and transitive closure of the array in Figure 5, we obtain the arrayin Figure 6. It is obvious that each element's row in this array is a characteristic representationof the set of all its lower bounds. Referring back to the brute-force GLB algorithm of Figure 2,the intersection operation computing common lower bounds is hence reduced to a binary andoperation on bit-vectors. We have thus come up with a code function 
 which associates a6-element bit-vector to any element x in the poset: the row of the boolean array representationof the re
exive and transitive closure of the \immediately greater than" relation.To compute the GLB of, say, d and e, we take the and of 111100 and 101010, obtaining 101000which is precisely the code of c, the GLB of d and e.



Implementation of Lattice Operations 7a b c d e fa 1 0 0 0 0 0b 1 1 0 0 0 0c 1 0 1 0 0 0d 1 1 1 1 0 0e 1 0 1 0 1 0f 1 1 1 0 1 1Figure 6: Re
exive transitive closureWhat happens if we try to compute the GLB of d and f? Taking the and of 111100 and111011 yields 111000 which is the code of none of the poset elements. But using the decodingfunction 
�1s described by Equation (5), we obtain the set fb; cg as wished; i.e., the set ofmaximal common lower bounds of d and f .Looking at Figure 6, we note that the column headed by a contains only 1's. Indeed, a is abottom element in this poset, and thus every element is greater than it. Thus, a slightly more\compact" binary code word is obtained by dropping the bit of the bottom element, withoutany loss. We shall do that systematically, always coding the least element with 0.4.2 MethodGiven an n� n boolean array M , its re
exive and transitive closure M� is given by:M� = n[i=0M i (6)where the power operation is computed as matrix multiplication in the boolean ring of n � nbit-matrices. This yields a straightforward �xed-point algorithm which converges in at mostlog2 n iterations.2Hence, operationally, transitive closure is a well-known computation. Nevertheless, we shallpresent here a particular way of doing it. Our reasons will become clear later as we shall proposea slight modi�cation of this idiosyncratic algorithm that would not be so immediate with otherways of implementing transitive closure. We now describe the algorithm, and in Section 4.3 weshall formally justify it as a transitive closure computation.Since we are concerned with �nding a compilation-time procedure, time e�ciency of the codingmethod is not the prime worry. Instead, we may not mind paying the price of a slightly lesse�cient procedure if it leads to better run-time behavior.Another way of computing such a transitive closure, is to work directly on the graph structureof the base relation. Starting at the bottom element, we can work upwards, layer by layer,assigning binary code words to each elements.3 A layer is a set of incomparable elements|acochain|computed from the previous layer as the set of all the immediate parents that cannot2This is achieved by computing the sequence N0 = I [M , Nk = N2k�1; (k > 0), until Nk = Nk+1 =M�. Eachiteration involves one matrix multiplication. Hence, this gives a possible overall time complexity O(n� log n)where � was last known (by us) to be in the vicinity of 2:7, and according to rumors, keeps nibbling its way down.This method is based on techniques developed by Warshall-Strassen [1].3Without loss of generality, we shall assume that such a least element always exists in �. If no such uniquebottom exists, we can add one.



Implementation of Lattice Operations 8procedure AssignCode;beginp 0;
(?) 0;L f?g;while L 6= � dobeginEncodeLayer(L);L NextLayer(L)endendFigure 7: The AssignCode procedureprocedure EncodeLayer(L : cochain);beginfor each x 2 L dobegin
(x) 2p _Wy2Children(x) 
(y);p p+ 1endendFigure 8: The EncodeLayer procedurebe reached later. In this manner, the entire poset can be swept through. A simple way to encodea \node" in the graph, is to compute its code as the binary or of the code of its children oredwith 2p, where p is the number of nodes visited since ?.Let's illustrate this procedure on the poset of Figure 4. We begin by assigning the code 0 toa. The �rst layer being fag, we obtain the second layer as fb; cg. The code of b is computedas 
(a) _ 20 = 0 _ 1 = 1. Then, the code of c is obtained as 
(a) _ 21 = 0 _ 2 = 10. The layerobtained from fb; cg is fd; e; fg � ffg = fd; eg. The reason why f is to be taken out is that itcan be reached later. A simple test for such elements as f is that they do not have all theirimmediate children already coded. The code assigned to d is 
(b)_
(c)_22 = 1_10_100 = 111;and the code assigned to e is 
(c) _ 23 = 10 _ 1000 = 1010. Finally, the last layer is ffg, andthe code of f is 
(b) _ 
(e) _ 24 = 1 _ 1010 _ 10000 = 11011.One will immediately note that these codes are exactly the reversed versions of those givenin the re
exive transitive array of Figure 6 where the least element's column has been dropped.A pidgin-code algorithm for this encoding procedure is given as Figure 7, Figure 8, andFigure 9. It uses a global variable p counting the number of codes assigned. It assumes afunction Children (resp., Parents) that returns the set of elements immediately less (resp.,greater) than a given one, and a predicate Coded that is true of any already encoded element.The next section elaborates on the correctness of the above algorithm as a transitive closurealgorithm.



Implementation of Lattice Operations 9function NextLayer(L : cochain) returns : cochain;beginM  SfParents(x) j x 2 Lg;return M � fx 2M j 9y 2 Children(x) and :Coded(y)gend Figure 9: The NextLayer instruction4.3 CorrectnessTo simplify the proof, we shall reinstate the least element \column" in the computation of codes.That is, we shall prove the correctness of our AssignCode encoding procedure where 
(?) andp are both initialized to 1 instead of 0.First, it is clear that AssignCode performs at most n iterations, and that all the elements of �are visited once and only once. Let � = fa1; : : : ; ang be such that its element indices f1; : : : ; ngcorrespond to the traversal order of � by the AssignCode procedure. Note that this sequence isa topological ordering of � with respect to its partial order. Namely, a1 = ? and for all indicesi and j between 1 and n, i < j ) aj 6� ai (7)Now then, the codes computed by the AssignCode procedure are such that 
(a1) = 1, andfor i > 1, 
(ai) = 2i�1 _ _x�ai 
(x); (8)where � means \immediately less than".If we can establish that the codes computed by the AssignCode procedure are such that thereis a `1' in the ith bit position of the code word of x (counting from right to left, starting withposition 0) if and only if ai � x, then we shall have clearly proved that the codes are booleanvector representations of the set of all lower bounds of x. That is, AssignCode computes there
exive and transitive closure of �. This is precisely what the following theorem states.Theorem 1 8x 2 �; 8i; 1 � i � n; 2i�1 ^ 
(x) = 2i�1 i� ai � x.Proof: We proceed by induction on k, the index of x = ak.This is clearly true for k = 1. Indeed, for x = ?, the question is reduced to showing:8i; 1 � i � n; 2i�1 ^ 1 = 2i�1 i� ai � ?:and that is obvious.Let us now assume that this is true up to some index k; namely,1 � j � k ) 2i�1 ^ 
(aj) = 2i�1 (9)



Implementation of Lattice Operations 10Now, by (8), 2i�1 ^ 
(ak+1) = 2i�1 ^ (2k _ _x�ak+1 
(x))= (2i�1 ^ 2k) _ (2i�1 ^ _x�ak+1 
(x))= (2i�1 ^ 2k) _ _x�ak+1(2i�1 ^ 
(x))Thus, 2i�1 ^ 
(ak+1) is the binary or of two terms. There are two possible cases to consider, k = i� 1or k 6= i� 1.In the �rst case, we have 2i�1 ^ 2k = 2i�1. We also have ai = ak+1, and thus, a fortiori, ai � ak+1.On the other hand, considering the second term Wx�ai(2i�1 ^ 
(x)), we notice by (7) that since x � ai,the indices j of the x = aj elements must be such that j < i; but then, k = i � 1 entails that j � k.We can therefore use the induction hypothesis (9) together with the fact that ai � ak+1 to conclude thatWx�ai(2i�1 ^ 
(x)) = 2i�1.Now, if k 6= i� 1, then 2i�1 ^ 2k = 0. Thus, 2i�1 ^ 
(ak+1) = 2i�1 if and only if_x�ak+1(2i�1 ^ 
(x)) = 2i�1By the remark (7) made earlier, it is clear that all these x elements are of index smaller than or equalto k, and each must satisfy the induction hypothesis (9). Therefore,8x � ak+1; ai � xwhich entails ai � ak+1.We have thus showed the \only if" direction of the proposition to prove; namely,2i�1 ^ 
(ak+1) = 2i�1 ) ai � ak+1The reverse direction follows directly by observing that two cases are possible: either ai = ak+1 orai < ak+1. The �rst one is reduced to k = i � 1, and the same reasoning for this case, in the backwarddirection as above, works to conclude that 2i�1 ^ 
(ak+1) = 2i�1.As for the other case, ai < ak+1, let us consider all those elements x such that x � ak+1. For those,we have either ai � x|in which case, by (9), 2i�1 ^ 
(x) = 2i�1|or ai not related to x|in which case,again by (9), 2i�1 ^ 
(x) = 0. The conclusion follows.25 Bottom-Up EncodingAlthough the encoding method exposed above can be employed, it uses an unnecessary amountof space for code words. Indeed, each code word is of length exactly n � 1, where n is thenumber of elements of the poset. However, in many cases, these code words do not need to beso long. Indeed, there are many situations where the maximum code word length can be cutto about half of the size. Consider, for example, the 16-element poset of Figure 10 (countingthe omitted ?). This tree shaped poset can be encoded by the transitive closure method toyield the following 15-bit long codes shown in Figure 11-a. However, as shown in Figure 11-b,it can easily be seen that only 8-bit long words would su�ce in this case (see Section 6.1). Afurther compaction (more evident on large posets) can result from code modulation, as seen inFigure 11-c (see Section 7).
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Figure 10: A tree-shaped posetx 
(x)? 000000000000000a 000000000000001b 000000000000010c 000000000000100d 000000000001000e 000000000010000f 000000000100000g 000000001000000h 000000010000000i 000000100000011j 000001000001100k 000010000110000l 000100011000000m 001000000001111n 010000011110000o 111111111111111

x 
(x)? 00000000a 00000001b 00000010c 00000100d 00001000e 00010000f 00100000g 01000000h 10000000i 00000011j 00001100k 00110000l 11000000m 00001111n 11110000o 11111111

x 
(x)? 00 0000a 01 0001b 01 0010c 01 0100d 01 1000e 10 0001f 10 0010g 10 0100h 10 1000i 01 0011j 01 1100k 10 0011l 10 1100m 01 1111n 10 1111o 11 1111(a) Transitive closure (b) Compact encoding (c) Modulated encodingFigure 11: Three encodings of the tree poset



Implementation of Lattice Operations 12In general, it may clearly be necessary to use all n�1 bits. A trivial example consists of a 
atsemi-lattice. However, in practice, tree-like inheritance taxonomies are rather frequent, even ifonly as parts of posets. Hence, such a saving of space turns out to be substantial in practice.Let us �rst see what we can do on the small example of Figure 4. We begin by assigningthe code 0 to a. The �rst layer being fag, we obtain the second layer as fb; cg. Since b hasa as unique predecessor, the code of b is computed as 
(a) _ 20 = 0 _ 1 = 1. Recording themaximum word length so far as p = 1, the same is done to c. Namely, the code of c is obtainedas 
(a) _ 21 = 0 _ 2 = 10. As before, the next layer obtained from fb; cg is fd; eg. Now, d hasmore than just one predecessor. Thus, we can assign to d the code 
(b) _ 
(c) = 1 _ 10 = 11without incrementing p since such a code guarantees that, so far, d is strictly greater than alland only its predecessors, and incomparable to all the codes attributed so far to elements whichare incomparable to d. Continuing thus, the code assigned to e is 
(c) _ 2p = 10 _ 100 = 110,bringing p to 3. Finally, the last layer is ffg, and f has two predecessors. However, this time
(b)_
(e) = 1_110 = 111 violates our invariant condition in that it makes it comparable to thecode of d although this element is not related to f . Nevertheless, it is possible to reinstate ourinvariant; indeed, revising the code of d to be the disjunction of what it is (in order to maintainit greater than all its lower bounds) and of 2p (to guarantee that it remain incomparable to anycode so far given to its unrelated elements). Therefore, the �nal code of d is 1011.5.1 MethodThe idea is that the encoding procedure of Figure 7 is too \generous" in systematically incre-menting the word length by 1 each time it assigns a new code. But, in many cases, the codecomputed as the disjunction of the children's codes would su�ce. The only time it is necessaryto augment the word length p is when an element has a unique predecessor|in which case itmust be made distinguishable from it|or when the disjunctive code so computed is comparableto a code already attributed to an element of � known to be incomparable with this element.5.2 Justi�cationInformally, if it is ensured that a code is made greater that all and only the codes of its lowerbounds, while being incomparable with the codes of incomparable elements, the procedure willbe a correct encoding.This new encoding procedure is obtained from the AssignCode procedure by replacing the callto EncodeLayer by a call to a new procedure, which we name CompactEncodeLayer, describedin Figures 12, 13, and 14. The ResolveCodeConflicts procedure has for e�ect to ensure thatthe invariant condition|imposing that a code attributed to an element be such that it subsumesall and only the codes attributed to that element's lower bounds|be satis�ed again in case ofviolation. Clearly, the all part is ensured by IncrementCode since it sticks a 1 to the left of thepreviously assigned code. The only part is enforced by the recursive propagation of new suchcodes to the con
icting node's parents which happened to be already encoded. This is what thePropagateCode procedure does, making sure that all elements known to be incomparable stayso.The function IncSet is such that IncSet(x) is the set of all elements incomparable with x, ele-ment of �. These can be pre-computed very e�ciently using the classical fast transitive-re
exiveclosure algorithm (The above-described O(n� log n) version of Warshall-Strassen's method), forthe relation � [ �. IncSet of ai is the row vector of bits obtained by taking the complement



Implementation of Lattice Operations 13procedure CompactEncodeLayer(L : cochain);beginfor each x 2 L dobeginlet fx1; : : : ; xng = Children(x) inif n > 1then 
(x) Wni=1 
(xi)else 
(x) IncrementCode(xn);ResolveCodeConflicts(x)endendFigure 12: The CompactEncodeLayer procedureprocedure ResolveCodeConflicts(x : element);beginfor each y 2 IncSet(x) such that Coded(y) docase ofbegin
(x) = 
(y) :begin
(x) IncrementCode(x);
(y) PropagateCode(y)end;
(x) < 
(y) :
(x) IncrementCode(x);
(x) > 
(y) :
(y) PropagateCode(y)endendFigure 13: The ResolveCodeCon
icts procedurefunction IncrementCode(x : element)returns : binary;beginp p+ 1;return 2p�1 _ 
(x)endFigure 14: The IncrementCode instruction



Implementation of Lattice Operations 14procedure PropagateCode(x : element);beginIncrementCode(x);for each y 2 fz 2 Parents(x) j Coded(z)g doResolveCodeConflicts(y)endFigure 15: The PropagateCode procedureof the re
exive and transitive closure of \being comparable to" relation (� [ �), and selectingthe i-th row. That is, IncSet(ai) = [((� [ �)�)�1]i; i = 1; : : : ; n:where � = fa1; : : : ; ang. In addition, this information may be disposed of (garbage collected)before run-time.6 Variations6.1 Closed WorldThere are other sensible choices to make regarding boolean lattice encoding techniques. One ofthe most obvious is the closed world assumption. Under the assumption that new informationcannot be added during run time, common in logic programming [6], one can use even shorterbinary words for encoding. This encoding algorithm is much like the compact encoding algorithmexcept that a new bit is only created for minimal types. No new bits are added for types whichhave unique predecessors, as they are in procedure 12. This encoding corresponds to the setrepresentation of minimal elements in the poset. Thus, any element is the same thing as theset of minimal elements that it subsumes. This closed world encoding (obviously) does notpreserve all the information obtainable from the transitive closure encoding, but in some casesthis information is unnecessary.6.2 Disjunctive ObjectsWe shall now take the freedom of overloading the symbol � to mean \less than or equal to"according to the context; i.e., depending on the set of elements it will be used with. The sameapplies to the symbols for GLB and LUB. This makes presentation lighter.As remarked earlier in this paper, the re
exive transitive closure code of an element x of � is aboolean vector characteristic representation of the set of all lower bounds of x. It is characteristicin the very precise sense of a boolean lattice isomorphism between 2�, the powerset of �, andf0; 1gj�j, the set of bit-arrays of length equal to the cardinality of �.Reconsidering the semi-lattice construction of Section 3, one will notice that it is in fact alattice construction. Indeed, one can de�ne the LUB of two elements in 2(�)as:S t T = dS [ T e (10)



Implementation of Lattice Operations 15i.e., the set of maximal elements of the union. It is not di�cult to prove that under ourassumption of �niteness of �, the lattice 2(�)is a complete distributive lattice.Hence, the coding function 
 from � to f0; 1gj�j may be extended to a function 
s from 2�to f0; 1gj�j (thus in particular from 2(�)to f0; 1gj�j) as:
s(fx1; : : : ; xng) = n_i=1 
(xi) (11)Note that this function restricted to 2(�) is always invertible as shown by combining Equa-tions (11) and (5).When implemented, this coding has the interesting e�ect of reducing \set-at-a-time" inheri-tance (uni�cation) from the clearly exponential operation given by Equation (4) to a virtuallyconstant-time and operation. In addition, it provides a mild but practical generalization facilitywhich allows induction of LUB symbols which exist explicitly in the poset. For example, if ahappens to be the LUB in � of fa1; : : : ; ang, then clearly 
�1s (
s(fa1; : : : ; ang)) = a.6.3 Complemented ObjectsLet us now consider a simple, albeit quite interesting, extension of the subsumption partialordering on 2(�)which would be de�ned on pairs of elements of 2(�). The idea is to see an objectas a pair consisting of a positive object (i.e., everything it can be) and a negative object (i.e.,everything it must not be). Hence, a general such object may be seen at a set of examples andcounter-examples. Thus, an object of type t is also of type t1nt2 if and only if t � t1 and t 6� t2.Of course, such an object has the same denotation as ? whenever t2 � t1.The subsumption ordering is thus extended to complemented objects by:t1nt2 � t3nt4 i� t1 � t3 and t2 � t4 (12)and thus, the GLB operation for complemented objects is:t1nt2 u t3nt4 = (t1 u t3)n(t2 t t4) (13)The encoding function can be extended to complemented objects by:
c(t1nt2) = 
s(t1) ^ 
s(t2) (14)Now, decoding complemented codes may still be done by equation 5 with the pragmatic con-sideration that there is no need to synthesize ever explicitly the negated part of a complementedobject. If such a set of counter-examples was needed for some reason, one could always sweepthrough the entire poset and keep the maximal set of such elements whose codes is not subsumedby the code being decoded.7 Code ModulationAlthough extremely e�cient in time for reasonably sized object posets, the encoding techniquespresented thus far can become cumbersome in space. This is obvious once one notices that



Implementation of Lattice Operations 16every object must carry a bit for every other object in the poset when using transitive closure,and for each minimal when using the closed world encoding. Encoding posets with hundredsor thousands of minimals on real computers becomes problematic. However, in practice anobject taxonomy is often not completely connected. Many applications consist of tree-shapedposets, and in our experience, many object posets consist of several densely connected groupsof nodes, with only a few inheritance links into other dense groups. This is natural when onerealizes that the groups correspond to semantic groupings|an object called piston may havemany inheritance links to other car-parts, while it may have few links to musical-instruments.It is possible to take advantage of this common property of posets to shorten the length ofthe bit-encodings. This bene�t has a small price, in runtime, paid only when elements fromincomparable groups participate in disjunctions or negation. Except for some pathological cases,this optimization performs qualitatively better than the transitive closure algorithm in time andspace on large posets.An intuitive notion of our grouping is easily grasped by thinking of a tree of objects. Eachof the N leaves is a minimal of the poset, and so is assigned a unique bit. In the algorithmpresented so far, each leaf, and each node in the tree must have a bit for at least every leaf,so the total space used just to remember the codes is at least N2. But if we split the tree intwo at the root, and encode each N=2 half of the tree separately (using only as many bits foreach node as there are leaves in that half of the tree, thus N2=4 bits for each half), and thenappend a special group code to the front of the encoding (append a 01 to the front of eachcode in one half, and a 10 to the front of each code in the other), and just do the right thingfor uni�cation, disjunction, negation, etc., a great space improvement can result (Figure 11-cexhibits a small improvement on a small tree-like poset. Signi�cant improvement can be gainedusing this technique on large trees.) Now only the number of elements times the length of itslocal code (within the group), plus its group code, or N(N=2+2) bits are required to encode theentire tree, where N2 were used before. One could further split the tree into smaller subtreesbefore encoding, adding more grouping bits and reducing the number of nodes in each group.This process can be repeated, but eventually becomes counterproductive as the subtrees becomesmall.Further, this extension need not be restricted to trees, as long as there are no links into themiddle of a group of objects. Splitting a tree in two is easily visualized, but splitting a graphcan be more complex. This extension can be seen as simply dividing the original poset verticallyand horizontally, while tree splitting only divides posets horizontally. One can draw a pictureof a poset on paper, and then draw circles around groups of nodes such that every circle has aunique highest element, a unique lowest element, and the only arcs from elements outside thecircle to lower elements inside the circle end on the highest element of the circle, and the onlyarcs from elements inside the circle to lower elements outside the circle come from the lowestelement of the circle. We call the group of elements inside such a circle a module. We encodeeach module of L elements separately, (using L2 bits), and encode the set of modules M as ifthe circles on the diagram of the poset were collapsed to points, and encoded as if they form aposet (they do). Each module's code is then appended to the locally determined code of each ofits elements. Now the total space used to encode a poset is bounded by the number of objectstimes the number of groups plus the number of local elements, or N(M +L), where the numberof groups M times average number of local elements L must be equal to the total number ofobjects in the poset (L�M = N).Yet, there is a possible further abstraction: why stop at groups of elements, why not creategroups of groups? If one takes the above described diagram of collapsed modules, and encodes



Implementation of Lattice Operations 17that using modulation, instead of transitive closure, the result is modules of modules. Obviously,this process could be repeated until there is only one module. In the optimistic case, onlyN logNbits are needed to encode the entire poset, where the full transitive closure uses N2. In realposets, this is often impossible, but a close approximation will lead to similarly compact codes.Theorem 2 The space used by the above modulated encoding is O(N logN).Proof: Given a poset of N elements modulated k times, modulation only requires N(N1+N2+ � � �+Nk)bits to encode it, where Nx is the number of elements at the xth level, and N1 � N2 � � � � � Nk = N .For example, Nk is the number of elements in each group at the bottommost level, or in other words,Nk is the number of elements each circle contained the �rst time we drew circles. Nx is the number ofcircles (reduced to points) we drew circles around the k � xth time we drew circles, etc. First we showthat at any level, equal numbers of elements in each group at that level is optimal. Next we show thatN1 = N2 = � � � = Nk = kpN is an optimal breakdown of the poset. Finally, we �nd that the optimal kfor a given N is logN .Given N elements, and M groups, each with the same number of elements, L, M � L = N , we showthat moving any number of elements, b from one group to another increases the total required bits. Thus,any con�guration where some group has more elements than some other group must not be optimal.1. (M + L) is the number of bits required to encode each element.2. (M + L) + � � �+ (M + L)| {z }N is the total number of bits required to encode the poset. If we changeit in any way, that change can be seen as a combination of pairwise changes to 2 terms - addingsome number of elements to one term, and subtracting the same amount from another. That is,3. (M + L+ b) + � � �+ (M + L+ b)| {z }L+b + (M + L� b) + � � �+ (M + L� b)| {z }L�b + (M + L) + � � �+ (M + L)| {z }N�2Lwhich we are trying to show is greater than or equal to the �rst sum. Subtracting away the N �2Lunchanged sums leaves:4. (M + L+ b) + � � �+ (M + L+ b)| {z }L+b + (M + L� b) + � � �+ (M + L� b)| {z }L�b � (M + L) + � � �+ (M + L)| {z }2L .Subtracting 2L instances of (M + L) leaves:5. (b+ b+ � � �+ b)| {z }L+b +(�b� b� � � � � b)| {z }L�b � 0.Rearranging produces:6. b(L+ b)� b(L� b) � 0.7. b = 0So completely even modules are best.Now, we show that each group should contain the same amount of sub-groups as every group on everylevel. In order for the N1 �N2 � � � � �Nk = N constraint to be met, a total of N �K � kpN bits mustbe used. Remember that k is the total number of times we drew circles. (we will show how to decide klater).Modulation to the same degree at every level, using N � k � kpN bits, is optimal.1. k � kpN + � � �+ k � kpN| {z }Nis the total number of bits required to encode the poset if modulation is performed to the same



Implementation of Lattice Operations 18degree at every level. Here we assume that every module at a given level is the same size, as theprevious lemma demonstrated was a good idea. If we change the encoding in any way, that changecan be seen as a combination of pairwise changes to 2 terms - dividing one term by some positivenumber, multiplying another term by the same -2. k � kpN � d+ k � kpNd + k � kpN + � � � k � kpN| {z }Nis also a solution. Now we need to show that this sum is greater or equal than the �rst sum. First,subtract all the unmodi�ed terms from both:3. k � kpN � d+ k� kpNd � k � kpN + k � kpN .Multiply both sides by d, and divide by k � kpN .4. d� d+ 1 � d+ d5. d2 � 2d+ 1 � 06. (d� 1)2 � 07. d = 1So no change will be bene�cial.So N � k � kpN is optimal, now we need to �nd k for a given N - lets take the derivative, set it equalto 0, make sure that that it is a minimum, and solve for k.1. @@k (N � k � kpN) = 02. (N � kpN) + (N � k � @@k kpN) = 03. (N � kpN)�N � k � logN kpNk2 = 0.Dividing both sides by (N � kpN):4. 1� k � logNk2 = 0and multiply by k:5. k � logN = 06. k = logNThis turns out to be a minimum, and thus N � k� kpN becomes N � logN � logNpN , which simpli�esto N � logN � e, which we claim is the minimum total number of bits needed to encode a (perfectlymodulatable) poset of N elements using modulation. 2For large posets, a very large improvement in encoded space is expected, and even unreason-ably large posets can be realistically coded with this system. For instance, for N = 100 thisis 100 � 5 � e, or 1; 252, instead of 1002 or 10; 000, and for N = 1000, its 18; 778 instead of1; 000; 000.Thus far we have been discussing only the space performance of encoding techniques, but thetime complexity is also of interest. The GLB operation using transitive closure is O(N) (orO(1) on a bit-vector machine), while GLB on modulated codes is O(logN) (or O(1)). This is anice result, since it means that we can have our cake and eat it too - less space and less time.However, these theoretical results are somewhat misleading. On small posets, real computers do



Implementation of Lattice Operations 19behave like bit-vector machines, and so transitive closure and modulation behave approximatelythe same. On larger posets, real computers do not behave like bit-vector machines, and thusmodulation is of most interest for large posets.For example, for N = 1000 space-optimal modulation only requires 18; 778 bits, but uses 18levels of modulation. But N = 1000 could also be broken down into 32 modules of 32 elements(except that 24 of the modules have only 31 elements), requiring 63; 256 bits, but only one levelof modulation. If every level of modulation adds potential time cost, the overhead of extranesting levels may o�set the space compactness of optimal groupings.Also, thus far, we have assumed the poset to be perfectly modulatable. Trees are alwaysperfectly modulatable, as are many sparsely connected posets. But even \messy" object posetscan be dealt with by allowing modules of di�erent sizes, even to the extreme of single elementmodules. This slight generalization allows more modulation than would otherwise be possibleon real posets, and although the resulting code sizes won't be optimal, they will be much smallerthan if transitive closure had been used.7.1 Operations on Modulated CodesThis all sounds �ne until one reconsiders the above phrase \just do the right thing for uni�cation,disjunction, negation, etc." Let us examine what the right thing is.For the moment we will consider an object poset encoded using only one level of modulation,so each code consists of only one group code, and a local code. The generalization of theseoperations for modules of modules is straightforward.First we de�ne >m to be a function on two codes X and Y , where Xg is X's group code, Xlis X's local code, Y g is Y 's group code and Y l is Y 's local code, one needs to �nd the bitwiseAND of Xg and Y g, call it Ag, and the bitwise AND of Xl and Y l, call that Al. Within anygroup, we use -1 as a shorthand for the topmost element's code, and 0 as a shorthand for thebottommost element's code.X >m Y i� � Xg = Y g; and Xl > Y l;Xg 6= Y g = Ag;This de�nition says that X is greater than Y if and only if X and Y are in the same group, andXl > Y l (using the previously de�ned > on codes), or X and Y are in di�erent groups, and Y 'sgroup is subsumed by X's.Then, the GLB of X and Y (with X = hXg;Xli, and Y = hY g; Y li, Ag = Xg ^ Y g, andAl = Xl ^ Y l) is: X ^ Y = 8>><>>: hAg;Ali if Xg = Y g = Ag;hXg;Xli if Xg = Ag 6= Y g;hY g; Y li if Y g = Ag 6= Xg;hAg;�1i otherwise:The �rst possibility is that X and Y are in the same group, and so the result is that groupscode appended to the AND of their local codes. The second possibility is that X's group issubsumed by Y 's. Thus the result is simply X's original code. The third possibility is that Y 'sgroup is subsumed by X's. Then the result is simply Y 's original code. The last possibility isthat neither group subsumes the other, and thus the result is the topmost element in the groupwhich is the greatest lower bound of the two groups.



Implementation of Lattice Operations 20Also, to de�ne disjunction of objects, de�ne LUB to compute the bitwise OR of the codes,and call the OR'ed components Og and Ol. Let 5 be a binary constructor which represents themodulated disjunction. Thus the LUB of X and Y is:X _ Y = 8>><>>: hOg;Oli if Xg = Y g = Og;hXg;Xli if Xg = Og 6= Y g;hY g; Y li if Y g = Og 6= Xg;5(X;Y ) otherwise:The �rst possibility is that X and Y are in the same group, and so the result is that groups codeappended to the OR of their local codes. The second possibility is that X's group subsumes Y 's.Thus the result is simplyX's original code. The third possibility is that Y's group subsumesX's.Then the result is simply Y 's original code. The last possibility, the explicit or, is necessary onlyin cases where elements of two incomparable groups are ORed. The arguments of the explicitor are the original disjuncts.One also needs to know how to take GLB's and LUB's of explicit 5's.5(X;Y ) ^ Z = (X ^ Z) _ (Y ^ Z)5(X;Y ) _ Z = (X _ Z) _ (Y _ Z):Also, de�ne >m on explicit disjunctions.5(X;Y ) >m Z i� X >m Z; or Y >m ZZ >m 5(X;Y ) i� Z >m X; and Z >m YFinally, we de�ne negation of objects similar to that in 6.3. Again de�ne complementedobjects as pairs of codes, one describing examples, the other describing counter-examples. Anobject of type t is also of type t1nmt2 if and only if t �m t1 and t 6�m t2. We thus de�ne the nmor BUTNOT operator as �rst computing the bitwise AND'ed components Ag and Al, and thenXnmY = 8<: hXg;XlnY li if Xg = Y g = Ag;? if Xg = Ag 6= Y g;XnmY otherwise:The �rst possibility is that X and Y are in the same group. Then XnmY is simply XlnY l inthe common group. The second possibility is that Y 's group is subsumed by X's, in which casethe result is bottom. Otherwise, the result is an explicit complement of the original arguments.The obvious generalization of rule 5 to use the modulated encodings and >m function todecode encoded types is 
�1m (c) = dfx 2 � j c >m 
m(x)ge (15)In words, 
�1m (c) is the set of maximal elements of � whose codes are less than c.7.2 Implementation of ModulationImplementation of modulation requires two things - some method to generate the codes, and ane�cient implementation of the GLB, LUB, and BUTNOT operations on the resulting codes.



Implementation of Lattice Operations 217.2.1 Generating ModulesIn order to take advantage of the bene�ts of modulation, it is necessary to discover the groupboundaries, or to draw circles around groups of elements. Below is a sketch of an algorithm to�nd these modules in an arbitrary poset. This algorithm may not �nd every module possible,but it does �nd the vast majority of them, and is able to modulate posets with hundreds ofelements in a few seconds. Also, if one wishes to create modules of modules, one simply needinvoke the top level function on an already modulated poset.The basic idea of this algorithm is to group elements together a few at a time until a groupgrows to some group size bound, in which case that group is not expanded any further, or theset of remaining objects (groups and ungrouped elements) is less than some threshold, in whichcase the entire process of modulation is complete.For simplicity in the pidgin code below, a module is named after its �rst element. Also, itis assumed that the entire poset has been recorded as a set of related pairs, accessible throughthe previously seen functions Parents(x) and Children(x). It also assumes the operationsRelate(x; y) which asserts that x � y, and Unrelate(x; y) which asserts that x 6� y (recall thatx � y means \x immediately less than y). A few of the procedures used here are not de�ned,but are obvious from the context.The algorithm simply looks at each element, attempting to group it together with its parents.If that fails, it tries to group it with a sibling that has exactly the same set of parents as itdoes. In both types of grouping, it is possible that extra elements (children of the newly addedelements) will need to be added to the group in order to satisfy the module requirements. Often,in trying to add the necessary extra children, the group will grow to encompass the entire poset.Thus checks for exceeding the group size bound are added to many of the procedures below.The bound used here is 32, although in fact the bound would depend on many factors such asmachine word length etc., and should really be a constant parameter.The function Modulate (Figure 16) is the main loop of the algorithm. It begins by puttingeach element of the poset on a queue. It then examines the �rst thing in the queue. If it is ableto grow that element into a larger module, then that new module is recorded, and is pushed onthe queue (in order for it to grow further).RecordNewModule (Figure 17) simply updates the relatedness of elements and modules.The function GrowUpward (Figure 18) immediately adds all the parents of the element,since an element can never be grouped with only a subset of its parents. It then tries addingextra elements upward, until a homogeneous layer is found. Homogeneous(s) returns true if itsargument s is a singleton set, false otherwise.GrowSideways (Figure 19) is similar to GrowUpward, except that it begins by �nding itssiblings (a cochain), and then �nding those siblings which have exactly the same parents as theelement. Those full siblings are then added, one at a time, until the bound is reached. As eachnew sibling is added, some children may have to be added in order to form a group.AddNecessaryChildren (Figure 20) begins adding children of the new elements until eithera group is formed or the module-size limit is reached. In fact, it could be the case that byadding some new parents and some more new children, a group could be formed. However thisis unlikely, and complicates the algorithm. Thus a simpli�cation has been made to this function:Whenever one of the new children has any parents, there termed uncles, the function returnsfailure, preventing any such cancerous growth.
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functionModulate(s : set of elements) returns : set of set of elements;beginqueue s;modules �;while queue 6= � and (jqueue [modulesj > 32) dobeginelt pop(queue);newmodule GrowUpward(elt);if newmodule = � then newmodule GrowSideways(elt);modules (modules� newmodule) [ fnewmoduleg;queue (queue� newmodule) [ fnewmoduleg;RecordNewModule(newmodule)end;return modulesend Figure 16: The main loop of the Modulation algorithm

procedure RecordNewModule(mod : set of elements);beginbase SfChildren(x) j x 2 modg;crown SfParents(x) j x 2 modg;for each x 2 base dobeginfor each y 2 mod do Unrelate(x; y);Relate(x;mod)end;for each x 2 crown dobeginfor each y 2 mod do Unrelate(y; x);Relate(mod; x)endendFigure 17: The RecordNewModule Procedure
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function GrowUpward(e : element) returns : set of elements;begincrown Parents(e);done Homogeneous(crown) or (Size(crown) � 32);while :done dobeginTryAddingMoreAncestors(crown);done Homogeneous(crown) or (Size(crown) � 32)end;if Size(crown) � 32 then return �else return AddNecessaryChildren(crown; e)end Figure 18: The GrowUpward Function
function GrowSideways(e : element) returns : set of elements;beginfamily feg;crown Parents(e);siblings SfChildren(x) j x 2 crowng;fullsiblings Sfx 2 siblings j Parents(x) = crowng;oldfamily �;done (fullsiblings= �) or (jfamilyj > 32);while :done dobeginbrother  pop(fullsiblings);family AddNecessaryChildren(fbrotherg; family);if jfamilyj � 32 then oldfamily family;done (fullsiblings= �) or (jfamilyj > 32);end;return oldfamilyend Figure 19: The GrowSideways Function



Implementation of Lattice Operations 24function AddNecessaryChildren(added; old : set of elements)returns : set of elements;beginnew  added� old;group new [ old;newkids SfChildren(x) j x 2 newg;uncles SfParents(x) j x 2 newkidsg;if Size(group) > 32 then return �elseif new = � then return oldelseif uncles 6� group then return �elsereturn AddNecessaryChildren(newkids; group)endFigure 20: The AddNecessaryChildren Function7.2.2 GLB, LUB, and BUTNOTIn our formulation, GLB is an extremely e�cient operation. However, and LUB and BUTNOTare not always as e�cient. Uses of the LUB operation on elements from di�erent modules canincur performance penalties in some cases, due to the need for explicit disjunctions. Similarly,BUTNOT of elements from incomparable groups sometimes produces explicit negations. How-ever, in many applications, disjunction and negation are infrequent or nonexistent. In thesecases, it is advantageous to modulate the encoding as much as possible. Often the decision tomodulate or not to modulate is dependent on details of the system implementation, includinghardware architecture (such as machine word-size, microcoding of multi-word bit-vector opera-tions, etc.) In particular, it is not advantageous to modulate posets which have fewer elementsthan the underlying machine word has bits. This is due to the fact that bitwise-and of two bitvectors shorter than the word-size of the machine tends to be the fastest operation possible.Thus on many personal workstations posets with less than 32 elements should be encoded usingthe transitive closure algorithm, and only larger posets should be broken down.7.3 Proof of the PuddingVariants of these algorithm have been implemented in Common Lisp, and have been bench-marked on a Symbolics 3640. The benchmarks were collected by building a series of trees(which are perfectly modulatable), and then adding some number of randomly generated links.Any links which would cause loops or which were redundant (because of transitivity) were ig-nored. The trees were of exponential nature (the branching factor at depth D was D+1), whichgenerally corresponds to the posets we have encountered in practice. Some timings were col-lected for �xed-arity trees and for posets from actual practice which correlated well with ourtimings.4The �rst set of timings, presented in �gure ?? represents the time (in millionths of a second)4Thanks go to Jungyun Seo for \Babel", his library database, and others for smaller sample posets whichhelped drive the development of this technique.



Implementation of Lattice Operations 25one GLB takes to compute using transitive closure (the star shaped datapoints), and modula-tion (the circular datapoints). These times were gathered for the posets that were successfullymodulated by our algorithm (see the next set of benchmarks) by randomly selecting 10 pairs ofelements, and then �nding the minimum time necessary to compute the GLB of each pair, andthen dividing by 10. The selection of the minimum time (rather than average) is justi�ed bythe multitasking nature of the Symbolics machine. The same procedure was used for timing theModulated GLB and Transitive Closure GLB.With fewer than 32 elements in the poset, both GLB operations are exactly one logandinstruction, which takes between .000004 and .000008 seconds. With more than 32 elements, ascan be seen in that diagram, modulated GLB is faster than transitive closure GLB by a factorof at least three. As the size of the poset increases, modulation outperforms transitive closureby larger and larger margins.However, this performance advantage only exists for certain posets. In fact, only posetswhich fall in the shaded area Figure ?? are expected to exhibit such performance gains. Thedashed vertical line is located at the 32 element mark, where the modulation and transitiveclosure algorithms diverge. The open circles mark the maximum number of links for which �ftypercent of our randomly generated posets were successfully modulated. \Success" is de�nedto be breaking the poset down into 32 or less modules. Thus below the curved solid line theperformance of �gure ?? is expected. Below that line and to the right of the dashed verticalline (the shaded area) one can expect at least a factor of three performance gain of modulationover transitive closure. Above that line it is still possible that modulation will succeed, and itis possible that if modulation \fails" it will still outperform transitive closure. However thesepossibilities are unlikely.The slanted dotted line represents the e�ect of tree-splitting, an easy to implement restrictionon modulation discussed earlier. As the diagram shows, tree splitting accounts for a large partof the expected gain of modulation. The x's and the curved broken line to the left of the dashedvertical line represent the maximum possible number of links for a given number of elements -any more than 6 links between 5 elements of a poset must be redundant or inconsistent.These benchmarks re
ect both the quality of the implementation of the GLB operations (forboth transitive closure and modulated), and the quality of the Modulate routine which �ndsmodules. We believe our implementations to be of high quality, but others may be able to dobetter. It should also be noted that these benchmarks compare two of our encoding techniques.All of our encoding techniques qualitatively outperform standard methods of implementinginheritance, which can easily be exponential in the size of the poset, where ours are linear orbetter.7.4 Modulated VariationsGeneralizations of the modulation theme are possible. In fact, it is possible to relax the require-ments on modules to allow multiple topmost elements, and multiple bottommost elements ineach module. If the upper surface (de�ned to be all the elements of a group which are immediatedescendants of elements not in the group) is upward-homogeneous (de�ned here to mean that allelements have exactly the same set of parents), and the lower surface is downward-homogeneous,(de�ned similarly) then the group is a module. As described earlier, modules have singleton up-per and lower surfaces, which are trivially homogeneous. In fact, the algorithm presented aboveis able to �nd modules which have large surfaces if the below de�nition of Inhomogeneous2 re-places Inhomogeneous in the algorithm. Inhomogeneous2 simply tests to see if all the elements
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Figure 21:Average Time to ComputeModulated and Transitive Closure GLB
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Figure 22:Posets for which modulated GLBis faster than transitive closure GLB.
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Implementation of Lattice Operations 28function Inhomogeneous2(crown : set of elements)returns : boolean;beginparentset Parents(pop(crown));oksofar  true;for each x 2 crown doifParents(x) 6= parentset oksofar  false;return oksofar;endpresented have exactly the same set of parents.Above, we have assumed that the transitive closure encoding is used to determine the localcode, and the group code of modules. It is also possible to use other variations, such as theclosed world encoding. However, using alternate local encoding schemes sometimes has subtlee�ects. Using the closed world encoding, tree splitting is the dominant operation; it is verydi�cult to divide a closed-world poset vertically into modules. Even more mundane \encoding"schemes, such as depth �rst search, could be used at one or more levels of a modulated poset.For emphasis on certain aspects of performance, alternate encoding schemes could be used atevery level. This mix-and-match approach could be especially useful in very large posets.Also, dynamic signature changes are much less costly for modulated codes than for the tran-sitive closure generated codes. Using transitive closure encoding, making any changes to theposet after its been encoded are extremely expensive. In fact, if there is a change to the posetat an element E, every element which subsumes E must be recoded. However, using modulatedcodes, only the elements which subsume E and are in the same module as E must be recoded,unless the change made causes a link between modules, in which case many more must be re-coded. Often the overhead of changing even a small number of codes at runtime prevents takingadvantage of this feature of modulated codes, but in some applications dynamic changes to theposet can be facilitated with the use of modules.Again, the largest consequence of modulating the encoding of a poset is to reduce the spacerequired to store the codes from O(N2) to O(N logN). But it should also be emphasized thatthe theoretical complexity of the modulated GLB operation is O(logN).References[1] Aho, V.A., Hopcroft, J.E., and Ullman, J.D. The Design and Analysis of Computer Algo-rithms. Addison-Wesley (1974).[2] Albano, A., Giannotti, F., Orsini, R., and Pedreschi, D. The type system of Galileo.In Atkinson, M., Buneman, P., and Morrison, R., editors, Data Types and Persistence,Springer-Verlag, Berlin, West-Germany (1988) pp. 101{120.[3] A��t-Kaci, H. A Lattice-Theoretic Approach to Computation Based on a Calculus ofPartially-Ordered Type Structures. PhD thesis, Computer and Information Science, Uni-versity of Pennsylvania, Philadelphia, PA (1984).
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