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Abstract

Lattice operations such as greatest lower bound (GLB), least upper bound (LUB), and rela-
tive complementation (BUTNOT) are becoming more and more important in programming
languages supporting object inheritance. We present a general technique for the efficient
implementation of such operations based on an encoding method. The effect of the encoding
is to plunge the given ordering into a boolean lattice of binary words, leading to an almost
constant time complexity of the lattice operations. A first method is described based on
a transitive closure approach. Then, a more space-efficient method minimizing code-word
length is described. Finally, a powerful grouping technique called modulation is presented
which drastically reduces code space while keeping all three lattice operations highly effi-
cient. This technique takes into account idiosyncrasies of the topology of the poset being
encoded which are quite likely to occur in practice. All methods are formally justified. We
see this work as an original contribution towards using semantic (vz., in this case, taxo-
nomic) information in the engineering pragmatics of storage and retrieval of (vz., partially
or quasi-ordered) information.
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There is a greatest cardinal in each type, namely, the car-
dinal number of the whole of the type; but this is always
surpassed by the cardinal number of the next type, since,
if a is the cardinal number of one type, that of the next
type is 2%, which, as Cantor has shown, is always greater
than a.

BERTRAND RUSSELL, The Theory of Types.

1 Introduction

Object inheritance is semantically and pragmatically useful. Novel programming languages
are being designed which allow the user to specify type hierarchies. Examples of these are
class inheritance in Common Loops [9] and SmallTalk [12], flavor inheritance in ZetaLisp [20],
subsorts in Theorem Proving [18, 19], type checking in Amber [10], Galileo [2], and more recently
object-oriented programming formulated as order-sorted algebraic abstract data-typing [11, 17],
and David McAllester’s work on boolean class expressions [14].

In general, objects which are instance of classes organized in a partial order, are manipulated
as constraint expressions specifying conjunction, disjunction, or exclusion of certain class prop-
erties. Languages which support multiple inheritance (i.e., where a class may have more than
one superclass) such as ZetaLisp [20] or Smalltalk [12] use an ad hoc solution for combining
class properties which depend on the temporal total order in which the classes are defined or ap-
pear in an expression. This is clearly semantically unclean and pragmatically hazardous. Other
proposals [3, 19, 14] have formalized the concept of class inheritance in lattice-theoretic terms.
This captures the essential properties useful in practice for object-oriented languages, and allows
a better handling of class expressions for efficient implementation. E.g., given a taxonomy of
objects—a subsumption partial ordering—how expensive is it to compute the greatest common
lower bounds of two objects?

In this paper, we present a method which can be used as a static (i.e., at compilation time)
procedure based on an idea of carrying the order-theoretic information of the object taxonomy
into a homomorphic image where GLB computation is efficient. Although the method is general
as far as which codes are used, this study focuses on the code space of (unbounded) binary words,
which is the canonical boolean lattice under the cartesian extension of the 0 < 1 ordering. The
computation of greatest lower bounds, for example, is thus reduced to a binary and.

We developed this technique implementing the particular mechanism of object inheritance
of LogIn [6] and further extended in Life [5]. Another promising prospect of relevance for the
techniques we describe seems to be the fast implementation of other constraint programming
models strongly related to ours such as [13, 15, 16].

Section 2 states the problem in general terms. We first focus on the GLB operation, the most
commonly used operation. Given that in arbitrary posets such an operation is not necessarily
defined, Section 3 recalls a simple semi-lattice embedding construction to palliate this. Then, a
first method based on transitive closure is presented in Section 4. This method is altered to yield
a more space-efficient encoding algorithm in Section 5. In Section 6, other lattice operations are
considered; i.e., how the method may be extended to support object disjunction and comple-
mentation. Finally, Section 7 elaborates a more sophisticated technique called modulation. The
idea is that in pratice related elements come in “blobs” (which we call modules) such that it is
possible to encode elements locally within a module, these being themselves partially-ordered
and encoded. A comparative study of all three methods on large posets illustrates the gains in
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person

employee

workstudy

Figure 1: A poset with multiple inheritance

function GLB(s,t : element) returns : element;
begin
LBs — {z € X |z <s};
LBt —{z€X |z <t}
CLB — LBsN LBt;
return maz(CLB)
end

Figure 2: The “brute-force” GLB algorithm

space and time incurred.

2 The Problem

Consider the object taxonomy henceforth referred to as a (object) poset of Figure 1. Let us
suppose that some object is determined to be both of type student and type employee; i.e., it
inherits from both types. Object inheritance as type coercion is thus the operation of finding
the greatest type, with respect to the subsumption ordering, which is a subtype of both student
and employee; in this case, workstudy.

Given that the GLB of any two elements exists and is unique i.e., that the poset is a lower
semi-lattice (LSL) we need an algorithm to compute it. A general, albeit naive, algorithm to
compute the GLB of two elements of a finite LSL 3, is given in Figure 2. That is, the GLB of
two elements s and t is the greatest element of the set of common lower bounds of s and ¢ in
3. This algorithm is probably not the most efficient one could find. However, it is undoubtedly
correct.

Let us suppose now that there exists a LSL £, C, M for which we know how to compute GLB’s
efficiently. Now, given some LSL X, <, A, let us also suppose that there exists a function v from
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Y to L such that, for any two elements s and ¢ in X:

Vs At) = (s)NA(t) (1)

i.e., v is a LSL homomorphism. Finally, let us also assume that the function v is invertible; i.e.,
that there exists a function v~! from £ to ¥ such that, for any s in X:

7 ((s) = s (2)

Then, a way of computing the GLB of two elements s and ¢ in the semi-lattice 3 is to combine
Equations (1) and (2):

sAt = 97 (y(s) (1) (3)

More precisely, Equation (3) is an efficient way to compute GLB’s in ¥ only if the function v and
its inverse are also efficiently computable. And this is not an assumption we may realistically
make. However, we need not really use Equation (3) literally. The function v may be relatively
expensive, as long as we can compute it statically. Indeed, a compile-time computation could
thus compute all the y-images of the elements in 3, so that all the run-time GLB computations
be carried out in £, and only pay the price of computing the inverse image by ~ of the ultimate
result. This idea is invaluable for a language like LogIn [6] where run-time computation consists
essentially of very high number of such GLB operations, and decoding with y~! is needed only
to print out the result—obviously a small price to pay.

This is indeed the gist of the technique we are to propose. We suggest viewing such a ~ function
as a code, and compilation of the object inheritance operation thus becomes an encoding process.

Naturally, we need to explicate other wild assumptions made above, such as the LSL structure
of ¥, and the decoding function 7y~!. We next dismiss the former by recalling a semi-lattice

embedding. As for the latter, a simple decoding follows from the LSL embedding interpretation.

3 A Semi-Lattice Construction

The foregoing simple analysis relies on the assumption that the poset ¥ must be a lower semi-
lattice; i.e., that a unique GLB exists in ¥ for any two object symbols in 3 (given by the A
operation). However, in practice this is not quite a reasonable assumption to make. Indeed,
in order to maintain this assumption valid, as the size of the poset grows, there must be an
exponential number of pairwise GLB’s to be specified—clearly, an inappropriate demand on a
programmer.

Instead, it would be simpler to embed a partially-ordered object set ¥ which is not a LSL
into the least such structure which contains it up to some isomorphism. This embedding must
preserve the order structure of 3, and in particular, existing GLB’s. Such an embedding must
also be semantically sound, in that the operational logic it implements must be consistent—in
our case, all or some consistent restrictions of propositional logic implemented as boolean codes
and operations.

The idea is rather simple, and makes intuitive sense. Let us consider for example the poset
of Figure 3. Objects wy, ... ,wy are both students and employees. However, there is not
a common object symbol to designate the set of students and employees. Thus, taking the
GLB of student and employee in this poset cannot be defined as a unique element of the poset.
Nevertheless, it makes sense to say that the GLB of student and employee ought to be the set
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student ‘ ‘ employee

Figure 3: A poset which is not a semi-lattice

{wy, ... ,wg}. This is precisely the effect that the following construction achieves. To our
knowledge, this construction is not conventional. It is related to what is known as completion
by ideals [8], and detailed in the particular following form in [3] and [4].

In what follows, we make the assumption that the poset is finite.! First, we need some
definitions.

The restricted powerset of a poset S, < is the set 2(5)of non-empty finite subsets of pairwise
incomparable elements of S. Such subsets are called cochains—or, more figuratively, crowns—
and are partially-ordered by a relation C defined by:

XCY iff Vee X, qyey, z<y.

Given a poset S, <, the canonical injection (written ¢) from S into 2(5)is the function which
takes every element x of S into the singleton ¢(x) = {z}. This simple function has the nice
property that :

Ve e S,Vy €S, u(x) Cu(y) iff x<y.

That is, ¢ is an order homomorphism. Given any subset X of S, we define its maximal restriction
[X7 as the set of maximal elements of X. Clearly, [X] is in 2(5), and defined for all subsets of
a finite poset S. Given some element x of S, we note by z the subset of S of all lower bounds
of x. That is,

r={yeS|y<az}

Then, for any two elements a,b in S, ¢ Nb is the set of common lower bounds of ¢ and b in S.
Finally, the following binary operation M can be defined on 2(5)for any pair of subsets X, Y

Xy = [Uikany) (4)

"Tn fact, as shown in [3], such a construction can be performed for an infinite poset which is Noetherian—i.e.,
one which does not contain infinite ascending chains.
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and this operation is a GLB operation in 2(5).

As a result, 25), T, M is a lower semi-lattice. Furthermore, we observe that if two elements x
and y in S already have a unique GLB z in S, it follows that:

{e} T {y} = {z}

Hence, this construction is a structure embedding, in that it preserves the ordering and the
GLB’s when they exist in S. Now, we are justified to take the freedom of writing simply =
rather than {z} for any single element of an object poset X, and extend the poset to 2(%) the
GLB preserving lower semi-lattice extension of 3. And this is the “least” such possible structure,
since if ¥ is already a lower semi-lattice then it is isomorphic to its canonical injection into 2(*).

This construction is our formal justification of the fact that we need only deal with posets
which are LSL’s. In addition to being a universal embedding, this restricted powerset con-
struction also permits the manipulation of disjunctive objects. This brings the problem of the

decoding function v~ 1.

A convenient consequence of plunging the poset ¥ in its restricted powerset 2(®) with o, is
that an inverse y~! for the the encoding function v may be extracted as follows. Namely, v~ !
may be seen as the restriction of a function ~, ! from £ to 2(%) such that, for any ¢ in £:

7 (c) = Hz €T ~(z) C e} (5)

In words, v, !(c) is the set of maximal elements of ¥ whose codes are less than c¢. What would
then 75, the inverse of 7, ! be? As we shall see, if £ has the additional property of being a
distributive lattice, 4 may be extended to such a v, from 2(*) to £, thus becoming always
invertible.

4 Transitive Closure

First of all, let us remark that even if 3, the object poset, is not a LSL, then the brute-force
algorithm of Figure 2 remains correct. Then indeed, it yields the set of maximal common lower
bounds of the input elements the maximal simultaneously subsumed objects.

The two approaches described in the previous section are each obviously correct. However, as
they stand, they are also impractical. The brute-force method would clearly lead to exponential
computations, and it is not obvious how one could find an appropriate code function if one
were to use the coding approach. Nevertheless, both ideas may be combined based on two
observations:

1. Much redundant work in computing the sets of all lower bounds of poset elements could
be performed statically, and saved for run-time use.

2. A simple code for a poset element could be a representation of the set of all its lower
bounds.

The first of these remarks is achieved by computing a reflexive and transitive closure of the
“immediately greater than” relation. The second, by using a well-known representation of sets
as bit-vectors. The trick is that bit-vectors implement both 2(*) and £, thus realizing the
isomorphism between the two sets. This yields the simple encoding method explained next.
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Figure 4: A Hasse diagram of a poset

alblcl|ld|lel|f
al0l0|O]JO]O]O
b{1]0[0[0|O0|0O
c|1]0{0]0]0]O
d{0o|1[1]0]0]0
e|{0]O0[1]0]0]O0
flof1|lojlof{1]0

Figure 5: Bit-array of Hasse diagram

4.1 Example

Let us consider the 6-element poset of Figure 4. The “immediately greater than” relation covered
by this ordering can be represented in a 6 X 6 array as shown in Figure 5. Each row contains 1’s
only in those columns headed by elements which are immediately less than the element heading
the row; and it contains 0’s otherwise. Thus, a row headed by an element = can be viewed as a
characteristic boolean vector representation of the set of all the immediate strict lower bounds
of x.

Now, taking the reflexive and transitive closure of the array in Figure 5, we obtain the array
in Figure 6. It is obvious that each element’s row in this array is a characteristic representation
of the set of all its lower bounds. Referring back to the brute-force GLB algorithm of Figure 2,
the intersection operation computing common lower bounds is hence reduced to a binary and
operation on bit-vectors. We have thus come up with a code function v which associates a
6-element bit-vector to any element x in the poset: the row of the boolean array representation
of the reflexive and transitive closure of the “immediately greater than” relation.

To compute the GLB of, say, d and e, we take the and of 111100 and 101010, obtaining 101000
which is precisely the code of ¢, the GLB of d and e.
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Figure 6: Reflexive transitive closure

What happens if we try to compute the GLB of d and f? Taking the and of 111100 and
111011 yields 111000 which is the code of none of the poset elements. But using the decoding
function ;1 described by Equation (5), we obtain the set {b,c} as wished; ie., the set of
maximal common lower bounds of d and f.

Looking at Figure 6, we note that the column headed by a contains only 1’s. Indeed, a is a
bottom element in this poset, and thus every element is greater than it. Thus, a slightly more
“compact” binary code word is obtained by dropping the bit of the bottom element, without
any loss. We shall do that systematically, always coding the least element with O.

4.2 Method

Given an n X n boolean array M, its reflexive and transitive closure M* is given by:
n .
M* = M (6)
i=0

where the power operation is computed as matrix multiplication in the boolean ring of n x n
bit-matrices. This yields a straightforward fixed-point algorithm which converges in at most
log, n iterations.?

Hence, operationally, transitive closure is a well-known computation. Nevertheless, we shall
present here a particular way of doing it. Our reasons will become clear later as we shall propose
a slight modification of this idiosyncratic algorithm that would not be so immediate with other
ways of implementing transitive closure. We now describe the algorithm, and in Section 4.3 we
shall formally justify it as a transitive closure computation.

Since we are concerned with finding a compilation-time procedure, time efficiency of the coding
method is not the prime worry. Instead, we may not mind paying the price of a slightly less
efficient procedure if it leads to better run-time behavior.

Another way of computing such a transitive closure, is to work directly on the graph structure
of the base relation. Starting at the bottom element, we can work upwards, layer by layer,
assigning binary code words to each elements.®> A layer is a set of incomparable elements a
cochain computed from the previous layer as the set of all the immediate parents that cannot

2This is achieved by computing the sequence Ny = I UM, Ny = N7_,, (k > 0), until Ny = Ny41 = M*. Each
iteration involves one matrix multiplication. Hence, this gives a possible overall time complexity O(n* logn)
where a was last known (by us) to be in the vicinity of 2.7, and according to rumors, keeps nibbling its way down.
This method is based on techniques developed by Warshall-Strassen [1].

SWithout loss of generality, we shall assume that such a least element always exists in X. If no such unique
bottom exists, we can add one.
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procedure AssignCode;

begin

p < 0;

(L) < 0

L—{L}

while L # (0 do
begin
EncodeLayer(L);
L — NeztLayer(L)
end

end

Figure 7: The AssignCode procedure

procedure EncodeLayer(L : cochain);
begin
for each z € L do
begin
’)/(113) =20V VyGChildren(w) rY(y)’
p—p+1
end
end

Figure 8: The EncodeLayer procedure

be reached later. In this manner, the entire poset can be swept through. A simple way to encode
a “node” in the graph, is to compute its code as the binary or of the code of its children ored
with 2P, where p is the number of nodes visited since L.

Let’s illustrate this procedure on the poset of Figure 4. We begin by assigning the code 0 to
a. The first layer being {a}, we obtain the second layer as {b,c}. The code of b is computed
as 7(a) v2° =0V 1 = 1. Then, the code of ¢ is obtained as y(a) V2! = 0 v 2 = 10. The layer
obtained from {b,c} is {d,e, f} L {f} = {d,e}. The reason why f is to be taken out is that it
can be reached later. A simple test for such elements as f is that they do not have all their
immediate children already coded. The code assigned to d is v(b) V~(c) V22 = 1v10Vv100 = 111;
and the code assigned to e is y(c) vV 2% = 10 v 1000 = 1010. Finally, the last layer is {f}, and
the code of f is v(b) V y(e) v 2% =1V 1010 v 10000 = 11011.

One will immediately note that these codes are exactly the reversed versions of those given
in the reflexive transitive array of Figure 6 where the least element’s column has been dropped.

A pidgin-code algorithm for this encoding procedure is given as Figure 7, Figure 8, and
Figure 9. It uses a global variable p counting the number of codes assigned. It assumes a
function Children (resp., Parents) that returns the set of elements immediately less (resp.,
greater) than a given one, and a predicate Coded that is true of any already encoded element.

The next section elaborates on the correctness of the above algorithm as a transitive closure
algorithm.
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function NeztLayer(L : cochain) returns : cochain;
begin
M — | J{Parents(z) | z € L};
return M | {z € M | 3y € Children(z) and —~Coded(y)}
end

Figure 9: The NextLayer instruction

4.3 Correctness

To simplify the proof, we shall reinstate the least element “column” in the computation of codes.
That is, we shall prove the correctness of our AssignCode encoding procedure where (L) and
p are both initialized to 1 instead of 0.

First, it is clear that AssignCode performs at most n iterations, and that all the elements of X
are visited once and only once. Let ¥ = {aq,...,a,} be such that its element indices {1,...,n}
correspond to the traversal order of ¥ by the AssignCode procedure. Note that this sequence is
a topological ordering of 3 with respect to its partial order. Namely, a; = | and for all indices
1 and 7 between 1 and n,

1<j = aj £ a; (7)

Now then, the codes computed by the AssignCode procedure are such that vy(a;) = 1, and

for i > 1, .
Yai) = 271V (), (8)

r<a;

where < means “immediately less than”.

If we can establish that the codes computed by the AssignCode procedure are such that there
is a ‘1’ in the ith bit position of the code word of x (counting from right to left, starting with
position 0) if and only if a; < x, then we shall have clearly proved that the codes are boolean
vector representations of the set of all lower bounds of x. That is, AssignCode computes the
reflexive and transitive closure of >. This is precisely what the following theorem states.

Theorem 1 Vx € X, Vi, 1 <i<mn, 21 Aq(x) = 270 iff a; <z
Proof: We proceed by induction on k, the index of z = ay.
This is clearly true for k = 1. Indeed, for z = L, the question is reduced to showing:
Vi,1<i<mn, 27°'A1 = 201 iff a; < L.

and that is obvious.
Let us now assume that this is true up to some index k; namely,

1<j<k = 27" Ay(e;) = 21 9)
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Now, by (8),

27 Ay(anr) = 27T ARF YV q(2)
= 27 A2 v A\ (@)
= 27'A25) v \/ (@7 A=)

T<Ak+41

Thus, 271 Ay(ap41) is the binary or of two terms. There are two possible cases to consider, k =4 1 1
ork#ill.

In the first case, we have 2:"1 A 28 = 2¢-1 We also have a; = ap41, and thus, a fortiori, a; < agy1.
On the other hand, considering the second term \/,_, (2"~ A y(z)), we notice by (7) that since z < a;,

the indices j of the z = a; elements must be such that j < 7; but then, & = ¢ L 1 entails that j < k.
We can therefore use the induction hypothesis (9) together with the fact that a; < ax,1 to conclude that

\/z<a,- (2i71 /\ ’Y(x)) = 22'71‘
Now, if k # i 1 1, then 212 A 2% = 0. Thus, 2= A y(apy1) = 271 if and only if

V @A) = 2

T<Ak+41

By the remark (7) made earlier, it is clear that all these z elements are of index smaller than or equal
to k, and each must satisfy the induction hypothesis (9). Therefore,

Ve < agy1, a; <

which entails a; < agy1.
We have thus showed the “only if” direction of the proposition to prove; namely,

27 Ay(agyr) = 270 = a6 < apg

The reverse direction follows directly by observing that two cases are possible: either a; = agy1 or
a; < ag41. The first one is reduced to K = ¢ L 1, and the same reasoning for this case, in the backward
direction as above, works to conclude that 281 A y(agy1) = 2671,

As for the other case, a; < agy1, let us consider all those elements z such that z < agy1. For those,
we have either a; < z—in which case, by (9), 27! Ay(z) = 2" !—or a; not related to z—in which case,
again by (9), 2! Ay(z) = 0. The conclusion follows.O

5 Bottom-Up Encoding

Although the encoding method exposed above can be employed, it uses an unnecessary amount
of space for code words. Indeed, each code word is of length exactly n L 1, where n is the
number of elements of the poset. However, in many cases, these code words do not need to be
so long. Indeed, there are many situations where the maximum code word length can be cut
to about half of the size. Consider, for example, the 16-element poset of Figure 10 (counting
the omitted 1). This tree shaped poset can be encoded by the transitive closure method to
yield the following 15-bit long codes shown in Figure 11-a. However, as shown in Figure 11-b,
it can easily be seen that only 8-bit long words would suffice in this case (see Section 6.1). A
further compaction (more evident on large posets) can result from code modulation, as seen in
Figure 11-c (see Section 7).
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Figure 10: A tree-shaped poset

x () x| )

L |{ 000000000000000 L | 00000000
a | 000000000000001 a | 00000001
b | 000000000000010 b | 00000010
¢ | 000000000000100 ¢ | 00000100
d | 000000000001000 d | 00001000
e | 000000000010000 e | 00010000
f | 000000000100000 f | 00100000
g | 000000001000000 g | 01000000
h | 000000010000000 h | 10000000
¢ | 000000100000011 ¢ | 00000011
J | 000001000001100 J | 00001100
k | 000010000110000 k | 00110000
[ | 000100011000000 [ | 11000000
m | 001000000001111 m | 00001111
n | 010000011110000 n | 11110000
o | 111111111111111 o | 11111111

(a) Transitive closure

(b) Compact encoding

Figure 11: Three encodings of the tree poset

7(2)
00 0000
01 0001
01 0010
01 0100
01 1000
10 0001
10 0010
10 0100
10 1000
01 0011
01 1100
10 0011
10 1100
01 1111
10 1111
11 1111

OIS I ~Te. s T 0 e M8

(c) Modulated encoding
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In general, it may clearly be necessary to use all n L1 bits. A trivial example consists of a flat
semi-lattice. However, in practice, tree-like inheritance taxonomies are rather frequent, even if
only as parts of posets. Hence, such a saving of space turns out to be substantial in practice.

Let us first see what we can do on the small example of Figure 4. We begin by assigning
the code 0 to a. The first layer being {a}, we obtain the second layer as {b,c}. Since b has
a as unique predecessor, the code of b is computed as v(a) V2% = 0V 1 = 1. Recording the
maximum word length so far as p = 1, the same is done to ¢. Namely, the code of ¢ is obtained
as y(a) V2! = 0V 2 = 10. As before, the next layer obtained from {b, ¢} is {d,e}. Now, d has
more than just one predecessor. Thus, we can assign to d the code v(b) V y(¢) = 1V 10 = 11
without incrementing p since such a code guarantees that, so far, d is strictly greater than all
and only its predecessors, and incomparable to all the codes attributed so far to elements which
are incomparable to d. Continuing thus, the code assigned to e is v(¢) V 2P = 10 Vv 100 = 110,
bringing p to 3. Finally, the last layer is {f}, and f has two predecessors. However, this time
~v(b)V~y(e) =1V 110 = 111 violates our invariant condition in that it makes it comparable to the
code of d although this element is not related to f. Nevertheless, it is possible to reinstate our
invariant; indeed, revising the code of d to be the disjunction of what it is (in order to maintain
it greater than all its lower bounds) and of 2P (to guarantee that it remain incomparable to any
code so far given to its unrelated elements). Therefore, the final code of d is 1011.

5.1 Method

The idea is that the encoding procedure of Figure 7 is too “generous” in systematically incre-
menting the word length by 1 each time it assigns a new code. But, in many cases, the code
computed as the disjunction of the children’s codes would suffice. The only time it is necessary
to augment the word length p is when an element has a unique predecessor—in which case it
must be made distinguishable from it or when the disjunctive code so computed is comparable
to a code already attributed to an element of ¥ known to be incomparable with this element.

5.2 Justification

Informally, if it is ensured that a code is made greater that all and only the codes of its lower
bounds, while being incomparable with the codes of incomparable elements, the procedure will
be a correct encoding.

This new encoding procedure is obtained from the AssignCode procedure by replacing the call
to EncodeLayer by a call to a new procedure, which we name Compact EncodeLayer, described
in Figures 12, 13, and 14. The ResolveCodeCon flicts procedure has for effect to ensure that
the invariant condition imposing that a code attributed to an element be such that it subsumes
all and only the codes attributed to that element’s lower bounds be satisfied again in case of
violation. Clearly, the all part is ensured by IncrementCode since it sticks a 1 to the left of the
previously assigned code. The only part is enforced by the recursive propagation of new such
codes to the conflicting node’s parents which happened to be already encoded. This is what the
PropagateCode procedure does, making sure that all elements known to be incomparable stay
S0.

The function IncSet is such that IncSet(x) is the set of all elements incomparable with x, ele-
ment of 3. These can be pre-computed very efficiently using the classical fast transitive-reflexive
closure algorithm (The above-described O(n®logn) version of Warshall-Strassen’s method), for
the relation < U >. IncSet of a; is the row vector of bits obtained by taking the complement
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procedure Compact EncodeLayer(L : cochain);
begin
for each z € L do
begin
let {z1,...,z,} = Children(z) in
ifn>1
then 7(z) — /I, 7(z:)
else y(z) «— IncrementCode(zy);
ResolveCodeCon flicts(z)
end
end

Figure 12: The CompactEncodeLayer procedure

procedure ResolveCodeCon flicts(z : element);
begin
for each y € IncSet(z) such that Coded(y) do
case of
begin
v(z) =(y) :
begin
v(z) « IncrementCode(z);
v(y) < PropagateCode(y)
end;
v(z) <7(y):
v(z) «— IncrementCode(z);
v(z) >(y) :
v(y) < PropagateCode(y)
end
end

Figure 13: The ResolveCodeConflicts procedure

function IncrementCode(z : element)
returns : binary;
begin
p—p+1
return 27! V y(z)
end

Figure 14: The IncrementCode instruction
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procedure PropagateCode(z : element);
begin
IncrementCode(z);
for each y € {z € Parents(z) | Coded(z)} do
ResolveCodeCon flicts(y)

end

Figure 15: The PropagateCode procedure

of the reflexive and transitive closure of “being comparable to” relation (< U >), and selecting
the +-th row. That is,

IncSet(a;) = [(SU>)*)";, i=1,...,n.

where ¥ = {aj,...,a,}. In addition, this information may be disposed of (garbage collected)
before run-time.

6 Variations

6.1 Closed World

There are other sensible choices to make regarding boolean lattice encoding techniques. One of
the most obvious is the closed world assumption. Under the assumption that new information
cannot be added during run time, common in logic programming [6], one can use even shorter
binary words for encoding. This encoding algorithm is much like the compact encoding algorithm
except that a new bit is only created for minimal types. No new bits are added for types which
have unique predecessors, as they are in procedure 12. This encoding corresponds to the set
representation of minimal elements in the poset. Thus, any element is the same thing as the
set of minimal elements that it subsumes. This closed world encoding (obviously) does not
preserve all the information obtainable from the transitive closure encoding, but in some cases
this information is unnecessary.

6.2 Disjunctive Objects

We shall now take the freedom of overloading the symbol < to mean “less than or equal to”
according to the context; i.e., depending on the set of elements it will be used with. The same
applies to the symbols for GLB and LUB. This makes presentation lighter.

As remarked earlier in this paper, the reflexive transitive closure code of an element x of X is a
boolean vector characteristic representation of the set of all lower bounds of z. It is characteristic
in the very precise sense of a boolean lattice isomorphism between 2%, the powerset of ¥, and
{0,1}®], the set of bit-arrays of length equal to the cardinality of X.

Reconsidering the semi-lattice construction of Section 3, one will notice that it is in fact a
lattice construction. Indeed, one can define the LUB of two elements in 2(%)as:

SUT = [SUT] (10)
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ie., the set of maximal elements of the union. It is not difficult to prove that under our
assumption of finiteness of ¥, the lattice 2()is a complete distributive lattice.

Hence, the coding function 7 from ¥ to {0, 1}‘2‘ may be extended to a function v, from 2%
to {0, 1}*! (thus in particular from 2%)to {0, 1}*!) as:

{orzad) =\ () (11)
i—=1

Note that this function restricted to 2(*) is always invertible as shown by combining Equa-
tions (11) and (5).

When implemented, this coding has the interesting effect of reducing “set-at-a-time” inheri-
tance (unification) from the clearly exponential operation given by Equation (4) to a virtually
constant-time and operation. In addition, it provides a mild but practical generalization facility
which allows induction of LUB symbols which exist explicitly in the poset. For example, if a
happens to be the LUB in ¥ of {ay,...,a,}, then clearly v, 1 (vs({a1,...,a,})) = a.

6.3 Complemented Objects

Let us now consider a simple, albeit quite interesting, extension of the subsumption partial
ordering on 2(*)which would be defined on pairs of elements of 2(*). The idea is to see an object
as a pair consisting of a positive object (i.e., everything it can be) and a negative object (i.e.,
everything it must not be). Hence, a general such object may be seen at a set of examples and
counter-examples. Thus, an object of type ¢ is also of type t1\tg if and only if ¢ <1 and t £ ¢2.
Of course, such an object has the same denotation as 1 whenever to < ;.

The subsumption ordering is thus extended to complemented objects by:
tl\tz S t3\t4 iff tl S t3 and tz 2 t4 (12)
and thus, the GLB operation for complemented objects is:

tl\tQ 1 t3\t4 = (tl 1 t3)\(t2 LI t4) (13)

The encoding function can be extended to complemented objects by:

Ye(ti\t2) = vs(t1) Avs(ta) (14)

Now, decoding complemented codes may still be done by equation 5 with the pragmatic con-
sideration that there is no need to synthesize ever explicitly the negated part of a complemented
object. If such a set of counter-examples was needed for some reason, one could always sweep
through the entire poset and keep the maximal set of such elements whose codes is not subsumed
by the code being decoded.

7 Code Modulation

Although extremely efficient in time for reasonably sized object posets, the encoding techniques
presented thus far can become cumbersome in space. This is obvious once one notices that
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every object must carry a bit for every other object in the poset when using transitive closure,
and for each minimal when using the closed world encoding. Encoding posets with hundreds
or thousands of minimals on real computers becomes problematic. However, in practice an
object taxonomy is often not completely connected. Many applications consist of tree-shaped
posets, and in our experience, many object posets consist of several densely connected groups
of nodes, with only a few inheritance links into other dense groups. This is natural when one
realizes that the groups correspond to semantic groupings an object called piston may have
many inheritance links to other car-parts, while it may have few links to musical-instruments.
It is possible to take advantage of this common property of posets to shorten the length of
the bit-encodings. This benefit has a small price, in runtime, paid only when elements from
incomparable groups participate in disjunctions or negation. Except for some pathological cases,
this optimization performs qualitatively better than the transitive closure algorithm in time and
space on large posets.

An intuitive notion of our grouping is easily grasped by thinking of a tree of objects. Each
of the N leaves is a minimal of the poset, and so is assigned a unique bit. In the algorithm
presented so far, each leaf, and each node in the tree must have a bit for at least every leaf,
so the total space used just to remember the codes is at least N2. But if we split the tree in
two at the root, and encode each N/2 half of the tree separately (using only as many bits for
each node as there are leaves in that half of the tree, thus N2/4 bits for each half), and then
append a special group code to the front of the encoding (append a 01 to the front of each
code in one half, and a 10 to the front of each code in the other), and just do the right thing
for unification, disjunction, negation, etc., a great space improvement can result (Figure 11-c
exhibits a small improvement on a small tree-like poset. Significant improvement can be gained
using this technique on large trees.) Now only the number of elements times the length of its
local code (within the group), plus its group code, or N(NN/242) bits are required to encode the
entire tree, where N2 were used before. One could further split the tree into smaller subtrees
before encoding, adding more grouping bits and reducing the number of nodes in each group.
This process can be repeated, but eventually becomes counterproductive as the subtrees become
small.

Further, this extension need not be restricted to trees, as long as there are no links into the
middle of a group of objects. Splitting a tree in two is easily visualized, but splitting a graph
can be more complex. This extension can be seen as simply dividing the original poset vertically
and horizontally, while tree splitting only divides posets horizontally. One can draw a picture
of a poset on paper, and then draw circles around groups of nodes such that every circle has a
unique highest element, a unique lowest element, and the only arcs from elements outside the
circle to lower elements inside the circle end on the highest element of the circle, and the only
arcs from elements inside the circle to lower elements outside the circle come from the lowest
element of the circle. We call the group of elements inside such a circle a module. We encode
each module of L elements separately, (using L? bits), and encode the set of modules M as if
the circles on the diagram of the poset were collapsed to points, and encoded as if they form a
poset (they do). Each module’s code is then appended to the locally determined code of each of
its elements. Now the total space used to encode a poset is bounded by the number of objects
times the number of groups plus the number of local elements, or N(M + L), where the number
of groups M times average number of local elements L must be equal to the total number of
objects in the poset (L x M = N).

Yet, there is a possible further abstraction: why stop at groups of elements, why not create
groups of groups? If one takes the above described diagram of collapsed modules, and encodes
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that using modulation, instead of transitive closure, the result is modules of modules. Obviously,
this process could be repeated until there is only one module. In the optimistic case, only N log N
bits are needed to encode the entire poset, where the full transitive closure uses N2. In real
posets, this is often impossible, but a close approximation will lead to similarly compact codes.

Theorem 2 The space used by the above modulated encoding is O(N log N).

Proof: Given a poset of N elements modulated & times, modulation only requires N (Ny 4+ Na+- - -+ Ni)
bits to encode it, where N, is the number of elements at the z** level, and N3 x Ny x --- x N, = N.
For example, Ny, is the number of elements in each group at the bottommost level, or in other words,
N, is the number of elements each circle contained the first time we drew circles. N, is the number of
circles (reduced to points) we drew circles around the k& | zt* time we drew circles, etc. First we show
that at any level, equal numbers of elements in each group at that level is optimal. Next we show that
Ny = Ny = --- = N = {/N is an optimal breakdown of the poset. Finally, we find that the optimal k&
for a given N is log N.

Given N elements, and M groups, each with the same number of elements, L, M x L = N, we show
that moving any number of elements, b from one group to another increases the total required bits. Thus,
any configuration where some group has more elements than some other group must not be optimal.

1. (M + L) is the number of bits required to encode each element.

2. (M+L)+---+ (M + L) is the total number of bits required to encode the poset. If we change

N
it in any way, that change can be seen as a combination of pairwise changes to 2 terms - adding

some number of elements to one term, and subtracting the same amount from another. That is,
3 M+L+b)+- - +(M+L+b)+(M+LL1Lb)+---+M+LLb)+ (M+L)+---+(M+L)

~ v ~ v

Ltb Lob N-2L
which we are trying to show is greater than or equal to the first sum. Subtracting away the N 1 2L
unchanged sums leaves:
4 M+L+b)+---+(M+L+b)+(M+LLb)+ - +(M+LLb)>M+L)+---+(M+1L).

~ vl ~ - ~

v~

L+b L—b 2L
Subtracting 2L instances of (M + L) leaves:

5 (b+b+---4+b)+(LbLbl---1b)>0.

L+b L-b
Rearranging produces:

6. b(L +b) Lb(L Lb) > 0.

7.6=0
So completely even modules are best.

Now, we show that each group should contain the same amount of sub-groups as every group on every

level. In order for the Ny x Ny X --- x N = N constraint to be met, a total of N x K x +/N bits must
be used. Remember that k is the total number of times we drew circles. (we will show how to decide &
later).

Modulation to the same degree at every level, using N x k x +/N bits, is optimal.

1.@><{“/N+---+k><w

N
is the total number of bits required to encode the poset if modulation is performed to the same
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degree at every level. Here we assume that every module at a given level is the same size, as the
previous lemma demonstrated was a good idea. If we change the encoding in any way, that change
can be seen as a combination of pairwise changes to 2 terms - dividing one term by some positive
number, multiplying another term by the same -

k
N
9. kxxk/ﬁxd+¥+kx€/ﬁ+---kx{“/ﬁ

~ -~
v~

N
is also a solution. Now we need to show that this sum is greater or equal than the first sum. First,

subtract all the unmodified terms from both:

3. kx{“/ﬁxdﬁ-%zkx{“/ﬁ-l-kx{“/ﬁ.
Multiply both sides by d, and divide by k x V/N.

4. dxd+1>d+d

5.d>12d+1>0
6. dL1)2>0

7.d=1
So no change will be beneficial.

So N x k x v/N is optimal, now we need to find k for a given N - lets take the derivative, set it equal
to 0, make sure that that it is a minimum, and solve for k.

L. Z(NxkxVN)=0
2. (NxVYN)+(Nxkx ZYN)=0

3. (N x {“/N)J_kaxlog?ﬂzo.
Dividing both sides by (N x ¥/N):

4. 11kxe =9
and multiply by k:

5. kLlogN =0
6. k=1log N

This turns out to be a minimum, and thus N x k x v/N becomes N x log N x “*3/N, which simplifies
to N x log N x e, which we claim is the minimum total number of bits needed to encode a (perfectly
modulatable) poset of N elements using modulation. O

For large posets, a very large improvement in encoded space is expected, and even unreason-
ably large posets can be realistically coded with this system. For instance, for N = 100 this
is 100 x 5 x e, or 1,252, instead of 1002 or 10,000, and for N = 1000, its 18,778 instead of
1,000, 000.

Thus far we have been discussing only the space performance of encoding techniques, but the
time complexity is also of interest. The GLB operation using transitive closure is O(N) (or
O(1) on a bit-vector machine), while GLB on modulated codes is O(log N) (or O(1)). This is a
nice result, since it means that we can have our cake and eat it too - less space and less time.
However, these theoretical results are somewhat misleading. On small posets, real computers do
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behave like bit-vector machines, and so transitive closure and modulation behave approximately
the same. On larger posets, real computers do not behave like bit-vector machines, and thus
modulation is of most interest for large posets.

For example, for N = 1000 space-optimal modulation only requires 18, 778 bits, but uses 18
levels of modulation. But NV = 1000 could also be broken down into 32 modules of 32 elements
(except that 24 of the modules have only 31 elements), requiring 63, 256 bits, but only one level
of modulation. If every level of modulation adds potential time cost, the overhead of extra
nesting levels may offset the space compactness of optimal groupings.

Also, thus far, we have assumed the poset to be perfectly modulatable. Trees are always
perfectly modulatable, as are many sparsely connected posets. But even “messy” object posets
can be dealt with by allowing modules of different sizes, even to the extreme of single element
modules. This slight generalization allows more modulation than would otherwise be possible
on real posets, and although the resulting code sizes won’t be optimal, they will be much smaller
than if transitive closure had been used.

7.1 Operations on Modulated Codes

This all sounds fine until one reconsiders the above phrase “just do the right thing for unification,
disjunction, negation, etc.” Let us examine what the right thing is.

For the moment we will consider an object poset encoded using only one level of modulation,
so each code consists of only one group code, and a local code. The generalization of these
operations for modules of modules is straightforward.

First we define >, to be a function on two codes X and Y, where Xg is X’s group code, X!
is X’s local code, Yg is Y's group code and Y/ is Y’s local code, one needs to find the bitwise
AND of Xg and Yy, call it Ag, and the bitwise AN D of X[ and Y, call that Al. Within any
group, we use -1 as a shorthand for the topmost element’s code, and 0 as a shorthand for the
bottommost element’s code.

. Xg=Yg, and X1 > Yl;
X>mYﬂf{Xy#Yg=Am
This definition says that X is greater than Y if and only if X and Y are in the same group, and
X1 > Y (using the previously defined > on codes), or X and Y are in different groups, and Y'’s
group is subsumed by X's.

Then, the GLB of X and Y (with X = (Xg¢,XI), and Y = (Y¢,Yl), Ag = Xg A Yy, and
Al = XIAYI) is
(Ag, Al) if Xg =Yg = Ag;
YAy - d (XgXD) if Xg=Ag#Yy;
) (Yo, Y1) if Yg=Ag# Xg;
(Ag, L1) otherwise.

The first possibility is that X and Y are in the same group, and so the result is that groups
code appended to the AND of their local codes. The second possibility is that X’s group is
subsumed by Y’s. Thus the result is simply X'’s original code. The third possibility is that Y's
group is subsumed by X’s. Then the result is simply Y’s original code. The last possibility is
that neither group subsumes the other, and thus the result is the topmost element in the group
which is the greatest lower bound of the two groups.
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Also, to define disjunction of objects, define LUB to compute the bitwise OR of the codes,
and call the OR’ed components Og and Ol. Let x7 be a binary constructor which represents the
modulated disjunction. Thus the LUB of X and Y is:

(Og,0l) if Xg=Yg=O0Og;

_ ) (Xg,XI) if Xg=0g#Yy;

XV = (Yg,Yl) ifYg=0g# Xg:
V(X,Y) otherwise.

The first possibility is that X and Y are in the same group, and so the result is that groups code
appended to the OR of their local codes. The second possibility is that X’s group subsumes Y’s.
Thus the result is simply X'’s original code. The third possibility is that Y’s group subsumes X's.
Then the result is simply Y’s original code. The last possibility, the explicit or, is necessary only
in cases where elements of two incomparable groups are ORed. The arguments of the explicit
or are the original disjuncts.

One also needs to know how to take GLB’s and LUB’s of explicit /’s.
VX,Y)ANZ=(XANZ)V(YNZ)
vX,Y)VZ=(XVZ)v(YVZ).

Also, define >, on explicit disjunctions.

vX)Y)>n, Zit X >, Z orY >, Z
Z>nv(X,)Y)iff Z>, X, and Z >, Y

Finally, we define negation of objects similar to that in 6.3. Again define complemented
objects as pairs of codes, one describing examples, the other describing counter-examples. An
object of type t is also of type t1\,,t2 if and only if ¢ <, t1 and t %, t2. We thus define the \
or BUTNOT operator as first computing the bitwise AN D’ed components Ag and Al, and then

(Xg,XI\Yl) if Xg=Yg= Ag;
X\, Y =1 1L it Xg=Ag9#Yy;
X\, Y otherwise.

The first possibility is that X and Y are in the same group. Then X\ Y is simply XI\Y in
the common group. The second possibility is that Y's group is subsumed by X's, in which case
the result is bottom. Otherwise, the result is an explicit complement of the original arguments.

The obvious generalization of rule 5 to use the modulated encodings and >,, function to
decode encoded types is

T (€) = [{z €T ¢ >m ym(2)}] (15)

In words, 7,,'(c) is the set of maximal elements of ¥ whose codes are less than c.

7.2 Implementation of Modulation

Implementation of modulation requires two things - some method to generate the codes, and an
efficient implementation of the GLB, LUB, and BUTNOT operations on the resulting codes.
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7.2.1 Generating Modules

In order to take advantage of the benefits of modulation, it is necessary to discover the group
boundaries, or to draw circles around groups of elements. Below is a sketch of an algorithm to
find these modules in an arbitrary poset. This algorithm may not find every module possible,
but it does find the vast majority of them, and is able to modulate posets with hundreds of
elements in a few seconds. Also, if one wishes to create modules of modules, one simply need
invoke the top level function on an already modulated poset.

The basic idea of this algorithm is to group elements together a few at a time until a group
grows to some group size bound, in which case that group is not expanded any further, or the
set of remaining objects (groups and ungrouped elements) is less than some threshold, in which
case the entire process of modulation is complete.

For simplicity in the pidgin code below, a module is named after its first element. Also, it
is assumed that the entire poset has been recorded as a set of related pairs, accessible through
the previously seen functions Parents(x) and Children(x). It also assumes the operations
Relate(x,y) which asserts that = < y, and Unrelate(x,y) which asserts that © £ y (recall that
x < y means “x immediately less than y). A few of the procedures used here are not defined,
but are obvious from the context.

The algorithm simply looks at each element, attempting to group it together with its parents.
If that fails, it tries to group it with a sibling that has exactly the same set of parents as it
does. In both types of grouping, it is possible that extra elements (children of the newly added
elements) will need to be added to the group in order to satisfy the module requirements. Often,
in trying to add the necessary extra children, the group will grow to encompass the entire poset.
Thus checks for exceeding the group size bound are added to many of the procedures below.
The bound used here is 32, although in fact the bound would depend on many factors such as
machine word length etc., and should really be a constant parameter.

The function Modulate (Figure 16) is the main loop of the algorithm. It begins by putting
each element of the poset on a queue. It then examines the first thing in the queue. If it is able
to grow that element into a larger module, then that new module is recorded, and is pushed on
the queue (in order for it to grow further).

RecordNewModule (Figure 17) simply updates the relatedness of elements and modules.

The function GrowUpward (Figure 18) immediately adds all the parents of the element,
since an element can never be grouped with only a subset of its parents. It then tries adding
extra elements upward, until a homogeneous layer is found. Homogeneous(s) returns true if its
argument s is a singleton set, false otherwise.

GrowSideways (Figure 19) is similar to GrowUpward, except that it begins by finding its
siblings (a cochain), and then finding those siblings which have exactly the same parents as the
element. Those full siblings are then added, one at a time, until the bound is reached. As each
new sibling is added, some children may have to be added in order to form a group.

AddNecessaryChildren (Figure 20) begins adding children of the new elements until either
a group is formed or the module-size limit is reached. In fact, it could be the case that by
adding some new parents and some more new children, a group could be formed. However this
is unlikely, and complicates the algorithm. Thus a simplification has been made to this function:
Whenever one of the new children has any parents, there termed uncles, the function returns
failure, preventing any such cancerous growth.
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function Modulate(s : set of elements) returns : set of set of elements;
begin
queue «— s;
modules — @;
while queue # @ and (|queue U modules| > 32) do
begin
elt — pop(queue);
newmodule — GrowUpward(elt);
if newmodule = @ then newmodule — GrowSideways(elt);
modules — (modules | newmodule) U {newmodule};
queue «— (queue L newmodule) U {newmodule};
RecordN ewM odule(newmodule)
end;
return modules
end

Figure 16: The main loop of the Modulation algorithm

procedure RecordNewModule(mod : set of elements);
begin
base — | J{Children(z) | £ € mod};
crown — | J{Parents(z) | z € mod};
for each z € base do
begin
for each y € mod do Unrelate(z, y);
Relate(z, mod)
end;
for each z € crown do
begin
for each y € mod do Unrelate(y, z);
Relate(mod, x)
end
end

Figure 17: The RecordNewModule Procedure
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function GrowUpward(e : element) returns : set of elements;
begin
crown «— Parents(e);
done «— Homogeneous(crown) or (Size(crown) > 32);
while —done do
begin
TryAdding M ore Ancestors(crown);
done — Homogeneous(crown) or (Size(crown) > 32)
end;
if Size(crown) > 32 then return @
else return AddNecessaryChildren(crown,e)
end

Figure 18: The GrowUpward Function

function GrowSideways(e : element) returns : set of elements;
begin
family « {e};
crown «— Parents(e);
siblings — | J{Children(z) | z € crown};
fullsiblings — |J{z € siblings | Parents(z) = crown};
oldf amily «— O;
done «— (fullsiblings = @) or (|family| > 32);
while —done do
begin
brother — pop(fullsiblings);
family «— AddNecessaryChildren({brother}, family);
if | family| < 32 then oldfamily «— family;
done — (fullsiblings = @) or (|family| > 32);
end;
return oldfamily
end

Figure 19: The GrowSideways Function
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function AddNecessaryChildren(added,old : set of elements)

returns : set of elements;

begin

new «— added | old,;

group «— new U old,;

newkids — |J{Children(z) | z € new};

uncles «— | J{Parents(z) | z € newkids};

if Size(group) > 32 then return @

else

if new = @ then return old

else

if uncles € group then return @

else

return AddNecessaryC hildren(newkids, group)

end

Figure 20: The AddNecessaryChildren Function

7.2.2 GLB, LUB, and BUTNOT

In our formulation, GLB is an extremely efficient operation. However, and LUB and BUTNOT
are not always as efficient. Uses of the LUB operation on elements from different modules can
incur performance penalties in some cases, due to the need for explicit disjunctions. Similarly,
BUTNOT of elements from incomparable groups sometimes produces explicit negations. How-
ever, in many applications, disjunction and negation are infrequent or nonexistent. In these
cases, it is advantageous to modulate the encoding as much as possible. Often the decision to
modulate or not to modulate is dependent on details of the system implementation, including
hardware architecture (such as machine word-size, microcoding of multi-word bit-vector opera-
tions, etc.) In particular, it is not advantageous to modulate posets which have fewer elements
than the underlying machine word has bits. This is due to the fact that bitwise-and of two bit
vectors shorter than the word-size of the machine tends to be the fastest operation possible.
Thus on many personal workstations posets with less than 32 elements should be encoded using
the transitive closure algorithm, and only larger posets should be broken down.

7.3 Proof of the Pudding

Variants of these algorithm have been implemented in Common Lisp, and have been bench-
marked on a Symbolics 3640. The benchmarks were collected by building a series of trees
(which are perfectly modulatable), and then adding some number of randomly generated links.
Any links which would cause loops or which were redundant (because of transitivity) were ig-
nored. The trees were of exponential nature (the branching factor at depth D was D+1), which
generally corresponds to the posets we have encountered in practice. Some timings were col-
lected for fixed-arity trees and for posets from actual practice which correlated well with our
timings.*

The first set of timings, presented in figure ?? represents the time (in millionths of a second)

“Thanks go to Jungyun Seo for “Babel”, his library database, and others for smaller sample posets which
helped drive the development of this technique.
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one GLB takes to compute using transitive closure (the star shaped datapoints), and modula-
tion (the circular datapoints). These times were gathered for the posets that were successfully
modulated by our algorithm (see the next set of benchmarks) by randomly selecting 10 pairs of
elements, and then finding the minimum time necessary to compute the GLB of each pair, and
then dividing by 10. The selection of the minimum time (rather than average) is justified by
the multitasking nature of the Symbolics machine. The same procedure was used for timing the
Modulated GLB and Transitive Closure GLB.

With fewer than 32 elements in the poset, both GLB operations are exactly one logand
instruction, which takes between .000004 and .000008 seconds. With more than 32 elements, as
can be seen in that diagram, modulated GLB is faster than transitive closure GLB by a factor
of at least three. As the size of the poset increases, modulation outperforms transitive closure
by larger and larger margins.

However, this performance advantage only exists for certain posets. In fact, only posets
which fall in the shaded area Figure ?? are expected to exhibit such performance gains. The
dashed vertical line is located at the 32 element mark, where the modulation and transitive
closure algorithms diverge. The open circles mark the maximum number of links for which fifty
percent of our randomly generated posets were successfully modulated. “Success” is defined
to be breaking the poset down into 32 or less modules. Thus below the curved solid line the
performance of figure ?? is expected. Below that line and to the right of the dashed vertical
line (the shaded area) one can expect at least a factor of three performance gain of modulation
over transitive closure. Above that line it is still possible that modulation will succeed, and it
is possible that if modulation “fails” it will still outperform transitive closure. However these
possibilities are unlikely.

The slanted dotted line represents the effect of tree-splitting, an easy to implement restriction
on modulation discussed earlier. As the diagram shows, tree splitting accounts for a large part
of the expected gain of modulation. The x’s and the curved broken line to the left of the dashed
vertical line represent the maximum possible number of links for a given number of elements -
any more than 6 links between 5 elements of a poset must be redundant or inconsistent.

These benchmarks reflect both the quality of the implementation of the GLB operations (for
both transitive closure and modulated), and the quality of the Modulate routine which finds
modules. We believe our implementations to be of high quality, but others may be able to do
better. It should also be noted that these benchmarks compare two of our encoding techniques.
All of our encoding techniques qualitatively outperform standard methods of implementing
inheritance, which can easily be exponential in the size of the poset, where ours are linear or
better.

7.4 Modulated Variations

Generalizations of the modulation theme are possible. In fact, it is possible to relax the require-
ments on modules to allow multiple topmost elements, and multiple bottommost elements in
each module. If the upper surface (defined to be all the elements of a group which are immediate
descendants of elements not in the group) is upward-homogeneous (defined here to mean that all
elements have exactly the same set of parents), and the lower surface is downward-homogeneous,
(defined similarly) then the group is a module. As described earlier, modules have singleton up-
per and lower surfaces, which are trivially homogeneous. In fact, the algorithm presented above
is able to find modules which have large surfaces if the below definition of Inhomogeneous?2 re-
places Inhomogeneous in the algorithm. Inhomogeneous2 simply tests to see if all the elements



Implementation of Lattice Operations

Figure 21:
Average Time to Compute
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Figure 22:
Posets for which modulated GLB
is faster than transitive closure GLB.
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function Inhomogeneous2(crown : set of elements)
returns : boolean;
begin
parentset — Parents(pop(crown));
oksofar « true;
for each z € crown do
if Parents(z) # parentset oksofar «— false;
return oksofar;
end

presented have exactly the same set of parents.

Above, we have assumed that the transitive closure encoding is used to determine the local
code, and the group code of modules. It is also possible to use other variations, such as the
closed world encoding. However, using alternate local encoding schemes sometimes has subtle
effects. Using the closed world encoding, tree splitting is the dominant operation; it is very
difficult to divide a closed-world poset vertically into modules. Even more mundane “encoding”
schemes, such as depth first search, could be used at one or more levels of a modulated poset.
For emphasis on certain aspects of performance, alternate encoding schemes could be used at
every level. This mix-and-match approach could be especially useful in very large posets.

Also, dynamic signature changes are much less costly for modulated codes than for the tran-
sitive closure generated codes. Using transitive closure encoding, making any changes to the
poset after its been encoded are extremely expensive. In fact, if there is a change to the poset
at an element E, every element which subsumes £ must be recoded. However, using modulated
codes, only the elements which subsume E and are in the same module as E must be recoded,
unless the change made causes a link between modules, in which case many more must be re-
coded. Often the overhead of changing even a small number of codes at runtime prevents taking
advantage of this feature of modulated codes, but in some applications dynamic changes to the
poset can be facilitated with the use of modules.

Again, the largest consequence of modulating the encoding of a poset is to reduce the space
required to store the codes from O(N?) to O(N log N). But it should also be emphasized that
the theoretical complexity of the modulated GLB operation is O(log V).
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