
Appeared in SIGACT 1992Linear LogicPatrick Lincolnlincoln@csl.sri.comSRI and Stanford University1 Linear LogicLinear logic was introduced by Girard in 1987 [11]. Since then many results have supportedGirard's claims such as \Linear logic is a resource conscious logic". Increasingly, computerscientists have recognized linear logic as an expressive and powerful logic, with deep connec-tions to concepts from computer science. The expressive power of linear logic is evidenced bysome very natural encodings of computational models such as Petri nets, counter machines,Turing machines, and others.This note presents an intuitive overview of linear logic, some recent theoretical results,and some interesting applications of linear logic to computer science. Other introductionsto linear logic may be found in [12, 36].2 Linear Logic vs Classical and Intuitionistic LogicsLinear logic di�ers from classical and intuitionistic logic in several fundamental ways. Clas-sical logic may be viewed as if it deals with static propositions about the world where eachproposition is either true or false. Because of the static nature of propositions in classicallogic, one may \duplicate" propositions: P implies (P and P ). Implicitly we learn that \oneP is as good as two". Also, one may discard propositions: (P and Q) implies P . Here theproposition Q has been \thrown away". Both of these sentences are valid in classical logicfor any P and Q.In linear logic, these sentences are not valid. A linear logician might ask \Where did thesecond P come from?" and \Where did the Q go?". Of course these questions are nonse-quiturs in the classical setting, since propositions are assumed to be static, unchanging factsabout the world. On the other hand, the rules of linear logic imply that linear propositionsstand for dynamic properties or �nite resources.For example, consider the propositions D, M , and C, conceived as resources:
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D �= \One Dollar"M �= \A pack of Marlboros"C �= \A pack of Camels"Consider the following axiomatization of a vending machine:D impliesMD impliesCThen in classical (or intuitionistic) logic, one is able to deduceD implies (M and C)Which may be read as \With one dollar, I may buy both a pack of Marlboros and a pack ofCamels". Although this deduction is valid in classical logic, it is nonsense in the intendedinterpretation of propositions as resources: one cannot buy two packs of cigarettes with onedollar from the vending machine described. This paradox arises out of the confusion inclassical (and intuitionistic) logic between two kinds of conjunction: one intuitively meaning\I have both" (which is written in linear logic as 
), and another meaning \I have a choice"(written & in linear logic).Linear logic avoids such paradoxes by distinguishing two kinds of conjunction, two kindsof disjunction, and by introducing a modal storage operator that explicitly marks thosepropositions that can be arbitrarily reused.Linear negation A? is involutive, that is, (A?)? = A, but is yet constructive. This is oneof the fascinating aspects of linear logic.Linear logic \multiplicative" conjunction A
 B stands for the proposition that one hasboth A and B at the same time. The linear logic \additive" conjunction A&B stands for\one's own choice" between A and B, but not both. Dually, there are two disjunctions.The multiplicative disjunction, written A}B stands for the proposition \if not A, then B".Perhaps this disjunction can be more easily understood by considering linear implicationA��B, which is de�ned by A?}B. The formula A��B can be thought of as \can B bederived using A exactly once?". The additive disjunction A�B stands for the possibility ofeither A or B, but you don't know which. That is, \someone else's choice."For each of these connectives, there is a unit: 1 is the unit of 
, so A��(A 
 1) and(A
 1)��A. > is the unit of &, ? is the unit of }, and 0 is the unit of �.2.1 ExponentialsTo complete the logic, there is a modal storage operator ! (of course) and its dual ? (whynot). The formula !A may be thought of as a printing press for A's, which can generate anynumber of A's. For example, the U.S. government can be thought to have !Dollars, anddoesn't need to balance its budget, while citizens do not have !Dollars, and thus have tobalance their budgets. 2



2.2 ExampleTo illustrate the use of linear connectives and modal operators, here is an example, inspiredby Girard and Lafont [12]. Suppose for a �xed $5 price a restaurant will provide a hamburger,a Coke, as many french fries as you like, onion soup or salad (your choice), and pie or icecream (some else's choice). One may encode this information in the linear logic formulabeside the menu:Fixed-Price Menu: $5 (D 
D 
D 
D 
D)Hamburger ��Coke [H 
 C
 !F 
 (O&S) 
 (P � I)]All the french fries you can eatOnion Soup or SaladPie or Ice Cream (depending on availability)3 Sequent Calculus Notation for Linear LogicThe entire set of Gentzen-style sequent rules for linear logic are given at the end of this note.As explained above, the rules de�ne two conjunctions and two disjunctions, as well as modaland constant operators. One could add quanti�ers to form �rst (or higher) order linear logic,but for this paper we will restrict attention to propositional linear logic.The sequent calculus notation, due to Gentzen [10], uses roman letters for propositions,and greek letters for sequences of formulas. A sequent is composed of two sequences offormulas separated by a `, or turnstile symbol. One may read the sequent � ` � as assertingthat the multiplicative conjunction of the formulas in � together imply the multiplicativedisjunction of the formulas in �.A sequent calculus proof rule consists of a set of hypothesis sequents, displayed above ahorizontal line, and a single conclusion sequent, displayed below the line, as below:Hypothesis1 Hypothesis2Conclusion4 Connections to Other LogicsThe most interesting features of linear logic arise from the absence of the rules of contractionand weakening. In classical or intuitionistic logic, the following rules are allowed:Weakening Left � ` ��; A ` � �; A; A ` ��; A ` � Contraction LeftDirect and A�ne logic share with linear logic the elimination of the contraction rule [19]:i.e.propositions cannot be arbitrarily copied. However, both of these logics allow weakening.Relevance and Pertinent logic disallow weakening, but allow contraction: i.e.propositionscannot be arbitrarily discarded, but can be copied. Pertinent logic is decidable [32], butRelevance logic adds a distributivity axiom, which is absent from linear logic, which makes3



Relevance logic undecidable [37]. Linear logic disallows both weakening and contraction ingeneral, although they are allowed for modal (! and ?) formulas.Linear logic arose partly out of a study of intuitionistic implication. Girard found thatthe intuitionistic implication A ) B could be decomposed into two separate connectives:!A��B. Girard showed that one could thus translate intuitionistic (and also classical) logicinto linear logic directly, simply appending modals to certain subformulas and making theright choice as to which sort of conjunction and disjunction should be used. Here we see a�rst glimpse of the substance behind the slogan \Linear logic is a logic behind logics."5 Connections to Computer ScienceThere has been much recent excitement about linear logic in the logic-based theoreticalcomputer science community. Most of this excitement stems from the newfound ability tocapture di�cult \resource" problems logically. For example, linear logic provides a naturaland simple encoding of Petri net reachability. In linear logic the formula !((a
 c)��b) maybe used to encode a Petri net transition taking tokens from place a and c and adding a tokento place b. Similarly, the formula !((b
d
d)�� (c
d)) may be seen as a transition takingone token from b and two tokens from d, and adding one token to c. These transitions arepresented graphically below:����A ����B
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!((a
 c)��b);!((b
 d
 d)�� (c
 d));a; c;d;d
Thus one can encode Petri net transitions as reusable linear implications. Tokens arerepresented as atomic propositions, and a reachability problem may be presented as a se-quent: !((a
 c)��b); !((b
 d
 d)�� (c
 d)); a; c;d;d ` c;dThis sequent is provable in linear logic if and only if there is a sequence of Petri netrule applications that transform the token set fa; c; d; dg to fc; dg. This connection has beenwell-studied [5, 14, 30, 6, 9], and extended to cover other models of concurrency [22, 2, 35].Linear logic has also been applied to several other areas of computer science. One keyapplication of the resource-sensitive aspect of the logic was the development of a functionalprogramming language implementation in which garbage collection was replaced by explicitduplication operations based on linear logic [21]. More recent work has attempted to �nda linear logical basis for many optimizations in (lazy) functional programming languageimplementations by concentrating on linear logic as a type system [1, 15, 39, 40, 25, 8, 29, 41].4



Other applications include analyzing the control structure of logic programs [7], general-ized logic programming [4, 16], and natural language processing [23]. A natural characteri-zation of polynomial time computations can be given in a bounded version of linear logic [13]obtained by limiting reuse to speci�ed bounds, i.e., by bounding the number of referencesto each datum in memory.We now turn our attention to some questions of a more theoretical nature.6 Complexity Results for Linear LogicAlthough propositional linear logic was known to be very expressive, for some time it wasthought to be decidable. However, propositional linear logic was recently shown to be un-decidable [26]. Several other complexity results are given in [26], including the pspace-completeness of propositional linear logic without ! or ?.A key open complexity problem is the decision problem for the 
; }; !; ? fragment oflinear logic. An equivalent fragment is 
;��; !; ?, which su�ces for the encoding of Petrinet reachability questions, as shown above, and thus is at least expspace-hard [31]. It iscurrently unknown if this multiplicative-exponential fragment of linear logic is decidable ornot.6.1 Undecidability of Propositional Linear LogicThe full proof of undecidability is presented in [27], and is sketched below.The proof of the undecidability of full linear logic proceeds by reduction of a form of alter-nating counter machine to propositional linear logic. An and-branching two-counter machine(ACM) is a nondeterministic machine with a �nite set of states. A con�guration is a triplehQi; A; Bi, where Qi is a state, and A and B are natural numbers, the values of two coun-ters. An ACM has a �nite set of instructions of �ve kinds: Increment-A, Increment-B,Decrement-A, Decrement-B, and Fork. The Increment and Decrement instructionsoperate as they do in standard counter machines [33]. The Fork instruction causes a ma-chine to split into two independent machines: from state hQi; A; Bi a machine taking thetransition QiForkQj; Qk results in two machines, hQj; A; Bi and hQk; A; Bi. Thus an instan-taneous description is set of machine con�gurations, which is accepting only if all machinecon�gurations are in the �nal state, and all counters are zero. ACM's have an undecidablehalting problem. One may notice that ACM's are essentially alternating Petri nets. It isconvenient to use ACM's as opposed to standard counter machines to show undecidability,since zero-test has no natural counterpart in linear logic, but there is a natural counterpartof Fork: the additive conjunction &. The remaining ACM instructions may be encodedusing techniques very similar to the Petri net rechability encoding described earlier.Linear logic has a great control over resources, through the elimination of weakening andcontraction, and the explicit addition of a resuable (modal) operator. Although the logicdoes not have quanti�ers, the combination of these features yields a great deal of expressivepower.
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6.2 Complexity of Fragments of Linear Logic6.2.1 PSPACE-completeness of Linear Logic Without !; ?The multiplicative-additive fragment of linear logic (MALL) excludes the reusable modals!; ?. Thus, every formula is \used" at most once in any branch of any cut-free MALLproof. Also, in every non-cut MALL rule, each hypothesis sequent has a smaller numberof symbols than the conclusion sequent. This provides an immediate linear bound on thedepth of cut-free MALL proofs. Since MALL enjoys a cut-elimination property, there is anondeterministic PSPACE algorithm to decide MALL sequents.To show that MALL is PSPACE-Hard, one can encode classical quanti�ed boolean for-mulas (QBF). For simplicity one may assume that a QBF is presented in prenex form. Thequanti�er-free formula may be encoded using truth tables, but the quanti�ers present somedi�culty. One may encode quanti�ers using the additives: 8x as (x&x?), and 9x as (x�x?).This encoding has incorrect behavior in that it does not respect quanti�er order, but usingmultiplicative connectives one can enforce an ordering upon the encoding of quanti�ers toachieve soundness and completeness. The full proof of pspace-completeness is presentedin [27].6.2.2 NP-completeness of Multiplicative Linear LogicThe multiplicative fragment of linear logic contains only the connectives 
 and �� (or equiv-alently 
 and }), a set of propositions, and the constants 1 and ?. The decision problemfor this fragment is in np, since an entire cut-free multiplicative proof may be guessed andchecked in polynomial time. The decision problem is np-hard by reduction from 3-Partition,a problem which requires a perfect partitioning of groups of objects in much the same waythat linear logic requires a complete accounting of propositions [17, 18]. Somewhat surpris-ingly, there is an alternate encoding of 3-Partition in multiplicative linear logic that does notuse any propositions, that is, using only the constants 1 and ? and the connectives 
 and��. Thus this multiplicative constant-only fragment of linear logic is also np-complete [28].The full proof of np-completeness is presented in [17].6.3 Summary of Linear Logic ComplexityThe following table summarizes some of the results thus far achieved in the study of thecomplexity of the decision problems for fragments of linear logic. The �rst two fragmentslisted are those discussed in some detail above, the full propositional logic, and the proposi-tional fragment without modals !; ? (MALL). The decidability of the next problem is in somequestion. An encoding of Petri net reachability problems in this fragment has been studiedin [5], but although expspace-hard [31], Petri net reachability is known to be decidable [20].It is not known how much more expressive this fragment of linear logic might be. The fourthfragment containing only the multiplicative connectives is NP-Complete [17, 18].
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Connectives Linear LogicIn Fragment Complexity
} &� !? Undecidable [26]
} &� PSPACE-Complete [26]
} !? unknown
} NP-Complete [17]In summary, linear logic is an expressive logic with an intrinsic accounting of resources.Although a non-classical logic, linear logic has the pleasant features of cut-elimination and in-volutive negation. In practical use, much mileage can be gained from the resource-sensitivityof linear logic to encode di�cult problems in even the propositional fragment of linearlogic. Current work is progressing to exploit the unique features of linear logic for useas a type system to study computational complexity [13] and compiler optimization tech-niques [40, 8, 29, 41, 34, 25], as well as uses in logic programming [16, 3, 4], natural languageprocessing [24, 38], and concurrency [5, 30, 35]. These recent contributions are developinglinear logic from a theoretical curiosity into a tool that already has practical use withinmainstream computer science.References[1] S. Abramsky. Computational interpretations of linear logic. Theoretical Computer Science,1991. Special Issue on the 1990 Workshop on Math. Found. Prog. Semantics. To appear.[2] S. Abramsky and S. Vickers. Quantales, observational logic, and process semantics. Preprint,January 1990.[3] J.-M. Andreoli. Logic programming with focusing proofs in linear logic. Draft, 1991.[4] J.-M. Andreoli and R. Pareschi. Linear objects: Logical processes with built-in inheritance.In Proc. 7-th International Conference on Logic Programming, Jerusalem, May 1990.[5] A. Asperti. A logic for concurrency. Technical report, Dipartimento di Informatica, Universit�adi Pisa, 1987.[6] A. Asperti, G.-L. Ferrari, and R. Gorrieri. Implicative formulae in the `proofs as computations'analogy. In Proc. 17-th ACM Symp. on Principles of Programming Languages, San Francisco,pages 59{71, January 1990.[7] S. Cerrito. A linear semantics for allowed logic programs. In Proc. 5th IEEE Symp. on Logicin Computer Science, Philadelphia, June 1990.[8] J. Chirimar, C. Gunter, and J. Riecke. Linear ML. In Lisp and Functional Programming,1992. To Appear.[9] V. Gehlot and C.A. Gunter. Normal process representatives. In Proc. 5-th IEEE Symp. onLogic in Computer Science, Philadelphia, June 1990.[10] G. Gentzen. Collected Works. Edited by M.E. Szabo. North-Holland, Amsterdam, 1969.[11] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1{102, 1987.7
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Sequent Calculus Rules for Linear LogicIdentity A ` A �1 ` A;�1 �2; A ` �2�1;�2 ` �1;�2 CutExch. Left �1; A;B;�2 ` ��1; B;A;�2 ` � � ` �1; A;B;�2� ` �1; B;A;�2 Exch. Right
 Left �; A;B ` ��; (A
B) ` � �1 ` A;�1 �2 ` B;�2�1;�2 ` (A
B);�1;�2 
 Right�� Left �1 ` A;�1 �2; B ` �2�1;�2; (A��B) ` �1;�2 �; A ` B;�� ` (A��B);� �� Right} Left �1; A ` �1 �2; B ` �2�1;�2; (A}B) ` �1;�2 � ` A;B;�� ` (A}B);� } Right& Left �; A ` � �; B ` ��; (A&B) ` � �; (A&B) ` � � ` A;� � ` B;�� ` (A&B);� & Right� Left �; A ` � �; B ` ��; (A�B) ` � � ` A;� � ` B;�� ` (A�B);� � ` (A�B);� � Right! W � ` ��; !A ` � �; !A; !A ` ��; !A ` � ! C! D �; A ` ��; !A ` � !� ` A; ?�!� `!A; ?� ! S? W � ` �� `?A;� � `?A; ?A;�� `?A;� ? C? D � ` A;�� `?A;� !�; A `?�!�; ?A `?� ? S? Left � ` A;��; A? ` � �; A ` �� ` A?;� ? Right0 Left �; 0 ` � � ` >;� > Right? Left ? ` � ` �� ` ?;� ? Right1 Left � ` ��; 1 ` � ` 1 1 Right
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