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and also occurs in many other languages in limitedcases such as the relation between integer and real (oroating-point) numbers. In 1984, the second authordescribed an algorithm for Milner-style type inferencewith subtyping [Mit84, Mit91]. Given a pure, untypedlambda term, this algorithm �nds a most general typ-ing statement that describes the set of possible typingswith respect to any subtype hierarchy. Various aspectsof the algorithm have been studied by other authors,with Fuh and Mishra elaborating algorithmic alter-natives [FM90] and Wand and O'Keefe studying thecomputational complexity of typability [WO89]. Anextension with polymorphic record operations [JM88]has been implemented by Jategaonkar [Jat89]. Unfor-tunately, the straightforward implementation of thetype inference algorithm with subtypes requires ex-ponential time, even in the absence of polymorphiclet declarations (see [KMM91]). This may be an ob-stacle to practical type inference for object-orientedlanguages. It is therefore important to investigate theinherent complexity of type inference and type check-ing in the presence of subtypes.The most general typing assertion about a purelambda term (without constant symbols) may haveexponential size, even using concise directed acyclicgraph (dag) representations of type expressions. Con-sequently, it is not possible to compute most generaltypes with subtyping in less than deterministic expo-nential time. However, the related \decision problem"of determining whether a term has any type might besolved more e�ciently. By comparison, even thoughthe Curry-type of a pure lambda term without subtyp-ing can be exponential, when written as a string, thereexist linear-size dag representations and linear algo-rithms that decide Curry-typability [KMM91]. Thedecision problem is relevant to practice since an ef-�cient decision procedure could verify the absence oftype errors at compile time without printing most-general types. Since this is the only form of typingproblem that could be solved in less than exponentialtime, we focus on decision problems for type inference.There are three language variations that have ane�ect on the complexity of typing:



� Term constants may be polymorphic functions orrestricted to monomorphic functions or atomicdata (non-functions).� The subtype hierarchy may be �xed or vary as aresult of subtype declarations within a program.� The subtype hierarchy may be an arbitrary par-tial order or may have a more restricted form,such as a tree or lattice.If term constants have restricted functionality, thismay simplify the type inference problem. Therefore,when possible, we prove lower bounds for restrictedterm constants and upper bounds for polymorphictypes.A subtle issue is the relationship between the sub-type hierarchy at the point of declaration of some iden-ti�er and the subtype hierarchy at a possible point ofuse. For example, consider a function f of two argu-ments that requires the type of the �rst argument tobe a subtype of the type of the second. An implicitassumption in [Mit84, Mit91] is that the appropriatetyping statement to infer about f is some formaliza-tion of this English description, regardless of whethertypes A and B with A a subtype of B have beendeclared. The reason is that we may want to callthe function f in some scope where two such typeshave been declared. Therefore, the type inference al-gorithm given in [Mit84, Mit91] deduces a most gen-eral typing statement that includes arbitrary assump-tions about the relationships between types of func-tion parameters. While this seems reasonable for purelambda terms without constant symbols, the situationbecomes more complicated in a realistic programminglanguage. This is discussed in Section 3.The main lower bound in this paper is that it isnp-hard to decide whether a lambda expression withconstants has a type, given a set of subtyping rela-tionships between ground (atomic) types. This ap-plies to polymorphic and monomorphic languages, andlanguages without functional constants. This lowerbound improves the main result of [WO89], which re-quires a constant with a polymorphic type. We alsoobserve that if type parameters and subtype assump-tions are given explicitly in the syntax of terms, it fol-lows from the results in [Tiu91] that deciding whetheran explicitly-typed term has a type is pspace hard.We give two algorithms for the decision problem.The more general algorithm applies to terms with ar-bitrary constants, but assumes either that the subtypehierarchy may vary arbitrarily or that the �xed sub-type hierarchy is a lattice. (Either condition makes itpossible to determine in polynomial space whether anexponential-size set of subtype assumptions is satis�-able.) In the special case that there are no functionalconstants and the subtype hierarchy is either vary-ing or is a �xed lattice, our second algorithm solves

the problem in linear time. Since this case is np-hardfor arbitrary partial orders, our results emphasize thevalue of restricting the subtype relation to obtain prac-tical typing algorithms.Further discussion of the relevant language char-acteristics and their relationship to type inference isgiven in Section 3, following the preliminary de�ni-tions in Section 2. The lower bound is presented inSection 4 and the upper bounds in Sections 5 and 6.For those familiar with [WO89], we note that theirclaim that the decision problem reduces to the par-tial order problem po-sat has been retracted [Wan91].This invalidates both the claimed np algorithm forthe general problem and the claimed polynomial algo-rithm when the subtype hierarchy is a tree.2 PreliminariesWe review the essential de�nitions and resultsfrom [Mit84, Mit91]. We study typing algorithms foruntyped lambda terms, possibly containing constantsymbols. Lambda terms are formed according to thegrammar M : : = x j c jM1M2 j�x:M;where x may be any variable, c a constant symbol,M1M2 is the application of M1 to M2 and �x:M isa lambda abstraction de�ning a function.For simplicity, we only consider function types, writ-ten using type variables and type constants. Type ex-pressions have the form� : : = t j � j �1! �2where t may be any type variable, � a type constant,and �1! �2 is the type of functions from �1 to �2 .A subtype assertion has the form � � � . The stan-dard meaning of an assertion � � � is that � is asubset of � . An alternative interpretation that we willnot discuss in any detail is that there is some coercionfunction f�!� which transforms values of type � intovalues of type � . Some discussion of this alternativemay be found in [Mit91].An atomic subtype assertion is a statement a � b ,where a and b are either type variables or type con-stants. All of our subtyping hypotheses will be atomic.Without this assumption, subtyping hypotheses suchas the pair b � b! b and b! b � b would ex-press \domain equations," and therefore allow all purelambda terms (terms without constants) to be typed(see [Mit91]).Terms and types will be written over some selectedsignature. A signature � = hB;S; T i is a triple con-sisting of a set B of type constants, a set S of atomicsubtype assertions about type constants in B , and aset T of term constants, each with a speci�c type built2



from type variables, type constants from B and ! .We say a term constant c :� is polymorphic if � con-tains one or more type variables and non-polymorphicotherwise.Intuitively, two type expressions match if they havethe same shape. This does not involve any substitu-tions. More speci�cally, we de�ne matching as fol-lows: if � is a type variable or type constant, then� matches � if and only if � is a type variable ortype constant; if � = �l ! �r , then � matches � ifand only if � = �l ! �r and �l matches �l , and �rmatches �r . The entailment relation, ` , on subtypeassertions is de�ned by the following proof system.Note that if C is a set of atomic subtype assertions,and C ` � � � , then � matches � .C C [ f� � �g ` � � �R C ` � � �T C ` � � � C ` � � C ` � � Arrow C ` � � � C ` � � C ` � ! � � � ! The C rule allows subtype assumptions to be used ina derivation. The R rule is reexivity of � , T is tran-sitivity, and the Arrow rule gives subtyping for func-tion types. Note that function types are antimono-tonic in the left, or argument position, and monotonicin the right, or result position. If C and C 0 are setsof subtype assertions, we write C ` C 0 to indicatethat C ` � � � for every � � � in C 0 .A typing statement is a formula C;A `M :� , whereC is a set of atomic subtype assertions, A is a set oftype assumptions of the form x :� , where x is a termvariable, M is an untyped lambda term, and � is atype expression. The typing statement C;A ` M : �may be read as, \Under the subtype assumptions Cand assumptions A about the types of variables, theterm M has type � ."The following proof rules determine typability withrespect to any signature � = hB;S; T i . The subtypeproof system enters through the Sub, or \subsump-tion" rule. In Const, R may be any substitution oftype expressions over � for type variables.Const C;A ` c : R� (c : � 2 T )Var C;A [ fx : �g ` x : �App C;A `M : � ! � C;A ` N : �C;A ` (M N) : �Abs C;A [ fx : �g `M : �C;A ` (�x:M) : � ! � (x 62 A)

Sub C;A `M : � C [ S ` � � �C;A `M : �The Const rule allows a typed constant from the sig-nature to be given any substitution instance of itsspeci�ed type. (If c : � is non-polymorphic, then thesubstitution R will have no e�ect.) The Var, App,and Abs rules are standard. The Sub rule forces aterm with one type to belong to every supertype. Wesay that a typing statement C;A ` M : � is provablewith respect to signature � = hB;S; T i if all of theterm constants in M appear in T and all uses ofConst and Sub in the derivation of the typing stat-ment are in accordance with the signature.As stated in [Mit84] and proved in [Mit91], one maynormalize proofs of typing statements so that the onlyuses of the Sub rule are immediately following usesVar and Const. That is, the steps in any proof of atyping statement may be permuted so that the Subrule only appears at the leaves of the proof. This prop-erty is important because the other four inference rulesof this system are syntax-directed. That is, there is atmost one normal proof of any type assertion up to usesof Sub. This property is used in the typing algorithmsin [JM88, Mit91] and in all algorithms discussed in thispaper. An alternative way of stating this proof nor-malization property is that the rules above are equiva-lent to the proof system obtained by eliminating Suband replacing Var and Const by variants that allowa constant or variable to be given any supertype of itsgiven type.If R is a substitution of types for type variables,then we say R respects a set C of atomic subtypingassertions if, for every a � b in C , the type expres-sion Ra matches Rb . If R respects atomic C , thenthere is a set C 0 of atomic subtype assertions suchthat C 0 ` Ra � Rb for every a � b in C , and ifC 00 is another set of atomic subtype assertions withthis property, then C 0 ` C 00 . We write R �C for anysuch \minimal" set of atomic subtype assertions. Theset R �C is e�ciently computable from R and C , asoutlined in [Mit84, Mit91]. If A is a set of assump-tions about the types of variables, then RA is the setRA = fx:R� jx:� 2 Ag . We say C 0; A0 `M :�0 is aninstance of C;A `M : � if there is some substitutionR of types for type variables such thatRC ` C 0; RA � A0 and R� = �0A typing C;A ` M : � is a most general typing forM , with respect to some signature, if it is derivableand has every other derivable typing statement for Mis an instance.Theorem 2.1 [Mit84, Mit91] If M is typable withrespect to some signature, then there is a most gen-3



eral typing statement for M , computable from M inexponential time.Although the theorem given in [Mit84, Mit91] isonly stated for pure lambda terms without constantsymbols, the algorithm and proof are easily extendedto constants with speci�ed variable-free types. Thealgorithm may also be extended to terms with poly-morphic constants, as described in [JM88, Jat89]. Itis possible to decide whether a set of atomic subtypeassertions is satis�able in a partial order, in nondeter-ministic time polynomial in the size of assertion setand the presentation of the partial order. This givesus the following corollary.Corollary 2.2 There is a nondeterministic exponen-tial time algorithm for deciding whether a typing;; A ` M : � is derivable with respect to a given sig-nature.3 Type inference, constantsand decision problemsWhile the algorithm given in [Mit84, Mit91] �nds themost general type of any pure term, the applicationof this algorithm to a speci�c programming languageis relatively subtle. If M does not contain constantsymbols, then the most general typing for M will onlycontain type variables, and type constants do not enterinto the problem. With both type and term constants,there are some questions regarding the set of subtypeassumptions that might reasonably appear in a typ-ing statement. A simple example that illustrates oneof the problems with type constants is the signaturewith type constants int and real, with int � real , andterm constants 1 : int , 2 : int , mult : int! int! intand div : real! real! real . In this signature, we canmultiply integers 1 and 2 by writing mult 1 2 sinceboth arguments have type integer, and divide by writ-ing div 1 2 since by the assumption int � real , bothintegers also have type real . However, consider theexpression, mult (div 1 2) 2:This is not well-typed, given the signature, since thesubexpression (div 1 2) only has type real and nottype int. The typing algorithm in [Mit84, Mit91],when extended to constants in the simplest way, wouldproduce a typing statement for this term, namely,real � int ` (mult (div 1 2) 2) : intIntuitively, this typing statements says that if real is asubtype of int , then the expression denotes an integer.This is a correct hypothetical statement, but since thehypothesis is false, it does not seem to be a usefuloutput from the type checker. The reason that the

algorithm infers a typing statement with additionalsubtype hypotheses is that, in general, this is the onlyway to obtain most general types. However, it is notreasonable to change the relationship between int andreal by adding new subtypes of existing types. There-fore, as in [FM90, WO89], it makes sense to designa type checker that fails on the example expressionabove.There are several reasonable restrictions on addi-tional subtype assumptions. The �rst is to reject anyterm that requires subtype relations not given by thesignature. Given a term M , we must �nd some typ-ing statement ;; A `M :� with empty subtyping hy-potheses. We call this the typing problem with �xedsubtype ordering since the only subtype relations arethose �xed by the signature. A second typing problemis to �nd a typing statement C;A ` M : � such thatthe only required relationships between type constantsare those given by the signature. In other words, werequire any inferred C to be conservative over the sig-nature. We call this the typing problem with varyingsubtype ordering, since it is motivated by consideringlanguages where the subtype ordering varies betweendi�erent parts of the program. Conservativity rulesout the typing for mult (div 1 2) 2 above, since thesignature does not imply real � int . Both of thesetyping problems may be solved by computing the mostgeneral typing for a given term and then testing theset of subtyping assumptions to see if it can be madeempty or conservative over the signature by applying atype substitution. For a particular programming lan-guage with subtyping, the appropriate typing prob-lem may lie somewhere between these two extremes:additional type declarations will extend the subtyperelation conservatively, but it may not be possible toobtain all conservative extensions.The typing problems we consider in this paper aresummarized in Table 1. We consider both �xed andvarying subtype relations, as indicated along the topof the table. Restrictions on the signature are listed atthe left. We consider arbitrary signatures, signaturesin which all term constants have non-polymorphictypes, and signatures in which the type of each termconstant is a type constant. This gives us a two-dimensional matrix of typing problems. A third di-mension is to consider possible restrictions on the sub-type relation. With a variable subtype relation, therelation given by the signature has little e�ect. Witha �xed subtype relation, we consider both arbitrarypartial orders and lattices. For each of the problems,the table lists an upper bound on the upper line, andlower bound on the lower line, with trivial upper andlower bounds omitted. As the reader will readily see,we do not have matching upper and lower bounds formost of the problems listed. It is easy to show thateach problem is reducible to the problem above it in4



Signature Fixed Subtype Relation Varying Subtype RelationArbitrary LatticeConstants of any type F1 nexp upper bound L1 pspace upper bound V1 pspace upper boundconservative over F2 conservative over L2 conservative over V2No polymorphic types F2 reducible to F1 L2 reducible to L1 V2 reducible to V1conservative over F3 conservative over L3 conservative over V3Atomic types only F3 reducible to F1 L3 linear time V3 linear timenp lower bound linear time linear timeTable 1: Summary of problems and results. Lower bounds for F1{3 and upper bounds for L1{3 and V1{3.the table, and conservative over the problem below it.This is because all are de�ned using the same proofrules. The linear upper bound for problem L3 actu-ally holds for any order that is the disjoint union ofany number of partial orders with maximum elements.We state problems F1{3 and V1{3 in full below.Problems L1{3 are identical to F1{3, respectively, ex-cept that the subtype order must be a lattice.F1: Given an untyped lambda term M , possibly con-taining constant symbols from some signature � ,determine whether there exists a provable typingstatement ;; A ` M : � without additional sub-typing assumptions.F2: Given an untyped lambda term M , possibly con-taining constant symbols from some signature � ,where all constants have variable-free type, deter-mine whether there exists a provable typing state-ment ;; A ` M : � without additional subtypingassumptions.F3: Given an untyped lambda term M , possibly con-taining constant symbols from some signature � ,where all constants have atomic type, determinewhether there exists a provable typing statement;; A ` M : � without additional subtyping as-sumptions.V1: Given an untyped lambda term M , possibly con-taining constant symbols from some signature� = hB;S; T i , determine whether there existsa provable typing statement C;A ` M : � suchthat for all type constants b1; b2 2 B , we haveC [ S ` b1 � b2 i� S ` b1 � b2 .V2: Given an untyped lambda term M , possiblycontaining constant symbols from some signa-ture � = hB;S; T i , where all constants havevariable-free type, determine whether there existsa provable typing statement C;A ` M : � suchthat for all type constants b1; b2 2 B , we haveC [ S ` b1 � b2 i� S ` b1 � b2 .V3: Given an untyped lambda term M , possiblycontaining constant symbols from some signa-

ture � = hB;S; T i , where all constants haveatomic type, determine whether there exists aprovable typing statement C;A ` M : � suchthat for all type constants b1; b2 2 B , we haveC [ S ` b1 � b2 i� S ` b1 � b2 .An example may help clarify the di�erencebetween problems F1 and V1. The term(�v:((�x:(v c1))(v c2))) is typable in the signaturewith two constants c1 : �a , c2 : �b and empty subtyp-ing relation, according to the constraints of V1 butnot F1. The reason is that the variable v must havetype �! � for some � greater than �a and �b .A variation we will not consider is to give more in-formation about a term to be typed. For example,we could give term M and type � , and ask whetherthere is a provable typing statement C;A ` M : � .This might appear easier than the type decision prob-lem, since the added information could narrow therange of possibilities to consider. However, it is easy tosee that an arbitrary term M has a type i� the term�x:KxM has type �! � , where K is the lambdaterm �x: �y: x . Therefore, it does not help to supplya type.4 Subtype Inference is np-HardWand and O'Keefe give an argument for the np-hardness of type inference which requires the use of aconstant of polymorphic type, speci�cally, a constantT with polymorphic type 8�:(�! �! �) [WO89],roughly corresponding to our problem F1. In this sec-tion we improve their lower bound by proving thatthe strictly weaker problem F3 is np-hard. Since F2and F1 are conservative over F3, this lower bound alsoapplies to these problems.We will reduce pol-sat, stated as follows, to F3.Given a partial order (P;�) and a set of inequalitiesI of the form p � w , w � w0 , where w and w0 arevariables, and p is a constant drawn from P , is thereis an assignment from variables to members of P thatsatis�es all the inequalities I ? This problem is verysimilar to po-sat, proven np-complete by Wand and5
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Figure 1: poset for (P _Q) ^ (Q _ :R)O'Keefe [WO89]. po-sat di�ers from pol-sat in thatit allows inequalities of the form w � p , which amountto upper bounds. po-sat may also be described asthe satis�ability problem for inequations over a poset.Similarly, pol-sat is also the satis�ability problem forinequations over a poset with the added restrictionthat no inequations have the form w � p for variablew and constant p . We �rst show that pol-sat isnp-complete, and then show that pol-sat reduces toF3.Lemma 4.1 POL-SAT is np-complete.Proof. It is easy to see that this problem is in np,since one may simply guess an assignment of constantsto variables, and check that every inequality in I issatis�ed.To show that this problem is np-hard, we give areduction from 3-sat. We begin with the empty setA , and for each clause Clausei = Pi1 _ Pi2 _ Pi3 ,we add the element named Ci to A , and furtheradd 7 more elements to A , one for each truth as-signment which satis�es the clause. For convenience,we name these 7 elements by simply concatenatingthe names of the clauses with the names of the vari-ables they contain, using overbars to denote negation:\CiPi1Pi2Pi3 ", \CiPi1Pi2Pi3 ", \CiPi1Pi2Pi3 ", etc.For each propositional variable Pj , we add three el-ements to A , named \ Pj ", \ P+j ", and \ P�j ". In-tuitively, these stand for the j-th proposition beingundecided, true, and false, respectively.With the above set of constants, we de�ne a par-tial order relation � on them as follows. We de�nethe relation Rprop to include, for each propositionPi , P+i � Pi and P�i � Pi . We de�ne the rela-tion Rclause to include, for each clause Clausei =Pi1 _ Pi2 _ Pi3 occurring in the 3-SAT problem, andeach truth assignment which satis�es the clause, Ci �CiPi1Pi2Pi3 . We also de�ne the relation Rtrue toinclude, for each clause Clausei = Pi1 _ Pi2 _ Pi3 ,and each proposition in that clause Pij , a relationP+ij � CiPi1Pi2Pi3 for each of the 3 or 4 clauseelements which correspond to Pij being true. Simi-larly, we de�ne the relation Rfalse to include, for each

clause Clausei = Pi1 _ Pi2 _ Pi3 , and each proposi-tion in that clause Pij , a relation P�ij � CiPi1Pi2Pi3for each of the 3 or 4 clause types which correspondto Pij being false. The �nal partial order of inter-est will be (A;Rprop [Rclause [Rtrue [Rfalse) . Thepartial order has height one, and contains 8 ( = 23 ) el-ements for each 3-SAT clause, plus three elements foreach proposition. Figure 1 displays the partial orderproduced for the SAT problem (P _ Q) ^ (Q _ :R) .Clauses of length two were used, and the name pqwas used in place of C1pq , for example, in Figure 1to improve readability.We use a set of variables, one wpj and one wujfor each proposition Pj , and one wcj for each clauseClausej . We de�ne a set of inequations Iclause toinclude, for each clause Clausei = Pi1 _ Pi2 _ Pi3 ,the inequality Ci � wci , and for each propositionPij in that clause, wpij � wci . We also de�ne a setof inequations Iprop to include, for each propositionPi , wpi � wui and Pi � wui . Thus there are fourinequalities in Iclause per 3-SAT clause, and two in-equalities in Iprop for each proposition. Continuingwith our simple example, (P _ Q) ^ (Q _ :R) , theinequations Iclause = fC1 � wc1; wpp � wc1; wpq �wc1; C2 � wc2; wpq � wc2; wpr � wc2g , and Iprop =fwpp � wup; wpq � wuq ; wpr � wur; P � wup; Q �wuq ; R � wurg .We claim that the pol-sat problem given by thepartial order (A;Rprop [ Rclause [ Rtrue [ Rfalse) ,with the inequalities Iprop [ Iclause has a solutionif and only if the original 3-sat problem has one.This may be observed by noting that every wci mustbe assigned some CiPi1Pi2Pi3 , since wci must begreater than Ci and some propositions. Also, the onlyCiPi1Pi2Pi3 which exist in A correspond to assign-ments of propositions which satisfy the clause. Fur-ther, wuj must be assigned Pj , and wpj must beassigned either P+j or P�j . We claim there is a cor-respondence between a proposition Pj being assignedtrue (or false, resp.) in the 3-SAT problem, and wjbeing assigned P+j ( P�j , resp.) in the pol-sat prob-lem. Thus one may see that a solution to the 3-SATmay be derived from any solution to the constructed6



pol-sat problem and vice-versa.This construction may be simpli�ed somewhat, byomitting the inequalities Iprop , and the elements Pj(nodes labeled P , Q , and R in the example poset).In this case the correctness of the reduction is moredi�cult to establish. However, in either case the con-structed poset has depth one, and both the poset andthe set of inequalities have size linear in the input 3-sat problem.Lemma 4.2 pol-sat reduces to F3.Proof. A pol-sat problem is given with par-tial order (P;�) , set of variables W , and set ofinequalities I . We de�ne the set of type constantsB = f�ijpi 2 Pg , and a set of constants and theirtypings T = fci : �ijpi 2 Pg . That is, for each ele-ment of the pol-sat partial order, we de�ne a type�i , and a constant of that type ci .We de�ne S to be a set of atomic coercions suchthat for each pi � pj in the pol-sat partial order,�i � �j is in S . That is, we simply copy the partialorder from the pol-sat problem into a set of subtypeassertions about corresponding type constants.We then collect the above together into a signature� = hB;S; T i .For each variable wi appearing in any inequality inthe pol-sat problem, we de�ne the notation for twolambda term variables vi and ui . We number the minequalities I in the pol-sat problem i1; � � � ; im , andde�ne the translation [ij ] of inequalities as follows:[py � wx] = (vx cy)[wx � wy] = (vy (vx ux))Finally, we build the term(�u1: � � � (�un:(� � � ((�v1: � � � (�vn:((�x:[i1])((�x:[i2]) � � � ((�x:[im�1])[im]) � � �))(�x:x))(�x:x)) � � � (�x:x)) � � �)))In words, we encode each lower bound on a variableas an application of that variable to the correspondingconstant, and encode each relation between variablesv1 and v2 as an application of v1 to the result ofapplying v2 to u2 . The variable u2 only serves asa dummy variable to which one can apply v2 . If thepartial order has a bottom element, one could replaceall uses of u variables with a single constant with thetype of the bottom element of partial order. We buildan abstraction over the set of function variables vi ,with a body that includes a subterm for each inequal-ity, but throws all the results away except the �rst.We tie the upper and lower bounds on each functionvariable together by applying each abstraction to theidentity function (�x :x) , and �nally abstract over theu variables.
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c dFigure 2: Fixed NP-hard posetWe claim without proof that this term is typable ifand only if the corresponding pol-sat problem has asolution.Thus we have shown that F3 su�ces to capture theessential np-hardness of type checking with subtypes.As stated above, Wand and O'Keefe show that po-satreduces to F1 [WO89]. However, there also exists astraightforward extension of the above into a reductionfrom po-sat to F2: de�ne the constant c?i to be oftype �i ! �i , and [wx � py] = (c?y (vx ux)) . Ofcourse, there are reductions from F3 to F2, and F2 toF1, since the problems strictly subsume each other.Theorem 4.3 F3, F2, and F1 are np-hard.Proof. F3 is np-hard from the above two lemmas,and F2 and F1 are conservative over F3, so the resultfollows immediately.Recent work by Pratt and Tiuryn [PT91] has shownthat po-sat remains np-complete for certain �xedposets. Our construction builds a di�erent poset andset of inequations for each 3-sat problem. Pratt'sconstruction builds a di�erent set of inequalities overa �xed poset, although it uses inequations of the formw � p . Thus Pratt's result subsumes the np-hardnessof po-sat. With a simple modi�cation, Pratt's np-hardness result can be extended to cover the case ofrestricted inequalities, which corresponds to pol-sat.Pratt shows that po-sat is np-complete even overthe �xed poset containing only four elements, drawnin Figure 2. The following reduction from po-sat topol-sat, although not sound in general, is correct forthis particular poset. Thus pol-sat is also np-hardfor this poset. Given a set of inequations, we musttranslate them into a form where no upper boundsw � p appear for variable w and constant p . Weadd two new variables, wa and wb , and the new in-equalities fa � wa; b � wbg . We then translate allupper bounds (which are disallowed in pol-sat) as:[w � a] = fw � wag[w � b] = fw � wbgIf c is used as an upper bound on some variable w ,then simply replace w by c in the entire set of inequa-7



tions, and similarly for d . Thus even for �xed posetswith as few as four elements pol-sat is np-complete.Through the reduction stated formally in Lemma 4.2,we therefore have the result that F3 is np-hard evenfor �xed posets.Theorem 4.4 F3, F2, and F1 are np-hard for a �xedposets with four elements.Note that the above np-hardness results for pol-sat and po-sat make critical use of non-lattice partialorders. In fact, we have the following properties:Proposition 4.5 po-sat is solvable in polynomialtime over a lattice.Proposition 4.6 pol-sat is solvable in polynomialtime over a lattice.These results lead to a polynomial algorithm for L3,as stated later in Proposition 6.2. At an intuitive levelproblem V3 allows one to complete the given partialorder into a lattice, leading to a similar polynomialtime algorithm for V3 as well. Thus the np-hardnessresults of this section apply only to the problems F1-3,and do not directly apply to L1-3 nor to V1-3.5 Subtype Inference in pspaceIn this section we investigate the computational com-plexity of problems V1 and L1. We give a pspacealgorithm for V1 and then show that the same algo-rithm also solves problem L1.The algorithms proposed in earlier papers to solveV1 (or F1) su�er from two sources of ine�ciency. The�rst source of ine�ciency is the non-lattice structureof subtype orders in the signature. These lend a cer-tain np avor to the decision problem. The secondsource of ine�ciency is the match (and simplify) al-gorithm, which forces subtype relationships betweencomplex types into sets of subtype relationships be-tween atomic types. The expansion of type inequal-ities \to the leaves" causes an exponential blowup inthe inequalities, and thus causes previous algorithmsto use exponential space and time. To overcome thisobstacle, we develop a data structure of linear size andassociated naming convention for new type variableswhich allow us to represent the required subtype re-lationships succinctly. Using this approach, we maydecide typability in pspace.Rather than present a deterministic pspace algo-rithm directly, we give a nondeterministic pspacealgorithm that recognizes untypable terms. Sincenpspace = pspace and pspace is closed under com-plement, this gives us a pspace upper bound. Ouralgorithm begins by building a proof up to uses ofSub. As discussed earlier this amounts to a normal

form for the type derivation proof, except that theproofs above Sub are left incomplete. Next the DAGrepresentation of the Curry-type of the term is com-puted, as if the type of each constant and variable wererenamed with new type variables at each leaf occur-rence. In [Wan87] an algorithm similar to ours up tothis point is presented. However, in our algorithm, theSub rule presents a new kind of relation, and we ac-tually solve the equations generated by the algorithmin [Wan87] with uni�cation, producing a DAG whichrepresents the types of all subterms. Note that theuni�cations performed at this step never fail, due totype renaming, as is the case in [Hin89]. At each leaf aconstraint � � � is generated by the Sub rule, whichwe encode as a \dashed" arc on the DAG. Note thatthese inequalities (represented by dashed arcs) may in-volve terms such as �! � containing function types.We will call the arcs forming the original DAG descen-dent arcs and dashed arcs due to uses of the Sub rulesub arcs.We say a term M is Curry-typable over signature� = hB;S; T i , if M is typable over the signature�0 = hB;S0; T i , where S0 is the complete relation (allatomic types are related, and thus all atomic types areinterchangeable).Lemma 5.1 Given a term M , possibly containingconstant symbols from some signature � = hB;S; T i ,then M is Curry-typable over � if and only if thereis a provable typing statement C;A ` M : � over �where C may have any relationship to S .Lemma 5.2 Given a Curry-typable untyped lambdaterm M , possibly containing constant symbols fromsome signature � = hB;S; T i , then V1 is solvable forM if and only if the most general typing statementC;A ` M : � for M provable with respect to � issuch that 8 b1; b2 : if C[S ` b1 � b2 then S ` b1 � b2 .Thus there are two kinds of type failure for V1.The �rst is failure of Curry-typability, which occurswhen a type variable is required to match its own an-cestor or descendant because of coercions. For ex-ample, terms with self application, such as �x:(xx) ,are impossible to type. The second type of failure,implication of nonexistent coercion, occurs if there issome chain or sequence of implied coercions �i � �1 ,�1 � �2; � � � ; �n�1 � �n; �n � �j such that it is notthe case that S ` �i � �j .The �rst type of failure is relatively easy to detect,and may be checked in linear time. If one considers thesub arcs of the DAG to be undirected, the �rst typeof failure occurs if and only if the DAG contains acycle which contains at least one descendent arc. Thiscondition may be checked in linear time by consideringthe the sub arcs to be equations between parts of theDAG made up of descendent arcs. The DAG and the8



� � �Figure 4: Untypable Self Application's DAGresulting uni�cation problem are of linear size, anduni�cation may be performed in linear time [PW78].For example, consider the attempted typing of�x:(xx) shown in Figure 3. This is the unique syntax-directed proof, up to � and � , which are left in-complete by the algorithm. However, the coercions� � � ! � and � � � have a derived inconsistency.That is, � must match � ! � , and thus no sub-stitution of types for type variables can satisfy thoseinequations. Figure 4 displays the two color DAG ouralgorithm builds for this term. The DAG which rep-resents the type of all subterms is represented withdescendent arcs shown as solid arcs in Figure 4. Thedashed arcs in that �gure represent sub arcs.Assuming that the �rst type of failure does not oc-cur, we must detect the second. One could imagineconverting all subtype relations between non-atomictypes into relations between atomic types, and thensearching for a solution to that easier problem. How-ever, an exponential number of atomic subtype rela-tions may be generated by such a procedure. Thealgorithm presented below avoids this blowup.For each type variable � , we use the notation �land �r , where their relationship with � is de�nedby � = �l ! �r . This is simply notation; we do notexplicitly construct all such type variables, and thenotation is meaningless if � is of atomic type. Wede�ne a path to be a string on the alphabet fl; rg ,and we use � as path concatenation. We de�ne therelation implied by a sub arc from � to � throughpath p as follows. If p is empty, then the sub arcsimply signi�es that � � � . If p = r � p0 , thenthe sub arc implies the same relation as the sub arcfrom �r to �r through path p0 . If p = l � p0 , thenthe arc implies the same relation as the arc from �lto �l through path p0 . Note that because of theantimonotonic Arrow rule, the sub arc in the l casehas changed direction.The algorithm begins by guessing two atomic typeconstants �1 and �2 which are not in the relation�1 � �2 in the given signature. Then the algorithmguesses two types � and � and a path p such thatthere is a dashed arc from � to � and the relation im-plied by this arc from � to � through p is �1 � �1 .Or the algorithm guesses that �1 is a type constant�i such that S ` �1 � �i .

The algorithm then repeatedly guesses types andpaths in this way such that for guess i , the relation�i�1 � �i is implied. Finally, the algorithm guessestypes such that �n � �2 is implied. If this algorithmsucceeds in all these steps, the term is not typable.That is, the algorithm as described nondeterministi-cally checks \un-typability" in pspace.As an example of the second type of failure, con-sider the attempted derivation of a type for theterm ((�v:(odd? (v 5:7))) (�x:x)) in the signaturewith three types constants, int , real , and bool ,with the only subtype assumption enforcing thatint � real , and two constants, odd? : int! bool and5:7 : real . We give the derivation in parts, leavingthe proofs numbered 1 � � � 4 incomplete, just as ouralgorithm would do, in Figures 5, 6, and 7.We may now see that this term has no type satis-fying the restrictions of V1. From the required sub-type relation marked 1 in the above proof display,int! bool � �!� . From this, by the arrow rule, wemust have bool � � and � � int . Similarly, fromthe required subtype relation marked 2 in the aboveproof display, �!  � �!� , which implies  � �and � � � . Using these subtype relations, and thosefrom 3 and 4 , real � � and � �  , we may buildthe following chain of subtype relations:real � � � � �  � � � intWe now describe how our algorithm would discoverthis inconsistency with the given partial order. First,it would build the proof up to the applications of Sub,creating the DAG as described above, a fragment ofwhich is represented in Figure 8. The algorithm thenguesses that a derived inconsistency lies in the sub-type relation real � int . It then guesses the sub arcfrom � to real , and the empty path. This impliesreal � � . It then guesses the sub arc from �!�to �!  , and the path l . This implies � � � . Thenext guess is the sub arc from  to � , with the emptypath, implying � �  . Then the sub arc from �!�to �!  is guessed again, this time with path r ,implying  � � . The last guess is the sub arc from�!� to int! bool , with path r , implying � � int .The last step is through a part of the DAG not repre-sented in Figure 8. Thus the algorithm �nds a chain oftypes which together imply real � int , contradictingthe given signature.Theorem 5.3 Problem V1 is solvable in pspace.Proof. The \untypability" algorithm describedabove operates in polynomial space, since the prepro-cessing phases building the DAG may be completedin linear time and space, and the nondeterministicsequence of choices can be made with only linearlybounded storage space, since the depth of the curry-type is linearly bounded. Because pspace is closed9



C; fx : �g ` x : � Var ...C ` � � � ! � SubC; fx : �g ` x : � ! � C; fx : �g ` x : � Var ...C ` � � � SubC; fx : �g ` x : � AppC; fx : �g ` (xx) : � AbsC; ; ` �x:(xx) : �! �Figure 3: Untypable Term's Attempted Derivation
C; fv : �! g ` odd? : int! bool Const 1C [ S ` int! bool � �!� SubC; fv : �! g ` odd? : �!�Figure 5: Partial derivation �

C; fv : �! g ` v : �!  Var 2C [ S ` �!  � �!� SubC; fv : �! g ` v : �!� C; fv : �! g ` 5:7 : real Const 3C [ S ` real � � SubC; fv : �! g ` 5:7 : � AppC; fv : �! g ` (v 5:7) : �Figure 6: Partial derivation ��...C; fv : �! g ` odd? : �!� �...C; fv : �! g ` (v 5:7) : � AppC; fv : �! g ` (odd? (v 5:7)) : � AbsC; ; ` (�v:(odd? (v 5:7))) : (�! )!� C; fx : �g ` x : � Var 4C [ S ` � �  SubC; fx : �g ` x :  AbsC; ; ` �x:x : �!  AppC; ; ` ((�v:(odd? (v 5:7))) (�x:x)) : �Figure 7: Whole derivation
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Figure 8: Fragment of Untypable Term's DAG10



under complement, this demonstrates the existence ofa pspace algorithm.We now turn our attention to problems L1-3.Lemma 5.4 L1 and F1 are solvable for term M oversignature � if and only if M is Curry typable andC;A ` M : � , the most general typing statement forM , is such that C is satis�able over � .Proof. Immediate from the problem de�nitions andTheorem 2.1. The key here is that if C is satis�-able over � , then there is some substitution R andprovable instance ;; RA `M :R� .The following lemma states that problem L1 is es-sentially the same as problem V1 if the partial orderis already a lattice.Lemma 5.5 If hB;Si forms a lattice and C is aset of atomic subtyping assertions, possibly involvingconstants from B , then C is satis�able over hB;Siif and only if for every pair of constants b1 , b2 fromB , if C [ S ` b1 � b2 then S ` b1 � b2 .Proof. Suppose that for every pair of constantsb1 , b2 from B , if C [ S ` b1 � b2 then S ` b1 �b2 . We show C is satis�able by giving a satisfyingassignment. For each variable x in C , let LB(x) bethe set of elements b of B such that C [ S ` b � x .We assign variable x the least upper bound of theset LB(x) . This upper bound exists since hB;Si isa lattice. To show that this assignment satis�es C ,we consider three cases:� For b � x , it is the case that b 2 LB(x) , so xis assigned an element of B that is greater thanor equal to b .� For x � y , we have by transitivity that LB(x) �LB(y) , so y is assigned an upper bound ofLB(x) , so x is assigned some element of B thatis less than or equal to y .� For x � b , we have to use the hypothesis of thelemma. By hypothesis, 8b0 : b0 2 LB(x) , thenC [S ` b0 � b and so b0 � b . Therefore the leastupper bound of LB(x) is less than or equal tob .Theorem 5.6 Problems L1, L2, and L3 are solvablein pspace.Proof. We begin by observing that the only proper-ties speci�c to problem V1 that are used in the proofof Theorem 5.3 are stated in Lemmas 5.1 and 5.2.Since Lemmas 5.4 and 5.5 characterize problem L1 inexactly the same way, the proof of Theorem 5.3 alsoshows that L1 also may be solved in pspace. By theobvious conservativity, we have the result for L2 andL3.

6 L3,F3 are PolynomialIn this section we present a linear time algorithm forL3, the restricted case of problem F3 where the givensubtype order is a lattice. This algorithm also extendsto F3 where the order is the sum of partial orders, eachwith its own top element. That is, partial orders withthe property that there is a unique least upper boundof the upper bounds of any element. Also, this al-gorithm extends to V3 over any partial order. Sinceproblem F3 is np-hard in general, we see that minorassumptions about the subtype order permit great re-ductions in the computational complexity of the as-sociated decision problems. Also, small amounts ofexibility in the subtype order (V3) permit similar re-ductions in the computational complexity.In [WO89], it is claimed that subtype inference maybe performed in low order polynomial time if the givensubtype order in the signature happens to be a tree.However, we have found examples where the algorithmsuggested in [WO89] uses exponential space and time.Lemma 6.1 Let � be a signature in which all con-stants have atomic type. If M is an untyped termover � , then in the most general typing for M , allsubtype assumptions have the form p � w , w � w0 ,where w and w0 are variables, and p is a type con-stant from � .Proposition 6.2 L3 is solvable in linear time.Proof. Again, we solve the decision problem withoutproducing a most general typing. By Lemma 6.1, theonly relevant subtyping constraints are lower boundson the types of terms. Thus one could choose to buildall types of subterms from the topmost type constant.Since all types are subsumed by the topmost type con-stant this choice will not lead to any type errors whichare not inevitable. One may view this as collapsing theentire poset down to the single topmost point.Thus our algorithm can be described as follows:replace all constants in the given term by a single�xed constant of topmost type and then apply thewell-known linear algorithm for determining Curry-typability. If the resulting term is Curry-typable, thenthe given term is typable with subtypes. If the modi-�ed term is not Curry-typable, then the original termis not typable.We now consider a somewhat more general problem.A connected component of signature is a subset of theelements of the signature which is connected if thesubtype relation is taken to be bidirectional.Proposition 6.3 F3 is solvable in linear time if everyconnected component of the signature has a topmostelement.11



Proof. Similar to 6.2. In this case, replace each con-stant of type � with a constant of the topmost typeconnected to � . One may view this as collapsing allconnected components into their individual topmostelements. The result is a completely at partial order,over which Curry-typability works in linear time withsmall modi�cation.Special cases of this class of \easy" signatures in-clude at partial orders, lattices, trees, forests, etc.Proposition 6.4 V3 is solvable in linear time.Intuitively, V3 allows new elements to be added tothe signature. Thus we may simply add a top elementto the signature, and then check typability as abovein Proposition 6.2. Thus F3 is NP-hard over certainpartial orders, but V3 is solvable in linear time overany partial order.7 ConclusionWe identify and study several variations on the typeinference problem for languages with subtypes. Wegive a single np lower bound for three of these prob-lems, improving the previous lower bound of [WO89].Since the size of the most general typing of a termmay be exponentially larger than the given term, anyalgorithm which prints the most general typing withsubtypes must take exponential time. However, weshow that it is possible to determine whether a termis typable at all using only pspace for V1{3 and L1{3.We do not know whether this algorithm can be im-proved to run in np, and have no useful lower boundon V1{2 or L1{2.The most promising indication for practical appli-cations is that typing over special partial orders (suchas lattices) and varying subtype relations (as wouldarise in languages with subtype declarations) may befar simpler than typing over arbitrary partial orders.We have seen this in the di�erence between problemF3 and L3 and V3: while L3, over arbitrary partialorders, is np-hard, the restriction, L3, to lattices maybe solved in linear time and so may the correspond-ing problem, V3, for languages with varying subtyperelations. These results show that the complexity oftype inference is sensitive to the kind of subtype rela-tion that may occur in a given programming language,and whether this order may vary.In designing type inference algorithms for languageswith type declarations (and therefore varying subtyperelations), we believe it will be useful to take into ac-count the ways that the subtype relation may change.To give an concrete example, suppose that in languagel subtype declarations may only add new subtypes,not supertypes of existing types. Then in de�ning atype checker for language l, we would like to reject

any declaration that will only make sense when su-pertypes of existing types are added. In general, weexpect to �nd typing problems that are special casesof both our �xed and varying subtype problems, withonly certain kinds of subtype relations de�nable byprograms, and only certain kinds of variations achiev-able by additional type declarations.References[FM90] Y. Fuh and P. Mishra. Type inference with sub-types. Theor. Computer Science, 73, 1990.[Hin89] J.R. Hindley. BCK-combinators and linear � -terms have types. Theor. Comp. Sci., 64:97{105, 1989.[Jat89] L. Jategaonkar. ML with extended patternmatching and subtypes. Master's thesis, MIT,1989.[JM88] L. Jategaonkar and J.C. Mitchell. ML with ex-tended pattern matching and subtypes. In Proc.ACM Symp. Lisp and Functional ProgrammingLanguages, pages 198{212, July 1988.[KMM91] P.C. Kanellakis, H.G. Mairson, and J.C.Mitchell. Uni�cation and ML type reconstruc-tion. In Computational Logic, essays in honorof Alan Robinson, page to appear. MIT Press,1991.[Mey88] B. Meyer. Object-Oriented Software Construc-tion. Prentice-Hall, 1988.[Mit84] J.C. Mitchell. Coercion and type inference(summary). In Proc. 11th ACM Symp. on Prin-ciples of Programming Languages, pages 175{185, January 1984.[Mit91] J.C. Mitchell. Type inference with simple sub-types. J. Functional Programming, 1(3):245{286, 1991.[PT91] V. Pratt and J. Tiuryn. Satis�ability of inequa-tions in a poset. Manuscript, October 1991.[PW78] M.S. Paterson and M.N. Wegman. Linear uni-�cation. JCSS, 16:158{167, 1978.[Str86] B. Stroustrop. The C++ Programming Lan-guage. Addison-Wesley, 1986.[Tiu91] J. Tiuryn. Solving term inequalities is pspace-hard. Manuscript, October 1991.[Wan87] M. Wand. A simple algorithm and prooffor type inference. Fundamenta Informaticae,10:115{122, 1987.[Wan91] M. Wand. Personal communication, 1991.[WO89] M. Wand and P. O'Keefe. On the complexityof type inference with coercion. In Proc. ACMConf. Functional Programming and ComputerArchitecture, pages 293{298, 1989.
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