
Minimal Data Upgrading to Prevent Inference and Association Attacks�Steven Dawson1 Sabrina De Capitani di Vimercati2y Patrick Lincoln1 Pierangela Samarati1z(1) Computer Science Laboratory (2) Dip. di Scienze dell'InformazioneSRI International Universit�a di MilanoMenlo Park, CA 94025, USA 20135 Milano, Italyfdawsonjlincolnjsamaratig@csl.sri.com decapita@dsi.unimi.it
AbstractDespite advances in recent years in the area of manda-tory access control in database systems, today's informationrepositories remain vulnerable to inference and data associ-ation attacks that can result in serious information leak-age. Such information leakage can be prevented by properlyclassifying information according to constraints that expressrelationships among the security levels of data objects. Inthis paper we address the problem of classifying informationby enforcing explicit data classi�cation as well as inferenceand association constraints. We formulate the problem ofdetermining a classi�cation that ensures satisfaction of theconstraints, while at the same time guaranteeing that infor-mation will not be unnecessarily overclassi�ed. We presentan approach to the solution of this problem and give analgorithm implementing it which is linear in simple cases,and low-order polynomial (n2) in the general case. We alsoanalyze a variation of the problem which is NP-hard.1 IntroductionMandatory policies control access to information on the ba-sis of classi�cations, taken from a partially ordered set, as-signed to data objects and subjects requesting access tothem. Classi�cations assigned to information reect the sen-sitivity of that information, while classi�cations assigned tosubjects reect their trustworthiness not to disclose the in-formation they access to subjects not cleared to see it. Bycontrolling read and write operations accordingly | allow-ing subjects to read information whose classi�cation is dom-inated by their level and write information only at a levelthat dominates theirs | mandatory policies provide a sim-�This work was supported in part by National Science Foundationunder grants ECS-94-22688 and CCR-9509931, and by DARPA/RomeLaboratory under contract F30602-96-C-0337.yThis work was performed while the author was visiting SRI In-ternational, Computer Science Laboratory, supported in part by theNational Science Foundation under grant ECS-94-22688.zOn leave from Universit�a di Milano. Author's permanent address:Universit�a di Milano, Polo Didattico e di Ricerca di Crema, Via Bra-mante 65, 26013 Crema - Italy; e-mail: samarati@dsi.unimi.it.

ple and e�ective way to enforce information protection [1].In particular, the use of classi�cations and the access re-strictions enforced upon them ensure that information willbe released neither directly, through a read access, nor in-directly, through an improper ow into objects accessibleby lower level subjects. This provides an advantage withrespect to authorization-based control, which su�ers fromthis last vulnerability.The relatively recent application of mandatory securitypolicies to database systems has resulted in a vast amountof research and the proposal of several models for multileveldatabase systems [8, 10, 13, 14, 19]. Despite this, the lackof support for expressing and combating inference and dataassociation channels that improperly leak protected infor-mation remains a major limitation [7, 9, 11]. Without sucha capability, the protection requirements of the informationare clearly open to compromise. Proper classi�cation of datais crucial for classi�cation-based control to e�ectively pro-tect information secrecy.We address the problem of computing security classi�-cations to be assigned to information in a database system,while reecting both explicit classi�cation requirements andnecessary classi�cation upgrading to prevent exploitation ofdata associations and inference channels that leak sensitiveinformation to lower levels. One of the major challengesin the determination of a data classi�cation involving clas-si�cation upgrading is the need to minimize the resultingloss of information visibility. Previous proposals in thisdirection are based on the application of optimality costmeasures, such as upgrading the minimum number of at-tributes or executing the minimum number of upgradingsteps [16, 15], or explicit constraints allowing the speci�ca-tion of di�erent preference criteria [3]. Determining such op-timal classi�cations is often an NP-hard problem, and exist-ing approaches typically perform exhaustive examination ofall possible solutions [16, 3]. Moreover, these proposals arelimited to the consideration of totally ordered sets of classi�-cations [16, 15, 3] and intra-relation constraints due to func-tional and multivalued dependencies [16]. While these cost-based approaches a�ord a high degree of control over howobjects are classi�ed, the computational cost of computingoptimal solutions may be prohibitive. Moreover, it is gen-erally far from obvious how to manipulate costs to achievethe desired classi�cation behavior and optimality measuresbased on it can be debated. For the similar problem of com-puting data classi�cations from classi�cation constraints onviews, Qian [12] provides a polynomial time algorithm, butthe approach does not guarantee minimality and, in fact,tends to overclassify information unnecessarily.



We propose an e�cient (low-order polynomial) approachthat, given a set of classi�cation constraints, computes aclassi�cation to be assigned to data objects that satis�esthe constraints while minimizing the loss of information vis-ibility. The constraints we consider express lower bounds onthe classi�cations of single objects (explicit requirements) orsets of objects (association constraints), as well as relation-ships that must hold between the classi�cations of di�erentobjects (inference constraints).The contributions of this paper can be summarized asfollows. First, we introduce a notion of minimality thatcaptures the property of a classi�cation satisfying the pro-tection requirements without overclassifying data. Second,we describe an e�cient approach for computing minimalclassi�cations and present an algorithm implementing ourapproach that executes in (low-order) polynomial time. Wefurther identify an important class of constraints, termedacyclic constraints, for which the algorithm executes in timelinear in the size of the constraints. Third, we extend theresults to allow classi�cation constraints that specify alsoupper bounds on the levels that may be assigned to objects(which explicitly require visibility of information) and showthat polynomial-time complexity is preserved. Fourth, weshow that the approach is applicable also to security latticesthat are not complete lattices (i.e., may be lacking top orbottom elements), but that for non-lattices (arbitary partialorders), the problem of computing a minimal classi�cationis NP-complete.The technique we describe can form the basis of a prac-tical tool for e�ciently analyzing and enforcing classi�ca-tion constraints. For concreteness we frame our work in thecontext of relational database systems. We note, however,that our approach does not depend in any way on this as-sumption and can be generally applied in any context whereinformation may need to be classi�ed, such as �le systems,object-oriented databases, or component-based system de-signs.2 Problem de�nitionMandatory policies are based on assignment of accessclasses to objects and requesting subjects. Access classes Lare related by a partial order, called the dominance relation,denoted �, that governs the visibility of information, wherea subject has access only to information classi�ed at thesubject's level or below1. The partially ordered set (L;�) isgenerally assumed to be a lattice, and often, access classesare assumed to be pairs of the form (s; C), where s is aclassi�cation level taken from a totally ordered set and C is aset of categories (or compartments) taken from an unorderedset. In this context, an access class dominates another i�the classi�cation level of the former is at least as high in thetotal order as that of the latter, and the set of categories isa superset of that of the latter. Figure 1(a) illustrates anexample with two levels and two categories. For generality,we do not restrict our approach to speci�c forms of lattices,but assume access classes, to which we refer alternately assecurity levels or classi�cations, to be taken from a genericlattice.The security level �(A) to be assigned to an at-tribute A may depend on several factors, which we cat-egorize as: basic classi�cation constraints, inference andassociation constraints, and integrity constraints. Ba-sic constraints specify a minimum level to be assigned1The expression a � b is read as, \a dominates b", and a � b as,\a strictly dominates b" (i.e., a � b and a 6= b).

to an attribute, for example, �(name)=Unclassified and�(salary)=Confidential. Inference and association con-straints are used to prevent bypassing of basic constraintsthrough data inference and to place stronger restrictionson the combined visibility of di�erent attributes. Exam-ples of this type include lubf�(name); �(salary)g � Secretand lubf�(rank); �(department)g � �(salary), where lubdenotes the least upper bound of a set of security levels.Integrity constraints are imposed by the security model it-self and typically include primary key constraints and ref-erential integrity constraints [19]. Primary key constraintsrequire that key attributes be uniformly classi�ed and thattheir classi�cation be dominated by that of the correspond-ing non-key attributes. Referential integrity constraints re-quire that the classi�cation of an attribute representing aforeign key must dominate the classi�cation of the attributefor which it is foreign key. All these categories of classi�-cation constraints are captured in a single general form asfollows.De�nition 2.1 (Classi�cation Constraint) Let A be aset of attributes and L = (L;�) be a security lattice. Aclassi�cation constraint over A and L is an expression ofthe form lubf�(A1); : : : ; �(An)g � X, where n > 0, Ai 2 A,i = 1; : : : ; n, and X is either a security level l 2 L or is ofthe form �(A), with A 2 A. If n = 1, the expression may beabbreviated as �(A1) � X.For simplicity, we frequently denote classi�cation con-straints as pairs (lhs,rhs), where lhs is the set of attributesappearing on the left hand side of the constraint, and rhs isthe attribute or security level appearing on the right handside of the constraint. We refer to classi�cation constraintswhose left hand side is singleton as simple constraints, andto constraints with multiple elements in the left hand sideas complex constraints. Any set of classi�cation constraintscan be viewed as a directed graph containing a node foreach attribute A 2 A and security level l 2 L. Each con-straint (lhs,rhs), with lhs=fA1; : : : ; Ang, is represented by adirected edge from node A1, if n = 1, or hypernode contain-ing A1; : : : ; An, if n > 1, to node rhs . Figure 2(a) illustratesan example of a classi�cation constraint graph. Circle nodesrepresent attributes, square nodes represent security levels,and dashed ellipses represent hypernodes. In the remainderof the paper we refer to the constraints and to their graphicalrepresentation interchangeably, and we often refer to a con-straint (lhs,rhs) as the existence of an edge between lhs andrhs . Constraints whose graph representation is acyclic (i.e.,is a dag) are called acyclic constraints, while constraintsinvolved in a cycle, including cycles through hypernodes2,are called cyclic constraints. A cycle involving only sim-ple constraints is called a simple cycle. For example, inFigure 2(a) constraints (fE;Fg;M), (M;G), (fD;Gg; C),(C;E), (C;F ), and (fF; Ig; B) are cyclic; constraints (I; O),(O;N), and (N; I) constitute a simple cycle; and all otherconstraints are acyclic.A classi�cation � : A 7! L is an assignment of secu-rity levels in L to objects (attributes) in A. A classi�cation� satis�es a set C of constraints, denoted � j= C, i� foreach constraint, the expression obtained by substituting ev-ery �(A) with its corresponding level holds in the lattice.For a given a set of classi�cation constraints, multiple levelassignments may exist that satisfy the constraints. However,2For the purpose of determining cycles, the attribute on the righthand side of a constraint is considered reachable from every attributeon the left hand side. Note that hypernodes never have incoming arcs,but the attribute nodes they contain may.
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HHHHHH(b)Figure 1: Examples of classi�cation lattices.not all them are equally good. For instance, the mapping� : A 7! f>g classifying all data at the highest possible levelsatis�es any set of classi�cation constraints. Such a strongclassi�cation is clearly undesirable unless required by theclassi�cation constraints, as it results in unnecessary infor-mation loss (by preventing release of information that couldbe safely released). Although the notion of information lossis di�cult to make both su�ciently general and precise, itis clear that a �rst requirement in minimizing informationloss is to prevent over classi�cation of data. That is, the setof attributes should not be assigned security levels higherthan necessary to satisfy the classi�cation constraints. Aclassi�cation mapping that meets this requirement is saidto be minimal . To be more precise, we �rst extend the no-tion of dominance to classi�cation assignments. For a givenset A of attributes, security lattice (L;�), and mappings�1 : A 7! L and �2 : A 7! L, we say that �1 � �2 i�8A 2 A : �1(A) � �2(A). The notion of minimal classi�ca-tion can now be de�ned as follows.De�nition 2.2 (Minimal classi�cation) Given a set Aof attributes, security lattice L = (L;�), and a set C ofclassi�cation constraints over A and L, a classi�cation � :A 7! L is minimal with respect to C i� (1) � j= C; and (2)for all �0 : A 7! L such that �0 j= C, � � �0 ) � = �0.The main problem now is to compute a minimal classi�-cation from a given set of classi�cation constraints.Problem 2.1 (min-lattice-assignment) Given a set Aof attributes to be classi�ed, a security lattice L = (L;�),and a set C of classi�cation constraints over A and L, deter-mine a classi�cation assignment � : A 7! L that is minimalwith respect to C.In general, a set of constraints may have more than one min-imal solution. The following sections describe an approachfor e�ciently computing one such minimal solution and a(low-order) polynomial-time algorithm that implements theapproach.3 Sketch of the ApproachA basic requirement that must be satis�ed to ensure the ex-istence of a classi�cation � is that the set of classi�cationconstraints provided as input be complete and consistent .A set of classi�cation constraints is complete if it de�nes aclassi�cation for each attribute in the database. It is consis-tent if there exists an assignment of levels to the attributes,that is, a de�nition of �, that simultaneously satis�es allclassi�cation constraints. Completeness is easily guaranteedby providing a default classi�cation constraint of the form�(A) � ? for every attribute A 2 A. In addition, any setof constraints of the form speci�ed by De�nition 2.1, which

use only the dominance relationship � and security levels(constants) only on the right hand side, is consistent, sincemapping every attribute to > trivially satis�es all such con-straints. We assume then, without loss of generality, thatany input set of classi�cation constraints is complete andconsistent. We further assume the left and right hand sidesof each constraint to be disjoint, since constraints not satis-fying this condition are trivially satis�ed.3.1 Acyclic ConstraintsA straightforward approach to computing a minimal classi�-cation involves performing a backward propagation of secu-rity levels to the attributes. Consider an acyclic constraintgraph with no hypernodes (simple constraints only) and as-sume all attributes are initially assigned level ?. Startingfrom the leaves, we traverse the graph backwards (oppo-site the direction of the edges) and propagate levels accord-ing to the constraints. Intuitively, propagating a level toan attribute node A according to a constraint edge (A;X)means assigning to A the least upper bound of its currentlevel, �(A), and the level of X (l, if X is a security levell; �(X) otherwise). As long as X has been assigned its �-nal level, propagating in this way ensures that A is assignedthe lowest level that satis�es all constraints on it. Thus,for acyclic simple constraints the unique, minimal solutioncan be computed simply by propagating levels back fromthe leaves, visiting all the nodes in (reverse) topological or-der. This process is clearly the most e�cient one can apply,since each edge is traversed exactly once. In terms of theconstraints, this corresponds to evaluating the constraints ina speci�c order, evaluating each constraint only once, whenthe level of its right hand side becomes de�nitely known,and upgrading the left hand side accordingly.In a set of acyclic constraints, the propagation methoddescribed for simple constraints alone requires only minoradaptation to handle complex constraints as well. The keyobservation is that, if a complex constraint is not alreadysatis�ed, it can be solved minimally by upgrading any oneof the attributes on the left hand side, provided that nei-ther the level of the right hand side nor the levels of anyother attributes on the left hand side are later altered. Aslong as the constraints are acyclic, there exists an order ofconstraint evaluation (security level back-propagation) thatensures that the security levels of all attributes involved ina complex constraint are known prior to the selection of onefor upgrading, if necessary, to satisfy the constraint. For ex-ample, referring to the lattice in Figure 1(b), the constraints�(fA;Bg) � L4, �(A) � L1, and �(B) � L2 can be solvedby upgrading either A to L3 or B to L4. Note that eithersolution is minimal according to De�nition 2.2, and thus,minimal solutions for sets that include complex constraintsare generally not unique. The particular minimal solution
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Priority Sets[4] [3] [2] [1]P B C E F G M I O N D� initial levels L6 L6 L6 L6 L6 L6 L6 L6 L6 L6 L6P { L1 L6 L6 L6 L6 L6 L6 L6 L6 L6 L6B try(B; L5) L5 L6 L6 L6 L5 L5 L6 L6 L6 L6C try(C; L4) L4 L4 L4 L3 L3 L6 L6 L6 L6E try(E; L2) L2 L4 L3 L3 L6 L6 L6 L6try(E; L1) L1 L4 L3 L3 L6 L6 L6 L6F try(F; L2) F L4 L3 L3 L6 L6 L6 L6G { L1 L3 L6 L6 L6 L6M { L3 L6 L6 L6 L6I try(I; L5) L5 L5 L5 L6O { L5 L5 L6N { L5 L6D { L4� �nal levels L1 L5 L4 L1 L4 L1 L3 L5 L5 L5 L4(b)Figure 2: A classi�cation constraint graph (a) and the corresponding classi�cation process (b).generated depends on the order of constraint evaluation.3.2 Cyclic ConstraintsFor cyclic constraints the simple back-propagation of se-curity levels is not directly applicable, and it is not clearwhether the method can be adapted easily to deal with ar-bitrary sets of cyclic constraints. Simple cycles are easilyhandled, since they imply that all attributes in the cyclemust be assigned the same security level | we can simply\replace" the cycle by a single node whose ultimate level isthen assigned to each of the original attributes in the cycle.For example, we might imagine replacing the simple cycleinvolving attributes I, N , and O in Figure 2(a) by a singlenode labeled \I;N; O" and proceeding as before. However,when complex constraints are involved in a cycle, the prob-lem becomes more challenging. Recall that a complex con-straint can be solved minimally by selecting any left-hand-side attribute to be upgraded, provided that the level of noother attribute in the constraint subsequently changes. Forcyclic complex constraints, it can be di�cult to ensure thatthis requirement is satis�ed. We might upgrade the levelof one attribute A on the left hand side of a complex con-straint only to �nd that a higher level is propagated througha cycle to another attribute A0 in the same constraint. Theconstraint remains satis�ed, but the resulting classi�cationmay not be minimal, since the original upgrading of A mayhave been unnecessary for satisfaction of the constraint.In many cases it may be possible to determine a pri-ori an order of constraint evaluation and a unique candi-date for upgrading in each complex constraint that guaran-tees a minimal classi�cation using back-propagation of levelsthrough cycles. However, as the cycles become more compli-cated, the criteria and analysis needed for determining theattributes to be upgraded and a suitable evaluation orderbecome more complex. The problem becomes particularlyacute for cyclic complex constraints whose left hand sidesare nondisjoint (for example, constraints (fE;Fg;M) and(fF; Ig; B) in Figure 2(a)), since the choice of attribute to beupgraded in one constraint may invalidate the choice madefor another. Moreover, it is not generally possible to choosea single attribute in the intersection of two or more left handsides to be upgraded for all intersecting constraints. As anexample, consider three constraints whose left hand sidesare fA;Bg, fB;Cg, and fA;Cg, respectively. If all threeconstraints require an attribute to be upgraded, one of theconstraints will necessarily have both attributes upgraded.

The result in such a case can still be minimal. However, itcan be far from clear whether any two attributes will do, andif not, which two should be chosen, when such intersectingconstraints are entangled in a complex cycle.Since it is di�cult, at best, to ensure that no upgrad-ing operation performed during back-propagation of levelsthrough complex cycles will ever be invalidated, we appearto be left with essentially two alternatives: (1) augment theback-propagation approach with backtracking capabilitiesfor reconsidering and altering upgrading decisions that re-sult in nonminimal classi�cations, or (2) develop a di�erentapproach for computing minimal classi�cations from cyclicconstraints. We would of course prefer a method that is asclose as possible in computational e�ciency to the simplelevel propagation for acyclic constraints. Thus, we rejectalternative (1), since the worst-case complexity of a back-tracking approach is proportional to the product of the sizesof the left hand sides of all constraints in the cycle. Instead,we develop a new solution approach to be applied to setsof cyclic constraints. This new approach begins with all at-tributes involved in a cycle at high security levels, and thenattempts to lower each such attribute incrementally (in thelattice) as long as all a�ected constraints remain satis�ed.More speci�cally, assume that we are given a set of cyclicconstraints and that every attribute in the cycle is initiallyassigned the highest classi�cation >. For each attribute Ainvolved in the cycle, we attempt to lower the level of A, onestep at a time along an arbitrary path down the lattice. Ateach step we check whether lowering the level of A wouldviolate any constraints, as follows. For each constraint onA, we check whether the level of left hand side would stilldominate that of the right hand side if A were to be assignedthe lower level. If the constraint would still be satis�ed, wesimply continue. Otherwise, we check whether the level ofthe right hand side can also be lowered so that the constraintis again satis�ed. If the right hand side is a level constant,the attempt fails. Otherwise, the right hand side is anotherattribute A0, and we then attempt (recursively) to lower thelevel of A0. If, �nally, the attempted lowering of A froma level l1 to a level l2 fails, the lowering is attempted againalong a di�erent path down the lattice from l1. The last levelfor which lowering A succeeds is its �nal level. The result atthe end of the entire process is a minimal classi�cation forall attributes in the cycle.Unlike the back-propagation method, which is applica-ble only to acyclic constraints, the incremental, forward-



lowering approach is applicable to all constraints. However,it is not generally as e�cient, although its complexity re-mains low-order polynomial. Thus, it is preferable to applythe simple back-propagation method wherever possible andreserve the forward-lowering approach for sets of cyclic con-straints. The following section describes an algorithm thatelegantly combines the two approaches for greatest e�ciencyon arbitrary sets of constraints.4 AlgorithmAt a high level, the algorithm implementing our approachconsists of three main parts. In the �rst part, we identify setsof cyclic constraints to be evaluated with the forward low-ering approach and determine the order in which attributes(sets of attributes in the case of cyclic constraints) will beconsidered for labeling. The second and third parts repre-sent, respectively, the back-propagation method for acyclicconstraints and the forward lowering method for cyclic con-straints. These two components operate alternately accord-ing to whether or not the attribute under consideration isinvolved in a cycle. The procedures embodying the di�erentparts of the approach are formally presented in Figure 3.Here we describe them informally.The task ofMain is to determine an order among the at-tributes that captures both cyclic relationships and reects,outside cycles, the order of evaluation for back-propagation.If we interpret each edge leaving from a hypernode as aset of edges each leaving from one of the attributes in thehypernode3, attributes involved in cyclic constraints corre-spond to those in strongly connected components (SCCs)of the constraint graph. Constraint cycles can therefore beidenti�ed by applying known methods for identi�cation ofSCCs. Because of the back-propagation used outside cy-cles, we need to identify not only the strongly connectedcomponents, but also the order in which they should beevaluated. This task is accomplished through a minor vari-ation of known approaches to SCC computation involvingtwo passes of the graph with a depth �rst search (DFS)traversal [2, 18]. The �rst pass (dfs visit) executes a DFSon the graph, recording attributes in a stack (Stack ) as thevisit is concluded. The second pass (dfs back visit) con-siders attributes in the order in which they appear in Stack ,assigning each a priority (max priority) and marking it asvisited. The counter max priority is incremented as eachsuch attribute is visited. For each new attribute A poppedfrom Stack, the process walks the graph backward with aDFS and assigns the same priority as A to all attributesit �nds still unvisited, deleting them from Stack . Priori-ties are maintained in an array, priority , where priority [i]contains the set of attributes that have been assigned prior-ity i. Priority assignments so computed satisfy the followingproperties: 1) each attribute has exactly one priority, 2) anytwo attributes appearing together in a cycle are assigned thesame priority, 3) any two attributes have the same priorityonly if they appear together in a cycle, and 4) each attributehas a priority no greater than that of all attributes reach-able from it (i.e., on which it depends). This last propertyensures that the consideration of attributes in decreasing or-der of priorities reects the backward traversal of the graph.As an example, consider the constraints in Figure 2. The3Note that this correspondence can be assumed only for comput-ing reachability and traversing the graph, not for actual constraintenforcement.

execution of Main produces the following priority sets:priority [1] = fDgpriority [2] = fI; O; Ngpriority [3] = fB;C;E; F; G;Mgpriority [4] = fPg:In the following we refer to each priority [i] as priority set.In addition to computing priority assignments, Main ini-tializes several variables that are used either during the DFSvisits or in the actual classi�cation process, as follows. Foreach complex constraint c, unlabeled [c], initialized to thecardinality of its left hand side, keeps track of the num-ber of attributes in the left hand side of c that are not yetde�nitively labeled. For each attribute A, Constr [A] is theset of constraints whose left hand side includes attribute A,visit [A] is used in the graph traversal to denote if A has beenvisited, and done [A] is set to true when A becomes de�ni-tively labeled. Finally, each attribute's classi�cation �(A)is initialized to >. The actual computation of classi�cationassignments is performed by Bigloop.Procedure Bigloop considers attributes in decreasing or-der of priority and determines the level to be assigned to eachattribute A in a priority set by considering all constraints inConstr [A] as follows. For each constraint with right handside de�nitively labeled (done[rhs ]=true), the procedure de-termines whether the constraint must be enforced upon Aand, if so, the level that A must dominate to satisfy theconstraint. A constraint must be enforced upon A if it is ei-ther a simple constraint (A is the only attribute appearing inlhs) or if all other attributes appearing in lhs are de�nitivelylabeled (unlabeled goes to zero once A has been accountedfor). The level that A must dominate to satisfy the con-straint is the level of the right hand side in the case of asimple constraint. It is a minimal level that A can assumewithout violating the constraint (i.e., whose lub with thelevel of other attributes appearing in lhs dominates rhs) inthe case of a complex constraint. Procedure minlevel com-putes such a level by descending the lattice along a pathfrom A's current level and l one level at a time and stoppingat the lowest level found whose direct descendants would allviolate the constraint if assigned to A.4 If all the constraintsin Constr [A] have the right hand side done, A is simply as-signed the level l so computed. Intuitively, this correspondsto enforcing backward propagation. If there are constraintswith right hand side not done, then, according to the com-putation of priorities, we are in the presence of a cycle, andlevel l computed as described represents only a lower boundfor A. Cyclic constraints are enforced by trying to lowerA to a level l00 directly below A's current level in the lat-tice and determine consequent lowering of other attributesnecessary to maintain satisfaction of the constraints. Thisforward propagation of the lowering process is performed byprocedure Try, which is called with an attribute and a level.It forward traverses the constraints in a cycle, maintaininglowerings found to be necessary in set Tocheck , moving themthen to set Tolower for their later enforcement, if they do notcause any violation. In the event of a constraint violationTry fails immediately, returning the empty set. Otherwise,it returns the set Tolower containing the lowerings found4In the generally assumed case of compartmented lattices (e.g.,Figure 1(a)) the minimum level to be assigned to A can be computeddirectly without the need of walking through the lattice. The wholeelse branch of the minlevel procedure can in fact be substitutedwith the direct computation �(A) := hmax(rhsl; lubothersl); rhsc �lubothersci, where rhsl (lubothersl resp.) is the classi�cation level ofrhs (lubothers resp.) and rhsc (lubothersc resp.) the correspondingset of categories.



Algorithm 3.1 (Minimal Classi�cation Generation)MAINFor A 2 A doConstr [A] := ;;done[A] := false; visit [A] := 0For l 2 L do done[l] := true; visit [l] := 1For c=(lhs,rhs) 2 CIf jlhsj> 1 then unlabeled[c] :=jlhsjFor A 2 lhs doConstr [A] := Constr [A] [ fcgStack := ;For A 2 A doIf visit [A] = 0 then dfs visit(A)max priority := 0For i = 1; : : : ; jAj do priority [i] := ;For A 2 A do visit [A] := 0While notempty(Stack) doA := pop(Stack)If visit [A] = 0 thenmax priority := max priority + 1priority [max priority ] := fAgdfs back visit(A)For A 2 A do �(A) := >;bigloopDFS VISIT(A)/* Executes DFS starting from A recording in Stackattribute as it �nishes its visit */visit [A] := 1For (lhs; rhs) 2 Constr [A] doIf visit [rhs] = 0 then dfs visit(rhs)push(A,Stack)DFS BACK VISIT(A)/* Traverses the constraints backward and inserts allattributes found in the same priority set as A */visit [A] := 1For (lhs;A) 2 C doFor A0 2 lhs doIf visit [A0] = 0 thenpriority [max priority ] := priority [max priority ] [ fA0gdfs back visit(A0)MINLEVEL(A,lhs,rhs)/* Returns a minimal level that A can assume without violatingconstraint (lhs,rhs) */last := �(A); lubothers := lubfA0jA0 2 lhs;A0 6= AgIf lubothers � �(rhs) then last := ?else Trylevels:=fl j l is a maximal level s. t. last�lgWhile Trylevels 6= ; doChoose l in TrylevelsTrylevels := Trylevels - lif (l t lubothers) � �(rhs) thenlast := lTrylevels:=fl j l is a maximal level s. t. last�lgreturn last

BIGLOOP/* Considers components in decreasing order of priorities andcomputes a minimal level for each attribute in them. A nodeA is done (done[A]:= true), when its assignment �(A) isset and will not change. The set of immediate descendents ina lattice is recorded in variable DSet. */For p := max priority; : : : ; 1 doFor A 2 priority [p] dodone[A]:= truel := ?For c=(lhs,rhs) 2 Constr [A] doIf jlhsj> 1 then unlabeled[c] := unlabeled[c]� 1If done[rhs] thencase jlhsj of1: l := l t �(rhs)>1: If unlabeled[c] = 0 thenl:= l t minlevel(A,lhs,rhs)else done[A]:= falseIf done[A] then �(A) := lelse DSet := fl0 j l 0 is a maximal level, �(A)�l0 � lgWhile DSet 6= ;Choose l 00 in DSetDSet := DSet � l00Lower := try(A; l00)If Lower 6= ; thenFor (A0; l0) 2 Lower do �(A0) := l0DSet := fl0 j l 0 maximal level, �(A)�l0 � lgdone[A] := trueTRY(A,l)/* Returns a set of attribute-level pairs which together with thecurrent assignment � forms a (perhaps non-minimal) solution tothe constraints, unless there is no such set of pairs, in which caseTry returns ;. That is, Try returns ; if �(A) = l (transitively)violates the constraints, given the current assignment � */Tocheck := f(A; l)gTolower := ;RepeatChoose (A0; l0) 2 TocheckTocheck := Tocheck � f(A0; l0)gTolower := Tolower [ f(A0; l0)gFor (lhs; rhs) 2 Constr [A0] dolevel := ?For A00 2 lhs doIf 9(A00; l00) 2 Tolower thenlevel := level t l00else level := level t �(A00)case done[rhs] oftrue: If :(level � �(rhs)) then return ;false: If :(level � �(rhs)) thennewlevel := �(rhs) u levelIf 9(rhs; l00) 2 (Tolower [ Tocheck) thenIf :(newlevel � l00) thennewlevel := l00 u newlevelIf (rhs; l00) 2 Tolower thenTolower := Tolower � f(rhs; l00)gelse Tocheck := Tocheck � f(rhs; l00)gTocheck := Tocheck [ f(rhs;newlevel)gelse Tocheck := Tocheck [ f(rhs;newlevel)guntil Tocheck = ;return TolowerFigure 3: Algorithm for computing a minimal classi�cation.



to be necessary. Hence, if the returned set is not empty,Bigloop lowers the attributes as determined and restartsthe process, trying to lower A to a level just below the lastlevel tried. If, instead Try fails, another level directly dom-inated by the last one that returned success is tried. Theprocess is repeated until all direct descendants of the levelto which A has been lowered in the last pass return a failure.Note that in the forward-lowering process, the level tobe pushed forward may change and become either higher orlower because of complex constraints. The level can increasewhen traversing a complex constraint, because in this casewe require only that the right hand side is dominated by (i.e,lowered to) the level of the lub of all the attributes in theleft hand side. The level can also decrease when, traversinga complex constraint, we would require rhs to be dominatedby (lowered to) a level incomparable to its current level orthe level recorded for it in either Tocheck or Tolower . Inthis case, the process can succeed only if the attribute isdominated by both levels, that is, if it can be lowered totheir greatest lower bound. We therefore lower the attributeto this level and propagate it forward.Example 4.1 Figure 2(b) illustrates the execution of theapproach on the constraints of Figure 2(a). The left columnlists attributes in the order in which they are consideredand illustrates how their levels (and those of attributes inthe same priority set) change. An F on the side of a Trycall indicates a failure. Traversing down a lattice is assumedto be performed by considering direct descendants in left-to-right order. Levels indicated in bold face are the levels ofattributes at the time they become done. The bottom linereports the �nal (minimal) levels computed. Note that thetable in Figure 2(b) is only for illustration and does not cor-respond to any data structure maintained by the algorithm.5 Correctness and complexity analysisIn this section we state the correctness of our approach anddiscuss its complexity. Proof sketches of the theorems ap-pear in in the Appendix.Theorem 5.1 (Correctness) Algorithm 3.1 solves min-lattice-assignment. That is, given a set C of classi�-cation constraints over a set A of attributes and a securitylattice L = (L;�), Algorithm 3.1 generates a minimal clas-si�cation mapping � : A 7! L that satis�es C.Complexity In the complexity analysis we adopt the follow-ing notational conventions with respect to a given instance(A;L; C) of min-lattice-assignment: NA (= jAj) denotesthe number of attributes in A; NL (= jLj) denotes the num-ber of security levels in L; NC (= jCj) denotes the numberof constraints in C; S =P(lhs;rhs)2C(jlhsj+1) denotes thetotal size of all constraints in C; H denotes the height ofL; B denotes the maximum number of immediate predeces-sors (\branching factor") of any element in L; c denotes themaximum cost of computing the lub of any two elementsin L. Note that, for any lattice L, BH is no greater thanthe size of L (number of elements + size of the immediatesuccessor relation).Theorem 5.2 (Complexity) Algorithm 3.1 solves any in-stance (A;L; C) of min-lattice-assignment in O(NASH2Bc)time, and, if C is acyclic, in O((S+NCHB)c) time. There-fore, min-lattice-assignment is solvable in polynomial time.

Note, in particular, that the time taken by Algorithm 3.1 islinear in the size of the constraints for acyclic constraints,and no worse than quadratic for cyclic constraints. Assum-ing a �xed lattice, a trivial lower bound for min-lattice-assignment is 
(S), and thus, Algorithm 3.1 is optimal foracyclic constraints. Whether the complexity for the cycliccase can be improved to linear in the size of the constraintsremains an open question. However, the complexity for thecyclic case is truly worst case | it assumes that the entireconstraint set forms a single cyclic component, which shouldnot occur in practice. For any instance of the problem, theacyclic complexity analysis applies to all acyclic portions ofthe constraint set. The higher price is paid only for cyclicconstraints, which will typically include only a small portionof the input constraint set.The cost of lattice operations An important practical con-sideration is the e�ciency of lattice computations. Recentwork [17] has shown that constant-time testing of partial or-ders can be accomplished through a data structure requiringO(npn) space and O(n2) time to construct, where n is thenumber of elements in the poset. Encoding techniques [5, 6]are known that, enable near constant-time computation oflubs/glbs, so that c in the above analysis can be taken asconstant, at the expense of additional preprocessing time. Inpractice, one would expect to use the same security latticeover many di�erent instances of min-lattice-assignment,so that the additional preprocessing cost for lattice encod-ing is less of a concern. Finally, we note that the generallyconsidered security lattices with access classes representedby pairs classi�cation and a set of categories can be e�-ciently encoded as bit vectors that enable fast testing of thedominance relation and lub and glb computations. The lim-ited number of levels (16) and categories (64) required bythe standard [4] allows the encoding of any security levelin a small number of machine words, e�ectively yieldingconstant-time lattice operations.6 Upper bound constraints and arbitrary partial ordersThe results presented thus far are based on the considerationof lower-bound constraints and the assumption of classi�ca-tion levels forming a lattice. Here we show how the resultscan be extended to include upper-bound constraints and in-complete lattices. We then show that relaxing the assump-tion to allow arbitrary partial orders leads to intractability.Upper bound Constraints The form of classi�cation con-straints allowed by De�nition 2.1 permits speci�cation onlyof lower bounds on the classi�cations of attributes or collec-tions of attributes, and thus, are geared toward restrictingthe visibility of information. It may also be desirable tospecify upper bounds as well, to guarantee visibility of someinformation to certain classes of users. Thus, we extend thede�nition of classi�cation constraint to allow constraints ofthe form l � �(A), where l is a security level (constant) andA is an attribute.The most obvious e�ect of allowing upper bound con-straints is that they introduce the potential for inconsis-tency in the constraint set, the most trivial example beingfA � >;? � Ag (assuming that > and ? are distinct).Such inconsistencies can be detected easily by \pushing"upper bounds through the constraint graph until a violationof the partial order relation is found. If no such violation isdiscovered, we can, through this same process, determine a



�rm upper bound on every attribute in the constraint set,which can serve as a starting point for a slightly modi�edversion of Algorithm 3.1. Here we briey outline both thisnew preprocessing phase and the algorithm modi�cation.Let C be a set of classi�cation constraints containingpossibly both upper and lower bound constraints. (Observethat, in the graph of C, security level nodes are no longernecessarily leaves.) Initially, each attribute is assigned level> as before. Then, for each security level involved in anupper bound constraint, we propagate the level through thegraph. Where multiple upper bounds arrive at a node, theirglb is taken. When propagating upper bounds through anode involved in a complex constraint, the lub of the lhs ofthe constraint is propagated. Inconsistencies are detectedupon arriving at security level nodes. If the level of the in-coming upper bound does not dominate the level of sucha node, there is an inconsistency. If no inconsistencies arefound, each attribute will be labeled at its maximum al-lowed level. This preprocessing phase can be accomplishedin O(Sc) time, where c now represents the cost of one lubor glb operation.Now, if no inconsistencies are discovered, we can com-pute a correct and minimal solution for the (lower bound)constraints starting from the upper bounds derived in thepreprocessing phase. However, this computation requires amodi�cation to BigLoop. In the absence of upper boundconstraints, we are able to delay the solving of complex con-straints (via Minlevel), since, as long as at least one at-tribute on the lhs is known to be labeled at >, any otherattribute in the lhs could assume any level without violat-ing that constraint. But when upper bound constraints areprocessed, the initial level of any attribute may be lowerthan>, and therefore the satisfaction of complex constraintscannot be assumed. The solution to this problem is to in-voke Minlevel for each attribute in each of its complexconstraints. For acyclic constraints, this has the e�ect of in-creasing the time complexity to O(SHBc), but for the moregeneral (cyclic) case, the complexity remains O(NASH2Bc).Semi-lattices It can happen in practice that the partialorder of security levels does not form a complete lattice.There may be no top element when it is intended that nouser or class of users can have visibility over all information.Similarly, there may be no bottom element in environmentswhere no information is truly unclassi�ed. Such semi- orpartial-lattices pose no particular problem for our approach.If a semi-lattice has no top element, we simply add a dummy>, and proceed with the algorithm as before. When thealgorithm has completed, if any attribute remains at >, itis an indication that there is no solution to the constraints(or, more precisely, that the constraints require that anysuch attribute be visible to no one). If a semi-lattice hasno bottom element, we can add a dummy ? and run thealgorithm as before. When the algorithm has completed, ifany attribute is labeled at ?, it is simply an indication thatthere was no e�ective constraint on the attribute (whichmight be agged as an error to indicate incompleteness inthe input constraint set).Arbitrary Partial Orders Although lattices need not becomplete for our approach to work, it appears to be crucialthat the partial order of security levels be at least a partiallattice, where any two levels that have an upper bound musthave a least upper bound. If the set of security levels maybe an arbitrary poset, the problem of determining a minimalclassi�cation that satis�es all constraints appears to become
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(If): Assume that �0 satis�es Cp. Let c = (lhs; rhs)be an arbitrary constraint in C. If c 2 Cp,then by assumption, �0 satis�es c. Otherwise,c 62 Cp, so lhs \ priority [p] = ;, and thus,lubf�0(lhs)g = lubf�(lhs)g. Now, �(rhs) � �0(rhs)and lubf�0(lhs)g = lubf�(lhs)g � �(rhs) � �0(rhs),and hence, �0 satis�es c.(Only if): If �0 satis�es C, �0 satis�es any subset of C.The following lemma shows that any changes to a solu-tion � resulting from the output of procedure Try in Algo-rithm 3.1 preserves � as a solution.Lemma A.2 Let AS be the set of pairs of the form (A0; l0)returned by Try(A; l). If � satis�es C just before Try(A; l)is called, then the assignment obtained by replacing �(A0)with �(A0) = l0 for all (A0; l0) 2 AS also satis�es C.Proof: (sketch) If Try returns ; the lemma is trivially sat-is�ed. Otherwise, consider an arbitrary pair (A0; l0) in theset Tolower returned by Try. Since any pair is added toTolower only upon removal from Tocheck , it must be thatone iteration of the repeat-loop is run with (A0; l0). Duringthat run, every constraint on A0 is checked. Furthermore,each check must succeed, since otherwise Try fails, return-ing ;. Note that every attribute in every pair in Tolower(and Tocheck ) has the same priority, since any attribute ofhigher priority is already marked done (and thus, cannot beadded to the set Tocheck ), and because of priority order-ing, no attribute of lower priority is reachable. Now, everyconstraint on an attribute with the same priority as A0 iseither explicitly checked (using the levels speci�ed for thoseattributes in Tolower and � for every other), or is knownto be satis�ed (by transitivity from a constraint successfullychecked). Hence, every constraint on attributes of the pri-ority of A0 is satis�ed when �(A0) is replaced by �(A0) = l0for every (A0; l0) 2 Tolower , and by Lemma A.1, C is alsosatis�ed.Theorem 5.1 (Correctness) Algorithm 3.1 solves min-lattice-assignment. That is, given a set C of classi�-cation constraints over a set A of attributes and a securitylattice L = (L;�), Algorithm 3.1 generates a minimal clas-si�cation mapping � : A 7! L that satis�es C.Proof: (sketch)Satisfaction: To show that BigLoop always produces anassignment � that satis�es C, we use an inductive ar-gument on the outermost loop of BigLoop. For thebasis, note that � initially assigns > to every attribute,which trivially satis�es all constraints of the allowedform (De�nition 2.1). For the induction step we needto show that, if � is a solution at the start of an itera-tion of the outermost loop, then � is also a solution atthe end of that iteration. By Lemma A.1 it su�ces toshow that (1) � at the end of any iteration di�ers from� at the start only on attributes of a given priority p,(2) the level assigned by � to any attribute is neverraised, and (3) all direct constraints on attributes ofpriority p are satis�ed at the end of any iteration.Let p be the priority in the outermost loop of BigLoopand S be the set priority [p]. There are two cases:� jSj = 1: Let A be the sole attribute in S, andlet c = (lhs; rhs) be an arbitrary constraint in



Constr [A]. Note that l, which is initially ?, willeventually hold the level to be assigned to A.Now, rhs is either a security level or is an at-tribute of higher priority than A. In either case,done[rhs] = true, and so there are two casesto consider based on jlhsj. If jlhsj = 1, l is as-signed the lub of its current value and �(rhs), sothat l � �(rhs), which, if assigned to A, will sat-isfy c. Otherwise, jlhsj > 1, and we consider thevalue of unlabeled [c]. If unlabeled [c] > 0, there isat least one attribute A0(6= A) 2 lhs such thatdone[A0] = false, �(A0) = >, and thus, for anyvalue of l assigned to A, c is trivially satis�ed. Ifunlabeled [c] = 0, Minlevel computes a minimallevel l0 for A such that c is satis�ed, l is assignedthe lub of its current value and l0, and thus, c issatis�ed if l is assigned to A. Note that, sinceL is a lattice, the (unique) lub of any two levelsalways exists.After processing each constraint on A, l is suchthat �(A) = l satis�es all constraints processedso far, since l is assigned an upper bound of itscurrent value and the value needed to satisfy theconstraint just processed. After all constraintson A are processed, �(A) is set to l, and thus allconstraints on A are satis�ed (3). Note that (atmost) the level of A is modi�ed (1), and since�(A) was initially >, if its assignment changed,it could only have been lowered (2). Thus, byinduction hypothesis, � satis�es C.� jSj > 1: We extend the inductive argument to thesecond-level loop (For A 2 priority [p]), and showthat � satis�es C at the end of each iteration ofthis inner loop. Let A be an arbitrary attributein S. Consider Constr [A]. If every (lhs; rhs) 2Constr [A] is such that done [rhs] = true, theargument for case jSj = 1 applies. Otherwise,there is at least one (lhs; rhs) 2 Constr [A] suchthat done[rhs] = false. So, after processing eachc 2 Constr [A], done[A] = false, and we proceedfrom the initialization of DSet . Now, by an ar-gument similar to that of case jSj = 1, l holdsa lower bound on the level that may be assignedto A, and DSet is initialized to the set of lev-els immediately below �(A) and that dominate l.We again extend the inductive argument to thewhile-loop to show that � satis�es C at the endof any iteration of the while loop. Observe that,before entering the while-loop, � satis�es C be-cause no assignments have been modi�ed up tothis point in the enclosing for-loop. In the while-loop, either Try fails for every l00 2 DSet , or itsucceeds for one of them. If it fails for all, noassignments in � are modi�ed, and thus, C re-mains satis�ed. Otherwise, by Lemma A.2, Tryreturns a set of pairs of the form (A0; l0), whereA0 2 priority [p], �(A0) � l0, and such that replac-ing �(A0) by �(A0) = l0 for all such A0 satis�esall constraints on attributes in priority [p]. Thewhile-loop concludes by making this replacementand resetting DSet to levels immediately below�(A). Hence, � satis�es C at the end of the cur-rent iteration of the while-loop, and by the ex-tended inductive arguments, � also satis�es C atthe end of the enclosing for-loop and at the endof the outermost loop.

Minimality: To prove minimality of the generated assign-ments we use a similar inductive argument to showthat, at the end of any iteration of the outermost loop,any attribute A for which done[A] = true has beenassigned a minimal level that satis�es its constraints.For the basis, observe that for every l 2 L, �(l) = land done [l] = true at the start of the outermost loop.For the induction step we need to show that, if anyattribute marked done at the start of any iteration ofthe outermost loop has been assigned its minimal sat-isfying level, then any attribute marked done at theend of that iteration has as well.As before, let p be the priority in the outermost loopof BigLoop and S be the set priority [p]. We considertwo cases:� jSj = 1: Let A be the sole attribute in S. Fromthe satisfaction argument, we know that l is a sat-isfying assignment for A. To see that �(A) = l is aminimal satisfying assignment, �rst observe that,for any c = (lhs; rhs) 2 Constr [A], done [rhs] =true, so by induction hypothesis, �(rhs) is min-imal. Second, l was computed as the least up-per bound of only those minimal levels neededto make lubf�(lhs)g � �(rhs) true for all con-straints on A. By de�nition of least upper bound,l is the lowest level that does so. At the end ofthe iteration �(A) = l, and done [A] = true.� jSj > 1: Let A be an arbitrary attribute in S.As discussed in the satisfaction argument, if allconstraints on A are such that done[rhs] = true,then the argument for case jSj = 1 applies, so weassume that there is at least one constraint on Afor which done[rhs] = false. Using an inductiveargument similar to that of case jSj = 1 we knowthat l is a lower bound on any minimal assignmentfor A; that is, A must dominate l in any minimalsolution. Now, let l0 be the level assigned to Awhen processing of A is completed (marked doneafter the while-loop in BigLoop). Suppose that�(A) = l0 is not minimal for A, that is, thereexists a solution �0 for C such that � � �0 and�0(A) = l00 where l0 � l00. Consider the set DSetof levels immediately below l0 in the lattice. Trymust have failed on each of these, resulting in theassignment of l0 to A. At least one of these levelsmust dominate l00, so let l̂ be an arbitrary one ofthese levels such that l̂ � l00. Consider the run ofTry that failed when trying to lower A to l̂. SinceTry fails only when a constraint is violated, itfollows that there exists some constraint c (on anattribute of the same priority as A) that requires�(A) � l̂. Since we are dealing with a lattice, and�0 � � (where � is the set of assignments at thetime Try failed on (A; l̂)), the same constraint cmust also require �0(A) � l̂. Thus, �0(A) = l00 isnot a solution for A, so �0 is not a solution for C.Termination: There are two aspects to termination thatare not obvious. First, the while-loop at the end ofBigLoop terminates because DSet is �nite, and ineach iteration every level in DSet is strictly dominatedby any level in the preceding iteration. Thus, as long asTry terminates, the while-loop will terminate, becauseeither the bottom of the lattice is reached or becauseevery level tried in one iteration fails.



Second, it is not immediately obvious that the repeat-loop in Try terminates. Note that it continues aslong as the set Tocheck is not empty. In each itera-tion of the loop one pair is removed from Tocheck andadded to Tolower . However, for any attribute, therecan be at most one pair involving that attribute in ei-ther Tocheck or Tolower . It is possible that, for somepair (A; l) 2 Tolower , a pair (A; l0) will be added toTocheck . If so, l must strictly dominate l0, so the num-ber of times a pair involving the same attribute maybe entered into Tocheck is bounded by the height ofthe lattice.Complexity analysis In the complexity analysis we adoptthe following notational conventions with respect to a giveninstance (A;L; C) of min-lattice-assignment: NA (= jAj)denotes the number of attributes in A; NL (= jLj) denotesthe number of security levels in L; NC (= jCj) denotes thenumber of constraints in C; S = P(lhs;rhs)2C(jlhsj + 1)denotes the total size of all constraints in C; H denotes theheight of L; B denotes the maximum number of immediatepredecessors (\branching factor") of any element in L; cdenotes the maximum cost of computing the lub or glb ofany two elements in L. Note that, for any lattice L, BH isno greater than the size of L (number of elements + size ofthe immediate successor relation).Theorem 5.2 (Complexity) Algorithm 3.1 solves any in-stance (A;L; C) of min-lattice-assignment in O(NAHBSc)time, and, if C is acyclic, in O((S+NCHB)c) time. There-fore, min-lattice-assignment is solvable in polynomial time.Proof: For the analysis, we consider two cases: (1)C is acyclic, and (2) C is cyclic. We begin by notingthat the preprocessing steps (common to both cases) inMain, apart from DFS Visit and DFS Back Visit, re-quire (in total) time proportional to S + NL. DFS Visitand DFS Back Visit themselves are simply a minor adap-tation of Tarjan's linear-time SCC computing algorithm [18],and require time proportional to S. Thus, the time complex-ity of the preprocessing phase is O(S +NL). It remains todetermine the complexity of BigLoop. For BigLoop notethat the e�ect of the three nested for-loops is to considerevery attribute in each of its constraints, which requires nomore than S iterations of the innermost loop, while the con-taining loop iterates NA times.In the acyclic case, note that every attribute is its ownSCC. When considering any attribute A in BigLoop, then,the computation of the level of any attribute appearing onthe rhs of any constraint on A will have been completed(done [rhs ] is always true), and the DSet computation andwhile-loop are never performed. Thus, apart from constant-time initializations in the second for-loop, the only cost toconsider for the acyclic case is that of the innermost for-loop.For each constraint, either a lub operation is performed, orpossibly a lub operation and a call toMinlevel. Note, how-ever, that Minlevel is called only once for each complexconstraint (when its unlabeled count reaches zero). Overall,no more than S iterations of the innermost for-loop com-pute a lub, and no more than NC iterations involve Min-level. The naive algorithm given for Minlevel �rst per-forms a number of lub operations proportional to the sizeof the lhs of the given constraint. The remainder of Min-

level considers overall at most HB security levels, each in-volving a lub operation. The time complexity of Minlevel,then, is O((jlhsj +HB)c). For the NC iterations involvingMinlevel, the total cost is O((S + HBNC)c). The totalcost of the remaining iterations is O(Sc), and hence, theoverall time complexity of BigLoop in the acyclic case isO((S +HBNC)c).For cyclic constraints we take the worst case, where allattributes are in the same SCC. The cost due to the inner-most for-loop of BigLoop cannot be greater than that ofthe acyclic case. In the containing loop (the loop over at-tributes), the while-loop may execute for every attribute inthe SCC. Like Minlevel, the while-loop considers at mostHB security levels, each involving the Try computation.In the worst case, Try processes the constraints for all at-tributes in the SCC. More precisely, it processes the con-straints of every attribute in the SCC not marked done. Thenumber of such attributes decreases by one after each invo-cation of Try, but on average, Try may process as manyas half the constraints involved in the SCC. Now, it canhappen that, for some pair (A; l) 2 Tolower and level l0,(A; l) is removed from Tolower and (A; l0) added to Tocheck ,implying the preprocessing of constraints on A. For any at-tribute, this reintroduction into Tocheck can happen at mostH times5, since l0 must be strictly lower than l. For eachconstraint considered, the lub of all attributes in the lhs iscomputed, requiring time proportional to jlhsj �c. Assumingsuitable data structures for constant-time operations involv-ing Tolower and Tocheck , the only remaining nonconstantcost comes from at most two glb operations. The time com-plexity of Try, then, is O(HSc), and that of the while-loopin BigLoop is O(H2BSc). Over all attributes in the SCC,the time complexity of BigLoop due to the while-loop isO(NAH2BSc), which dominates the cost due to the inner-most for-loop of BigLoop.Minimal assignment in a POset We de�ne the problemmin-poset similarly to min-lattice-assignment, exceptthat the partial order is not restricted to be a lattice and itis stated as a decision problem. Given a partial order (P;�)and a set of constraints C, each constraint taking one ofthree forms: A � A0, A � l, lubfA1; � � � ; Akg � A, wherethe As are variables, and l is a constant drawn from P , isthere is an assignment from variables to members of P thatsatis�es all the constraints C, and which is minimal?Theorem 6.1 [min-poset is np-complete.]It is easy to see that this problem is in np, since one maysimply guess an assignment of levels (lattice values) to vari-ables, and check that every constraint in C is satis�ed.To show that this problem is np-hard, we give a reduc-tion from 3-sat. We begin with the empty set C, and foreach clause Clausei = Pi1 _ Pi2 _ Pi3, we add the elementnamed Ci to C, and further add 7 more elements to A, onefor each truth assignment which satis�es the clause. For con-venience, we name these 7 elements by simply concatenatingthe names of the clauses with the names of the variables theycontain, using overbars to denote negation: \CiPi1Pi2Pi3",\CiPi1Pi2Pi3", \CiPi1Pi2Pi3", etc. For each propositionalvariable Pj , we add three elements to C, named \Pj", \P+j ",and \P�j ". Intuitively, these stand for the j-th propositionbeing undecided, true, and false, respectively.5More precisely, it can happen at most min(H;R) times, where Ris the maximum number of constraints with a common attribute onthe rhs.
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Figure 4: Poset for (P _Q) ^ (Q _ :R).With the above set of constants, we de�ne a partial orderrelation � on them as follows. We de�ne the relation Rpropto include, for each proposition Pi, P+i � Pi and P�i � Pi.We de�ne the relation Rclause to include, for each clauseClausei = Pi1 _ Pi2 _ Pi3 occurring in the 3-SAT problem,and each truth assignment which satis�es the clause, Ci �CiPi1Pi2Pi3. We also de�ne the relation Rtrue to include, foreach clause Clausei = Pi1_Pi2_Pi3, and each proposition inthat clause Pij , a relation P+ij � CiPi1Pi2Pi3 for each of the3 or 4 clause elements which correspond to Pij being true.Similarly, we de�ne the relation Rfalse to include, for eachclause Clausei = Pi1_Pi2_Pi3, and each proposition in thatclause Pij , a relation P�ij � CiPi1Pi2Pi3 for each of the 3 or4 clause types which correspond to Pij being false. The �nalpartial order of interest will be (A;Rprop [Rclause [Rtrue [Rfalse). The partial order has height one, and contains 8(= 23) elements for each 3-SAT clause, plus three elementsfor each proposition. Figure 4 displays the partial orderproduced for the SAT problem (P _Q)^ (Q_:R). Clausesof length two were used, and the name pq was used in placeof C1pq, for example, in Figure 4 to improve readability.We use a set of variables, one wpj and one wuj for eachproposition Pj , and one wcj for each clause Clausej . Wede�ne a set of inequations Cclause to include, for each clauseClausei = Pi1 _ Pi2 _ Pi3, the constraint Ci � wci, and foreach proposition Pij in that clause, wpij � wci. We alsode�ne a set of inequations Cprop to include, for each propo-sition Pi, wpi � wui and Pi � wui. Thus there are fourconstraints in Cclause per 3-SAT clause, and two constraintsin Cprop for each proposition. Continuing with our simpleexample, (P_Q)^(Q_:R), the inequations Cclause = fC1 �wc1; wpp � wc1; wpq � wc1; C2 � wc2; wpq � wc2; wpr �wc2g, and Cprop = fwpp � wup; wpq � wuq ; wpr �wur; P � wup; Q � wuq ; R � wurg.We claim that the min-poset problem given by the par-tial order (A;Rprop [ Rclause [ Rtrue [ Rfalse), with theconstraints Cprop [ Iclause has a minimal solution if andonly if the original 3-sat problem has one. This may beobserved by noting that every wci must be assigned someCiPi1Pi2Pi3, since wci must be greater than Ci and somepropositions. Also, the only CiPi1Pi2Pi3 which exist in Acorrespond to assignments of propositions which satisfy theclause. Further, wuj must be assigned Pj , and wpj mustbe assigned either P+j or P�j . We claim there is a corre-spondence between a proposition Pj being assigned true (orfalse, resp.) in the 3-SAT problem, and wj being assignedP+j (P�j , resp.) in the pol-sat problem. Thus one maysee that a solution to the 3-SAT may be derived from anysolution to the constructed pol-sat problem and vice-versa.


