
Compiling Rewriting onto SIMD andMIMD/SIMD MachinesP. Lincoln, N. Mart��-Oliet, J. Meseguer, and L. RicciulliComputer Science Laboratory,SRI International, Menlo Park, CA 94025-3493Abstract. We present compilation techniques for Simple Maude, a declar-ative programming language based on Rewriting Logic which supportsterm, graph, and object-oriented rewriting. We show how to compile var-ious constructs of Simple Maude onto SIMD and MIMD/SIMD massivelyparallel architectures, and in particular onto the Rewrite Rule Machine,a special purpose MIMD/SIMD architecture for rewriting. We show howto compile SIMD graph rewriting onto MIMD/SIMD architectures, anddiscuss mapping 3-D structures into 2-D SIMD meshes. We show howto compile object-oriented rewriting into e�cient MIMD/SIMD code. Wethus show that Simple Maude is an e�cient, machine-independent parallelprogramming language.1 IntroductionRewriting, that is, the process of replacing instances of a lefthand side patternby corresponding instances of a righthand side pattern, has been recognized asa basic computational paradigm for implementing functional languages. Rewriterules are intrinsicly concurrent, since their application depends only on the localexistence of a pattern. Thus rewrite rules are well suited for expressing the implicitparallelism of functional programs in a declarative way, leading to the investigationof so-called reduction architectures that exploit this type of parallelism (see forexample [18, 27]).There are, however, many applications that are certainly amenable to paral-lelization but which do not �t well within the functional paradigm. For example,a discrete-event simulation in which many di�erent objects interact with eachother usually does not have a natural formulation as a functional program. Suchsimulations often have a high degree of concurrency, which can be exploited us-ing optimistic parallel simulation methods such as Time Warp [17]. In general,there are many algorithms that are state-oriented or nondeterministic. Thereforeforcing all problems and algorithmic solutions into a functional notation is bothimplausible and ill-advised.In [1], it is explained how, by adequately generalizing the notion of rewriting,one can arrive at a declarative and machine-independent parallel programmingparadigm which can express not only functional computations but also a very widevariety of other highly nonfunctional parallel computations. This paper focuses ontechniques for compiling such rewrite rules onto SIMD and MIMD/SIMD archi-tectures. Before discussing these techniques, we briey summarize our proposedprogramming paradigm.

1.1 Rewriting LogicThe generalization of rewriting we use is provided by rewriting logic [21], a logic ofchange in which the states of a system are understood as algebraically axiomatizeddata structures. The basic local (concurrent) changes in a system are axiomatizedas rewrite rules corresponding to local patterns that, when present in a state of asystem, can change into other patterns.Rewriting logic is a very general model of concurrency from which many othermodels can be obtained by specialization. We refer the reader to [21] for a detaileddiscussion. However, we can briey mention that labeled transition systems; paral-lel functional programming, including equational programming and the �-calculuswith explicit substitution; Post systems and related grammar formalisms; concur-rent object-oriented programming, including the Actor model [2]; Petri nets; theGamma language of Banâtre and Le M�etayer [7], and Berry and Boudol's chemi-cal abstract machine [8]; CCS [25]; and Unity's model of computation [10] can allbe obtained naturally as special cases of rewriting logic without any encoding.1.2 Maude and Simple MaudeWe can use rewriting logic as a machine-independent declarative language in whichparallel programs can be speci�ed by means of rewrite rules. However, in general,rewriting can take place modulo an arbitrary set of structural axioms E, whichcould be undecidable.This suggests considering three subsets of rewriting logic. The most generalcase of rewriting logic should be considered a speci�cation language. The secondsubuset whereE is assumed to be e�ciently implementable gives rise to the Maudelanguage[24, 22] which can be supported by an interpretive implementation ade-quate for rapid prototyping, debugging, and executable speci�cation. The third,smaller subset discussed in this paper gives rise to Simple Maude, a sublanguagemeant to be used as a machine-independent parallel programming language. Pro-gram transformation techniques can then support passage from general rewritetheories to Maude modules and from them to modules in Simple Maude.Simple Maude support three types of rewriting:Term Rewriting. The data structures being rewritten are terms , that is, syn-tactic expressions that can be represented as labeled trees or acyclic graphs.Many symbolic and arti�cial intelligence applications can be naturally ex-pressed in this way.Graph Rewriting. The data structures being rewritten are labeled graphs. Animportant subcase is where the topology of the data graph remains unchangedafter rewriting. Many highly regular computations, including many scienti�ccomputing applications, cellular automata, and systolic algorithms fall withinthis �xed-topology subclass.Object-Oriented Rewriting. The data being rewritten are actor-like objectsthat interact with each other by asynchronous message-passing. The concur-rent execution of messages corresponds to concurrently rewriting by meansof appropriate rewrite rules. Many applications are naturally expressible as

SequentialSIMD j MIMD/Sequential�
MIMD/SIMD� j

Fig. 1. Specialization relationships among parallel architectures.concurrent systems of interacting objects. For example, many discrete eventsimulations, and many distributed AI and database applications can be nat-urally expressed and parallelized in this way.1.3 SIMD and MIMD/SIMD Architectures, and the Rewrite RuleMachineSimple Maude can be implemented on a wide variety of parallel architectures.The diagram in Figure 1 shows the relationship among some general classes thatwe have considered. Each of these architectures is suited to a di�erent way ofperforming rewriting computations. Simple Maude has been designed so that con-current rewriting is relatively easy to implement e�ciently in any of these fourclasses of machines. In the MIMD/Sequential (multiple instruction stream, multi-ple data) case many di�erent rewrite rules can be applied at many di�erent placesat once, but one rule is applied at only one place in each processor. The SIMD(single instruction stream, multiple data) or A-SIMD (for autonomous-SIMD)case corresponds to applying rewrite rules one at a time, possibly to many placesin the data. We assume SIMD processing elements are able to execute conditionalstatements to the extent of being able to deactivate themselves based on inter-nal conditions, and are able to perform address calculations. The RRM ensembleand MassPar-1 are examples of this kind of SIMD processor The MIMD/SIMDcase corresponds to applying many rules to many di�erent places in the data, buthere a single rule may be applied at many places simultaneously within a singleprocessing node.Although most of the concepts described later apply equally well to otherSIMD and MIMD/SIMD architectures, for concreteness here we describe our tar-get architecture, the Rewrite Rule Machine (RRM) [16, 5, 4, 3], for which manyof the techniques described in this paper have been implemented in a prototypecompiler. The RRM is a MIMD/SIMD architecture designed with the explicitgoal of supporting concurrent rewriting with a 6-tiered hierarchical architecture.The most basic processing element is the cell, with four cells making up a tile.An ensemble is a chip containing about a hundred tiles (144 is our current esti-mate) and operating in SIMD mode. A node is a multichip module containing an

ensemble, local passive memory, I/O hardware and a network interface. A clusteris a collection of nodes on a board, and the Rewrite Rule Machine as a whole isa collection of clusters in a cabinet. We are currently focused on the design ofa cluster as an economically implementable accelerator for applications such asevent-driven simulation, image processing, neural networks, symbolic computing,and arti�cial intelligence. A single ensemble yields very fast, extremely �ne-grainSIMD rewriting, but RRM execution is coarse-grain MIMD at the cluster level,since each ensemble independently executes its own rewrites on its own data,communicating with other ensembles when necessary.Cells have a 16-bit ALU and 16 registers, each 16-bit wide. Terms and graphscan be naturally represented by each cell holding a node label and pointers tothe cells storing the neighboring nodes in the graph. A tile consists of 4 cellswhich share communication buses. The RRM ensemble is connected as a 2-Dmesh of tiles, augmented with special row and column buses to support nonlocal(non-mesh) communcations. All cells in an ensemble listen to the same SIMDinstructions broadcast by a common controller. The instructions are interpreteddepending on the cell's contents and internal state; cells to which the instructiondoes not apply become inactive. Cells can cooperate to �nd patterns that areinstances of a rewrite rule lefthand side. Many such instances can be found inparallel within a single ensemble and across ensembles, and can be replaced byrighthand side instances under SIMD control. In the process of rewriting thedata in some cells can become garbage; each cell has a reference counter used forgarbage collection.1.4 Compiling Simple Maude onto SIMD and MIMD/SIMDArchitecturesWe present compilation techniques for term, graph, and object-oriented rewrit-ing. In each case, techniques for both SIMD and MIMD/SIMD architectures aregiven. The graph rewriting case pays special attention to program transformationtechniques taking rules for which globally SIMD lock-step execution is requiredinto more exible rules for which a less synchronized MIMD/SIMD regime canproduce the same answers. The important issue of placement techniques for �xed-topology graph rewriting applications is also studied. In the object-oriented case,message-passing issues, the e�cient implementation of multiple inheritance, andobject attribute access are discussed. An example of the code generated by ourcurrent RRM compiler is given in an appendix.Here we assume that the rewrite rules are unconditional and left-linear (thatis, the lefthand side term of all rewrite rules has no repeated variables). Onecan easily incorporate simple conditions in the schemes presented below, and useprogram transformation techniques to remove complex conditions and repeatedvariables from the lefthand side of rules [4].2 Compiling Term RewritingGiven a term rewriting system, the compilation onto MIMD/SIMD architec-tures is rather involved. First, we describe a general approach to compilation

for SIMD machines. Second, we describe how to lift these compilation ideas tolarger MIMD/SIMD architectures composed of many SIMD machines operatingin concert, each executing a separate instruction stream.2.1 SIMD Compilation of Term RewritingOur overall approach is to compile rewrite rules into appropriate SIMD assemblylanguage form, then a subject term is loaded and repeatedly rewritten until nofurther rewrite rules apply. We assume that the entire term is stored in the activememory of the SIMD processing elements, which we call cells, and for the sake ofclarity we will assume in this subsection that every node in the graph representingthe program corresponds exactly to one dedicated SIMD cell. This strong assump-tion may be relaxed in various ways including the storage of multiple nodes ineach SIMD cell, and swapping parts of the graph in and out of local (passive)memory, at the cost of slowing the overall rewriting process.Rewriting as compiled onto SIMD architectures embodies three main phases:matching of the lefthand side, construction of the righthand side, and replacementof one for the other. The matching phase consists of cells comparing their localstate to globally broadcast information, as well as fetching information aboutother cells state through pointers. We use a top-down matching strategy in theRRM. The construction phase consists of two tasks: allocation and data motion.Cells which found successful matches allocate new space for the righthand side of arule, and then instantiate that new structure with information from the lefthandside match. Finally, if the matching and construction were successful, the oldstructure is replaced by the new in one step. Reference counts are then updatedappropriately.An example of term rewriting code compiled by our prototype compiler forthe RRM is given in an appendix. The code generated by the compiler for termrewriting compares favorably (less than 20% penalty in time and space) to handcoded RRM assembly code.2.2 MIMD/SIMD Compilation of Term RewritingIn a MIMD/SIMD environment, we must support the possibility of a rewritingprocess in one SIMD processor operating concurrently with a separate rewritingprocess in another, even if there are multiple pointers between the processors. Aserious complication in this arena is the possibility that multiple processors oper-ating in MIMD mode share data. If there are two rewrite rules f(g(h(X)))) i(X)and g(h(X))) j(0), and there is a SIMD cell with label f in one SIMD processorpointing to a cell representing g(h(1)) in another SIMD processor, references intodeallocated storage can result from pathologic interleaving of the execution of thetwo rewrite rules. (If rewriting g(h(1)) to j(0) occurs after matching f(g(h(X))),but before construction or replacement, then in trying to construct the right handside i(X), garbage may be encountered. Nonsense can also easily be generated forbinary terms.) Of course, one can check for overlapping rewrite rules like those inthe example above at compile time. Any rule with a lefthand side pattern which

is not a proper subterm of the lefthand side of any rule will never exhibit thispathologic behavior. Similarly, any subtree node in a rule that matches no rootof any lefthand side pattern cannot cause a problem.In order to prevent erroneous behavior for overlapping rules we must performsome sort of locking procedure for those nodes that are a source of possible con-ict. With mild atomicity assumptions at the SIMD cell level, reasonably e�cientlocking code can be generated by the compiler without relying on expensive hard-ware mechanisms. We enforce that when a SIMD cell begins the matching phaseas the root of a rewrite, it �rst tests and sets a special locking bit. Further, whena SIMD cell fetches data for a possible match, at some point it must also testand set the same lock bit on that SIMD cell. In this way overlapping rewrites areprevented, and the cost is only paid for rules that are a source of possible conict.This point should be emphasized again; symbols that are the root of rule-overlapsare locked and unlocked, while all other symbols are treated normally.2.3 Scheduling RulesThe above discussion has neglected higher-level optimization issues, such as theorder in which rewrite rules should be broadcast. A simple scheduling of rulesis possible where every rule is executed on each SIMD processor in the orderoriginally input. We attempt to �nd some principles of locality in SIMD andMIMD/SIMD execution of rewrite rules. For example, if the SIMD cells havesome capacity to feed information back to the SIMD processor controller, as theydo in the RRM node, one can skip rules involving symbols that simply don't occur,thus speeding the entire rewriting process. Similarly, if a large set of rules sharecommon structure, and that structure is not found in the �rst attempted match,one can skip the remainder of those similar rules. Also, if a rule is successful, and isknown to introduce a new function symbol, rules involving that function symbolmay be pre-fetched by the SIMD controller. In MIMD/SIMD computations, ifdata is allowed to migrate (for example, to relieve localized overcrowding), theSIMD controller may be noti�ed about the introduction of new function symbols,and broadcast only rewrite rules relevant to those symbols. With good initial datalayout or a small amount of dynamic recon�guration, one can arrange data labeledwith common symbols in the same SIMD processor. One can then concentrate ononly those rewrite rules applicable to the set of labeling symbols present in thelocal SIMD memory.3 Compiling Graph RewritingThere are two kinds of graph rewriting that we will discuss. One is SIMD graphrewriting, which is similar to SIMD term rewriting. The other, MIMD/SIMDgraph rewriting, is similar to MIMD/SIMD term rewriting, where any locallymatching graph rewrite rule is applicable. Applications tend to naturally fall intoone class of graph rewriting. For example, cellular automata and low-level simu-lations are much easier to program if one has (the illusion of) complete controlover the SIMD lock-step nature of certain graph rewrites. However, for self-timedhardware simulations globally MIMD operation is natural.

3.1 Compiling SIMD Graph Rewriting onto SIMD MachinesGraph rewriting is an area that has received much attention and has been used fora variety of purposes (see for example [13, 28] and references there). In particular,graph rewriting has been extensively used in the compilation of functional lan-guages. However, many highly regular computations can be naturally expressedby graph rewrite rules in which the topology of the graph does not change.Consider for example the Dirichlet problem from [11]. The problem is to �nda solution to the Laplace equation r2� = 0, where the values of � are �xed forthe boundary cells. Initially, each interior cell has value zero, and the boundarycells have their given values vi, as in the lefthand diagram below:v1 v2 v3 v4 v5v6 v7v8 v9va vb vc vd ve0 0 00 0 0 cN2 aN0 eN4dN3
bN1) cN2 eN4dN3

bN1a14P4i=1NiAs one step of computation, the value of each interior cell is replaced by theaverage of the values of its four (vertical and horizontal) neighbors. This can berepresented by the SIMD graph rewrite rule above on the right, where the labelsa; b; c; d; e identify the same nodes before and after the rewrite.The SIMD compilation of graph rewrite rules is quite similar to that of termrewrite rules. The main di�erence is the much more careful use of locality instructure creation. For example, in the above rule no new structure has to becreated: only the data has to be updated, so the initial placement of the struc-ture becomes permanent. A possible optimization in such cases is to schedulethe communication of neighboring graph nodes using knowledge of how the datagraph is mapped onto the architecture; this optimization is further discussed inSection 3.4. For some SIMD graph rewriting applications it is crucial that eachrewrite rule is applied simultaneously to all its instances, that is, the rewrite mustbe maximally parallel. However, this restriction can be relaxed by the programtransformation into MIMD/SIMD rules described below. Termination of graph-rewriting programs can be detected with simple 1-bit global feedback from allprocessors as to whether any rewrite was successful in the last main loop. As soonas an entire ruleset has been broadcast without any changes, the computation iscomplete.3.2 Converting SIMD to MIMD/SIMD Graph RewritingConsider again the Dirichlet example above. Usually, the computation is per-formed in lock step, enforcing that all cells compute their new values simultane-ously. In other words, only maximally-parallel SIMD rewrites are allowed. If onewanted to compute exactly the same sequence of values, but allow asynchronous

computation, one can perform the following transformation. First, where beforethere was only a single data value stored, we now allow three data values to bestored. Also, we introduce a distinguished data value \�" that cannot be matchedwith a number (say, by type constraints).We then produce the following three rules: (We take the notational convenienceof omitting some attributes of nodes, which are then assumed to be unchangedby the rewrite)c2)N2 a1)P02)N03)� e2)N4d2)N3
b2)N1) c2)N2 e2)N4d2)N3

b2)N1a 1)�2)N03) 14P4i=1 Ni
c3)N2 a1)�2)P03)N0 e3)N4d3)N3

b3)N1) c3)N2 e3)N4d3)N3
b3)N1a 1) 14P4i=1 Ni2)�3)N0

c1)N2 a1)N02)�3)P0 e1)N4d1)N3
b1)N1) c1)N2 e1)N4d1)N3

b1)N1a 1)N02) 14P4i=1 Ni3)�These three rules take the place of the one globally SIMD rule above. Theintended operation is that the � stands for the next value to be computed. It is aninvariant that when one of these rules applies, the value of P0 is no longer neededin the computation, and thus can be overwritten.If one is only interested in the �nal result of a computation, that is, after thingsbecome stable, then, somewhat surprisingly, the original rule su�ces. The proofthat this one rule, even in MIMD/SIMD mode, leads to the same �nal result as itdoes in SIMD mode is not di�cult but beyond the capabilities of our compiler todetermine, so for MIMD/SIMD machines our compiler would produce the threerule version. Many applications, including most systolic ones, can be naturallyexpressed as graph rewrite rules. We have described cellular automata such asConway's game of life, and particle in a cell simulations, lattice gas uid ow,Dirichlet, sorting networks, and other applications by means of graph rewriterules.In general, using the technique just illustrated, one may transform maximally-parallel SIMD rewriting into MIMD/SIMD rewriting by adding clock-time and

past state attributes to all cells. Rewrite rules are then made sensitive to theclock times, enforcing that data from a consistent (arti�cial) clock time is usedin performing all rewrites. After rewriting, a cell must retain its most recent paststate to allow its neighbors to compute their next state if they have not alreadydone so.For example, the original SIMD graph rewriting computation of a 2-D problemcan be thought of as a plane (of computation) moving through the third dimension(of simulated clock time) in rigid lock step. The transformed rewrite rules allowthis plane to become distorted in the third dimension. The maximum slope of thisplane at any time is bounded at any point by the amount of past data retainedin each cell. In the above description this amounts to one clock tick per cell. Inother words, no cell can compute more than one clock tick ahead of its neighbors.Across a large mesh the global simulated clock skew may be signi�cant. With thistransformation, we may thus execute arbitrary graph rewrite rule programs on aloosely coupled MIMD/SIMD machine.3.3 Compiling MIMD/SIMD Graph Rewriting onto MIMD/SIMDmachinesThe compilation of MIMD/SIMD graph rewriting is a fairly straightforward exten-sion of the techniques applied to compile term rewriting described earlier, exceptfor the need for a more involved locking procedure and more careful control over(graph) layout for e�ciency reasons. In abstract terms, the idea is simply to par-tition the data into the available multiprocessor memory, and then each SIMDprocessing unit broadcasts a single rewrite rule at a time. Each MIMD/SIMDgraph rewrite rule is executed with the same match, construct, and replace cycleas for term rewriting. The same data locking techniques used in the compilationof term rewriting can be used in the compilation of MIMD/SIMD graph rewrit-ing. However, with graph rewriting it becomes even more critical to obtain mostrecent information, thus requiring in some cases a complete lockout of all otherprocesses during graph rewriting.3.4 MappingThe above sections describing the compilation of graph rewriting assumed thatthe initial graph was already layed out into the computational units. This sec-tion describes some general techniques of data layout in SIMD and MIMD/SIMDmachines. Graph mapping is a crucial phase of e�cient compilation of parallel pro-grams because it determines how much communication parallelism can be utilizedduring the course of the computation. We resort to other standard techniques [26]to to handle mapping of more complex non-homogeneous types of graphs.From an abstract point of view we can de�ne the connectivity of an RRMensemble (SIMD processor) as the Cartesian product of a completely connectedgraph on 4 vertices and a large 2 dimensional 4-neighbor mesh. This topology iswell suited for symbolic computation because it o�ers a high degree of connectivitywithout excessively complicated hardware. When embedding homogeneous graphs

on the RRM it is advantageous to think of the underlying architecture as a twodimensional mesh and utilize the multiplicity of 4 cells per tile to �t a larger2-D problem by \folding," or to increase the depth that can be handled in a3-dimensional mapping by a factor of 4.We have developed a mapping strategy for many kinds of meshes into the2-D topology of the RRM. For inhomogeneous graphs or graphs for which wehaven't developed specialized handling, we resort to randomized heuristic algo-rithms. The idea is to more-or-less randomly generate an initial placement of thegraph (perhaps using specialized mappings for subgraphs), then to repeatedly in-terchange randomly selected parts of the graph, performing a hill-climbing searchto converge to a local minimum of a given communication cost function. Thistechnique was used to e�ciently map a hardware simulator by repeatedly movingthe location of simulated gates until the communication cost was (locally) mini-mized. Using the resulting mapping we achieved impressive hardware simulationperformance [19].3-dimensional rectilinear structures are very useful for a wide variety of prob-lems. We give a brief overview of our current methods for mapping 3-dimensionalmeshes onto 2-dimensional grids. We assume that the neighborhood of a point inthe 3-D problem space is composed of the 6 nearest neighbors in the x; y; andz directions. A useful notion to measure the success of a map from some prob-lem space onto a parallel hardware platform is dilation. A problem space can bemapped with (maximum) dilation n into some architecture when all neighboringpoints in the problem space are no more than n communication hops away whenmapped on the architecture. This is a useful metric as it tends to predict a scalingfactor from maximum performance (for problems that can be mapped perfectly,with dilation 1). For 3-D problems we also consider the dilations restricted to eachdimension separately, called the x-, y-, and z-dilations.One can lay out a 2-D problem perfectly into a 2-D mesh (with dilation 1).However, one cannot map a large 3-D structure onto a 2-D (computing) surfacewith dilation independent of the dimensions of the problem. Given a 3-D problemspace of dimensions x; y; z, where we assume that x � y � z, a naive mappingapproach is to lay out x copies of a perfect mapping of y � z problem spaces.The x-dilation is then z, while both y and z-dilations are 1. Thus, the maximumdilation is z, the sum of dilations is z+2, and the average dilation is z+23 . However,a 3-D problem space with minimum dimension z (that is, z � x and z � y) can bemapped onto a 2-D mesh with x-dilation dpz e, y-dilation dpz e, and z-dilation 1.Thus the average dilation is d 2pz+13 e. This mapping may be viewed as squashingthe third (z) dimension down into small squares of size pz �pz. By analysis oftotal reachable spaces, it can be shown that one cannot do much better. That is,the average dilation of any mapping of this general sort is at least 23pz.It is possible to use this technique repeatedly to map meshes of larger dimen-sion into meshes of lower-dimension. In particular, a 4-dimensional space withdimensions x; y; z; t, with x � y � z � t can be mapped onto a 2-D mesh withx-dilation dpzt e, y-dilation dpzt e, z-dilation dpt e, and t-dilation 1. Note thatif x = y = z = t, the maximum dilation of this mapping is x, and the averagedilation is more than x=2, so these mappings are of limitted interest for large

cube-like structures of large dimension.These optimized mappings allow reasonably e�cient layout of 3-D problemstructures of relatively large size on 2-D meshes. In the case of the RRM, we have4 cells per tile, and thus can handle, for example, 3-D structures with minimumdimension z = 1024 with average dilation 11, by using the mapping for z = 256and packing four z-neighbors in each tile.Problems larger than the available active memory can be mapped into passivememory, and then broken into chunks of appropriate size and swapped in and outof active memory for computation.Another example, hexagonal meshes can be mapped nicely into a 2-D 4-neighbor mesh. The maximum dilation under our mapping for a 2-D hexagonalgrid is 2, with average dilation 4=3. An 8-neigbor graph used in an image process-ing application was mapped with maximum dilation 2. Graphs of larger connec-tivity can be handled with larger dilations, where in a 2-D mesh the connectivitygrows as 2d � (d+ 1).4 Compiling Object-Oriented RewritingIn a concurrent object-oriented system the concurrent state (or con�guration)typically has the structure of a multiset made up of objects and messages. There-fore, we can view con�gurations as built up by a binary multiset union operatorwhich we can represent with empty syntax assubsorts Object Msg < Configuration .op __ : Configuration Configuration -> Configuration [assoc comm id: null] .where the multiset union operator is declared to satisfy the structural laws ofassociativity and commutativity and to have identity null. The subtype declara-tionsubsorts Object Msg < Configuration .states that objects and messages are singleton multiset con�gurations, so thatmore complex con�gurations are generated out of them by multiset union.As a consequence, we can abstractly represent the con�guration of a typicalconcurrent object-oriented system as an equivalence class [t] modulo the structurallaws of associativity, commutativity and identity, i.e., as a multiset of objects andmessages.An object in a given state is represented as a termhO : C j a1 : v1; : : : ; an : vniwhere O is the object's name or identi�er, C is its class, the ai's are the namesof the object's attribute identi�ers , and the vi's are the corresponding values.The set of all the attribute-value pairs of an object state is formed by repeatedapplication of the binary union operator , which also obeys structural laws ofassociativity, commutativity, and identity; i.e., the order of the attribute-valuepairs of an object is immaterial.

-<Peter:Accnt|bal:300>debit(Peter,200) <Peter:Accnt|bal:100><Paul:Accnt|bal:250>debit(Paul,50) <Paul:Accnt|bal:200>credit(Paul,300) credit(Paul,300)debit(Peter,150) debit(Peter,150)<Mary:Accnt|bal:1250>credit(Mary,100) <Mary:Accnt|bal:1350>Fig. 2. Concurrent rewriting of bank accounts.For example, bank account objects in a class Accnt may be de�ned with justone attribute bal that is a natural number corresponding to the current balance.Concurrent interaction with the account can be achieved by means of credit anddebitmessages that add or subtract a given amount of money. The correspondingupdates of the account are speci�ed by the two rewrite rulescredit(A,M) < A : Accnt | bal: N > => < A : Accnt | bal: N+M > .debit(A,M) < A : Accnt | bal: N > => < A : Accnt | bal: N-M > if N >= M .where the second rule can only be applied if the condition N >= M is satis�ed,that is, if the account has enough funds.Figure 2 provides a snapshot in the evolution by concurrent rewriting of asimple con�guration of bank accounts. The system evolves by concurrent multisetrewriting of the con�guration using the rewrite rules of the system. Intuitively,we can think of messages as \traveling" to come into contact with the objects towhich they are sent and then causing \communication events" by application ofrewrite rules.The two rules for bank accounts above illustrate the asynchronous messagepassing communication between objects supported by the Simple Maude language.In general, for concurrent object-oriented modules we only allow conditional rulesof the form (z) (M(O)) hO : F j attsi�! (hO : F 0 j atts 0i)hQ1 : D1 j atts 001 i : : : hQp : Dp j atts 00piM 01 : : :M 0qif Cinvolving at most one object and one message in their lefthand side, where thenotation (M(O)) means that the message M(O) is only an optional part of thelefthand side. In addition, the target object itself is optional, and new objects andmessages may be created.An e�cient way of realizing rewriting modulo associativity and commutativityby communication is to associate object identi�ers with speci�c addresses in the

virtual address space of a parallel machine and then messages are sent directly tothe address of their target object.There are several options regarding the practical implementation of generalmessage receipt, but the following protocol appears to be a good tradeo� betweentime, space, and complexity. The protocol begins with a standard message-send,where the destination of the message is the (unique) object location (object id) ofthe recipient1. Upon arrival, messages are queued in a data structure that tests forimmediate applicability of rewrite rules with respect to that message. In the casethat the message cannot be accepted immediately, the message is incorporatedin a compact data structure that supports periodic access. The protocol requiresthat messages periodically be retried to ensure the fairness required at the lan-guage level. Since several objects of related classes may reside in the same SIMDprocessor, several objects may be updated concurrently by the SIMD broadcastof one rewrite rule. The actual rewriting of a message and an object, as well as theadditional rewriting required for the evaluation of the new attribute values canbe implemented using the SIMD and MIMD/SIMD term rewriting techniquesdescribed in Section 2. However, both inheritance and attribute access can beimplemented more e�ciently by special techniques described below. More exper-imentation is needed to measure the performance of object-oriented rewriting onlarge examples from realistic applications. However, we believe that using thehardware-supported message passing of the RRM we can e�ectively implementthis style of object-oriented rewriting very e�ciently.4.1 Inheritance Hierarchy and Attribute AccessSupport for multiple inheritance for classes is provided by the order-sorted typestructure of rewriting logic [15] so that if C is a subclass of C 0, then C is a subsortof C 0. For more details on the type theory of class inheritance and the desugaringof rules we refer the reader to [22, 23].In order to support run-time class information, the compiler must incorporatean algorithm for determining when an object is of a class that is subsumed bysome other class. That is, at run-time we must determine if a given object is,by class-membership and inheritance, a member of some class. This operation isperformed at every application of a rewrite-rule. We support this operation verye�ciently with an encoding of the inheritance hierarchy with bitvectors basedon [6]. The idea is essentially to embed the partial order of inheritance into aBoolean lattice. The Boolean lattice is then encoded using one bit-position foreach element of the original partial order. The bitvector encoding each element ofthe lattice is then the bitwise-or of the bitvector encoding of its descendents anda 1 in the bit-position of the partial-order element that lattice element represents,if any. Thus any bitvector code can be read as a set, where each 1 indicates thepresence of some element from the partial order (which has a unique bit-position).This encoding technique reduces the cost of class-matching to n=16 instructions1 In a SIMD implementation this takes place inside the SIMD processor, whereas in aMIMD/SIMD implementation it must in general be supported by the network con-necting the SIMD processors.

on a machine with 16 bit word-size where n is the size of the (largest connectedcomponent in the) input hierarchy. Methods exist to reduce the cost to eitherlog(n) (expected, still n=16 worst-case), or linear in the depth of the classes beingcompared, although these have larger constant factors [6, 14, 9, 12]. Note thatthis Boolean lattice representation applies more generally to any set of rewriterules in which variables are typed in an order-sorted type structure.In addition to this class-matching operation, the compiler must also supportattribute access e�ciently. The interpretive approach of maintaining an associa-tion list from attribute (�eld) names to values can be greatly improved upon. Forhierarchies without multiple inheritance one can easily allocate �xed-length ar-rays to store values, and translate �eld-lookup operations into direct array-access.With multiple inheritance one must be more careful, in some cases leaving empty\padding" in the array in order to leave room for �elds declared for incompara-ble elements that are shared by common descendents. This process complicatescompilation but in fact maintains constant-time �eld access at run time. Moreexible methods combining partial array allocation (say, for frequently-accessedattributes declared high in the hierarchy) and partial use of association lists (forother attributes) allow run-time additions of new �elds to existing objects andcircumvent the need for padded (space ine�cient) arrays.5 Concluding RemarksWe have argued that, by generalizing term rewriting so as to encompass also graphand object-oriented rewriting, a very wide spectrum of parallel programmingapplications can naturally be expressed with rewrite rules in a declarative andmachine-independent way. We have then presented methods to e�ciently compilethese very general types of rewrite rules onto SIMD and MIMD/SIMD parallel ma-chines. Since rewriting is a very simple way of implementing and parallelizing notonly functional languages but also many other declarative and constraint-basedlanguages (see [27, 20]), our compilation techniques are directly applicable notonly to Maude, but also to the parallel implementation of many other declarativelanguages on SIMD and MIMD/SIMD machines.Our techniques are applicable under relatively general assumptions such asthe A-SIMD capabilities enjoyed by a good number of SIMD and MIMD/SIMDmachines. However, for the sake of concreteness we have also reported on ourcompilation experience for the RRM, a particular MIMD/SIMD machine in thisclass speci�cally designed to support parallel rewriting.Important areas requiring further research include: a tighter integration ofmapping and compilation techniques for graph rewriting; further experimenta-tion with compilation of object-oriented rewriting; e�cient code scheduling fora set of rewrite rules; and techniques for e�ciently handling very large prob-lems that do not �t in active memory. In addition, the machine-independenceof our proposed paradigm and compilation techniques should be demonstratedin practice by developing implementations on several SIMD, MIMD/SIMD, andMIMD/Sequential machines.

References1. . Making parallel programming machine-independent. DRAFT. Submitted toPARLE'94, November 1993.2. G. Agha and C. Hewitt. Concurrent programming using actors. In A. Yonezawaand M. Tokoro, editors, Object-Oriented Concurrent Programming, pages 37{53.MIT Press, 1988.3. H. Aida, J. Goguen, S. Leinwand, P. Lincoln, J. Meseguer, B. Taheri, andT. Winkler. Simulation and performance estimation for the rewrite rule machine.In Proceedings of the Fourth Symposium on the Frontiers of Massively Parallel Com-putation, pages 336{344. IEEE, 1992.4. Hitoshi Aida, Joseph Goguen, and Jos�e Meseguer. Compiling concurrent rewritingonto the rewrite rule machine. In S. Kaplan and M. Okada, editors, Conditional andTyped Rewriting Systems, Montreal, Canada, June 1990, pages 320{332. SpringerLNCS 516, 1991.5. Hitoshi Aida, Sany Leinwand, and Jos�e Meseguer. Architectural design of the rewriterule machine ensemble. In J. Delgado-Frias and W.R. Moore, editors, VLSI forArti�cial Intelligence and Neural Networks, pages 11{22. Plenum Publ. Co., 1991.Proceedings of an International Workshop held in Oxford, England, September 1990.6. Hassan Ait-Kaci, Robert Boyer, Patrick Lincoln, and Roger Nasr. E�cient imple-mentation of lattice operations. ACM Transactions on Programming Languages andSystems, 11:115{146, 1989.7. J.-P. Banâtre and D. Le M�etayer. The Gamma model and its discipline of program-ming. Science of Computer Programming, 15:55{77, 1990.8. G�erard Berry and G�erard Boudol. The Chemical Abstract Machine. In Proc.POPL'90, pages 81{94. ACM, 1990.9. Yves Caseau. E�cient handling of multiple inheritance hierarchies. In OOPSLA'93,Washington, September 1993.10. K. Mani Chandy and Jayadev Misra. Parallel Program Design: A Foundation.Addison-Wesley, 1988.11. K. Mani Chandy and Stephen Taylor. An Introduction to Parallel Programming.Jones and Bartlett Publishers, 1992.12. Veronica Dahl and Andrew Fall. Logical encoding of conceptual graph lattices. InProc. 1st International Conference on Conceptual Structures, 1993.13. H. Ehrig, H.-J. Kreowski, and G. Rozenberg, editors. Graph Grammars and theirApplication to Computer Science. Springer LNCS 532, 1991.14. Gerard Ellis. E�cient retrieval from hierarchies of objects using lattics operations.In Proc. 1st International Conference on Conceptual Structures, Quebec City, Au-gust 1993.15. Joseph Goguen and Jos�e Meseguer. Order-sorted algebra I: Equational deductionfor multiple inheritance, overloading, exceptions and partial operations. TheoreticalComputer Science, 105:217{273, 1992.16. Joseph Goguen, Jos�e Meseguer, Sany Leinwand, TimothyWinkler, and Hitoshi Aida.The rewrite rule machine. Technical Report SRI-CSL-89-6, SRI International, Com-puter Science Laboratory, March 1989.17. D.R. Je�erson. Virtual time. Transactions on Programming Languages and Systems,7(3):404{425, 1985.18. R. Keller and J. Fasel, editors. Proc. Workshop on graph reduction, Santa Fe, NewMexico. Springer LNCS 279, 1987.19. Patrick Lincoln, Jos�e Meseguer, and Livio Ricciulli. The MIMD/SIMD RewriteRule Machine architecture and its performance. To Appear, November 1993.

20. Narciso Mart��-Oliet and Jos�e Meseguer. Rewriting logic as a logical and semanticframework. Technical Report SRI-CSL-93-05, SRI International, Computer ScienceLaboratory, August 1993.21. Jos�e Meseguer. Conditional rewriting logic as a uni�ed model of concurrency. The-oretical Computer Science, 96(1):73{155, 1992.22. Jos�e Meseguer. A logical theory of concurrent objects and its realization in theMaude language. In Gul Agha, Peter Wegner, and Akinori Yonezawa, editors, Re-search Directions in Concurrent Object-Oriented Programming, pages 314{390. MITPress, 1993.23. Jos�e Meseguer. Solving the inheritance anomaly in concurrent object-orientedprogramming. In Oscar M. Nierstrasz, editor, Proc. ECOOP'93, pages 220{246.Springer LNCS 707, 1993.24. Jos�e Meseguer and Timothy Winkler. Parallel programming in Maude. In J.-P.Banâtre and D. Le M�etayer, editors, Research Directions in High-level Parallel Pro-gramming Languages, pages 253{293. Springer LNCS 574, 1992. Also TechnicalReport SRI-CSL-91-08, SRI International, Computer Science Laboratory, Novem-ber 1991.25. Robin Milner. Communication and Concurrency. Prentice Hall, 1989.26. M.J.Berger and S.H.Bokhari. A partitioning strategy for nonuniform problems onmultiprocessors. IEEE Transactions on Computers, C-35(5):570{580, 1987.27. Simon Peyton-Jones. The Implementation of Functional Programming Languages.Prentice Hall, 1987.28. M. R. Sleep, M. J. Plasmeijer, and M. C. J. D. vanEekelen, editors. Term GraphRewriting. Wiley, 1993.

This article was processed using the LaTEX macro package with LLNCS style

