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Abstract. We present compilation techniques for Simple Maude, a declar-
ative programming language based on Rewriting Logic which supports
term, graph, and object-oriented rewriting. We show how to compile var-
ious constructs of Simple Maude onto SIMD and MIMD/SIMD massively
parallel architectures, and in particular onto the Rewrite Rule Machine,
a special purpose MIMD/SIMD architecture for rewriting. We show how
to compile SIMD graph rewriting onto MIMD/SIMD architectures, and
discuss mapping 3-D structures into 2-D SIMD meshes. We show how
to compile object-oriented rewriting into efficient MIMD/SIMD code. We
thus show that Simple Maude is an efficient, machine-independent parallel
programming language.

1 Introduction

Rewriting, that is, the process of replacing instances of a lefthand side pattern
by corresponding instances of a righthand side pattern, has been recognized as
a basic computational paradigm for implementing functional languages. Rewrite
rules are intrinsicly concurrent, since their application depends only on the local
existence of a pattern. Thus rewrite rules are well suited for expressing the implicit
parallelism of functional programs in a declarative way, leading to the investigation
of so-called reduction architectures that exploit this type of parallelism (see for
example [18, 27]).

There are, however, many applications that are certainly amenable to paral-
lelization but which do not fit well within the functional paradigm. For example,
a discrete-event simulation in which many different objects interact with each
other usually does not have a natural formulation as a functional program. Such
simulations often have a high degree of concurrency, which can be exploited us-
ing optimistic parallel simulation methods such as Time Warp [17]. In general,
there are many algorithms that are state-oriented or nondeterministic. Therefore
forcing all problems and algorithmic solutions into a functional notation is both
implausible and ill-advised.

In [1], it is explained how, by adequately generalizing the notion of rewriting,
one can arrive at a declarative and machine-independent parallel programming
paradigm which can express not only functional computations but also a very wide
variety of other highly nonfunctional parallel computations. This paper focuses on
techniques for compiling such rewrite rules onto SIMD and MIMD /SIMD archi-
tectures. Before discussing these techniques, we briefly summarize our proposed
programming paradigm.



1.1 Rewriting Logic

The generalization of rewriting we use is provided by rewriting logic [21], a logic of
change in which the states of a system are understood as algebraically axiomatized
data structures. The basic local (concurrent) changes in a system are axiomatized
as rewrite rules corresponding to local patterns that, when present in a state of a
system, can change into other patterns.

Rewriting logic is a very general model of concurrency from which many other
models can be obtained by specialization. We refer the reader to [21] for a detailed
discussion. However, we can briefly mention that labeled transition systems; paral-
lel functional programming, including equational programming and the A-calculus
with explicit substitution; Post systems and related grammar formalisms; concur-
rent object-oriented programming, including the Actor model [2]; Petri nets; the
Gamma language of Banatre and Le Metayer [7], and Berry and Boudol’s chemi-
cal abstract machine [8]; CCS [25]; and Unity’s model of computation [10] can all
be obtained naturally as special cases of rewriting logic without any encoding.

1.2 Maude and Simple Maude

We can use rewriting logic as a machine-independent declarative language in which
parallel programs can be specified by means of rewrite rules. However, in general,
rewriting can take place modulo an arbitrary set of structural axioms E, which
could be undecidable.

This suggests considering three subsets of rewriting logic. The most general
case of rewriting logic should be considered a specification language. The second
subuset where F is assumed to be efficiently implementable gives rise to the Maude
language[24, 22] which can be supported by an interpretive implementation ade-
quate for rapid prototyping, debugging, and executable specification. The third,
smaller subset discussed in this paper gives rise to Simple Maude, a sublanguage
meant to be used as a machine-independent parallel programming language. Pro-
gram transformation techniques can then support passage from general rewrite
theories to Maude modules and from them to modules in Simple Maude.

Simple Maude support three types of rewriting:

Term Rewriting. The data structures being rewritten are terms, that is, syn-
tactic expressions that can be represented as labeled trees or acyclic graphs.
Many symbolic and artificial intelligence applications can be naturally ex-
pressed in this way.

Graph Rewriting. The data structures being rewritten are labeled graphs. An
important subcase is where the topology of the data graph remains unchanged
after rewriting. Many highly regular computations, including many scientific
computing applications, cellular automata, and systolic algorithms fall within
this fixed-topology subclass.

Object-Oriented Rewriting. The data being rewritten are actor-like objects
that interact with each other by asynchronous message-passing. The concur-
rent execution of messages corresponds to concurrently rewriting by means
of appropriate rewrite rules. Many applications are naturally expressible as
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Fig. 1. Specialization relationships among parallel architectures.

concurrent systems of interacting objects. For example, many discrete event
simulations, and many distributed AI and database applications can be nat-
urally expressed and parallelized in this way.

1.3 SIMD and MIMD/SIMD Architectures, and the Rewrite Rule
Machine

Simple Maude can be implemented on a wide variety of parallel architectures.
The diagram in Figure 1 shows the relationship among some general classes that
we have considered. Each of these architectures is suited to a different way of
performing rewriting computations. Simple Maude has been designed so that con-
current rewriting is relatively easy to implement efficiently in any of these four
classes of machines. In the MIMD /Sequential (multiple instruction stream, multi-
ple data) case many different rewrite rules can be applied at many different places
at once, but one rule is applied at only one place in each processor. The SIMD
(single instruction stream, multiple data) or A-SIMD (for autonomous-SIMD)
case corresponds to applying rewrite rules one at a time, possibly to many places
in the data. We assume SIMD processing elements are able to execute conditional
statements to the extent of being able to deactivate themselves based on inter-
nal conditions, and are able to perform address calculations. The RRM ensemble
and MassPar-1 are examples of this kind of SIMD processor The MIMD /SIMD
case corresponds to applying many rules to many different places in the data, but
here a single rule may be applied at many places simultaneously within a single
processing node.

Although most of the concepts described later apply equally well to other
SIMD and MIMD/SIMD architectures, for concreteness here we describe our tar-
get architecture, the Rewrite Rule Machine (RRM) [16, 5, 4, 3], for which many
of the techniques described in this paper have been implemented in a prototype
compiler. The RRM is a MIMD/SIMD architecture designed with the explicit
goal of supporting concurrent rewriting with a 6-tiered hierarchical architecture.
The most basic processing element is the cell, with four cells making up a tile.
An ensemble is a chip containing about a hundred tiles (144 is our current esti-
mate) and operating in SIMD mode. A node is a multichip module containing an



ensemble, local passive memory, I/O hardware and a network interface. A cluster
is a collection of nodes on a board, and the Rewrite Rule Machine as a whole is
a collection of clusters in a cabinet. We are currently focused on the design of
a cluster as an economically implementable accelerator for applications such as
event-driven simulation, image processing, neural networks, symbolic computing,
and artificial intelligence. A single ensemble yields very fast, extremely fine-grain
SIMD rewriting, but RRM execution is coarse-grain MIMD at the cluster level,
since each ensemble independently executes its own rewrites on its own data,
communicating with other ensembles when necessary.

Cells have a 16-bit ALU and 16 registers, each 16-bit wide. Terms and graphs
can be naturally represented by each cell holding a node label and pointers to
the cells storing the neighboring nodes in the graph. A tile consists of 4 cells
which share communication buses. The RRM ensemble is connected as a 2-D
mesh of tiles, augmented with special row and column buses to support nonlocal
(non-mesh) communcations. All cells in an ensemble listen to the same SIMD
instructions broadcast by a common controller. The instructions are interpreted
depending on the cell’s contents and internal state; cells to which the instruction
does not apply become inactive. Cells can cooperate to find patterns that are
instances of a rewrite rule lefthand side. Many such instances can be found in
parallel within a single ensemble and across ensembles, and can be replaced by
righthand side instances under SIMD control. In the process of rewriting the
data in some cells can become garbage; each cell has a reference counter used for
garbage collection.

1.4 Compiling Simple Maude onto SIMD and MIMD /SIMD
Architectures

We present compilation techniques for term, graph, and object-oriented rewrit-
ing. In each case, techniques for both SIMD and MIMD /SIMD architectures are
given. The graph rewriting case pays special attention to program transformation
techniques taking rules for which globally SIMD lock-step execution is required
into more flexible rules for which a less synchronized MIMD/SIMD regime can
produce the same answers. The important issue of placement techniques for fixed-
topology graph rewriting applications is also studied. In the object-oriented case,
message-passing issues, the efficient implementation of multiple inheritance, and
object attribute access are discussed. An example of the code generated by our
current RRM compiler is given in an appendix.

Here we assume that the rewrite rules are unconditional and left-linear (that
is, the lefthand side term of all rewrite rules has no repeated variables). One
can easily incorporate simple conditions in the schemes presented below, and use
program transformation techniques to remove complex conditions and repeated
variables from the lefthand side of rules [4].

2 Compiling Term Rewriting

Given a term rewriting system, the compilation onto MIMD/SIMD architec-
tures is rather involved. First, we describe a general approach to compilation



for SIMD machines. Second, we describe how to lift these compilation ideas to
larger MIMD /SIMD architectures composed of many SIMD machines operating
in concert, each executing a separate instruction stream.

2.1 SIMD Compilation of Term Rewriting

Our overall approach is to compile rewrite rules into appropriate SIMD assembly
language form, then a subject term is loaded and repeatedly rewritten until no
further rewrite rules apply. We assume that the entire term is stored in the active
memory of the SIMD processing elements, which we call cells, and for the sake of
clarity we will assume in this subsection that every node in the graph representing
the program corresponds exactly to one dedicated SIMD cell. This strong assump-
tion may be relaxed in various ways including the storage of multiple nodes in
each SIMD cell, and swapping parts of the graph in and out of local (passive)
memory, at the cost of slowing the overall rewriting process.

Rewriting as compiled onto SIMD architectures embodies three main phases:
matching of the lefthand side, construction of the righthand side, and replacement
of one for the other. The matching phase consists of cells comparing their local
state to globally broadcast information, as well as fetching information about
other cells state through pointers. We use a top-down matching strategy in the
RRM. The construction phase consists of two tasks: allocation and data motion.
Cells which found successful matches allocate new space for the righthand side of a
rule, and then instantiate that new structure with information from the lefthand
side match. Finally, if the matching and construction were successful, the old
structure is replaced by the new in one step. Reference counts are then updated
appropriately.

An example of term rewriting code compiled by our prototype compiler for
the RRM is given in an appendix. The code generated by the compiler for term
rewriting compares favorably (less than 20% penalty in time and space) to hand
coded RRM assembly code.

2.2 MIMD/SIMD Compilation of Term Rewriting

In a MIMD/SIMD environment, we must support the possibility of a rewriting
process in one SIMD processor operating concurrently with a separate rewriting
process in another, even if there are multiple pointers between the processors. A
serious complication in this arena is the possibility that multiple processors oper-
ating in MIMD mode share data. If there are two rewrite rules f(g(h(X))) = i(X)
and g(h(X)) = j(0), and there is a SIMD cell with label f in one SIMD processor
pointing to a cell representing g(h(1)) in another SIMD processor, references into
deallocated storage can result from pathologic interleaving of the execution of the
two rewrite rules. (If rewriting g(h(1)) to j(0) occurs after matching f(g(h(X))),
but before construction or replacement, then in trying to construct the right hand
side i(X), garbage may be encountered. Nonsense can also easily be generated for
binary terms.) Of course, one can check for overlapping rewrite rules like those in
the example above at compile time. Any rule with a lefthand side pattern which



is not a proper subterm of the lefthand side of any rule will never exhibit this
pathologic behavior. Similarly, any subtree node in a rule that matches no root
of any lefthand side pattern cannot cause a problem.

In order to prevent erroneous behavior for overlapping rules we must perform
some sort of locking procedure for those nodes that are a source of possible con-
flict. With mild atomicity assumptions at the SIMD cell level, reasonably efficient
locking code can be generated by the compiler without relying on expensive hard-
ware mechanisms. We enforce that when a SIMD cell begins the matching phase
as the root of a rewrite, it first tests and sets a special locking bit. Further, when
a SIMD cell fetches data for a possible match, at some point it must also test
and set the same lock bit on that SIMD cell. In this way overlapping rewrites are
prevented, and the cost is only paid for rules that are a source of possible conflict.
This point should be emphasized again; symbols that are the root of rule-overlaps
are locked and unlocked, while all other symbols are treated normally.

2.3 Scheduling Rules

The above discussion has neglected higher-level optimization issues, such as the
order in which rewrite rules should be broadcast. A simple scheduling of rules
is possible where every rule is executed on each SIMD processor in the order
originally input. We attempt to find some principles of locality in SIMD and
MIMD/SIMD execution of rewrite rules. For example, if the SIMD cells have
some capacity to feed information back to the SIMD processor controller, as they
do in the RRM node, one can skip rules involving symbols that simply don’t occur,
thus speeding the entire rewriting process. Similarly, if a large set of rules share
common structure, and that structure is not found in the first attempted match,
one can skip the remainder of those similar rules. Also, if a rule is successful, and is
known to introduce a new function symbol, rules involving that function symbol
may be pre-fetched by the SIMD controller. In MIMD/SIMD computations, if
data is allowed to migrate (for example, to relieve localized overcrowding), the
SIMD controller may be notified about the introduction of new function symbols,
and broadcast only rewrite rules relevant to those symbols. With good initial data
layout or a small amount of dynamic reconfiguration, one can arrange data labeled
with common symbols in the same SIMD processor. One can then concentrate on
only those rewrite rules applicable to the set of labeling symbols present in the
local SIMD memory.

3 Compiling Graph Rewriting

There are two kinds of graph rewriting that we will discuss. One is SIMD graph
rewriting, which is similar to SIMD term rewriting. The other, MIMD/SIMD
graph rewriting, is similar to MIMD/SIMD term rewriting, where any locally
matching graph rewrite rule is applicable. Applications tend to naturally fall into
one class of graph rewriting. For example, cellular automata and low-level simu-
lations are much easier to program if one has (the illusion of) complete control
over the SIMD lock-step nature of certain graph rewrites. However, for self-timed
hardware simulations globally MIMD operation is natural.



3.1 Compiling SIMD Graph Rewriting onto SIMD Machines

Graph rewriting is an area that has received much attention and has been used for
a variety of purposes (see for example [13, 28] and references there). In particular,
graph rewriting has been extensively used in the compilation of functional lan-
guages. However, many highly regular computations can be naturally expressed
by graph rewrite rules in which the topology of the graph does not change.

Consider for example the Dirichlet problem from [11]. The problem is to find
a solution to the Laplace equation V2@ = 0, where the values of @ are fixed for
the boundary cells. Initially, each interior cell has value zero, and the boundary
cells have their given values v;, as in the lefthand diagram below:

As one step of computation, the value of each interior cell is replaced by the
average of the values of its four (vertical and horizontal) neighbors. This can be
represented by the SIMD graph rewrite rule above on the right, where the labels
a, b, c,d, e identify the same nodes before and after the rewrite.

The SIMD compilation of graph rewrite rules is quite similar to that of term
rewrite rules. The main difference is the much more careful use of locality in
structure creation. For example, in the above rule no new structure has to be
created: only the data has to be updated, so the initial placement of the struc-
ture becomes permanent. A possible optimization in such cases is to schedule
the communication of neighboring graph nodes using knowledge of how the data
graph is mapped onto the architecture; this optimization is further discussed in
Section 3.4. For some SIMD graph rewriting applications it is crucial that each
rewrite rule is applied simultaneously to all its instances, that is, the rewrite must
be maximally parallel. However, this restriction can be relaxed by the program
transformation into MIMD/SIMD rules described below. Termination of graph-
rewriting programs can be detected with simple 1-bit global feedback from all
processors as to whether any rewrite was successful in the last main loop. As soon
as an entire ruleset has been broadcast without any changes, the computation is
complete.

3.2 Converting SIMD to MIMD/SIMD Graph Rewriting

Consider again the Dirichlet example above. Usually, the computation is per-
formed in lock step, enforcing that all cells compute their new values simultane-
ously. In other words, only maximally-parallel SIMD rewrites are allowed. If one
wanted to compute exactly the same sequence of values, but allow asynchronous



computation, one can perform the following transformation. First, where before
there was only a single data value stored, we now allow three data values to be
stored. Also, we introduce a distinguished data value “x” that cannot be matched
with a number (say, by type constraints).

We then produce the following three rules: (We take the notational convenience
of omitting some attributes of nodes, which are then assumed to be unchanged

by the rewrite)

These three rules take the place of the one globally SIMD rule above. The
intended operation is that the * stands for the next value to be computed. It is an
invariant that when one of these rules applies, the value of P, is no longer needed
in the computation, and thus can be overwritten.

If one is only interested in the final result of a computation, that is, after things
become stable, then, somewhat surprisingly, the original rule suffices. The proof
that this one rule, even in MIMD/SIMD mode, leads to the same final result as it
does in SIMD mode is not difficult but beyond the capabilities of our compiler to
determine, so for MIMD /SIMD machines our compiler would produce the three
rule version. Many applications, including most systolic ones, can be naturally
expressed as graph rewrite rules. We have described cellular automata such as
Conway’s game of life, and particle in a cell simulations, lattice gas fluid flow,
Dirichlet, sorting networks, and other applications by means of graph rewrite
rules.

In general, using the technique just illustrated, one may transform maximally-
parallel SIMD rewriting into MIMD /SIMD rewriting by adding clock-time and



past state attributes to all cells. Rewrite rules are then made sensitive to the
clock times, enforcing that data from a consistent (artificial) clock time is used
in performing all rewrites. After rewriting, a cell must retain its most recent past
state to allow its neighbors to compute their next state if they have not already
done so.

For example, the original SIMD graph rewriting computation of a 2-D problem
can be thought of as a plane (of computation) moving through the third dimension
(of simulated clock time) in rigid lock step. The transformed rewrite rules allow
this plane to become distorted in the third dimension. The maximum slope of this
plane at any time is bounded at any point by the amount of past data retained
in each cell. In the above description this amounts to one clock tick per cell. In
other words, no cell can compute more than one clock tick ahead of its neighbors.
Across a large mesh the global simulated clock skew may be significant. With this
transformation, we may thus execute arbitrary graph rewrite rule programs on a
loosely coupled MIMD /SIMD machine.

3.3 Compiling MIMD /SIMD Graph Rewriting onto MIMD /SIMD
machines

The compilation of MIMD /SIMD graph rewriting is a fairly straightforward exten-
sion of the techniques applied to compile term rewriting described earlier, except
for the need for a more involved locking procedure and more careful control over
(graph) layout for efficiency reasons. In abstract terms, the idea is simply to par-
tition the data into the available multiprocessor memory, and then each SIMD
processing unit broadcasts a single rewrite rule at a time. Each MIMD/SIMD
graph rewrite rule is executed with the same match, construct, and replace cycle
as for term rewriting. The same data locking techniques used in the compilation
of term rewriting can be used in the compilation of MIMD/SIMD graph rewrit-
ing. However, with graph rewriting it becomes even more critical to obtain most
recent information, thus requiring in some cases a complete lockout of all other
processes during graph rewriting.

3.4 Mapping

The above sections describing the compilation of graph rewriting assumed that
the initial graph was already layed out into the computational units. This sec-
tion describes some general techniques of data layout in SIMD and MIMD /SIMD
machines. Graph mapping is a crucial phase of efficient compilation of parallel pro-
grams because it determines how much communication parallelism can be utilized
during the course of the computation. We resort to other standard techniques [26]
to to handle mapping of more complex non-homogeneous types of graphs.

From an abstract point of view we can define the connectivity of an RRM
ensemble (SIMD processor) as the Cartesian product of a completely connected
graph on 4 vertices and a large 2 dimensional 4-neighbor mesh. This topology is
well suited for symbolic computation because it offers a high degree of connectivity
without excessively complicated hardware. When embedding homogeneous graphs



on the RRM it is advantageous to think of the underlying architecture as a two
dimensional mesh and utilize the multiplicity of 4 cells per tile to fit a larger
2-D problem by “folding,” or to increase the depth that can be handled in a
3-dimensional mapping by a factor of 4.

We have developed a mapping strategy for many kinds of meshes into the
2-D topology of the RRM. For inhomogeneous graphs or graphs for which we
haven’t developed specialized handling, we resort to randomized heuristic algo-
rithms. The idea is to more-or-less randomly generate an initial placement of the
graph (perhaps using specialized mappings for subgraphs), then to repeatedly in-
terchange randomly selected parts of the graph, performing a hill-climbing search
to converge to a local minimum of a given communication cost function. This
technique was used to efficiently map a hardware simulator by repeatedly moving
the location of simulated gates until the communication cost was (locally) mini-
mized. Using the resulting mapping we achieved impressive hardware simulation
performance [19].

3-dimensional rectilinear structures are very useful for a wide variety of prob-
lems. We give a brief overview of our current methods for mapping 3-dimensional
meshes onto 2-dimensional grids. We assume that the neighborhood of a point in
the 3-D problem space is composed of the 6 nearest neighbors in the z,y, and
z directions. A useful notion to measure the success of a map from some prob-
lem space onto a parallel hardware platform is dilation. A problem space can be
mapped with (maximum) dilation n into some architecture when all neighboring
points in the problem space are no more than n communication hops away when
mapped on the architecture. This is a useful metric as it tends to predict a scaling
factor from maximum performance (for problems that can be mapped perfectly,
with dilation 1). For 3-D problems we also consider the dilations restricted to each
dimension separately, called the z-, y-, and z-dilations.

One can lay out a 2-D problem perfectly into a 2-D mesh (with dilation 1).
However, one cannot map a large 3-D structure onto a 2-D (computing) surface
with dilation independent of the dimensions of the problem. Given a 3-D problem
space of dimensions z,y, z, where we assume that z > y > 2, a naive mapping
approach is to lay out z copies of a perfect mapping of y x z problem spaces.
The z-dilation is then z, while both y and 2-dilations are 1. Thus, the maximum
dilation is z, the sum of dilations is z+2, and the average dilation is “3'2 . However,
a 3-D problem space with minimum dimension z (that is, z < z and z < y) can be

mapped onto a 2-D mesh with z-dilation [/z ], y-dilation [/2z ], and z-dilation 1.
2\/E+1'|
3

Thus the average dilation is | . This mapping may be viewed as squashing
the third (z) dimension down into small squares of size \/z X /z. By analysis of
total reachable spaces, it can be shown that one cannot do much better. That is,
the average dilation of any mapping of this general sort is at least %\/E

It is possible to use this technique repeatedly to map meshes of larger dimen-
sion into meshes of lower-dimension. In particular, a 4-dimensional space with
dimensions z,y, 2,t, with £ > y > 2z > t can be mapped onto a 2-D mesh with
z-dilation [v/zt], y-dilation [v/2t], z-dilation [v/¢], and t¢-dilation 1. Note that
if £ =y = z = t, the maximum dilation of this mapping is z, and the average
dilation is more than z/2, so these mappings are of limitted interest for large



cube-like structures of large dimension.

These optimized mappings allow reasonably efficient layout of 3-D problem
structures of relatively large size on 2-D meshes. In the case of the RRM, we have
4 cells per tile, and thus can handle, for example, 3-D structures with minimum
dimension z = 1024 with average dilation 11, by using the mapping for z = 256
and packing four z-neighbors in each tile.

Problems larger than the available active memory can be mapped into passive
memory, and then broken into chunks of appropriate size and swapped in and out
of active memory for computation.

Another example, hexagonal meshes can be mapped nicely into a 2-D 4-
neighbor mesh. The maximum dilation under our mapping for a 2-D hexagonal
grid is 2, with average dilation 4/3. An 8-neigbor graph used in an image process-
ing application was mapped with maximum dilation 2. Graphs of larger connec-
tivity can be handled with larger dilations, where in a 2-D mesh the connectivity
grows as 2d x (d + 1).

4 Compiling Object-Oriented Rewriting

In a concurrent object-oriented system the concurrent state (or configuration)
typically has the structure of a multiset made up of objects and messages. There-
fore, we can view configurations as built up by a binary multiset union operator
which we can represent with empty syntax as

subsorts Object Msg < Configuration .
op __ : Configuration Configuration -> Configuration [assoc comm id: null]

where the multiset union operator __ is declared to satisfy the structural laws of
associativity and commutativity and to have identity null. The subtype declara-
tion

subsorts Object Msg < Configuration .

states that objects and messages are singleton multiset configurations, so that
more complex configurations are generated out of them by multiset union.

As a consequence, we can abstractly represent the configuration of a typical
concurrent object-oriented system as an equivalence class [t] modulo the structural
laws of associativity, commutativity and identity, i.e., as a multiset of objects and
messages.

An object in a given state is represented as a term

(O:Clag:v1,...,an: Uy)

where O is the object’s name or identifier, C is its class, the a;’s are the names
of the object’s attribute identifiers, and the v;’s are the corresponding values.
The set of all the attribute-value pairs of an object state is formed by repeated
application of the binary union operator _,_ which also obeys structural laws of
associativity, commutativity, and identity; i.e., the order of the attribute-value
pairs of an object is immaterial.



/ <Peter:Accnt|b00> / <Peter:Accnt|b$00>
debit (Peter,200)
debit (Paul,50)
<Paul:Accnt|bal/: 250> <Paul:Accnt|bal:200>

credit (Paul,30Q)— credit (Paul,30Q)
debit (Peter,150) debit (Peter,150)

<Mary:Accnt | bal)1R50> <Mary:Accnt|bal:1350>
\\\‘ credit(Mary:izd) \\\\ 4///

Fig. 2. Concurrent rewriting of bank accounts.

~

For example, bank account objects in a class Accnt may be defined with just
one attribute bal that is a natural number corresponding to the current balance.
Concurrent interaction with the account can be achieved by means of credit and
debit messages that add or subtract a given amount of money. The corresponding
updates of the account are specified by the two rewrite rules

credit(A,M) < A : Accnt | bal: N > => < A : Accnt | bal: N+M >
debit(A,M) < A : Accnt | bal: N > => < A : Accnt | bal: N-M > if N >= M .

where the second rule can only be applied if the condition N >= M is satisfied,
that is, if the account has enough funds.

Figure 2 provides a snapshot in the evolution by concurrent rewriting of a
simple configuration of bank accounts. The system evolves by concurrent multiset
rewriting of the configuration using the rewrite rules of the system. Intuitively,
we can think of messages as “traveling” to come into contact with the objects to
which they are sent and then causing “communication events” by application of
rewrite rules.

The two rules for bank accounts above illustrate the asynchronous message
passing communication between objects supported by the Simple Maude language.
In general, for concurrent object-oriented modules we only allow conditional rules
of the form

(1) (M(0) (O:F | atts)
— ((O : F' | atts"))

(Q1: Dy | attsy) ... (Qp: Dy | attsy)

M;... M,

if C
involving at most one object and one message in their lefthand side, where the
notation (M(0O)) means that the message M (O) is only an optional part of the
lefthand side. In addition, the target object itself is optional, and new objects and
messages may be created.

An efficient way of realizing rewriting modulo associativity and commutativity
by communication is to associate object identifiers with specific addresses in the



virtual address space of a parallel machine and then messages are sent directly to
the address of their target object.

There are several options regarding the practical implementation of general
message receipt, but the following protocol appears to be a good tradeoff between
time, space, and complexity. The protocol begins with a standard message-send,
where the destination of the message is the (unique) object location (object id) of
the recipient!. Upon arrival, messages are queued in a data structure that tests for
immediate applicability of rewrite rules with respect to that message. In the case
that the message cannot be accepted immediately, the message is incorporated
in a compact data structure that supports periodic access. The protocol requires
that messages periodically be retried to ensure the fairness required at the lan-
guage level. Since several objects of related classes may reside in the same SIMD
processor, several objects may be updated concurrently by the SIMD broadcast
of one rewrite rule. The actual rewriting of a message and an object, as well as the
additional rewriting required for the evaluation of the new attribute values can
be implemented using the SIMD and MIMD/SIMD term rewriting techniques
described in Section 2. However, both inheritance and attribute access can be
implemented more efficiently by special techniques described below. More exper-
imentation is needed to measure the performance of object-oriented rewriting on
large examples from realistic applications. However, we believe that using the
hardware-supported message passing of the RRM we can effectively implement
this style of object-oriented rewriting very efficiently.

4.1 Inheritance Hierarchy and Attribute Access

Support for multiple inheritance for classes is provided by the order-sorted type
structure of rewriting logic [15] so that if C is a subclass of C’, then C is a subsort
of C'. For more details on the type theory of class inheritance and the desugaring
of rules we refer the reader to [22, 23].

In order to support run-time class information, the compiler must incorporate
an algorithm for determining when an object is of a class that is subsumed by
some other class. That is, at run-time we must determine if a given object is,
by class-membership and inheritance, a member of some class. This operation is
performed at every application of a rewrite-rule. We support this operation very
efficiently with an encoding of the inheritance hierarchy with bitvectors based
on [6]. The idea is essentially to embed the partial order of inheritance into a
Boolean lattice. The Boolean lattice is then encoded using one bit-position for
each element of the original partial order. The bitvector encoding each element of
the lattice is then the bitwise-or of the bitvector encoding of its descendents and
a 1 in the bit-position of the partial-order element that lattice element represents,
if any. Thus any bitvector code can be read as a set, where each 1 indicates the
presence of some element from the partial order (which has a unique bit-position).
This encoding technique reduces the cost of class-matching to n/16 instructions

! In a SIMD implementation this takes place inside the SIMD processor, whereas in a
MIMD/SIMD implementation it must in general be supported by the network con-
necting the SIMD processors.



on a machine with 16 bit word-size where n is the size of the (largest connected
component in the) input hierarchy. Methods exist to reduce the cost to either
log(n) (expected, still n/16 worst-case), or linear in the depth of the classes being
compared, although these have larger constant factors [6, 14, 9, 12]. Note that
this Boolean lattice representation applies more generally to any set of rewrite
rules in which variables are typed in an order-sorted type structure.

In addition to this class-matching operation, the compiler must also support
attribute access efficiently. The interpretive approach of maintaining an associa-
tion list from attribute (field) names to values can be greatly improved upon. For
hierarchies without multiple inheritance one can easily allocate fixed-length ar-
rays to store values, and translate field-lookup operations into direct array-access.
With multiple inheritance one must be more careful, in some cases leaving empty
“padding” in the array in order to leave room for fields declared for incompara-
ble elements that are shared by common descendents. This process complicates
compilation but in fact maintains constant-time field access at run time. More
flexible methods combining partial array allocation (say, for frequently-accessed
attributes declared high in the hierarchy) and partial use of association lists (for
other attributes) allow run-time additions of new fields to existing objects and
circumvent the need for padded (space inefficient) arrays.

5 Concluding Remarks

We have argued that, by generalizing term rewriting so as to encompass also graph
and object-oriented rewriting, a very wide spectrum of parallel programming
applications can naturally be expressed with rewrite rules in a declarative and
machine-independent way. We have then presented methods to efficiently compile
these very general types of rewrite rules onto SIMD and MIMD/SIMD parallel ma-
chines. Since rewriting is a very simple way of implementing and parallelizing not
only functional languages but also many other declarative and constraint-based
languages (see [27, 20]), our compilation techniques are directly applicable not
only to Maude, but also to the parallel implementation of many other declarative
languages on SIMD and MIMD/SIMD machines.

Our techniques are applicable under relatively general assumptions such as
the A-SIMD capabilities enjoyed by a good number of SIMD and MIMD /SIMD
machines. However, for the sake of concreteness we have also reported on our
compilation experience for the RRM, a particular MIMD/SIMD machine in this
class specifically designed to support parallel rewriting.

Important areas requiring further research include: a tighter integration of
mapping and compilation techniques for graph rewriting; further experimenta-
tion with compilation of object-oriented rewriting; efficient code scheduling for
a set of rewrite rules; and techniques for efficiently handling very large prob-
lems that do not fit in active memory. In addition, the machine-independence
of our proposed paradigm and compilation techniques should be demonstrated
in practice by developing implementations on several SIMD, MIMD/SIMD, and
MIMD /Sequential machines.
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