
Appeared in French Journal \T.A.Informations" 1991LIFEA Natural Language for Natural LanguageHassan A��t-KaciPatrick LincolnFebruary 1988MCC, ACA ProgramSystems Technology Laboratory3500 West Balcones Center DriveAustin, TX 78759AbstractExperimenting with formalisms for Natural Language Processing involves costly program-ming overhead in conventional computing idioms, even as \advanced" as Lisp or Prolog.LIFE is a programming language which incorporates an elegant type system which sup-ports a powerful facility for structured type inheritance. Also, LIFE reconciles styles fromFunctional Programming and Logic Programming by implicitly delegating control to anautomatic suspension mechanism. This allows interleaving interpretation of relational andfunctional expressions which specify abstract structural dependencies on objects. Together,these features provide a convenient and versatile power of abstraction for very high-levelexpression of constrained data structures. Computational linguistics is a discipline wheresuch abstractions are particularly useful. Therefore, obvious convenience is o�ered by LIFEfor experimentation to the computational linguist, who becomes relieved from burdensomeyet extrinsic programming complications. We presently attempt to show how LIFE may bea natural computer language for processing natural human languages.Keywords: Natural Language Processing, Type Inheritance, Logic Programming, Func-tional Programming, Delayed Evaluation.Copyright c
 1988 Microelectronics and Computer Technology Corporation.All Rights Reserved. Shareholders of MCC may reproduce and distribute these materials forinternal purposes by retaining MCC's copyright notice, proprietary legends, and markings on allcomplete and partial copies.

Contents1 Introduction 22 The Chemistry of LIFE 22.1 The Atoms : 42.1.1 �-Calculus: Computing with Functions : 42.1.2 �-Calculus: Computing with Relations : 62.1.3 -Calculus: Computing with Types : 72.2 The Bonds : 132.2.1 ��-Calculus: Le Fun : 132.2.2 � -Calculus: Log In : 152.2.3 �-Calculus: FOOL : 172.3 The �� Molecule : 173 Natural Language 183.1 Traditional NLP : 193.2 NLP in LIFE : 193.2.1 Syntax|The Grammar : 203.2.2 Semantics|The Constraints : 213.2.3 Pragmatics|Anaphora : 234 Conclusion 244.1 Why LIFE? : 244.2 Categorial Grammars : 244.3 Limitations of Current System : 25List of Figures1 The LIFE Molecule : 32 A Functional Diagram : 83 A Signature with Well-De�ned GLB's : 104 The Peter-Paul-Mary Signature : 16
AcknowledgementsWe are indebted to David Plummer for his tour-de-force implementing LIFE, andpatiently attending to our every needs in LIFE. We owe as much to Roger Nasrfor his momentous contribution to the conception and architecture of LIFE. Manythanks also to Raymonde Guindon and Jon Schlossberg for their kind tutorial helpin computational linguistics while implementing the LIFE NL parser.

1

A��t-Kaci/Lincoln|LIFE, a Natural Language 2We modern Europeans (...) have lost the ability to think inlarge dimensions. We need a change in Lebensgefuhl [ourfeeling for life]. It is my hope that the enormous perspectiveof human growth which has been opened to us by [this] re-search (...) may serve to contribute in some small measureto its development.Leo Frobenius, Volksm�archen und Volksdichtungen Afrikas.1 IntroductionLIFE is a prototype programming language under development at MCC. It is the product to date ofresearch meant to explore whether programming styles and conveniences evolved as part of Functional,Logic, and Object-Oriented Programming could be somehow brought together to coexist in a singleprogramming language. Being aware that not everything associated to these three approaches to pro-gramming is either well-de�ned or even uncontroversial, we have been very careful laying out someclear foundations on which to build LIFE. Thus, LIFE emerged as the synthesis of three computationalatomic components which we refer to as function-oriented, relation-oriented, and structure-oriented,each being an operational rendition of a well-de�ned underlying model.Formalisms for linguistic analysis have emerged, based on Horn clause logic [17], frame uni�ca-tion [20], �-calculus [22], each proving itself adequate for particular aspects of Natural Language Pro-cessing (NLP). LIFE happens to reconcile all these approaches, therefore o�ering a unique experimentaltool for the computational linguist. To be sure, there are other e�orts attempting to tailor program-ming languages, typically logic programming, for linguistic analysis. (As has been pointed out in [10],order-sorted logic is quite convenient for parsing.) Among those known to us CIL [14, 15] is one thatcomes close to LIFE's spirit in that it combines partial features of Log In [3] (see Section 2.2.2) withdelayed evaluation handled with an explicit freeze meta-predicate borrowed from Prolog-II [9]. CIL'sconstructs are called Partially Speci�ed Terms (PST's) which are exactly the same as feature matricesused in Uni�cation Grammars [20], and are a strict particular case of Log In's -terms. To our knowl-edge PST's do not accommodate disjunctive constructs, nor do they use a type hierarchy, let alone typede�nitions. In addition, judging from the literature, we �nd CIL constructs rather unnecessarily con-voluted as opposed to our simple LIFE style, although the reader is encouraged to make an opinion forherself. On the programming language side, there is a growing multitude dealing with integrating logicand functional programming. However, none of them worries about bringing in frame-like uni�cation orinheritance, and few have higher-order functions. We refer the reader to [5] for a survey of prominentapproaches. LIFE stands apart as the only formalism we know which encompasses such a breath offunctionality.This document consists essentially of two parts: an informal overview of LIFE (Section 2) and aparticular experiment applying LIFE to linguistic analysis meant as an illustration of its adequacy(Section 3).2 The Chemistry of LIFELIFE is a trinity. The function-oriented component of LIFE is directly derived from functional pro-gramming languages standing on foundations in the �-calculus like HOPE [8], SASL [23], ML [11], orMiranda [24]. The convenience o�ered by this style of programming is essentially one in which ex-pressions of any order are �rst-class objects and computation is determinate. The relation-oriented

A��t-Kaci/Lincoln|LIFE, a Natural Language 3
�����������
TTTTTTTTTTT
~

~ ~Functions Relations

Types
FOOL

Le Fun
Log InLIFE

Figure 1: The LIFE Moleculecomponent of LIFE is essentially one inspired by the Prolog [21] language, taking its origin in theorem-proving as Horn clause calculus with a speci�c and well-de�ned control strategy|SLD-resolution. Toa large extent, this way of programming gives the programmer the power of expressing program declar-atively using a logic of implication rules which are then procedurally interpreted with a simple built-inpattern-oriented search strategy. Uni�cation of �rst-order patterns used as the argument-passing op-eration turns out to be the key of a quite unique and heretofore unheard of generative behavior ofprograms, which could construct missing information as needed to accommodate success. Finally, themost original part of LIFE is the structure-oriented component which consists of a calculus of typestructures|the -calculus [2, 4]|and rigorously accounts for some of the (multiple) inheritance conve-nience typically found in so called object-oriented languages. An algebra of term structures adequatefor the representation and formalization of frame-like objects is given a clear notion of subsumptioninterpretable as a subtype ordering, together with an e�cient uni�cation operation interpretable astype intersection. Disjunctive structures are accommodated as well, providing a rich and clean patterncalculus for both functional and logic programming.Under these considerations, a natural coming to LIFE has consisted thus in �rst studying pairwisecombinations of each of these three operational tools. Metaphorically, this means realizing edges of atriangle (see Figure 2) whose vertices would be some essential operational renditions of, respectively,�-calculus, Horn clause resolution, and -calculus. (It is assumed that the reader is familiar with theessential terminology and notions of functional and logic programming.) Therefore, we shall �rst verybrie
y and informally describe what we understand to be the canonical functionality found in eachvertex. Then, we shall describe how we achieve pairwise bonding. Lastly, we shall synthesize themolecule of LIFE from the three atomic vertices and the pairwise bonds.

A��t-Kaci/Lincoln|LIFE, a Natural Language 42.1 The AtomsThis section gives a very brief and informal operational account of functional programming, logic pro-gramming, and type inheritance.2.1.1 �-Calculus: Computing with FunctionsThe view taken by this way of computing is to formulate every computational object as a functionalexpression. There are essentially two sorts of such expressions|constants and reducible expressions.Constants may be of any order of type. Ground objects are null-order constants (value) and abstractionsare higher-order constants (functions). Typically, these evaluate to themselves. Reducible expressionsare essentially applications. Indeed, the only rule of computation is �-reduction in the context of aglobal store of de�ned constants. Strategies of reduction consisting of whether arguments in a func-tion application are reduced �rst or last fall into pragmatic considerations, and are irrelevant to thisparticular description. For the sake of choice, we shall assume applicative order of reduction, althoughnormal order, lazy or otherwise, could be as well considered.Although the \pure" �-calculus is computationally complete, and therefore theoretically su�cientto express all general recursive functions, a \real-life" functional programming language will typicallyhave a built-in store of constants of which the user's de�nitions may be seen as an extension. At thevery least, the usual integer arithmetic constants and functions would be assumed de�ned, as well asboolean constants and null-order equality|i.e., equality on ground values. Notably, and regardless ofthe chosen evaluation strategy, an exceptional constant function will also assumed de�ned for conditionalexpressions. The simplest conditional function is a three argument if-then-else whose in�x form usuallyis if e1 then e2 else e3 , and whose evaluation consists in �rst evaluating e1 whose boolean value, upontermination, will determine evaluation of either e1 or e2, yielding the result of the whole conditionalexpression. Thus, as an archetypical example, the factorial function may be de�ned as:1fact(n)) if n = 0 then 1 else n�fact(n� 1).Some functional programming languages make recursion syntactically explicit by di�erentiating twode�ning facilities. For instance a de�nition announced by a reserved word (rec, say) as inrec fact(n)) if n = 0 then 1 else n�fact(n� 1).would explicitly specify that occurrences of the constant being de�ned in its own body are recursiveoccurrences as opposed to namesakes which are presumably de�ned in the global store. The reason hasits roots in the simple way these de�nitions can be parsed by left-recursive descent and readily translatedinto a form stripped of syntactic adornments which requires the explicit use of the recursion combinatorY . However, this is not strictly required as LL(1) parsing or even implementation of recursion with Yare necessary, especially when e�ciency rather than simplicity of implementation is sought [18]. Thus,we shall dispense from such explicit rec mentions, (mutual) recursion being systematically implicitwhen and only when free occurring constants appear in de�nitions (as in the �rst of the two foregoingde�nitions).These basic paraphernalia are yet not quite enough for even bare needs in symbolic computing asno provision is made for structuring data. The most primitive such facility is pairing (written as in�x1We shall use) to express global de�nitions; i.e., the facility which installs a constant in the global constant store.

A��t-Kaci/Lincoln|LIFE, a Natural Language 5right-associative `.'). The pair constructor comes with two projection functions fst and snd such thatthe following equations hold:fst(x:y) = xsnd(x:y) = yfst(z):snd(z) = zThis allows the construction of binary tree structures and thus su�cient for representing any symbolicstructure such as trees of any arity, as well-known to Lisp programmers. For these constructed pairs,a test of equality is implicitly de�ned as physical equality (i.e., same address) as opposed to structureisomorphism. Thus, linear list structures may be built out of pairing and a nullary list terminator(written as [], as in 1:2:3:4:[]).As an example, a function for concatenating two lists can be de�ned as:append(l1; l2)) if x = [] then l2 else fst(l1):append(snd(l1); l2).In fact, a pattern-directed syntax is preferable as it is expresses more perspicuous de�nitions offunctions on list structures. Thus, the above list concatenation has the following pattern-directedde�nition:append([]; l)) l.append(h:t; l)) h:append(t; l):Again, this can be viewed as syntactic adornment as the previous form may be recovered in a singleconditional expression covering each pattern case by explicitly introducing identi�er arguments to whichprojection functions are applied to retrieve appropriate pattern occurrences. But again, this is forsimplicity rather than e�ciency. An e�cient implementation will avoid the conditional by using theargument pattern as index key as well as using pattern-matching to bind the structure variables to theirhomologues in the actual argument patterns [18].Clearly, when it comes to programming convenience, linear lists as a universal symbolic constructionfacility can become quickly tedious and cumbersome. More
exible data structures such as �rst-orderconstructor terms can be used with the convenience and e�ciency of pattern-directed de�nitions. In-deed, for each n-ary constructor symbol c, we associate n projections 1c; : : : ; nc such that the followingequations hold (1 � i � n):ic(c(x1; : : : ; xn) = xic(1c(z); : : : ; nc(z)) = zPretty much as a linear list data structure could then be de�ne as either [] or a pair :(x; y) whosesecond projection y is a linear list, one can then de�ne any data structure as a disjoint sum of dataconstructors using recursive type equations as a de�nition facility. Then, a de�nition of a function onsuch data structures consists of an ordered sequence of pattern-directed equations such as append abovewhich are invoked for application using term pattern-matching as argument binding.A simple operational semantics of pattern-directed rewriting can thus be given. Given a programconsisting as a set of function de�nitions. A function de�nition is a sequence of pattern-directed equa-tions of the form:

A��t-Kaci/Lincoln|LIFE, a Natural Language 6f(~A1) = B1:...f(~An) = Bn:which de�ne a function f over patterns ~Ai, tuples of �rst-order constructor terms. Evaluating anexpression f(~E) consists in (1) evaluating all arguments (components of ~E); then, (2) �nding the �rstsuccessful matching substitution � in the order of the de�nitions; i.e., the �rst i in the de�nition off such that there is a substitution of the variables in the pattern ~Ai such that f(~E) = f(~Ai)� (ifnone exists, the expression is not de�ned); �nally, (3) in evaluating in turn the expression Bi�, whichconstitutes the result.2.1.2 �-Calculus: Computing with RelationsLogic programming, of which Prolog is the canonical language, expresses programs as relational rulesof the form:r0(~t0) r1(~t1); : : : ; rn(~tn):where the ri's are relationals symbols and the ~ti's are tuples of �rst-order terms. One reads such a ruleas: \For all bindings of their variables, the terms ~t0 are in relation r0 if the terms ~t1 are in relationr1 and ... the terms ~tn are in relation rn." In the case where n = 0, the rule reduces to the simpleunconditional assertion r0(~t0) that the terms ~t0 are in relation r0. These rules are called de�nite clauses;expressions such as ri(~ti) are called literals; the head of a de�nite clause is the literal on the left of thearrow, and its body is the conjunction of literals on the right of the arrow.Given a set of such de�nite clauses, linear resolution is the non-deterministic computation rule bywhich such rules are giving interpretations to query expressions of the form: q1(~s1); : : : ; qm(~sm):which may be read: \Does there exist some binding of variables such that the terms ~s1 are in relation q1and ... ~sm are in relation qm?" The linear resolution rule is a transformation rule applied to a query. Itconsists in choosing a literal qi(~si) in the query's body and a de�nite clause in the given set whose headr0(~t0) uni�es with qi(~si) thanks to a variable substitution � (i.e., qi(~si)� = r0(~t0)�), then replacing itby the body of that clause in the query, applying substitution � to all the new query. That is, q1(~s1)�; : : : ; qi�1(~si�1)�; r1(~t1)�; : : : ; rn(~tn)�; qi+1(~si+1)�; : : : ; qm(~sm)�:The process is repeated and stops when and if the query's body is empty (success) or no rule headuni�es with the selected literal (failure). There are two non-deterministic choices made in the process:one of a literal to rewrite in the query and one among the potentially many rules whose head unify withthis literal.Prolog's computation rule is called SLD-resolution. It is a deterministic
attening of linear resolu-tion; that is, it is a particular deterministic approximation implementing the above non-deterministiccomputation rule. It consists in seeing a program as an ordered set of de�nite clause, and a de�niteclause body as an ordered set of literals. These orders are meant as a rigid guide for the two choices

A��t-Kaci/Lincoln|LIFE, a Natural Language 7made by the linear resolution rule. Thus, Prolog's particular computation strategy transforms a queryby rewriting the query literals in their order, attempting to unify against heads of rules in the orderof the rules. If failure is encountered, a backtracking step to the latest choice point is made, andcomputation resumed there with the next alternative.In exactly the same spirit as �-reduction is for the �-calculus, strategies of choice of where to applythe linear resolution computation rule are all theoretically consistent in the sense that if computationterminates, the variable binding exhibited is a legitimate solution to the original query. However, notall possible linear resolution strategies are complete. Indeed, pretty much as applicative order reductionin the �-calculus may diverge on an expression which does have a normal form, Prolog's particularstrategy of doing linear resolution may diverge although �nite solutions to a query may exist.Central to logic programming is the presence of �rst-order constructor terms as well as uni�cation.2.1.3 -Calculus: Computing with TypesThe -calculus consists of a syntax of structured types called -terms together with subtyping and typeintersection operations. Intuitively, as expounded in [3], the -calculus is an attempt at obtaining aconvenience for representing record-like data structures in logic and functional programming more ade-quate than �rst-order terms without loss of the well-appreciated instantiation ordering and uni�cationoperation.The natural interpretation of a -term is that of a data structure built out of constructors, accessfunctions, and subject possibly to equational constraints which re
ect access coreference|sharing ofstructure. Thus, the syntactic operations on -terms which stand analogous to instantiation and uni-�cation for �rst-order terms simply denote, respectively, sub-algebra ordering and algebra intersection,modulo type and equational constraints. This scheme even accommodates type constructors which areknown to be partially-ordered with a given subtyping relation. As a result, a powerful operationalcalculus of structured subtypes is achieved formally without resorting to complex translation trickery.In essence, the -calculus formalizes and operationalizes data structure inheritance, all in a way whichis quite faithful to a programmer's perception.Let us take an example to illustrate. Let us say that one has in mind to express syntactically a typestructure for a person with the property, as expressed for the underlined symbol in Figure 2, that acertain functional diagram commutes.One way to specify this information algebraically would be to specify it as a sorted equationaltheory consisting of a functional signature giving the sorts of the functions involved, and an equationalpresentation. Namely,X : person withfunctionsname : person! id�rst : id ! stringlast : id ! stringspouse : person! person

A��t-Kaci/Lincoln|LIFE, a Natural Language 8
person
person string stringid

id
name -
name -

spouse
? spouse6 �rst �����	 last@@@@@Rlast������
Figure 2: A Functional Diagramequationslast(name(X)) = last(name(spouse(X)))spouse(spouse(X)) = XThe syntax of -terms is one simply tailored to express as a term this speci�c kind of sortedmonadic algebraic equational presentations. Thus, in the -calculus, this information of Figure 2 isunambiguously encoded into a formula, perspicuously expressed as the -term:X : person(name) id(�rst) string ;last) S : string);spouse) person(name) id(last) S);spouse) X)).Since it is beyond the informal scope of this paper, we shall abstain from giving a complete formalde�nition of -term syntax. (Such may be found elsewhere [4, 3].) Nevertheless, it is important todistinguish among the three kinds of symbols which participate in a -term expression. Thus weassume given a signature � of type constructor symbols, a set A of access function symbols (also calledattribute symbols), and a set R of reference tag symbols. In the -term above, for example, the symbolsperson; id ; string are drawn from �, the symbols name;�rst ; last ; spouse from A, and the symbols X;Sfrom R.2A -term is either tagged or untagged. A tagged -term is either a reference tag in R or anexpression of the form X : t where X 2 R and t is an untagged -term. An untagged -term is eitheratomic or attributed. An atomic -term is a type symbol in �. An attributed -term is an expressionof the form s(l1) t1; : : : ; ln) tn) where s 2 � and the -term principal type, the li's are mutuallydistinct attribute symbols in A, and the ti's are -terms (n � 1).2We shall use the lexical convention of using capitalized identi�ers for reference tags.

A��t-Kaci/Lincoln|LIFE, a Natural Language 9Reference tags may be viewed as typed variables where the type expressions are untagged -terms.Hence, as a condition to be well-formed, a -term must have all occurrences of reference tags consistentlyrefer to the same structure. For example, the reference tag X inperson(id) name(�rst) string ;last) X : string);father) person(id) name(last) X : string)))refers consistently to the atomic -term string. To simplify matters and avoid redundancy, we shallobey a simple convention of specifying the type of a reference tag at most once as inperson(id) name(�rst) string ;last) X : string);father) person(id) name(last) X)))and understand that other occurrences are equally referring to the same structure. In fact, this conven-tion is necessary if we have circular references as in X : person(spouse) person(spouse) X)). Finally,a reference tag appearing nowhere typed, as in junk(kind) X) is implicitly typed by a special universaltype symbol > always present in �. This symbol will be left invisible and not written explicitly as in(age) integer ;name) string). In the sequel, by -term we shall always mean well-formed -term.Similarly to �rst-order terms, a subsumption preorder can be de�ned on -terms which is an orderingup to reference tag renaming. Given that the signature � is partially-ordered (with a greatest element>), its partial ordering is extended to the set of attributed -terms. Informally, a -term t1 is subsumedby a -term t2 if (1) the principal type of t1 is a subtype in � of the principal type of t2; (2) all attributesof t2 are also attributes of t1 with -terms which subsume their homologues in t1; and, (2) all coreferenceconstraints binding in t2 must also be binding in t1.For example, if student < person and austin < cityname in � then the -termstudent(id) name(�rst) string ;last) X : string);lives at) Y : address(city) austin);father) person(id) name(last) X);lives at) Y))is subsumed by the -termperson(id) name(last) X : string);lives at) address(city) cityname);father) person(id) name(last) X))).In fact, if the signature � is such that greatest lower bounds (GLB's) exist for any pair of typesymbols, then the subsumption ordering on -term is also such that GLB's exist. Such are de�ned asthe uni�cation of two -terms. Consider for example the signature displayed in Figure 3 and the two -termsX : student(advisor) faculty(secretary) Y : sta�,assistant) X);roommate) employee(representative) Y))

A��t-Kaci/Lincoln|LIFE, a Natural Language 10
person employeestudent sta� facultyworkstudys1 sm w1 w2 e1 e2 f1 f2 f3� � �
���� aaaaaaaaaaa

 @@@@ !!!! JJJJJ ����� AAAAA�� @@

Figure 3: A Signature with Well-De�ned GLB'sand employee(advisor) f1(secretary) employee,assistant) U : person);roommate) V : student(representative) V);helper) w1(spouse) U)).Their uni�cation (up to tag renaming) yields the term3W : workstudy(advisor) f1(secretary) Z : workstudy(representative) Z));assistant)W;roommate) Z;helper) w1(spouse)W)).A detailed uni�cation algorithm for -terms is given in [3]. This algorithm is an adaptation of ane�cient uni�cation algorithm based on a rooted labelled (directed) graph representation of -terms,such as is illustrated in Figure 2. The nodes are labelled with type symbols from �, and the arcsare labelled with attribute symbols. The root node is one from which every other is reachable andis labelled with the principal type of the -term (underlined in Figure 2). Nodes which are shared3Incidentally, if least upper bounds (LUBs) are de�ned as well in �, so are they for -terms. For example for thesetwo -terms, their LUB (most speci�c generalization) isperson(advisor) faculty(secretary) employee,assistant) person);roommate) person)):Thus, a lattice structure can be extended from � to -terms [2, 4]. Although it may turn out useful in other contexts,we shall ignore this generalization operation here.

A��t-Kaci/Lincoln|LIFE, a Natural Language 11in the graph correspond to tagged subterms. Such graphs are quite like �nite-state automata with�-sorted nodes (Moore machines) and where the transitions are attribute symbols. In fact, the -termuni�cation algorithm is an immediate adaptation of the algorithm deciding equivalence of �nite-stateautomata [1]. This algorithm merges nodes which are reached by equal transition paths into coreferenceclasses, starting from the roots and following all reachable strings of attributes from them. Each mergedclass is assigned the type symbol in � which is the GLB of the types of all nodes in the class. Theinconsistent type ? (the least element in �) may result which makes the whole uni�cation fail.A technicality arises if � is not a lower semi-lattice. For example, given the (non-lattice) typesignature:
johnemployee marystudentHHHHHHH�������the GLB of student and employee is not uniquely de�ned, in that it could be john or mary. That is,the set of their common lower bounds does not admit one greatest element. However, the set of theirmaximal common lower bounds o�ers the most general choice of candidates. Clearly, the disjunctivetype fjohn;maryg is an adequate interpretation.4 Thus the -term syntax may be enriched withdisjunction denoting type union.For a more complete formal treatment of disjunctive -terms, the reader is referred to [4] and to [3].It will su�ce to indicate here that a disjunctive -term is a set of incomparable -terms, writtenft1; : : : ; tng where the ti's are basic -terms. A basic -term is one which is non-disjunctive. Thesubsumption ordering is extended to disjunctive (sets of) -terms such that D1 � D2 i� 8t1 2 D1; 9t2 2D2 such that t1 � t2. This justi�es the convention that a singleton ftg is the same as t, and that theempty set is identi�ed with ?. Uni�cation of two disjunctive -terms consists in the enumeration ofthe set of all maximal -terms obtained from uni�cation of all elements of one with all elements of theother. For example, limiting ourselves to disjunctions of atomic -terms in the context of signature inFigure 3, the uni�cation of femployee; studentg with ffaculty ; sta� g is ffaculty ; sta� g. It is the set ofmaximal elements of the set ffaculty ; sta� ;?;workstudyg of pairwise GLB's.In practice, it is convenient to allow nesting disjunctions in the structure of -terms. For instance,to denote a type of person whose friend may be an astronaut with same �rst name, or a businessmanwith same last name, or a charlatan with �rst and last names inverted, we may write such expressionsas:

4See [7] for a description of an e�cient method for computing such GLB's.

A��t-Kaci/Lincoln|LIFE, a Natural Language 12person(id) name(�rst) X : string;last) Y : string);friend) fastronaut(id) name(�rst) X)); businessman(id) name(last) Y)); charlatan(id) name(�rst) Y;last) X))g)Tagging may even be chained or circular within disjunctions as in:P :fcharlatan; person(id) name(�rst) X : `john';last) Y : f `doe' ;Xg);friend) fP ; person(id) name(�rst) Y;last) X))g)gwhich expresses the type of either a charlatan, or a person named either \John Doe" or \John John" andwhose friend may be either a charlatan, or himself, or a person with his �rst and last names inverted.These are no longer graphs but hypergraphs.Of course, one can always expand out all nested disjunctions in such an expression, reducing it to acanonical form consisting of a set of non-disjunctive -terms. The process is described in [2], and is akinto converting a non-deterministic �nite-state automaton to its deterministic form, or a �rst-order logicformula to its disjunctive normal form. However, more for pragmatic e�ciency than just notationalconvenience, it is both desirable to keep -terms in their non-canonical form. It is feasible then to builda lazy expansion into the uni�cation process, saving expansions in case of failure or uni�cation against>. Such an algorithm is more complicated and will not be detailed here.Last in this brief introduction to the -calculus, we explain type de�nitions. The concept is analogousto what a global store of constant de�nitions is in a practical functional programming language basedon the �-calculus. The idea is that types in the signature may be speci�ed to have attributes in additionto being partially-ordered. Inheritance of attributes of all supertypes to a type is done in accordanceto -term subsumption and uni�cation. Uni�cation in the context of such an inheritance hierarchyamounts to solving equations in an order-sorted algebra as explained in [19], to which the reader isreferred for a full formal account.For example, given a simple signature for the speci�cation of linear lists � = flist ; cons ;nilg5 withnil < list and cons < list , it is yet possible to specify that cons has an attribute tail) list. We shallspecify this as:list := fnil ; cons(tail) list)g.From which the partial-ordering above is inferred.As in this list example, such type de�nitions may be recursive. Then, -uni�cation modulo sucha type speci�cation proceeds by unfolding type symbols according to their de�nitions. This is doneby need as no expansion of symbols need be done in case of (1) failures due to order-theoretic clashes(e.g., cons(tail) list) uni�ed with nil fails; i.e., gives ?); (2) symbol subsumption (e.g., cons uni�edwith list gives just cons), and (3) absence of attribute (e.g., cons(tail) list) uni�ed with cons givescons(tail) list)). Thus, attribute inheritance is done \lazily," saving much unnecessary expansions.5We shall always leave > and ? implicit.

A��t-Kaci/Lincoln|LIFE, a Natural Language 132.2 The BondsIn this section we indicate brie
y how to operationalize pairwise combination calculi from �, �, and computation models. That is, we describe the edges of the triangle of LIFE in Figure 2 on Page 3|thebonds between the atoms of the LIFE molecule. We shall keep an informal style, illustrating key pointswith examples.2.2.1 ��-Calculus: Le FunWe now introduce a relational and functional programming language called Le Fun [6, 5] where �rst-order terms are generalized by the inclusion of applicative expressions as de�ned by Landin [13] (atoms,abstractions, and applications) augmented with �rst-order constructor terms. Thus, interpreted func-tional expressions may participate as bona �de arguments in logical expressions.A uni�cation algorithm generalized along these lines must consider uni�cands for which success orfailure cannot be decided in a local context (e.g., function applications may not be ready for reductionwhile expression components are still uninstantiated.) We propose to handle such situations by delayinguni�cation until the operands are ready. That is, until further variable instantiations make it possibleto reduce uni�cands containing applicative expressions. In essence, such a uni�cation may be seen asa residual equation which will have to be veri�ed, as opposed to solved, in order to con�rm eventualsuccess|whence the name residuation. If veri�ed, a residuation is simply discarded; if failing, it triggerschronological backtracking at the latest instantiation point which allowed its evaluation. This is veryreminiscent of the process of asynchronous backpatching used in one-pass compilers to resolve forwardreferences.We shall merely illustrate Le Fun's operational semantics by giving very simple canonical examples.A goal literal involving arithmetic variables may not be proven by Prolog, even if those variableswere to be provided by proving a subsequent goal. This is why arithmetic expressions cannot benested in literals other than the is predicate, a special one whose operation will force evaluation ofsuch expressions, and whose success depends on its having no uninstantiated variables in its secondargument. Consider the set of Horn clauses:q(X;Y; Z) :{ p(X;Y; Z; Z); pick(X;Y):p(X;Y;X + Y;X � Y):p(X;Y;X + Y; (X � Y)� 14):pick(3; 5):pick(2; 2):pick(4; 6):and the following query:?{ q(A;B;C):From the resolvent q(A;B;C), one step of resolution yields as next goal to establish p(A;B;C;C).Now, trying to prove the goal using the �rst of the two p assertions is contingent on solving the equationA+B = A�B. At this point, Prolog would fail, regardless of the fact that the next goal in the resolvent,pick(A;B) may provide instantiations for its variables which may verify that equation. Le Fun stays

A��t-Kaci/Lincoln|LIFE, a Natural Language 14open-minded and proceeds with the computation as in the case of success, remembering however thateventual success of proving this resolvent must insist that the equation be veri�ed. As it turns out inthis case, the �rst choice for pick(A;B) does not verify it, since 3+ 5 6= 3 � 5. However, the next choiceinstantiates both A and B to 2, and thus veri�es the equation, con�rming that success is at hand.To emphasize the fact that such an equation as A+B = A�B is a left-over granule of computation,we call it a residual equation or equational residuation|E-residuation, for short. We also coin the verb\to residuate" to describe the action of leaving some computation for later. We shall soon see that thereare other kinds of residuations. Those variables whose instantiation is awaited by some residuationsare called residuation variables (RV). Thus, an E-residuation may be seen as an equational closure|byanalogy to a lexical closure|consisting of two functional expressions and a list of RV's.There is a special type of E-residuation which arises from equations involving an uninstantiatedvariable on one hand, and a not yet reducible functional expression on the other hand (e.g., X =Y + 1). Clearly, these will never cause failure of a proof, since they are equations in solved form.Nevertheless, they may be reduced further pending instantiations of their RV's. Hence, these are calledsolved residuations or S-residuations. Unless explicitly speci�ed otherwise, \E-residuation" will mean\equational residuations which are not S-residuations."Going back to our example, if one were interested in further solutions to the original query, onecould force backtracking at this point and thus, computation would go back eventually before the pointof residuation. The alternative proof of the goal p(A;B;C;C) would then create another residuation;namely, A + B = (A � B) � 14. Again, one can check that this equation will be eventually veri�ed byA = 4 and B = 6.Since instantiations of variables may be non-ground, i.e., may contain variables, residuations mutate.To see this, consider the following example:q(Z) :{ p(X;Y; Z); X = V �W;Y = V +W; pick(V;W):p(A;B;A �B):pick(9; 3):together with the query:?{ q(Ans):The goal literal p(X;Y;Ans) creates the S-residuation Ans = X � Y . This S-residuation has RV'sX and Y . Next, the literal X = V �W instantiates X and creates a new S-residuation. But, sinceX is an RV to some residuation, rather than proceeding as is, it makes better sense to substitute Xinto that residuation and eliminate the new S-residuation. This leaves us with the mutated residuationAns = (V �W) � Y . This mutation process has thus altered the RV set of the �rst residuation fromfX;Y g to fV;W; Y g. As computation proceeds, another S-residuation instantiates Y , another RV, andthus triggers another mutation of the original residuation into Ans = (V �W)�(V +W), leaving it withthe new RV set fV;Wg. Finally, as pick(9; 3) instantiates V to 9 and W to 3, the residuation is leftwith an empty RV set, triggering evaluation, and releasing the residuation, and yielding �nal solutionAns = 72.The last example illustrates how higher-order functional expressions and automatic currying arehandled implicitly. Consider,

A��t-Kaci/Lincoln|LIFE, a Natural Language 15sq(X)) X �X :twice(F ;X)) F (F (X)):valid op(twice):p(1):pick(lambda(X ;X)):q(V) :{ G = F (X); V = G(1); valid op(F); pick (X); p(sq(V)):with the query,?{ q(Ans):The �rst goal literal G = F (X) creates an S-residuation with the RV set fF;Xg. Note that the\higher-order" variable F poses no problem since no attempt is made to solve. Proceeding, a newS-residuation is obtained as Ans = F (X)(1). One step further, F is instantiated to the twice function.Thus, this mutates the previous S-residuation to Ans = twice(X)(1). Next, X becomes the identityfunction, thus releasing the residuation and instantiating Ans to 1. Finally, the equation sq(1) = 1 isimmediately veri�ed, yielding success.2.2.2 � -Calculus: Log InLog In is simply Prolog where �rst-order constructor terms have been replaced by -terms, with typede�nitions [3]. Its operational semantics is the immediate adaptation of that of Prolog's SLD resolutiondescribed in Section 2.1.2. Thus, we may write a predicate for list concatenation as:6list := f[]; [jlist]g:append([];L : list ;L):append([H jT : list];L : list ; [H jR : list]) :{ append(T ;L;R):This de�nition, incidentally, is fully correct as opposed to Prolog's typeless version for which thequery append([]; t ; t) succeeds incorrectly for any non-list term t.Naturally, advantage of the type partial-ordering can be taken as illustrated in the following simpleexample. We want to express the facts that a student is a person; Peter, Paul, and Mary are students;good grades and bad grades are grades; a good grade is also a good thing; `A' and `B' are good grades;and `C', `D', `F' are bad grades. This information is depicted as the signature of Figure 4. Thistaxonomic information is expressed in Log In as:student / person:student := fpeter ; paul ;maryg:grade := fgoodgrade; badgradeg:goodgrade / goodthing :goodgrade := fa; bg:badgrade := fc; d ; f g:6First-order terms being just a particular case of -terms, we use such an expression as f(t1; : : : ; tn) them as implicitsyntax for f(1) t1; : : : ; n) tn). Thus, pure Prolog is fully subsumed. In particular, we adopt its notation for lists, andfor \don't-care" a.k.a. >.

A��t-Kaci/Lincoln|LIFE, a Natural Language 16
personstudentpeter paul mary

goodthing gradegoodgrade badgradea b c d f������ ZZZZZZ
����������� EEEEE

 ����� BBBBB

Figure 4: The Peter-Paul-Mary SignatureIn this context, we de�ne the following facts and rules. It is known that all persons like themselves.Also, Peter likes Mary; and, all persons like all good things. As for grades, Peter got a `C'; Paul got an`F', and Mary an `A'. Lastly, it is known that a person is happy if she got something which she likes.Alternatively, a person is happy if he likes something which got a good thing. Thus, in Log In,likes(X : person;X):likes(peter ;mary):likes(person; goodthing):got(peter ; c):got(paul ; f):got(mary ; a):happy(X : person) :{ likes(X ;Y); got(X ;Y):happy(X : person) :{ likes(X ;Y); got(Y ; goodthing):From this, it follows that Mary is happy because she likes good things, and she got an `A'|whichis a good thing. She is also happy because she likes herself, and she got a good thing. Peter is happybecause he likes Mary, who got a good thing. Thus, a query asking for some \happy" object in thedatabase will yield:?{ happy(X):X = mary ;X = mary ;X = peter ;No

A��t-Kaci/Lincoln|LIFE, a Natural Language 172.2.3 �-Calculus: FOOLFOOL is simply a pattern-oriented functional language where �rst-order constructor terms have beenreplaced by -terms, with type de�nitions. Its operational semantics is the immediate adaptation ofthat described in Section 2.1.1. Thus, we may write a function for list concatenation as:list := f[]; [jlist]g:append([];L : list)) L:append([H jT : list];L : list)) [H jappend(T ;L)]:Higher-order de�nition and currying are also naturally allowed in FOOL; e.g.,map([];)) []:map([H jT];F)) [F (H)jmap(T ;F)]:Thus, the expression map([1; 2; 3];+1) evaluates to [2; 3; 4].The -term subsumption ordering replaces the �rst-order matching ordering on constructor terms.In particular, disjunctive patterns may be used. The arbitrary richness of a user-de�ned partial-orderingon types allows highly generic functions to be written, thus capturing the
avor of code encapsulationo�ered by so called object-oriented languages. For example, referring back to the signature in Figure 3on Page 10, the function:age(person(dob) date(year) X));ThisYear : integer)) ThisYear �X :will apply generically to all subtypes and instances of persons with a birth year.2.3 The �� MoleculeNow that we have put together the pairwise bonds between the atoms; i.e, what constitutes the LIFEmolecule as advertised in Figure 2 on Page 3. In LIFE one can specify types, functions, and relations.Rather than simply coexisting, these may be interwoven. Since the -calculus is used in Log In andFOOL to provide a type inheritance systems of sorts to logic and functional programming, we can nowenrich the expressiveness of the -calculus with the power of computable functions and relations. Morespeci�cally, a basic -term structure expresses only typed equational constraints on objects. Now, withFOOL and Log In, we can specify in addition arbitrary functional and relational constraints on -terms.In LIFE, a basic -term denotes a functional application in FOOL's sense if its root symbol is ade�ned function. Thus, a functional expression is either a -term or a conjunction of -terms denotedby t1 : t2 : : : : : tn. An example of such is append(list ;L) : list , where append is the FOOL functionde�ned above. This is how functional dependency constraints are expressed in a -term in LIFE. Forexample, in LIFE the -term foo(bar) X : list ; baz) Y : list ; fuz) append(X ;Y) : list) is one inwhich the attribute fuz is derived as a list-valued function of the attributes bar and baz. Unifyingsuch -terms proceeds as before modulo residuation of functional expression whose arguments are notsu�ciently re�ned to be subsumed by a function de�nition.As for relational constraints on objects in LIFE, a -term t may be followed by a such-that clauseconsisting of the logical conjunction of literals l1; : : : ; ln. It is written as t j l1; : : : ; ln. Uni�cation ofsuch relationally constrained terms is done modulo proving the conjoined constraints.

A��t-Kaci/Lincoln|LIFE, a Natural Language 18Let us take an example. We are to describe a LIFE rendition of a soap opera. Namely, a soap operais a television show where a cast of characters is a list of persons. Persons in that strange world consistof alcoholics, drug-addicts, and gays. The husband character is always called \Dick" and his wife isalways an alcoholic, who is in fact his long-lost sister. Another character is the mailman. The soapopera is such that the husband and mailman are lovers, and the wife and the mailman blackmail eachother. Dick is gay, Jane is an alcoholic, and Harry is a drug-addict. In that world, it is invariably thecase that the long-lost sister of gays are named \Jane" or \Cleopatra." Harry is a lover of every gayperson. Also, Jane and a drug-addict blackmail one another if that drug-addict happens to be a loverof Dick. No wonder thus that it is a fact that this soap opera is terrible.In LIFE, the above could look like:cast := f[]; [personjcast]g:soap opera := tv show(characters) [H;W;M];husband) H : dick;wife)W : alcoholic : long lost sister(H);mailman)M)j lovers(M;H);blackmail(W;M):person := falcoholic; drug addict ; gayg:dick / gay :jane / alcoholic:harry / drug addict :long lost sister(gay)) fjane; cleopatrag:lovers(harry ; gay):blackmail(jane;X : drug addict) :{ lovers(X ; dick):terrible(soap opera):Then, querying about a terrible TV show with its character cast is:?{ terrible(T : tv show(characters) cast)):which unfolds from the above LIFE speci�cation into:T = soap opera(characters) [H : dick;W : jane;M : harry];husband) H;wife)W;mailman)M)It is instructive as well as entertaining to convince oneself that somehow everything falls into place inthis LIFE sentence.3 Natural LanguageThis section is a description of a speci�c parser of a very small subset of English where syntactic,semantic, and pragmatic constraints are expressed all at once. This alleviates the need to pipeline many

A��t-Kaci/Lincoln|LIFE, a Natural Language 19invalid forms from syntax to semantics, then to pragmatics. This example is by no means to implythat its parsing scheme is what we recommend: We are, indeed, mere neophytes in computationallinguistics. We nonetheless hope to convince the computational linguist that we, as programminglanguage designers, did put together in LIFE a unique functionality for NLP.3.1 Traditional NLPNatural language understanding systems are notoriously large, ine�cient systems with slow responsetimes. Thus, optimizing the parsing process is an important task if natural language is to be used inrealistic user interfaces.Traditional natural language processing systems work in three phases. The �rst, syntactic analysis,phase determines the surface structure of the input|looking up words in a dictionary, checking wordorder, etc. The second phase determines some of the semantic content of the input|checking semanticagreement and enforcing selectional restrictions. Finally, the third phase determines the deepest mean-ing behind an input|binding anaphora to their referents, analyzing paragraph or discourse structure,and checking the consistency of the guessed meaning of the input with world knowledge. Although quitestandard even in state of the art natural language processing systems, this sequential method containssome inherent ine�ciencies.Obviously, if there is a deep semantic clash at the beginning of a long input, one would hope thata system would not waste too much time processing the entire input before noticing the clash. Morecommonly, there will be many readings of an input, and most of them will be be semantically
awed.It is desirable that the semantic
aws be found as soon as possible, eliminating the wasted work ofdoing even the surface analysis of the rest of the input under the bad readings. However, this is verydi�cult to achieve using the traditional approach of three phase processing. Only by doing all levels ofprocessing simultaneously can a system achieve the desired behavior.By processing input syntax, semantics, and pragmatics at the same time a system has the furtheropportunity to use the semantics to drive the syntax. For instance, if the semantics of the �rst part of aninput have been discovered, and the topic is known, any lexical ambiguities (multiple word de�nitions,etc) may be correctly interpreted immediately. In traditionally constructed systems, the lexical formsof all ambiguous readings would be fully
eshed out, and only upon semantic checking would they bethrown out.Pushing the semantics and pragmatics through to the initial grammar seems daunting to thosefamiliar with implementations of natural language systems. E�ciently handling all the constraints onlanguage is very di�cult, even in such high level languages as Lisp or Prolog. However, LIFE's formalismis one in which complex constraints are easily and cleanly incorporated in declarative programs throughthe intermingling of relational and functional expressions.3.2 NLP in LIFEA simpli�ed natural language processing system was built in LIFE as an experiment in using LIFE'sfull functionality on a complex problem. First, a simple best �rst chart parser was constructed usinga standard logic programming cliche. Second, constraints were added to the categories and objectsin the parser, in order to enforce number agreement and similar trivial conditions. Then semanticfunctions which expressed the meanings of certain words were included in the dictionary de�nitions of

A��t-Kaci/Lincoln|LIFE, a Natural Language 20those words. The grammar was also modi�ed to use those functions, when present, to enforce semanticagreement and selectional restrictions. Finally, the grammar was modi�ed slightly to force uni�cationof pronouns with referents, resolving all anaphora into coreferences.Thus when an input is presented, all the constraints come to bear immediately. As soon as averb with a semantic function is looked up in the dictionary, its entire semantics are enforced. LIFEautomatically handles the delayment of functional expressions until certain arguments are su�cientlybound, �ring the function at the earliest possible time. Using this functionality, powerful semanticfunctions can be posted as constraints as soon as they apply. Also, LIFE's uni�cation routine supportspartially ordered partially speci�ed types, which is useful in capturing semantic information.3.2.1 Syntax|The GrammarThe initial parsing routine was encoded as a set of facts and relations, broken up into three maincategories; a set of grammar rules expressing English word order and basic grammar, a dictionaryrelation from words to categories, and a parser, which relates lists of words to categories such as nounphrase or sentence.Each grammar rule was encoded as a LIFE fact, relating some number of constituent categories toa single result category. For example,grammar rule(np; art ;n):grammar rule(s ;np; vp):could be read as \an article followed by a noun can be a noun phrase, and a noun phrase followed by averb phrase can be a sentence." Then a small dictionary was constructed which related words to theirde�nition. For example,dictionary(compilers ;n):dictionary(john; pn):dictionary(the; art):dictionary(runs ; iv):could be read as \`compilers' is a noun, `john' is a proper noun, `the' is an article, and `runs' is anintransitive verb." A particular word may have multiple de�nitions in the dictionary, which are chosennondeterministically. To complete the base system, a simple parser was constructed which attempts to�nd a reading of the input list of words which satis�es the given category.parse(List ;null ;List):parse([Word jRest];Cat ;S1) :{dictionary(Word ;Def);grammar rule(Cat ;Def ;Needing);parse(Rest ;Needing ;S1):parse([Word jRest];Cat ;S1) :{dictionary(Word ;Def);grammar rule(Cat ;Cat1 ;Cat2);

A��t-Kaci/Lincoln|LIFE, a Natural Language 21parse([Def jRest];Cat1 ;S2);parse(S2 ;Cat2 ;S1):One might call the parser withparse([john; runs]; s ; []):In order to prevent useless search in a chart parser, it is necessary to precompute a \next word"attribute for each grammar rule. As given above, parsing would progress bottom-up. In order toenforce a left-to-right strategy, one needs to restrict which grammatical rules can be used based on thenext word in the sequence. For instance, the �rst grammar-rule given above describing noun phrasesshould only be applied when the next word in the sequence is an article. The next word for the secondgrammar rule above is fart ;n; adj ; pn; prong which stands for article or noun or adjective or propernoun or pronoun. (Other rules for sentences which start with interjections, adverbs, etc, and rules fornoun phrases starting with nouns, adjectives, proper nouns and pronouns do exist.) In order to takeadvantage of the precomputed next word, an extra argument was added to each grammar rule. Thus,given a list of words, the category of the �rst word is looked up in the dictionary. The two rules abovehave become:grammar rule(np; art ; art ;n):grammar rule(s ; fart ;n; adj ; pn; prong;np; vp):Then, only those grammar rules which have the proper category as a possible �rst word are tried.Thus extended, these grammar rules can now be read as \a string of words starting with an article,if made up of an article followed by a noun, can be seen as a noun phrase, and a string of words startingwith either an article, noun, adjective, proper noun, or pronoun, if made up of a noun phrase followedby a verb phrase, can be seen as a sentence." Thus, if given a string of words beginning with an adverb,neither rule would �re, since the precomputed \next word" attributes both fail to unify with adverb.However, given a list of words starting with a proper noun, the second rule could �re.The operation of this parser is simply to �nd the �rst reading of an input form that satis�es the userspeci�ed category. If there is a choice at any point, for instance the choice of which de�nition of a word,or which grammar rule to use, a non-deterministic choice is made. If there is a failure along the way,due to some category not unifying with another, or the precomputed next word disallowing the use ofa grammar rule, then backtracking ensues. Control returns to the last nondeterministic choice made,where a new choice is demanded. If there are no choices left to make, control returns to the previouschoice. If there is no previous choice, then failure has occurred, and it is reported that the input formcannot be parsed into the given category.3.2.2 Semantics|The ConstraintsUsing the above as a base, additional rules of proper English were encoded by modifying dictionaryentries and grammar rules. For instance, number agreement is enforced by adding a number �eld tocertain dictionary entries:dictionary(compilers ;n(number) plural)):

A��t-Kaci/Lincoln|LIFE, a Natural Language 22dictionary(john; pn(number) singular)):dictionary(the; art):dictionary(runs ; iv(number) singular)):Since `the' can be either singular or plural, the number �eld is left out, and is implicitly anything. Also,certain grammar rules were restricted to constituents that agreed:grammar rule(fart ;n; adj ; pn; prong; s ;np(number) N); vp(number) N)):So long as the number of the noun phrase can be coerced to be the same as the number of the verbphrase, the two together can be read as a sentence. Thus, `john runs' is accepted, since the number of`john' and `runs' agree. However, `compilers runs' is rejected, since `compilers' is plural, and `runs' issingular.Gender agreement was added in precisely the same manner, although less words and rules havean explicit gender. The gender attribute is also useful in anaphora resolution. Moreover, selectionalrestrictions were added. Fields of dictionary de�nitions were added to enforce these constraints:dictionary(throws ; tv(number) singular ;object) projectile;subject) animate)):dictionary(john; pn(number) singular ; class) human)):dictionary(frisbee;n(number) singular ; class) projectile)):The �rst entry above describes the transitive verb `throw'. Its object must be a projectile, and itssubject mush be animate. The second entry is a slight modi�cation of the above de�nition of `john',the added information is that `john' is human. The corresponding grammar rules were then modi�edto use this information:grammar rule(fart ;n; adj ; pn; prong; s ;np(number) N ; class) X);vp(number) N ; subject) X)):Here the sentence rule is modi�ed to ensure that the verb phrase's subject can be uni�ed with theclass of the noun phrase. In this way, semantic information is gathered at the same time that syntacticconstraints are met.A semantic hierarchy was constructed to account for the meanings of the classes mentioned in thedictionary; e.g.,human / animate:which can be read as \anything which is human is also animate." This semantic hierarchy can be veryrich. Using the powerful inheritance mechanisms of LIFE, complex semantic domains can be describedvery economically. Rules of the type shown above express simple type subsumption, but if the typeanimate has any attributes, those are inherited by the type human. Thus, the list of words `John throwsthe frisbee' can be parsed only if john is animate, which he is since he is human, and if the frisbee is

A��t-Kaci/Lincoln|LIFE, a Natural Language 23a projectile, which it is. This kind of constraint is very simple to enforce, since it has been translatedinto type checking during uni�cation.Simple constraints like \only projectiles can be thrown" are thus simple to implement. In order toexpress more complex constraints, like \carnivores eat meat," functions were used. Each de�nition ofa verb can have a semantic function which can express constraints on its subject or object that aredependent on something else. Consider the verb `eat.'dictionary(eat ; tv(subject) animate(eating habit) EH);object) food : eaten by(EH);number) plural)):The word `eat ' is a plural transitive verb whose subject must be animate, and whose object mustbe food. Further, if the subject has an eating habit, then the object must be edible by something withthat eating habit. The pattern-directed function eaten by expresses the relationship between an eatinghabit and eaten objects:eaten by(vegetarian)) vegetable:eaten by(carnivore)) meat :eaten by(omnivore)) food :As a consequence, certain nouns were modi�ed with further dictionary information:dictionary(john; pn(number) singular ;class) human(eating habit) omnivore))):dictionary(monk ;n(number) singular ;class) human(eating habit) vegetarian))):The semantic functions can take advantage of any of the information available, using higher-orderfunctions and complex type attributes. Arbitrary amounts of computation can be done in order todetermine the proper category of the subject or object.3.2.3 Pragmatics|AnaphoraNot surprisingly, the most di�cult aspect of natural language processing to push into the syntacticparser was pragmatics. However, even this was fairly simple to encode in LIFE.The approach to anaphora and their referents is demonstrative. As a list of words is parsed, eachpossible referent of an anaphora is pushed onto a list. Whenever an anaphora is encountered it has tounify with some element of the list. The uni�cation would ensure that all the information known aboutthe anaphora in place matched all the information known about the referent in its place. Thus in `Johnruns and he walks' unifying `john' and `he' is correct, where in `John runs and she walks' unifying `john'and `she' is not, due to the fact that the pronoun `he' has the attribute (gender) male) and so does`john'. Thus `he' and `john' are uni�able. However, `she' has the attribute (gender) female) whichdoes not unify with `john's attribute (gender) male).Even paragraphs such as `The computer compiled my �le. It then deleted it.' are parsed correctly

A��t-Kaci/Lincoln|LIFE, a Natural Language 24using this scheme. There are four possible meanings of \It then deleted it" in this context:7 `the computerthen deleted the computer', `the computer then deleted my �le', `my �le then deleted the computer', and`my �le then deleted my �le'. However, only one of these is semantically coherent. Computers can notbe deleted, and �les are not animate, and thus can not delete anything. Thus `The computer compiledmy �le. The computer then deleted my �le.' is the only reading generated.Interestingly, even anaphora resolution is performed at the same time as syntactic and semanticchecking. As a list of words is parsed, as soon as an anaphora is encountered, its referent is identi�edbefore any following words are even looked up in the dictionary.The result of all this is a parse graph which represents the syntactic, semantic, and pragmaticinformation corresponding to the input list of words. In the parse graph anaphora and their referentscorefer; that is, they point to the same data structure. The parse graph contains the surface structureof the input in much the same way a traditional natural language processing system represents parsetrees. Semantic information is represented as additional information on the parse graph. Embedded inthe graph are also pointers to the dictionary de�nitions of words, reduced functional constraints, andcomplex objects.4 Conclusion4.1 Why LIFE?There are several unique aspects of LIFE which make it suitable for natural language processing. The�rst and most useful is the logic programming base. Declarative encoding of grammar rules and parsingstrategies is extremely elegant and is not inherently ine�cient. LIFE's powerful type system allows aneven more declarative style with added programming convenience. Addressing LIFE term's by labelinstead of position allows quick extensions to existing code without signi�cant rewriting. Partiallyordered types allow an unprecedented economy of expression, and extremely powerful constructionsobtainable in standard logic programming languages only through large amounts of redundant code.Higher-order functions allow one to express extremely complex and powerful semantic notions in simpleways. Complex meaning dependencies can be encoded with little e�ort.4.2 Categorial GrammarsLIFE is suitable for the examination of alternative grammars such as originally inspired by Lam-bek [12]|so called Categorial Grammars. We have in mind, especially, the combination of a uni�cation-based formalism and the categorial parsing paradigm. As we have demonstrated, a uni�cation-basedgrammar could easily be encoded in LIFE thanks to its native structured type calculus. Higher-orderfunctions being also a basic feature in LIFE, they ought to come as handy to formulate a CategorialUni�cation Grammars such as proposed by Wittenburg [25].We are in the process of implementing a Categorial Grammar in LIFE. The lexical category functionson which these grammars are based, with their attendant type raising and function composition, can beeasily encoded as higher-order functions in LIFE. In Categorial Grammars, each word has an associated7In fact, there could be more interpretations of `it' than just `the computer' or `my �le'. The act of compiling could bereferred to as `it', or if any previous sentence had a neuter referent those objects could be referred to as `it'. For simplicity,we will only discuss the two obvious meanings.

A��t-Kaci/Lincoln|LIFE, a Natural Language 25function. For example, in the sentence `John ate lunch', `john' has the categorial function `S/VP' whichcan be roughly read as \sentence looking for verb phrase". The word `ate' has the category `VP/NP',and `lunch' has the category `NP.' Through function composition and function application, the wholestring can be reduced to `S.' In order to capture syntactic issues such as long distance dependencies (asin the sentence `What did john eat') higher-order functions are necessary. The search strategy using sucha grammar could be encoded, as above, using the nondeterministic mechanism of logic programming.In the near future we hope to build a Categorial Uni�cation Grammar following Wittenburg's approachclosely [25].4.3 Limitations of Current SystemThe current system was constructed in less than two weeks by the second author for demonstrationpurposes. Although improvements have been made, the scope of this project has been limited by timemore than technical di�culties.In the current system, the user must type perfect English. This sort of fragility makes the systemimpractical, but this limitation may be surmountable. The most important extension seems to be theaddition of some sort of scoring mechanism for failures|if every reading of an input fails, the systemshould go back and try to �nd a reading which \almost" succeeded.Also, certain constructs demand that the semantic checking be turned o�, or at least altered. `Idreampt...' is one such phrase. `I dreampt I ate my frisbee' is an acceptable English sentence. In orderto accomplish this some sort of
ag needs to be set which determines how much analysis to perform.Idiomatic phrases are often rejected. `John threw up' should be acceptable, but is not, since `up' isnot a projectile. Some sort of intermediate idiom processing needs to be done to accomplish this.The dictionary and grammar are fairly small, and thus the language accepted by the system is avery small subset of English. This project was a proof of concept, not construction of realistic system.Also, the performance of the system is unacceptably slow. Simple sentences take just a few seconds,but large sentences can take over a minute to process. Paragraphs (with ever-lengthening lists of possibleanaphora referents, and other deep semantic information) take several minutes to process. There aremany reasons for the slow behavior. The most obvious is that we have constructed a natural languageinterpreter on top of a LIFE interpreter, which itself is written in prolog, which is running on a personalworkstation. Other reasons include the fact that the grammar is not well tuned, and often searches lessfrequently successful branches before searching the most often successful. (Although properly called a\best �rst chart parser" what is implemented is a parser that could perform best �rst search if we hadthe empirical evidence from English text about which forms are truly most often successful.) It is ourbelief that once a LIFE compiler is implemented the parser will perform in much more reasonable time.

A��t-Kaci/Lincoln|LIFE, a Natural Language 26References[1] Aho, V.A., Hopcroft, J.E., and Ullman, J.D. The Design and Analysis of Computer Algorithms.Addison-Wesley, Reading, MA. 1974.[2] A��t-Kaci, H. A Lattice-Theoretic Approach to Computation Based on a Calculus of Partially-Ordered Type Structures. Ph.D. Thesis. Computer and Information Science, University of Penn-sylvania. Philadelphia, PA. 1984.[3] A��t-Kaci, H. and R. Nasr, \LOGIN: A Logic Programming Language with Built-in Inheritance."Journal of Logic Programming 3(3), pp. 187{215. 1986.[4] A��t-Kaci, H., \An Algebraic Semantics Approach to the E�ective Resolution of Type Equations."Journal of Theoretical Computer Science 45, pp. 293{351. 1986.[5] A��t-Kaci, H. and R. Nasr, Residuation: A Paradigm for Integrating Logic and Functional Pro-gramming. MCC Technical Report AI-359-86, AI/ISA Project. Microelectronics and ComputerTechnology Corporation, Austin, TX. October 1986.[6] A��t-Kaci, H., Lincoln, P., and R. Nasr, \Le Fun: Logic, equations, and Functions," Proceedingsof the ACM Symposium on Logic Programming, pp. 17{23. San Francisco, September 1987.[7] A��t-Kaci, H., Boyer, R., Lincoln, P., and R. Nasr, The E�cient Implementation of Object In-heritance. MCC Technical Report AI-102-87, AI/ISA Project. Microelectronics and ComputerTechnology Corporation, Austin, TX. May, 1987.[8] Burstall, R., MacQueen, D., and D. Sanella, Hope: an Experimental Applicative Language.Technical Report No. CSR-62-80, Department of Computer Science, University of Edinburgh,Edinburgh, UK. May 1980.[9] Colmerauer, A., et al, Prolog-II: Reference Manual and Theoretical Model. Groupe d'IntelligenceArti�cielle, Facult�e des Sciences d'Aix-Luminy. Marseille, France. 1982.[10] Frisch, A., Parsing with Restricted Quanti�cation. Cognitive Science Research Paper No. CSRP-043, School of Social Sciences. University of Sussex, Brighton, UK. February 1985.[11] Gordon, M., Milner, A., Wadsworth, C., Edinburgh LCF. LNCS 78. Springer Verlag, Berlin,FRG. 1979.[12] Lambek, J., \The Mathematics of Sentence Structure," American Mathematical Monthly 65,pp. 154{169. 1958.[13] Landin, P.J., \The Mechanical Evaluation of Expressions." Computer Journal 6(4), pp. 308{320.1963.[14] Mukai, K., \Anadic Tuples in Prolog," Report draft from lecture presented at the Workshop onFoundations of Deductive Databases and Logic Programming organized by J. Minker. Washington,DC. August 1986.[15] Mukai, K., \A System of Logic Programming for Linguistic Analysis," Report draft from lecturepresented at the Workshop on Semantic Issues on Human and Computer Languages organized byJ. Barwise, D. Israel, and S. Peters. Half-Moon Bay, CA. March 1987.

A��t-Kaci/Lincoln|LIFE, a Natural Language 27[16] Partee, B. (Ed.), Montague Grammars. Academic Press, New York, NY. 1976.[17] Pereira, F., and D.H.D. Warren, \De�nite Clause Grammars for Language Analysis|A Surveyof the Formalism and a Comparison with Augmented Transition Networks," Arti�cial Intelli-gence 13, pp. 231{278. 1980.[18] Peyton Jones, S.L., The Implementation of Functional Programming Languages. Prentice-Hall.1987.[19] Smolka, G., and H. A��t-Kaci, Inheritance Hierarchies: Semantics and Uni�cation. MCC Techni-cal Report AI-057-86, AI/ISA Project. Microelectronics and Computer Technology Corporation,Austin, TX. July, 1986. (To appear in Journal of Symbolic Computation, special issue on uni�-cation.)[20] Shieber, S., An Introduction to Uni�cation-Based Approaches to Grammar.CSLI Lecture Notes 4,Center for the Study of Language and Information, Stanford University. 1986.[21] Sterling, L., and E. Shapiro, The Art of Prolog. The MIT Press, Cambridge, MA. 1986.[22] Thomason, R. (Ed.), Formal Philosophy, Selected Papers of Richard Montague. Yale UniversityPress, New Haven, CT. 1973.[23] Turner, D., \Recursion Equations as a Programming Language," in J. Darlington et al (Eds.),Functional Programming and its Applications, pp. 1{28. Cambridge University Press, Cambridge,UK. 1982.[24] Turner, D., \Miranda|Non-Strict Functional Language with Polymorphic Types," in J.P. Jouan-naud (Ed.), Proceedings on the Conference on Functional Programming Languages and ComputerArchitecture (Nancy, France). LNCS 201, pp. 1{16. Springer Verlag, Berlin, FRG. 1985.[25] Wittenburg, K. Natural Language Parsing with Combinatory Categorial Grammar in a Graph-Uni�cation-Based Formalism. Ph.D. Thesis, Linguistics, Universtity of Texas. Austin, TX. 1986.

