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Abstract

The decision problem is studied for the nonmodal or multiplicative-additive
fragment of first order linear logic. This fragment is shown to be NEXPTIME-
hard. The hardness proof combines Shapiro’s logic programming simulation
of nondeterministic Turing machines with the standard proof of the PSPACE-
hardness of quantified boolean formula validity, utilizing some of the surpris-
ingly powerful and expressive machinery of linear logic.

1 Introduction

Linear logic, introduced by Girard, is a resource-sensitive refinement of clas-
sical logic [10, 29]. Linear logic gains its expressive power by restricting the
“structural” proof rules of contraction (copying) and weakening (erasing).
The contraction rule makes it possible to reuse any stated assumption as
often as desired. The weakening rule makes it possible to use dummy as-
sumptions, i.e., it allows a deduction to be carried out without using all
of the hypotheses. Because contraction and weakening together make it
possible to use an assumption as often or as little as desired, these rules
are responsible for what one may see in hindsight as a loss of control over
resources in classical (and intuitionistic) logic. Without contraction or weak-
ening, as in linear logic, propositions may be thought of as process states,
events, or resources, which must be carefully accounted for. One may then
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isolate two distinct forms of conjunction and disjunction, one form called
“multiplicative”, and the other “additive”. Viewing the hypotheses as re-
sources, a proof of a multiplicative conjunction as a conclusion forbids any
sharing between the resources used to establish each conjunct, whereas the
additive conjunction requires the sharing of all of the resources. Full linear
logic also involves a kind of modality: a “storage” or “reuse” operator, !.
Intuitively, the hypothesis !A provides unlimited reuse of the resource A.
The usual function type A = B can be recovered as !A—oB , where

—o i linear implication, which provides the type of functions that “use”
their argument exactly once.

Basic constructions on vector spaces provide a first, naive interpretation
of linear logic connectives, much as the basic operations on sets provide
an interpretation of usual logical connectives. For instance, multiplicative
conjunction is interpreted as tensor product. More subtle points of linear
logic originate in so-called coherence spaces, which maintain a notion of finite
basis and isomorphism with the double dual without imposing isomorphism
with the dual. Similar phenomena have been observed in certain natural
set-theoretic operations on infinite games [6, 7] and in so-called
-autonomous categories [5]. Event spaces, which come about from semantics
of concurrency, provide another semantic framework for linear logic [23]. A
mathematical setting for dynamic aspects of cut elimination is provided by
proof nets [10, 9] and in a deeper sense by Girard’s geometry of interaction
[11, 12, 8, 24, 1, 13, 14].

Among the computer science ramifications of linear logic, the methods
of this paper are closest to what may be broadly called logic programming
ramifications, in which computation is expressed by cut-free proof search
in certain linear logic theories. Recent topics in this direction include a
treatment of object-style inheritance and linear logic programming [3, 4, 2,
15], a treatment of concurrent constraint programming [25], and a closely
related treatment of Milner’s 7-calculus [22].

The remarkable expressiveness of cut-free linear logic proof search as a
computational paradigm is also indicated by the complexity and undecid-
ability of provability in fragments of linear logic. These results are conse-
quences of direct, lockstep simulations of computations on generic machines
by cut-free proof search in fragments of linear logic. Provability in full propo-
sitional (i.e., quantifier-free) linear logic is undecidable [18]. However, even
the fragment of linear logic that does not allow modalities is strikingly ex-
pressive: provability of multiplicative propositional formulas is NP-complete
[17]. In fact, the decision problem for constant-only formulas in multiplica-
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tive propositional linear logic is also NP-complete [20]. If the additives are
also allowed, provability for propositional formulas is PSPACE-complete [18],
and in fact this fragment allows a structural embedding of a cut-free proof
system for implicational propositional intuitionistic logic [19]. The decid-
ability of second order propositional linear logic without modalities is an
open problem.

In the remainder of the paper we shall restrict our attention to the non-
modal, or multiplicative-additive linear logic with first order quantifiers and
function symbols, MALL1. Because the depth of a cut-free proof tree is
still linear in the size of the conclusion, as in the case of the propositional
multiplicative-additive fragment, it can be seen that without function sym-
bols, MALL1 is still PSPACE-complete. However, in the presence of function
symbols the complexity is different in spite of the same bound on the depth.
It is shown that provability in MALL1 is NEXPTIME-hard (Theorem 5.4).

The hardness result is achieved through a direct encoding of Turing
machine transitions, which are shared via the additives, and the existential
quantification over intermediate Turing machine configurations. The linear
depth bound on cut-free MALL1 proofs gives an immediate single exponential
upper bound on the number of Turing machine transitions that can be used
in the entire proof using this encoding. In contrast to previous work on
linear logic proof search as a computational paradigm (see above), in which
a computation proceeds “upwards” along a proof tree, here the computation
steps are applied “horizontally across” the leaves of a proof tree.

It is likely that the membership of MALL1 in NEXPTIME, and hence its
NEXPTIME-completeness, may be shown by a decision procedure based on
dynamic skolemization. This technique, developed for theorem proving in
intuitionistic logic [26], falls outside of the scope of this paper.

The precise descriptions of MALL1 and of the particular version of non-
deterministic (single) exponential time Turing machines are given in Sec-
tion 2. An encoding of nondeterministic exponential time Turing machines
by MALL1 formulas is given in Section 3. This encoding is reminiscent of
the standard proof of the PSPACE-hardness of quantified boolean formula
validity [28, 16]. The encoding is also related to the logic programming
simulation of Turing machines given in [27]. In Section 4 it is shown that
whenever a nondeterministic exponential time Turing machine accepts, then
the MALL1 formula encoding the machine is provable. The converse is shown
in Section 5.

We would like to thank Yuri Gurevich for suggesting that the logic pro-
gramming simulation of Turing machines given in [27] may be a source of



2 PRELIMINARIES 4

lower bounds for the complexity of MALL1. This suggestion eventually led us
to formulate the encoding given in Section 3. We would also like to thank
Jean-Marc Andreoli, Jawahar Chirimar, Jean Gallier, Jean-Yves Girard,
Carl Gunter, Joshua Hodas, Jim Lipton, Dale Miller, John Mitchell, Jon
Riecke, Vijay Saraswat, Phil Scott, Natarajan Shankar, and Tim Winkler
for interesting and inspiring discussions.

2 Preliminaries

Let us begin by specifying the logical framework and the particular version
of nondeterministic Turing machines considered in this paper.

2.1 Logical Framework

Gentzen-style sequent calculus is the formal logical framework throughout
the paper. For our purposes it is convenient to consider sequents of the form
I' A where I', A are finite multisets of formulas. Note that in standard
presentations of sequent calculi, sequents are often built from sets of formu-
las, where we use multisets here. This difference is crucial. We assume a
set of function symbols and predicate symbols, along with their associated
arities. Atomic formulas (other than constants 1, —,T,0) are of the form
P(t1,...,t,) where t1,...,t, are terms and P is a predicate symbol of arity
n, as usual in first order predicate calculus. Note that there is no equality
symbol. The inference rules for the MALL1 sequent calculus are given in
Figure 1.

The following notational conventions are observed throughout this paper:

H Positive atomic formula P(tq,...,t,)
H* Negated atomic formula P(tq, ..., t,)"
A B, C Arbitrary formulas
A X, 0,2 Arbitrary finite multisets of formulas

In the VR and 3L rules in Figure 1 it is assumed that X is not free in I', A.
The English names for the rules given in Figure 1 are identities, tensor,
linear implication, plus, with, bottom, one, zero, top, universal, existential,
and cut, respectively. @, —o, and 1 are multiplicative connectives; 1 and —
are multiplicative propositional constants. @ and & are additive connectives;
0 and T are additive propositional constants. Observe the “additive” nature
of the quantifiers. For notational convenience, it is often assumed that —o
and @ associate to the right, and that ® has higher precedence than —o.
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An analysis is the process of applying a rule to a sequent matching the
conclusion of the rule in order to generate the corresponding premises. The
principal formula of the rule is then said to be analyzed by the reduction. A
MALL1 proof is represented as a tree rooted at its conclusion sequent at the
bottom and with the leaves at the top. Given this orientation, the notion of
a rule occurring above or below another rule should be clear.

The reader will note that linear negation is a defined concept on compos-
ite formulas, not a basic connective. One may define negation by recursion
on the structure of formulas: (H1) is H, (A®@ B)' is A—oB*, (A—<B)t is
A@ Bt (A& B)tis At @ BY, (A@ B)tis At & BY, (VX.A)* is 3X. AL,
(AX.A)L is VX . A+ 1145 —, =L is 1, T+ is 0, and 0+ is T. If I" consists of
Aq,..., Ap, then Tt denotes Af,..., A+,

Although the identity rules (i.e., the first four rules in Figure 1) are
restricted to atomic formulas H, the analogous identity rules for arbitrary
formula A instead of H are derivable. Negation rules are derivable as well,
namely from I', A - A one can infer T' - A, A, and from I' - A, A one can
infer I', AL - A. The reader will also observe that the linear logic connective
par may be defined by letting ApB be A'—oB and that the par rule [10] is
derivable. In fact, our sequent calculus presentation is equivalent to the first
order sequent calculus in [10] without exponentials !, T". More precisely, a
sequent I' - A is provable in MALL1 (without cut) iff the sequent - I't, A
is provable (without cut, respectively) in the first order sequent calculus
in [10], excluding exponentials. In particular, cut-elimination for MALL1
follows from the cut-elimination shown in [10], see also [18]. For the record:

Theorem 2.1 If a sequent is provable in MALLL, then it is provable in
MALL1 without using the Cut rule.

We end this section by considering some technical properties of MALLI,
in particular so-called permutability properties, some of which have been
discussed in several texts [2, 21].
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The sign of a formula is defined using the transformations below:

[A—oB]* = [A]"—o[B]*
[A@ BT = [A]T@[B]*
[EaA]Jr = [E]Jra A]+
AT = ([AD*
[A—oB]" = [A]"o[B]"
[A® B}t = [Ate Bt
[Z,A]J‘ = [Z]lﬂ A]L
ESk ([AH*

The sign of an instance of a formula A in a sequent X - A is given by the
superscript on A in [£]* or [A]*. That is, if an instance of formula A ends
up as [A]*, then it is positive. If an instance of formula A ends up as [A]*,
then it is negative.

A sequent is said to be balanced if it has the same number of positive and
negative occurrences of atoms other than constants. Otherwise, a sequent is
said to be unbalanced. A sequent is said to be multiplicative if it contains only
formulas built of atoms other than 0, T, of their negations, or of connectives
@ or —o . It is linear logic folklore that all provable multiplicative sequents
are balanced, and therefore no unbalanced multiplicative sequents can be

provable. This property is readily shown by induction on cut-free proofs.
Proposition 2.2 A multiplicative sequent is provable only if it is balanced.

Note that this property fails for full MALL1 and other fragments of linear
logic that include the additive connectives and constants.

The following properties all follow by induction on the height of cut-free
proof. These are permutability properties, as they ensure that if a proof
exists, then a proof of a certain permuted form exists. That is, one may
permute the order of application of inferences in a proof to achieve a kind
of normal form. These properties are used to give control over the shape of
linear logic proofs, thus enabling a more direct computational reading.

Proposition 2.3 If a sequent I'; A & B - A is provable in MALLL, then so
are ')A A and I', B+ A.

Proposition 2.4 If a sequent I' = A&B, A is provable in MALL1, then so
are ' A A and I' - B, A.
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Proposition 2.5 If a sequent I'; A @ B+ A is provable in MALLL, then so
s, A,BF A.

Proposition 2.6 If a sequent I' - A— B, A is provable in MALL1, then so
s, AF B, A.

Proposition 2.7 If a sequent I',3X.A + A is provable in MALL1, then so
is T, A[t/X] F A for any term t.

Proposition 2.8 If a sequent I' - VX.A, A is provable in MALL1, then so
is T At/ X], A for any term t.

Proposition 2.9 If a sequent I', A&B + A s provable in MALL1, where
I', A contain only negative occurrences of & and positive occurrences of @,
then I', AF- A orI', B+ A is provable in MALLI.

Proposition 2.10 If a sequent I' = A& B, A is provable in MALLL, where

I', A contain only negative occurrences of & and positive occurrences of @,
then ' A, A or I' = B, A is provable in MALLL.

Proposition 2.11 If a sequent I',VX.A F A is provable in MALL1, where
I, A contain only positive occurrences of & and 3 and only negative oc-
currences of & and ¥, then for some term t, I', A[t/X] F A is provable in
MALLI.

Proposition 2.12 If a sequent I' F 3X. A, A is provable in MALL1, where
', A contain only positive occurrences of & and 3 and only negative oc-
currences of & and ¥, then for some term t, I' = A[t/X], A is provable in
MALLI.

2.2 NEXPTIME Turing Machines

For definiteness, let us agree that “Turing machine” means the following
kind of nondeterministic machine. These machines have one tape and no
transitions are applicable in the final state. More precisely, such a machine
is given by the tuple (Q, S, T, 9, qo,?, qr), where:

e () is a finite set of states,
e (o € Q is the (unique) initial state,

e gr € @ is the (unique) final state,
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T is a finite set of allowable tape symbols, disjoint from @,

S C T is a finite set of input symbols,

» € T\S is the blank symbol,

J is the next move relation, a relation from (Q \ {¢r}) x T to
Q x T x {Left, Right},

For instance, if § contains move instructions gs, ¢ — gg, d, Left and
qs,c — q3,d, Right, then one may informally say that the Turing machine
M in state gs, where the tape symbol ¢ is currently under the read/write
head, can make one of the following one-step moves: either it erases ¢, writes
d, moves one square to the left, and passes to state ¢g, or it erases c, writes
d, moves one square to the right, and passes to state gs.

A configuration or instantaneous description of a Turing machine, or
briefly 1D, is given by a quadruple {(aq,¢q, ¢, ag), where ¢ € @ is the current
state, and a1, a9 € T* are the used part of the tape to the left and to the
right of the Turing machine’s read/write head, respectively, and ¢ is the
symbol directly underneath the read/write head. Here and throughout the
paper “the used portion of the tape” means the smallest contiguous portion
of the tape that includes all tape cells with a symbol other than b and all
tape cells visited by the read/write head.

The machine is given input ¢ € §* by writing bt on the otherwise empty
tape, one symbol per tape cell, with the read/write head scanning the
first symbol before the beginning of ¢, and the state is gg, forming the 1D
(€,qo,0,t). M is said to accept input t in exactly n steps, n > 1, if there
exists a sequence of configurations vy, ..., vn, each obtained from the previ-
ous by a one-step move, where vy is the initial configuration just described
and v, = (a1,qp,?, az). Note that the state of v; cannot be gp whenever
0 <i<n. M issaid to accept input t if there exists n > 1 such that M
accepts t in exactly n steps. Let L(M), the language accepted by M, consist
of all t € &* accepted by M.

A Turing machine M is said to be exponential time if there exists a poly-
nomial p(n) with nonnegative integer coefficients such that M € NTIME(2P(")),
that is, for each t € £(M), M accepts t in at most 2P(") steps, where n is
the length of ¢. Let NEXPTIME be the class of languages of the form L£(M)
for some exponential time Turing machine M [28].
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3 Encoding NEXPTIME in MALL1

In this section we give an efficient encoding of any nondeterministic Turing
machine and any input by a MALL1 sequent, which also depends on a natural
number n. In Sections 4 and 5 it will be shown that the MALL1 sequent is
provable if and only if the Turing machine accepts the input in at most 2"
steps.

We translate Turing machine instructions as follows, similarly to the
logic programming simulation given in [27]. A left move Turing machine
instruction is translated as:

[Qi,a = 4y, d, Leﬁ] = &CGTVLVR/Ld«[C‘L]a ai, aaR>)wid(<qu‘ja ¢, [d|R]>)
& YRid((e, gi, a, R))—o id({e, q;, b, [d|R])),

where the first conjunct describes the behavior at the center and at the right
end of the used portion of the tape, while the second conjunct describes the
behavior at the left end of the used portion of the tape and the behavior if
the tape has not been used yet.

A right move Turing machine instruction is translated as:

(40 = qj,d, Right] = & cerVIVRid((L,gi,a, [c|R])) e id(([d|L], ;. c, R))
& VLid((L, ¢, a, €))—o id(([d|L], gj, >, €)),

where the first conjunct describes the behavior at the center and at the left
end of the used portion of the tape, while the second conjunct describes the
behavior at the right end of the used portion of the tape and the behavior
if the tape has not been used yet.

Given a Turing machine program with m instructions é = 11,79, -+, Tm,
we construct the following formula:

[0l =1&[n]&[m] & -+ &[T

In order to encode an exponential number of steps of execution we use
a modification of the standard proof of the PSPACE-hardness of quantified
boolean formula validity [16]. We develop an encoding function M, where
My (V, V') is meant to denote that from 1D V', one can reach 1D V' in at most
2k steps. A first attempt would be to use the encoding:

My(V,V') = 3W.My 11 (V. W) and My (W, V").



3 ENCODING NEXPTIME IN MALL1 11

However, since Mj 1 appears twice in the encoding of My, this encoding
is itself exponential. Instead, let us use the following polynomial encoding,
which achieves the same aim. Here and throughout P is a fixed unary
predicate symbol distinct from id and A — B abbreviates 1&(A—oB).

Mo(V, V') = P(V)—P(V'),
(P(Y)—=P(V)) @ (idW)— P(Z))
@

My (V,V') = 3JWNYVZ. (P(Y) = id(W)) & (P(V) — P(zy) | Me11(¥:2)

In this encoding, My, only appears once in the encoding of My, thus en-
abling the encoding of an exponential number of steps of computation in a
polynomially-sized formula.

Finally, we define the MALL1 encoding of a Turing machine accepting
an input in at most 2" steps as follows. Let end be a fresh propositional
symbol. Given a number n, a Turing machine M = (Q,S,T,d,qo,?, qr),
and an input ¢, let vg = (€, qo, b, t) and define the encoding [M ()], as the
MALL1 sequent:

[6], VLYR (((P(X) —id(vg))—o ((id({L, qr,b, R)) — P(X"))— M,(X, X")))—o end) - end.

Let k be the length of t. Observe that the sequent [M(t)],, , fully written
out, has length polynomial in n, k.

Discussion: Although the complexity class NEXPTIME is defined to be
the union of NTIME(QP(")) taken over all polynomials p and the above en-
coding seemingly captures only NTIME(2"), it will nevertheless follow that
MALL]1 is NEXPTIME-hard once the soundness and faithfulness of the encod-
ing has been established. Indeed, a polynomial p(n) may be fixed for our
translation by choosing a particular NEXPTIME-complete problem whose de-
cision algorithm My is in NTIME(2P(™)). Hence it suffices to consider the
encoding [My(t)],(n) on inputs t of size n.

3.1 Encoding logic programs in MALL1

It follows from [27] that nondeterministic Turing machines can be simulated
by logic programs with at most one formula in the body of each program
clause, i.e., logic programs in which each program clause has one of the
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following two forms, where A, A" are atomic formulas:

A — A
A —

so that the depth complexity of the logic program is the same as time com-
plexity of the nondeterministic Turing machine. Such logic programs can be
encoded in MALL1 by a straightforward modification of the above encoding
of nondeterministic Turing machines, namely:

A(F(R) = AR = VX id({ge, F(X))) o id({g;, BE))),
[Ai(f(X)) = ] = VXid({g:, f(X)))—id((gm€)),
where constant_’gE is distinct from the constants g;,g; . f = fi,.- - fx,

Jg=0q1, ---9x, X = Xq,... X, with k& large enough, since a logic program
consists of finitely many clauses. It is easy to see that the soundness and
faithfulness of this encoding may be shown by a straightforward adaptation
of the arguments given in Sections 4 and 5.

4 Soundness of the Encoding

In this section it is shown that the encoding given in Section 3 is sound,
i.e., if a Turing machine M accepts an input ¢ in at most 2" steps, then the
sequent [M (t)], is provable in MALL1. The main technical point is given by

Lemma 4.1 If a Turing machine with program § can pass from a 1D v to a
ID v’ in at most 2" steps, then for any natural numbers j, k and any natural
numbers i < j and m < k, the sequent

P(Y;) — P(Yj11),
P(Y;) — id(v),

[5]a id(v’)—>P(Zm), l_Mn(Y] Zk)

P(Zi11) — P(Z)

1s provable in MALL1.



4 SOUNDNESS OF THE ENCODING 13

Proof.  Let I' consist of P(Y;) — P(Yj11),...,P(Y;) —id(v) and let
A consist of id(v') — P(Zp),..., P(Zx11) — P(Z;). The argument is by
induction on n. If n = 0, then Mo (Y}, Zy) = P(Yj)—o P(Z). There are
two cases: either the Turing machine idles or it makes one step. If the
machine makes one step from v to v’ by applying an instruction 7 € 4, then
id(v)—oid(v") is an instance of a conjunct C' in [7] and thus a MALL1 proof
of the sequent

C,T,A, P(Y;) F P(Z)

is readily obtained by several instances of I4+, —o L, and by V L. Then a
required MALL1 proof follows by —o R and several instances of 1L and & L.
If the machine idles, then v is the same as v' and the argument is similar by
using 1 instead of C.

Assume that the statement of the lemma holds for n. If the machine
passes from ID v to ID v/ in at most 27! steps, let w be an ID such that the
machine passes from v to w in at most 2" steps and from w to v’ also in at
most 2" steps. Then let © be a MALL1 proof of the sequent

[5]7F7P(Y3+1) _>P(Y])7Zd( ) _>P(Zk+1) F My, ( Jj+1s Zk-l-l)
and let 7' be a MALL1 proof of the sequent
[0], A, P(Yj41) —id(w), P(Z) = P(Zk41) & Mn(Yj41, Z11)

both of which exist by the induction hypothesis. Let p be the MALL1 proof
of

[0, T, A, P(Yjq1) — P(Yj),id(w) — P(Zgy1) = Mp(Yjg1, Zgy1)

obtained from 7 by several instances of 1L and & L. Use @ L to obtain the
MALL1 proof o of

[6], 1, A, (P(Yj41) = P(Y;)) @ (id(w) — P(Zk+41)) - Mn(Yjt1, Zgi1)
Let o' be the MALL1 proof of
[0]. T, A, (P(Yj1) = id(w)) @ (P(Zg) = P(Zk41)) b Mn(Yj1, Zgg1)
obtained similarly from #’. Then the required MALL1 proof of
[5]7 F, Atk Mn+1(Y37 Zk)

can be obtained from 0,0’ by & L, —o R, V R, V R, and 3 R. ]
The soundness of the encoding now follows:
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Theorem 4.2 For any natural number n, Turing machine M, and input ¢,
if M accepts t in at most 2" steps, then the sequent [M(t)], is provable in
MALLI.

Proof. Let M =(Q,S,7T,6,q0,% qr), vo = (€, qo, 2, t) be the initial 1D,
and let v' = (¢, qp,b,r) be the final ID in an accepting computation of M on
t. By Lemma 4.1, let 7 be a MALL1 proof of

8], P(X) — id(vy), id(v') — P(X') F Mp(X,X")

A MALLI proof of [M(t)], may then be constructed from = first by using two
instances of —o R, then —o L whose other premise is the identity end - end ,
and finally two instances of V L. [

5 Faithfulness of the Encoding

This section is concerned with the faithfulness of the encoding given in
Section 3. That is, given a Turing machine M, an input ¢ , a natural
number n, and a MALL1 proof of [M(t)],, then M accepts ¢ in at most 2"
steps.

First let us observe

Proposition 5.1 For any Turing Machine M = (Q. S, T, 4, qo,?, qr) , well-
formed Turing machine 1D v, instruction T € §, and universally quantified
conjunct C' in the formula [7] , if id(v)—oid(v') is an instance of C for some
term v' , then v' is a well-formed Turing machine 1D and M can make a
transition from ID v to ID v' in one step.

Proof. By cases on the instruction 7 and its translation [r] given in
Section 3. ]

Permutability properties discussed in Section 2 will now be used to show
that without loss of generality, a cut-free proof of [M(t)], consists only of
sub-proofs of sequents of the form [§],E F M (X,Y), where k < n and =
includes exactly two occurences of the predicate symbol id, one negative and
one of positive. Informally, one may read such a sequent as asserting that
the machine instructions § can be used to move from the negative occurrence
of id in = to the positive occurrence of id in Z in at most 2™ steps. This
informal reading is made formal below. The key point is that a cut-free
proof of such a sequent can be read as a description of a Turing machine
computation. Recall that A — B abbreviates 1&(A—oB).
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Lemma 5.2 Let M = (Q,S,7.0,q0,,qr) be a Turing machine and n a
natural number. For any well-formed Turing machine 1D v, for any natural
numbers 7,k and any natural numbers i < j and m < k, if a sequent

P(Y]> _>P(Y31-1>7

P(Y;) = id(v),

0L 8 st — P(2)

P(Zy11) —;P(Zk),

is provable in MALL1 for some term v', where X is a union of disjoint mul-
tisets of the form P(Yj)— P(Yj11),...,P(Yy)—id(u) for some natural
numbers i' < j' < i and some term u, where © is a union of disjoint mul-
tisets of the form id(u') — P(Zpy), ..., P(Zx11) — P(Zy) for some natural
numbers m' < k' < m and some term v', and where no atomic formula with
predicate symbol P occurs as a subformula in two distinct multisets in 3, O,
then v' is a well-formed Turing machine 1D, and M can make a transition
from ID v to ID v' in at most 2" steps.

Proof.  Let I' consist of P(Y;)— P(Yji1),...,P(Y;) —id(v) and let A
consist of id(v')— P(Zp),...,P(Zy11) — P(Zy). T,A will be called the
active assumptions, while ¥, ® will be called the passive assumptions. The
argument is by induction on n . If n = 0, then by Propositions 2.6 and 2.9
we may assume without loss of generality that the bottommost proof rules
in the given cut-free proof are, in reverse order, —o R and a string of &L'’s,
the latter analyzing [0], ', A, X, ©. After this analysis, the provable premise
must be of the form:

C.T',A" Y 0" P(Y;) F P(Z),

where C'is a conjunct in [¢] and where IV, A’/ ¥’ ©' consist of linear implica-
tions or of 1’s. If C'is [] for some instruction 7 € 4, then by Proposition 2.11
we may assume that the next higher rule is V L that analyzes C', hence that
its provable premise is

AT A Y O P(Y;) F P(Zy)

where A is a linear implication and an instance of C'. This sequent is mul-
tiplicative and hence by Proposition 2.2 it must be balanced. Because of
the conditions on 3,0 it follows that X', ©" must consist entirely of 1’s,
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that I'", A’ must consist entirely of linear implications, and that A is in fact
id(v)—oid(v"). In other words, the only way to achieve a balanced sequent
is to drop the passive assumptions and to instantiate C as id(v)—oid(v").
By Proposition 5.1 it is then readily seen that v’ is a well-formed machine
1D and that M can make a transition from v to v’ in one step. By similar
reasoning, if A is 1, then v’ must be the same as v and the machine idles.

In the induction step, assume that the statement of the lemma holds for
n and consider a cut-free MALL1 proof of

AT, A8, 0 F Moy (Y, Zg).

By Propositions 2.12, 2.8, 2.6, and 2.3 we may assume without loss of gen-
erality that the bottommost rules used are, in reverse order: 3 R, V R, V
R, o R, and & L. This last step yields two branches, each of which may
be assumed by Proposition 2.5 to have @ L as the bottommost rule. The
two branches are cut-free proofs of

[6]7 L, Av X, 67 P(Yj+1) - P(Y])7 Zd(w) - P(Zk-l-l) + Mn(Yj+17 Zk-l-l)
and
[6]7 Fv Av 27 67 P(Yj+1) - zd(w), P(Zk) _>P(Zk+1) H Mn(YjJrla Zk+1)'

This is the key point of this proof. One reads the given cut-free proof as a
description of Turing machine computation from 1D v to ID v’ by normalizing
the given cut-free proof by permutations, finding the two branches above,
and reading them as Turing machine computations from 1D v to ID w, and 1D
w to ID v'. The induction hypothesis applies to both branches. In the first
branch, the active assumptions are P(Yji1) — P(Y;),I',id(w) — P(Zy41)
and the passive assumptions are A, Y, 0. In the second branch, the ac-
tive assumptions are P(Yj41) — id(w), A, P(Zy) — P(Zy41) and the passive
assumptions are I', ¥, ©. Utilizing these two instances of the induction hy-
pothesis, we conclude that w and hence v’ are well-formed machine ID’s and
that M can make a transition from ID v to ID w in at most 2" steps and also
from ID w to ID v’ in at most 2" steps. Therefore M can make a transition
from 1D v to ID v’ in at most 2™ 4+ 2" = 271 steps. n

Thus in the full proof tree, one reads the complete Turing machine com-
putation across the top of the proof, with all the action happening at ap-
plications of —o L rule. The machinery utilized throughout the remainder
of the proof tree exists to create an exponential number of copies of the
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instruction set, and provide the glue to hold the computation together. The
application of this lemma to the initial 1D yields the faithfulness theorem:

Theorem 5.3 For any natural number n, Turing machine M, and input ¢,
if the sequent [M (t)],, is provable in MALL1, then M accepts t in at most 2"
steps.

Proof. Let vg = (€,qo,0,t) be the initial ID. By Proposition 2.11 we
may assume without loss of generality that the two bottommost rules in a
cut-free MALL1 proof of

[0]. VLYR (((P(X) —id(vo))—o ((id((L, qr.b, R)) = P(X"))—0 Mpn(X. X")))—0 end) b end

are the instances of V L. Therefore, we may consider a cut-free MALL1 proof
of

(6], (P(X) —id(vg))—o ((id({t, qr,>,1)) — P(X"))— M, (X, X")))—end) - end

for some terms ¢,r. It may be readily seen that the analysis of [¢] in this
cut-free proof may always be postponed above the instance of the —o L rule
that analyzes the formula

((P(X) —id(vg))—o ((id({(,qF, >, 1)) = P(X"))—o Myn(X, X'))) o end.

Because end, 0, T, — do not occur in [d], My, (X, X'), the left premise of this
instance of —o L may not contain end, and thus we may consider a cut-free
MALL1 proof of

[0] F (P(X) —id(vg))—o ((id({l, qF,b, 1)) — P(X"))— M, (X, X")).

By two applications of Proposition 2.6, we may consider a cut-free MALL1
proof of

[0], P(X) —id(vg),id({(, qr,b,r)) — P(X') F M,(X, X").

Lemma 5.2 now applies with ¥, © empty. Hence (¢, qp,b,7) is a well-formed
ID, in fact the final 1D, and M can reach it from vy in at most 2" steps. m
Theorems 4.2 and 5.3 yield:

Theorem 5.4 Provability in MALL] is NEXPTIME-hard.
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