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1 INTRODUCTION 2isolate two distinct forms of conjunction and disjunction, one form called\multiplicative", and the other \additive". Viewing the hypotheses as re-sources, a proof of a multiplicative conjunction as a conclusion forbids anysharing between the resources used to establish each conjunct, whereas theadditive conjunction requires the sharing of all of the resources. Full linearlogic also involves a kind of modality: a \storage" or \reuse" operator, !.Intuitively, the hypothesis !A provides unlimited reuse of the resource A.The usual function type A ) B can be recovered as !A��B , where�� is linear implication, which provides the type of functions that \use"their argument exactly once.Basic constructions on vector spaces provide a �rst, naive interpretationof linear logic connectives, much as the basic operations on sets providean interpretation of usual logical connectives. For instance, multiplicativeconjunction is interpreted as tensor product. More subtle points of linearlogic originate in so-called coherence spaces, which maintain a notion of �nitebasis and isomorphism with the double dual without imposing isomorphismwith the dual. Similar phenomena have been observed in certain naturalset-theoretic operations on in�nite games [6, 7] and in so-called-autonomous categories [5]. Event spaces, which come about from semanticsof concurrency, provide another semantic framework for linear logic [23]. Amathematical setting for dynamic aspects of cut elimination is provided byproof nets [10, 9] and in a deeper sense by Girard's geometry of interaction[11, 12, 8, 24, 1, 13, 14].Among the computer science rami�cations of linear logic, the methodsof this paper are closest to what may be broadly called logic programmingrami�cations, in which computation is expressed by cut-free proof searchin certain linear logic theories. Recent topics in this direction include atreatment of object-style inheritance and linear logic programming [3, 4, 2,15], a treatment of concurrent constraint programming [25], and a closelyrelated treatment of Milner's �-calculus [22].The remarkable expressiveness of cut-free linear logic proof search as acomputational paradigm is also indicated by the complexity and undecid-ability of provability in fragments of linear logic. These results are conse-quences of direct, lockstep simulations of computations on generic machinesby cut-free proof search in fragments of linear logic. Provability in full propo-sitional (i.e., quanti�er-free) linear logic is undecidable [18]. However, eventhe fragment of linear logic that does not allow modalities is strikingly ex-pressive: provability of multiplicative propositional formulas is np-complete[17]. In fact, the decision problem for constant-only formulas in multiplica-



1 INTRODUCTION 3tive propositional linear logic is also np-complete [20]. If the additives arealso allowed, provability for propositional formulas is pspace-complete [18],and in fact this fragment allows a structural embedding of a cut-free proofsystem for implicational propositional intuitionistic logic [19]. The decid-ability of second order propositional linear logic without modalities is anopen problem.In the remainder of the paper we shall restrict our attention to the non-modal, or multiplicative-additive linear logic with �rst order quanti�ers andfunction symbols, mall1. Because the depth of a cut-free proof tree isstill linear in the size of the conclusion, as in the case of the propositionalmultiplicative-additive fragment, it can be seen that without function sym-bols, mall1 is still pspace-complete. However, in the presence of functionsymbols the complexity is di�erent in spite of the same bound on the depth.It is shown that provability in mall1 is nexptime-hard (Theorem 5.4).The hardness result is achieved through a direct encoding of Turingmachine transitions, which are shared via the additives, and the existentialquanti�cation over intermediate Turing machine con�gurations. The lineardepth bound on cut-free mall1 proofs gives an immediate single exponentialupper bound on the number of Turing machine transitions that can be usedin the entire proof using this encoding. In contrast to previous work onlinear logic proof search as a computational paradigm (see above), in whicha computation proceeds \upwards" along a proof tree, here the computationsteps are applied \horizontally across" the leaves of a proof tree.It is likely that the membership of mall1 in nexptime, and hence itsnexptime-completeness, may be shown by a decision procedure based ondynamic skolemization. This technique, developed for theorem proving inintuitionistic logic [26], falls outside of the scope of this paper.The precise descriptions of mall1 and of the particular version of non-deterministic (single) exponential time Turing machines are given in Sec-tion 2. An encoding of nondeterministic exponential time Turing machinesby mall1 formulas is given in Section 3. This encoding is reminiscent ofthe standard proof of the pspace-hardness of quanti�ed boolean formulavalidity [28, 16]. The encoding is also related to the logic programmingsimulation of Turing machines given in [27]. In Section 4 it is shown thatwhenever a nondeterministic exponential time Turing machine accepts, thenthe mall1 formula encoding the machine is provable. The converse is shownin Section 5.We would like to thank Yuri Gurevich for suggesting that the logic pro-gramming simulation of Turing machines given in [27] may be a source of



2 PRELIMINARIES 4lower bounds for the complexity of mall1. This suggestion eventually led usto formulate the encoding given in Section 3. We would also like to thankJean-Marc Andreoli, Jawahar Chirimar, Jean Gallier, Jean-Yves Girard,Carl Gunter, Joshua Hodas, Jim Lipton, Dale Miller, John Mitchell, JonRiecke, Vijay Saraswat, Phil Scott, Natarajan Shankar, and Tim Winklerfor interesting and inspiring discussions.2 PreliminariesLet us begin by specifying the logical framework and the particular versionof nondeterministic Turing machines considered in this paper.2.1 Logical FrameworkGentzen-style sequent calculus is the formal logical framework throughoutthe paper. For our purposes it is convenient to consider sequents of the form� ` � where �;� are �nite multisets of formulas. Note that in standardpresentations of sequent calculi, sequents are often built from sets of formu-las, where we use multisets here. This di�erence is crucial. We assume aset of function symbols and predicate symbols, along with their associatedarities. Atomic formulas (other than constants 1;?;>; 0) are of the formP (t1; : : : ; tn) where t1; : : : ; tn are terms and P is a predicate symbol of arityn, as usual in �rst order predicate calculus. Note that there is no equalitysymbol. The inference rules for the mall1 sequent calculus are given inFigure 1.The following notational conventions are observed throughout this paper:H Positive atomic formula P (t1; : : : ; tn)H? Negated atomic formula P (t1; : : : ; tn)?A;B;C Arbitrary formulas�;�;�;�;� Arbitrary �nite multisets of formulasIn the 8R and 9L rules in Figure 1 it is assumed that X is not free in �;�.The English names for the rules given in Figure 1 are identities, tensor,linear implication, plus, with, bottom, one, zero, top, universal, existential,and cut, respectively. 
, ��, and ? are multiplicative connectives; 1 and ?are multiplicative propositional constants. � and & are additive connectives;0 and > are additive propositional constants. Observe the \additive" natureof the quanti�ers. For notational convenience, it is often assumed that ��and 
 associate to the right, and that 
 has higher precedence than ��.



2 PRELIMINARIES 5
I+ H ` H H? ` H? I-IL H;H? ` ` H;H? IR
L �; A;B ` ��; (A
B) ` � � ` A;� � ` B;��;� ` (A
B);�;� 
R��L � ` A;� �; B ` ��;�; (A��B) ` �;� �; A ` B;�� ` (A��B);� ��R�L �; A ` � �; B ` ��; (A�B) ` � � ` A;� � ` B;�� ` (A&B);� &R&L1 �; A ` ��; (A&B) ` � � ` A;�� ` (A�B);� �R1&L2 �; B ` ��; (A&B) ` � � ` B;�� ` (A�B);� �R2?L ? ` � ` �� ` ?;� ?R1L � ` ��; 1 ` � ` 1 1R0L �; 0 ` � � ` >;� >R8L �; A[t=X] ` ��;8X:A ` � � ` A;�� ` 8X:A;� 8R9L �; A ` ��;9X:A ` � � ` A[t=X];�� ` 9X:A;� 9R� ` A;� A;� ` ��;� ` �;� CutFigure 1: Rules for mall1



2 PRELIMINARIES 6An analysis is the process of applying a rule to a sequent matching theconclusion of the rule in order to generate the corresponding premises. Theprincipal formula of the rule is then said to be analyzed by the reduction. Amall1 proof is represented as a tree rooted at its conclusion sequent at thebottom and with the leaves at the top. Given this orientation, the notion ofa rule occurring above or below another rule should be clear.The reader will note that linear negation is a de�ned concept on compos-ite formulas, not a basic connective. One may de�ne negation by recursionon the structure of formulas: (H?)? is H, (A
B)? is A��B?, (A��B)? isA
B?, (A&B)? is A? �B?, (A�B)? is A?&B?, (8X:A)? is 9X:A?,(9X:A)? is 8X:A?, 1? is ?, ?? is 1, >? is 0, and 0? is >. If � consists ofA1; : : : ; An, then �? denotes A?1 ; : : : ; A?n .Although the identity rules (i.e., the �rst four rules in Figure 1) arerestricted to atomic formulas H, the analogous identity rules for arbitraryformula A instead of H are derivable. Negation rules are derivable as well,namely from �; A ` � one can infer � ` A?;�, and from � ` A;� one caninfer �; A? ` �. The reader will also observe that the linear logic connectivepar may be de�ned by letting A}B be A?��B and that the par rule [10] isderivable. In fact, our sequent calculus presentation is equivalent to the �rstorder sequent calculus in [10] without exponentials ! ; ? . More precisely, asequent � ` � is provable in mall1 (without cut) i� the sequent ` �?;�is provable (without cut, respectively) in the �rst order sequent calculusin [10], excluding exponentials. In particular, cut-elimination for mall1follows from the cut-elimination shown in [10], see also [18]. For the record:Theorem 2.1 If a sequent is provable in mall1, then it is provable inmall1 without using the Cut rule.We end this section by considering some technical properties of mall1,in particular so-called permutability properties, some of which have beendiscussed in several texts [2, 21].



2 PRELIMINARIES 7The sign of a formula is de�ned using the transformations below:[A��B]+ = [A]���[B]+[A
B]+ = [A]+ 
 [B]+[�; A]+ = [�]+; [A]+[A?]+ = ([A]�)?[A��B]� = [A]+��[B]�[A
B]� = [A]� 
 [B]�[�; A]� = [�]�; [A]�[A?]� = ([A]+)?The sign of an instance of a formula A in a sequent � ` � is given by thesuperscript on A in [�]� or [�]+. That is, if an instance of formula A endsup as [A]+, then it is positive. If an instance of formula A ends up as [A]�,then it is negative.A sequent is said to be balanced if it has the same number of positive andnegative occurrences of atoms other than constants. Otherwise, a sequent issaid to be unbalanced. A sequent is said to bemultiplicative if it contains onlyformulas built of atoms other than 0,>, of their negations, or of connectives
 or �� . It is linear logic folklore that all provable multiplicative sequentsare balanced, and therefore no unbalanced multiplicative sequents can beprovable. This property is readily shown by induction on cut-free proofs.Proposition 2.2 A multiplicative sequent is provable only if it is balanced.Note that this property fails for full mall1 and other fragments of linearlogic that include the additive connectives and constants.The following properties all follow by induction on the height of cut-freeproof. These are permutability properties, as they ensure that if a proofexists, then a proof of a certain permuted form exists. That is, one maypermute the order of application of inferences in a proof to achieve a kindof normal form. These properties are used to give control over the shape oflinear logic proofs, thus enabling a more direct computational reading.Proposition 2.3 If a sequent �; A� B ` � is provable in mall1, then soare �; A ` � and �; B ` �.Proposition 2.4 If a sequent � ` A&B;� is provable in mall1, then soare � ` A;� and � ` B;�.



2 PRELIMINARIES 8Proposition 2.5 If a sequent �; A
 B ` � is provable in mall1, then sois �; A;B ` �.Proposition 2.6 If a sequent � ` A��B;� is provable in mall1, then sois �; A ` B;�.Proposition 2.7 If a sequent �;9X:A ` � is provable in mall1, then sois �; A[t=X] ` � for any term t.Proposition 2.8 If a sequent � ` 8X:A;� is provable in mall1, then sois � ` A[t=X];� for any term t.Proposition 2.9 If a sequent �; A&B ` � is provable in mall1, where�;� contain only negative occurrences of & and positive occurrences of �,then �; A ` � or �; B ` � is provable in mall1.Proposition 2.10 If a sequent � ` A� B;� is provable in mall1, where�;� contain only negative occurrences of & and positive occurrences of �,then � ` A;� or � ` B;� is provable in mall1.Proposition 2.11 If a sequent �;8X:A ` � is provable in mall1, where�;� contain only positive occurrences of � and 9 and only negative oc-currences of & and 8, then for some term t, �; A[t=X] ` � is provable inmall1.Proposition 2.12 If a sequent � ` 9X:A;� is provable in mall1, where�;� contain only positive occurrences of � and 9 and only negative oc-currences of & and 8, then for some term t, � ` A[t=X];� is provable inmall1.2.2 nexptime Turing MachinesFor de�niteness, let us agree that \Turing machine" means the followingkind of nondeterministic machine. These machines have one tape and notransitions are applicable in the �nal state. More precisely, such a machineis given by the tuple hQ;S;T ; �; q0; [; qF i, where:� Q is a �nite set of states,� q0 2 Q is the (unique) initial state,� qF 2 Q is the (unique) �nal state,



2 PRELIMINARIES 9� T is a �nite set of allowable tape symbols, disjoint from Q,� S � T is a �nite set of input symbols,� [ 2 T nS is the blank symbol,� � is the next move relation, a relation from (Q n fqF g)� T toQ� T � fLeft; Rightg,For instance, if � contains move instructions q5; c 7! q6; d;Left andq5; c 7! q3; d; Right, then one may informally say that the Turing machineM in state q5, where the tape symbol c is currently under the read/writehead, can make one of the following one-step moves: either it erases c, writesd, moves one square to the left, and passes to state q6, or it erases c, writesd, moves one square to the right, and passes to state q3.A con�guration or instantaneous description of a Turing machine, orbriey id, is given by a quadruple h�1; q; c; �2i, where q 2 Q is the currentstate, and �1; �2 2 T � are the used part of the tape to the left and to theright of the Turing machine's read/write head, respectively, and c is thesymbol directly underneath the read/write head. Here and throughout thepaper \the used portion of the tape" means the smallest contiguous portionof the tape that includes all tape cells with a symbol other than [ and alltape cells visited by the read/write head.The machine is given input t 2 S� by writing [t on the otherwise emptytape, one symbol per tape cell, with the read/write head scanning the�rst symbol before the beginning of t, and the state is q0, forming the idh�; q0; [; ti. M is said to accept input t in exactly n steps, n � 1, if thereexists a sequence of con�gurations v0; : : : ; vn, each obtained from the previ-ous by a one-step move, where v0 is the initial con�guration just describedand vn = h�1; qF ; [; �2i. Note that the state of vi cannot be qF whenever0 � i < n. M is said to accept input t if there exists n � 1 such that Maccepts t in exactly n steps. Let L(M), the language accepted by M , consistof all t 2 S� accepted by M .A Turing machineM is said to be exponential time if there exists a poly-nomial p(n) with nonnegative integer coe�cients such thatM 2 ntime(2p(n)),that is, for each t 2 L(M), M accepts t in at most 2p(n) steps, where n isthe length of t. Let nexptime be the class of languages of the form L(M)for some exponential time Turing machine M [28].



3 ENCODING NEXPTIME IN MALL1 103 Encoding nexptime in mall1In this section we give an e�cient encoding of any nondeterministic Turingmachine and any input by a mall1 sequent, which also depends on a naturalnumber n. In Sections 4 and 5 it will be shown that the mall1 sequent isprovable if and only if the Turing machine accepts the input in at most 2nsteps.We translate Turing machine instructions as follows, similarly to thelogic programming simulation given in [27]. A left move Turing machineinstruction is translated as:[qi; a 7! qj; d;Left] = & c2T 8L8Rid(h[cjL]; qi; a; Ri)�� id(hL; qj ; c; [djR]i)& 8R id(h�; qi; a; Ri)�� id(h�; qj ; [; [djR]i);where the �rst conjunct describes the behavior at the center and at the rightend of the used portion of the tape, while the second conjunct describes thebehavior at the left end of the used portion of the tape and the behavior ifthe tape has not been used yet.A right move Turing machine instruction is translated as:[qi; a 7! qj; d; Right] = & c2T 8L8Rid(hL; qi; a; [cjR]i)�� id(h[djL]; qj ; c; Ri)& 8L id(hL; qi; a; �i)�� id(h[djL]; qj ; [; �i);where the �rst conjunct describes the behavior at the center and at the leftend of the used portion of the tape, while the second conjunct describes thebehavior at the right end of the used portion of the tape and the behaviorif the tape has not been used yet.Given a Turing machine program with m instructions � = �1; �2; � � � ; �m,we construct the following formula:[�] = 1& [�1] & [�2] & � � � & [�m]:In order to encode an exponential number of steps of execution we usea modi�cation of the standard proof of the pspace-hardness of quanti�edboolean formula validity [16]. We develop an encoding function M , whereMk(V; V 0) is meant to denote that from id V , one can reach id V 0 in at most2k steps. A �rst attempt would be to use the encoding:Mk(V; V 0) = 9W:Mk�1(V;W ) and Mk�1(W;V 0):



3 ENCODING NEXPTIME IN MALL1 11However, since Mk�1 appears twice in the encoding of Mk, this encodingis itself exponential. Instead, let us use the following polynomial encoding,which achieves the same aim. Here and throughout P is a �xed unarypredicate symbol distinct from id and A!B abbreviates 1&(A��B).M0(V; V 0) = P (V )��P (V 0);Mk(V; V 0) = 9W:8Y:8Z:266640BBB@ (P (Y )!P (V ))
 (id(W )!P (Z))�(P (Y )! id(W ))
 (P (V 0)!P (Z)) 1CCCA��Mk�1(Y;Z)37775 :In this encoding, Mk�1 only appears once in the encoding of Mk, thus en-abling the encoding of an exponential number of steps of computation in apolynomially-sized formula.Finally, we de�ne the mall1 encoding of a Turing machine acceptingan input in at most 2n steps as follows. Let end be a fresh propositionalsymbol. Given a number n, a Turing machine M = hQ;S;T ; �; q0; [; qF i ,and an input t , let v0 = h�; q0; [; ti and de�ne the encoding [M(t)]n as themall1 sequent:[�];8L8R (((P (X)! id(v0))�� ((id(hL; qF ; [; Ri)!P (X 0))��Mn(X;X 0)))�� end) ` end:Let k be the length of t. Observe that the sequent [M(t)]n , fully writtenout, has length polynomial in n; k.Discussion: Although the complexity class nexptime is de�ned to bethe union of ntime(2p(n)) taken over all polynomials p and the above en-coding seemingly captures only ntime(2n), it will nevertheless follow thatmall1 is nexptime-hard once the soundness and faithfulness of the encod-ing has been established. Indeed, a polynomial p(n) may be �xed for ourtranslation by choosing a particular nexptime-complete problem whose de-cision algorithm M0 is in ntime(2p(n)). Hence it su�ces to consider theencoding [M0(t)]p(n) on inputs t of size n.3.1 Encoding logic programs in mall1It follows from [27] that nondeterministic Turing machines can be simulatedby logic programs with at most one formula in the body of each programclause, i.e., logic programs in which each program clause has one of the



4 SOUNDNESS OF THE ENCODING 12following two forms, where A;A0 are atomic formulas:A  A0A  so that the depth complexity of the logic program is the same as time com-plexity of the nondeterministic Turing machine. Such logic programs can beencoded in mall1 by a straightforward modi�cation of the above encodingof nondeterministic Turing machines, namely:[Ai(~f( ~X)) Aj(~h( ~X))] = 8 ~X id(hgi; ~f( ~X)i)�� id(hgj ;~h( ~X)i);[Ai(~f( ~X)) ] = 8 ~X id(hqi; ~f( ~X)i)�� id(hgE ; �i);where constant gE is distinct from the constants gi; gj , ~f = f1; : : : fk ,~g = g1; : : : gk , ~X = X1; : : : Xk , with k large enough, since a logic programconsists of �nitely many clauses. It is easy to see that the soundness andfaithfulness of this encoding may be shown by a straightforward adaptationof the arguments given in Sections 4 and 5.4 Soundness of the EncodingIn this section it is shown that the encoding given in Section 3 is sound,i.e., if a Turing machine M accepts an input t in at most 2n steps, then thesequent [M(t)]n is provable in mall1. The main technical point is given byLemma 4.1 If a Turing machine with program � can pass from a id v to aid v0 in at most 2n steps, then for any natural numbers j; k and any naturalnumbers i � j and m � k, the sequent[�]; P (Yj)!P (Yj�1);� � � ;P (Yi)! id(v);id(v0)!P (Zm);� � � ;P (Zk�1)!P (Zk) `Mn(Yj ; Zk)is provable in mall1.



4 SOUNDNESS OF THE ENCODING 13Proof. Let � consist of P (Yj)!P (Yj�1); : : : ; P (Yi)! id(v) and let� consist of id(v0)!P (Zm); : : : ; P (Zk�1)!P (Zk). The argument is byinduction on n. If n = 0, then M0(Yj ; Zk) = P (Yj)��P (Zk). There aretwo cases: either the Turing machine idles or it makes one step. If themachine makes one step from v to v0 by applying an instruction � 2 �, thenid(v)��id(v0) is an instance of a conjunct C in [� ] and thus a mall1 proofof the sequent C;�;�; P (Yj) ` P (Zk)is readily obtained by several instances of I+, �� L, and by 8 L. Then arequired mall1 proof follows by �� R and several instances of 1L and & L.If the machine idles, then v is the same as v0 and the argument is similar byusing 1 instead of C.Assume that the statement of the lemma holds for n. If the machinepasses from id v to id v0 in at most 2n+1 steps, let w be an id such that themachine passes from v to w in at most 2n steps and from w to v0 also in atmost 2n steps. Then let � be a mall1 proof of the sequent[�];�; P (Yj+1)!P (Yj); id(w)!P (Zk+1) `Mn(Yj+1; Zk+1)and let �0 be a mall1 proof of the sequent[�];�; P (Yj+1)! id(w); P (Zk)!P (Zk+1) `Mn(Yj+1; Zk+1)both of which exist by the induction hypothesis. Let � be the mall1 proofof [�];�;�; P (Yj+1)!P (Yj); id(w)!P (Zk+1) `Mn(Yj+1; Zk+1)obtained from � by several instances of 1L and & L. Use 
 L to obtain themall1 proof � of[�];�;�; (P (Yj+1)!P (Yj))
 (id(w)!P (Zk+1)) `Mn(Yj+1; Zk+1)Let �0 be the mall1 proof of[�];�;�; (P (Yj+1)! id(w)) 
 (P (Zk)!P (Zk+1)) `Mn(Yj+1; Zk+1)obtained similarly from �0. Then the required mall1 proof of[�];�;� `Mn+1(Yj; Zk)can be obtained from �; �0 by � L, �� R, 8 R, 8 R, and 9 R.The soundness of the encoding now follows:



5 FAITHFULNESS OF THE ENCODING 14Theorem 4.2 For any natural number n, Turing machine M , and input t,if M accepts t in at most 2n steps, then the sequent [M(t)]n is provable inmall1.Proof. Let M = hQ;S;T ; �; q0; [; qF i , v0 = h�; q0; [; ti be the initial id,and let v0 = h`; qF ; [; ri be the �nal id in an accepting computation of M ont. By Lemma 4.1, let � be a mall1 proof of[�]; P (X)! id(v0); id(v0)!P (X 0) ` Mn(X;X 0)A mall1 proof of [M(t)]n may then be constructed from � �rst by using twoinstances of �� R, then �� L whose other premise is the identity end ` end ,and �nally two instances of 8 L.5 Faithfulness of the EncodingThis section is concerned with the faithfulness of the encoding given inSection 3. That is, given a Turing machine M , an input t , a naturalnumber n, and a mall1 proof of [M(t)]n, then M accepts t in at most 2nsteps.First let us observeProposition 5.1 For any Turing Machine M = hQ;S;T ; �; q0; [; qF i , well-formed Turing machine id v, instruction � 2 �, and universally quanti�edconjunct C in the formula [� ] , if id(v)��id(v0) is an instance of C for someterm v0 , then v0 is a well-formed Turing machine id and M can make atransition from id v to id v0 in one step.Proof. By cases on the instruction � and its translation [� ] given inSection 3.Permutability properties discussed in Section 2 will now be used to showthat without loss of generality, a cut-free proof of [M(t)]n consists only ofsub-proofs of sequents of the form [�];� ` Mk(X;Y ), where k < n and �includes exactly two occurences of the predicate symbol id, one negative andone of positive. Informally, one may read such a sequent as asserting thatthe machine instructions � can be used to move from the negative occurrenceof id in � to the positive occurrence of id in � in at most 2n steps. Thisinformal reading is made formal below. The key point is that a cut-freeproof of such a sequent can be read as a description of a Turing machinecomputation. Recall that A!B abbreviates 1&(A��B).



5 FAITHFULNESS OF THE ENCODING 15Lemma 5.2 Let M = hQ;S;T ; �; q0; [; qF i be a Turing machine and n anatural number. For any well-formed Turing machine id v, for any naturalnumbers j; k and any natural numbers i � j and m � k, if a sequent[�];�;�; P (Yj)!P (Yj�1);� � � ;P (Yi)! id(v);id(v0)!P (Zm);� � � ;P (Zk�1)!P (Zk); `Mn(Yj ; Zk)is provable in mall1 for some term v0, where � is a union of disjoint mul-tisets of the form P (Yj0)!P (Yj0�1); : : : ; P (Yi0)! id(u) for some naturalnumbers i0 � j0 < i and some term u, where � is a union of disjoint mul-tisets of the form id(u0)!P (Zm0); : : : ; P (Zk0�1)!P (Zk0) for some naturalnumbers m0 � k0 < m and some term u0, and where no atomic formula withpredicate symbol P occurs as a subformula in two distinct multisets in �;�,then v0 is a well-formed Turing machine id, and M can make a transitionfrom id v to id v0 in at most 2n steps.Proof. Let � consist of P (Yj)!P (Yj�1); : : : ; P (Yi)! id(v) and let �consist of id(v0)!P (Zm); : : : ; P (Zk�1)!P (Zk). �;� will be called theactive assumptions, while �;� will be called the passive assumptions. Theargument is by induction on n . If n = 0, then by Propositions 2.6 and 2.9we may assume without loss of generality that the bottommost proof rulesin the given cut-free proof are, in reverse order, �� R and a string of &L's,the latter analyzing [�];�;�;�;�. After this analysis, the provable premisemust be of the form: C;�0;�0;�0;�0; P (Yj) ` P (Zk);where C is a conjunct in [�] and where �0;�0;�0;�0 consist of linear implica-tions or of 1's. If C is [� ] for some instruction � 2 �, then by Proposition 2.11we may assume that the next higher rule is 8 L that analyzes C, hence thatits provable premise isA;�0;�0;�0;�0; P (Yj) ` P (Zk)where A is a linear implication and an instance of C. This sequent is mul-tiplicative and hence by Proposition 2.2 it must be balanced. Because ofthe conditions on �;� it follows that �0;�0 must consist entirely of 1's,



5 FAITHFULNESS OF THE ENCODING 16that �0;�0 must consist entirely of linear implications, and that A is in factid(v)��id(v0). In other words, the only way to achieve a balanced sequentis to drop the passive assumptions and to instantiate C as id(v)��id(v0).By Proposition 5.1 it is then readily seen that v0 is a well-formed machineid and that M can make a transition from v to v0 in one step. By similarreasoning, if A is 1 , then v0 must be the same as v and the machine idles.In the induction step, assume that the statement of the lemma holds forn and consider a cut-free mall1 proof ofA;�;�;�;� `Mn+1(Yj; Zk):By Propositions 2.12, 2.8, 2.6, and 2.3 we may assume without loss of gen-erality that the bottommost rules used are, in reverse order: 9 R, 8 R, 8R, �� R, and � L. This last step yields two branches, each of which maybe assumed by Proposition 2.5 to have 
 L as the bottommost rule. Thetwo branches are cut-free proofs of[�];�;�;�;�; P (Yj+1)!P (Yj); id(w)!P (Zk+1) `Mn(Yj+1; Zk+1)and[�];�;�;�;�; P (Yj+1)! id(w); P (Zk)!P (Zk+1) `Mn(Yj+1; Zk+1):This is the key point of this proof. One reads the given cut-free proof as adescription of Turing machine computation from id v to id v0 by normalizingthe given cut-free proof by permutations, �nding the two branches above,and reading them as Turing machine computations from id v to id w, and idw to id v0. The induction hypothesis applies to both branches. In the �rstbranch, the active assumptions are P (Yj+1)!P (Yj);�; id(w)!P (Zk+1)and the passive assumptions are �;�;�. In the second branch, the ac-tive assumptions are P (Yj+1)! id(w);�; P (Zk)!P (Zk+1) and the passiveassumptions are �;�;�. Utilizing these two instances of the induction hy-pothesis, we conclude that w and hence v0 are well-formed machine id's andthat M can make a transition from id v to id w in at most 2n steps and alsofrom id w to id v0 in at most 2n steps. Therefore M can make a transitionfrom id v to id v0 in at most 2n + 2n = 2n+1 steps.Thus in the full proof tree, one reads the complete Turing machine com-putation across the top of the proof, with all the action happening at ap-plications of �� L rule. The machinery utilized throughout the remainderof the proof tree exists to create an exponential number of copies of the



5 FAITHFULNESS OF THE ENCODING 17instruction set, and provide the glue to hold the computation together. Theapplication of this lemma to the initial id yields the faithfulness theorem:Theorem 5.3 For any natural number n, Turing machine M , and input t,if the sequent [M(t)]n is provable in mall1, then M accepts t in at most 2nsteps.Proof. Let v0 = h�; q0; [; ti be the initial id. By Proposition 2.11 wemay assume without loss of generality that the two bottommost rules in acut-free mall1 proof of[�];8L8R (((P (X)! id(v0))�� ((id(hL; qF ; [; Ri)!P (X 0))��Mn(X;X 0)))�� end) ` endare the instances of 8 L. Therefore, we may consider a cut-free mall1 proofof[�]; (((P (X)! id(v0))�� ((id(h`; qF ; [; ri)!P (X 0))��Mn(X;X 0)))�� end) ` endfor some terms `; r. It may be readily seen that the analysis of [�] in thiscut-free proof may always be postponed above the instance of the �� L rulethat analyzes the formula((P (X)! id(v0))�� ((id(h`; qF ; [; ri)!P (X 0))��Mn(X;X 0)))�� end:Because end; 0;>;? do not occur in [�];Mn(X;X 0), the left premise of thisinstance of �� L may not contain end, and thus we may consider a cut-freemall1 proof of[�] ` (P (X)! id(v0))�� ((id(h`; qF ; [; ri)!P (X 0))��Mn(X;X 0)):By two applications of Proposition 2.6, we may consider a cut-free mall1proof of [�]; P (X)! id(v0); id(h`; qF ; [; ri)!P (X 0) `Mn(X;X 0):Lemma 5.2 now applies with �;� empty. Hence h`; qF ; [; ri is a well-formedid, in fact the �nal id, and M can reach it from v0 in at most 2n steps.Theorems 4.2 and 5.3 yield:Theorem 5.4 Provability in mall1 is nexptime-hard.
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