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A great deal of insight about a logic can be derived from the study
of the difficulty of deciding if a given formula is provable in that
logic. Most first order logics are undecidable and are linear time
decidable with no quantifiers and no propositional symbols. How-
ever, logics differ greatly in the complexity of deciding propositional
formulas. For example, first-order classical logic is undecidable,
propositional classical logic is NP-complete, and constant-only clas-
sical logic is decidable in linear time. Intuitionistic logic shares the
same complexity characterization as classical logic except at the
propositional level, where intuitionistic logic is PSPACE-complete.
In this survey we review the available results characterizing vari-
ous fragments of linear logic. Surprises include the fact that both
propositional and constant-only linear logic are undecidable. The
results of these studies can be used to guide further proof-theoretic
exploration, the study of semantics, and the construction of theo-
rem provers and logic programming languages.

1 Introduction

There are many interesting fragments of linear logic worthy of study in their
own right, most described by the connectives which they employ. Full linear
logic includes all the logical connectives, which come in three dual pairs: the
exponentials ! and 7, the additives & and &, and the multiplicatives ® and % .
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For the most part we will consider fragments of linear logic built up using these
connectives in any combination. For example, full linear logic formulas may
employ any connective, while multiplicative linear logic (MLL) formulas con-
tain only the multiplicative connectives ® and % ,and multiplicative-additive
linear logic (MALL) formulas contain only the multiplicative and additive con-
nectives ®, B, &, and @. In some cases it is easier to read a formula such as
A% B using A*—oB (which may be read right-to-left as the definition of the
connective —o). Using the connective —o one can define other more specific
fragments such as the Horn fragment of MLL [25], but these results will be
largely omitted here.

In order to gain an intuition about provability, we will usually be speaking
informally of a computational process searching for a proof of a formula from
the bottom up in a sequent-calculus. Thus given a conclusion sequent, we
attempt to find its proof by trying each possible instance of each sequent proof
rule. This point of view directly corresponds to the computational model of
logic programming. Reading the sequent rules bottom-up can then lead to
insights about the meanings of those rules. For example, the contraction rule
can be seen as copying the principle formula, and the weakening rule can be
seen as throwing it away. Not all complexity results directly flow from this
viewpoint, but it is a useful starting point.

Linear logic has a great control over resources, through the elimination of
weakening and contraction, and the explicit addition of a reusable (modal)
operator. As will be surveyed below, the combination of these features yields
a great deal of expressive power.

2 Propositional Linear Logic

The propositional fragment is considered first, since these results are central
to the results for first order and constant-only logics.

2.1 Full Propositional Linear Logic

Although propositional linear logic was known to be very expressive, it was
thought to be decidable for some time before a proof of undecidability sur-
faced [32, 31]. Briefly, the proof of undecidability goes by encoding an unde-
cidable halting problem. A proof, read bottom up, directly corresponds to a
computation. The proof of the undecidability of full linear logic proceeds by
reduction of a form of alternating counter machine to propositional linear logic.
An and-branching two-counter machine (ACM) is a nondeterministic machine
with a finite set of states. A configuration is a triple (Q;, A, B), where Q; is
a state, and A and B are natural numbers, the values of two counters. An
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ACM has a finite set of instructions of five kinds: Increment-A, Increment-
B, Decrement-A, Decrement-B, and Fork. The Increment and Decre-
ment instructions operate as they do in standard counter machines [39]. The
Fork instruction causes a machine to split into two independent machines:
from state (Q;, A, B) a machine taking the transition @Q;Fork@);, Q) results
in two machines, (Q;, A4, B) and (Q, A, B). Thus an instantaneous descrip-
tion is a set of machine configurations, which is accepting only if all machine
configurations are in the final state, and all counters are zero. ACM'’s are
essentially alternating Petri nets, and have an undecidable halting problem.
It is convenient to use ACM’s as opposed to standard counter machines to
show undecidability, since zero-test has no natural counterpart in linear logic,
but there is a natural counterpart of Fork: the additive conjunction &. The
remaining ACM instructions may be encoded using techniques very similar to
the well-studied Petri net reachability encodings [8, 18, 38, 9, 16]. The full
proof of undecidability is presented in [32].

2.2 Propositional Multiplicative- Additive Linear Logic

The multiplicative-additive fragment of linear logic (MALL) excludes the reusable
modals !, ?. Thus, every formula is “used” at most once in any branch of any
cut-free MALL proof. Also, in every non-cut MALL rule, each hypothesis
sequent has a smaller number of symbols than the conclusion sequent. This
provides an immediate linear bound on the depth of cut-free MALL proofs.
Since MALL enjoys a cut-elimination property [17], there is a nondeterministic
PSPACE algorithm to decide MALL sequents based on simply guessing and
checking the proof, recoding only the branch of the sequent proof from the
root to the current point.

To show that MALL is PSPACE-Hard, one can encode classical quantified
boolean formulas (QBF). For simplicity one may assume that a QBF is pre-
sented in prenex form. The quantifier-free formula may be encoded using truth
tables, but the quantifiers present some difficulty. One may encode quantifiers
using the additives: Vz as (z&z'), and 3z as (z @ z*). This encoding has
incorrect behavior in that it does not respect quantifier order, but using mul-
tiplicative connectives as “locks and keys” one can enforce an ordering upon
the encoding of quantifiers to achieve soundness and completeness. The full
proof of PSPACE-completeness is presented in [32].

2.3 Propositional Multiplicative Linear Logic

The multiplicative fragment of linear logic contains only the connectives ®
and % (or equivalently ® and —o), a set of propositions, and the constants 1
and —. The decision problem for this fragment is in NP, since an entire cut-
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free multiplicative proof may be guessed and checked in polynomial time (note
that every connective is analyzed exactly once in any cut-free MLL proof). The
decision problem is NP-hard by reduction from 3-Partition, a problem which
requires a perfect partitioning of groups of objects in much the same way that
linear logic requires a complete accounting of propositions [23, 24, 25]. The
proof of correctness of the encoding makes heavy use of the ‘balanced’ property
of MLL, which states that if a formula is provable in MLL, then the number
of positive and negative occurrences of each literal are equal. This property
can be used as a necessary condition to provability in MLL theorem provers
or logic programming systems.

3 Constant-Only Linear Logic

3.1 Constant-Only Multiplicative Linear Logic

Some time ago, Girard developed a necessary condition for the provability
of COMLL expressions based on the following definition a function M from
constant multiplicative linear expressions to the integers:

M(1) =1

M(-) =0
M(A® B) = M(A)+ M(B)
M(A® B) = M(A)+ M(B) -1

Girard showed that if a constant-only MLL formula A is provable then M(A) =
1. There was a question about whether some similar measure might be used on
constant-only MLL formulas that would be necessary and sufficient for prov-
ability. It turns out that there is no efficiently computable measure function on
this class of formulas, as shown by an encoding of 3-Partition in constant-only
MLL [36]. This work points out that the multiplicative constants 1 and —
have very ‘propositional’ behavior. The bottom line is that even for constant-
only expressions of MLL deciding provability is NP-complete. This result has
had an impact on the study of proof nets. Later results have generalized this
result by providing general translations from arbitrary balanced MLL propo-
sitional formulas to constant-only MLL formulas [22, 26]. Together with the
NP-completeness of propositional MLL, these translations provide an alternate
proof of the NP-completeness of constant-only MLL.

3.2 Constant-Only Full Linear Logic

Amazingly, constant-only full linear logic is just as difficult to decide as propo-
sitional full linear logic [26]. Extending the work mentioned above, it is possi-
ble to translate any full propositional LL formula into a constant-only formula
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preserving provability using enumerations of constant-only formulas. Since
propositional linear logic is undecidable, so then is constant-only propositional
linear logic. This is remarkable, since the building blocks of expressions are
so elementary. In fact, the encodings can be tuned to produce very restricted
formulas containing multiple copies of only one constant (either 1 or —).

3.3 Constant-Only Multiplicative- Additive Linear Logic

The encodings mentioned above can be seen to produce only polynomial growth
in the size of formulas. Thus directly translating a class of PSPACE-hard propo-
sitional MALL formulas into constant-only MALL immediately produces the
result that constant-only MALL is PSPACE-complete [26].

4 First Order Linear Logic

4.1 Full First Order Linear Logic

Girard’s translation of first-order classical logic into first order linear logic [17]
demonstrates that first order linear logic is undecidable. One could imagine
coding up a Turing machine where the instructions are exponential formulas
containing implications from one state to another, and the current state of
the machine are represented using first order term structure. The conclusion
sequent would contain these instructions, an initial state, and a final state.
The exponential nature of instructions allows them to be copied and reused
arbitrarily often. The quantifier rules allow the instructions to be instantiated
to the current state. Thus a Turing machine computation could be read from
any cut-free proof of this conclusion sequent bottom up, the intermediate states
appearing directly in the sequents all along the way.

4.2 First Order Multiplicative-Additive Linear Logic

Without the exponentials, first order MALL is decidable [35]. Intuitively, this
stems from the lack of the ability to copy the instructions for reuse. How-
ever, there is no readily apparent decision procedure for this fragment since
the quantifier rules allow sequents of arbitrary size to appear even in cut-free
proofs. The technique showing decidability sketched here [35] provides a tight
complexity bound for first order MALL and MLL.

4.2.1 Deciding first order MALL

The key problem to deciding first order MALL is the lack of control over
the existential rule. Reading the rule bottom up we have no idea how to
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guess or bound the size of the instantiating term. However, this is a false
unboundedness. In classical logic, one can apply Skolemization to remove
quantifiers altogether, with changes to the proof rule for identity to require
unification. If we could obtain a similar result for linear logic, we could then
obtain an immediate bound on the size of instantiations of terms, and thus a
bound on the size of the entire sequent proof. Unfortunately, Skolemization is
unsound in linear logic, as the following example demonstrates:

F (Bz.p Rqt(2)), (Vy.q(y) @p

This formula is unprovable in first order linear logic, but when Skolemized it
becomes - pt® ¢+ (v), ¢(c) ® p which unfortunately is provable in linear logic
augmented with unification (v « ¢).

One can view Skolemization in classical logic as the combination of three
techniques: converting the formula to prenex form, permuting the use of quan-
tifier rules below propositional inferences, and changing the quantifier rules to
instantiate quantifiers with specific (bounded) terms. Decidability depends
only on the last, which is fortunate since neither of the other techniques apply
to linear logic in their full generality. In [35, 13] proof systems are developed
where the quantifier rules are converted into a form without unbounded guess-
ing. The resulting system generates cut-free proofs of at most exponential size
for first-order MALL formulas. It is possible to immediately generate a stan-
dard first-order linear logic proof from a proof in this modified system. Thus
this fragment can be decided in NEXPTIME by guessing and checking the entire
proof in the modified system.

4.2.2 Hardness of first-order MALL

As shown above, first-order MALL is decidable, and at most NEXPTIME-hard.
By the propositional result sketched above, it was known to be at least PSPACE-
hard. The gap was closed by developing a direct encoding of nondeterministic
exponential time Turing machines [33]. This encoding is reminiscent of the
standard proof of the PSPACE-hardness of quantified boolean formula valid-
ity [43, 21|, and is related to the logic programming simulation of Turing
machines given in [42]. This encoding in first order MALL formulas is some-
what unique in that the computation is read ‘across the top’ of a completed
cut-free proof, rather than ‘bottom up’, which is utilized in most of the above-
described results. The result is that Turing machine instructions are not copied
as one moves up the proof tree, but instead are shared (additively) between
branches. This gives an immediate exponential time limit to the machine,
since the propositional structure of first-order MALL gives rise to at most a
single exponential number of leaves of the proof tree.
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4.3 First Order Multiplicative Linear Logic

The same proof system used to show the decidability of first order MALL [35]
can be used to show that first order MLL is decidable. In fact, this procedure
generates first order MLL proofs that are at most polynomial size. Thus one
can guess and check an entire first order MLL proof in polynomial time. In
other words, first order MLL is in NP. The propositional hardness result for the
purely propositional case can be used to show that first order MLL is Np-hard,
and thus NP-complete.

5 Other Fragments

There are many related problems of interest. A few representative ‘nice’ frag-
ments and some other interesting cases are sketched here.

5.1 Multiplicative-Exponential Linear Logic

The multiplicative-exponential (MELL) fragment is currently of unknown com-
plexity. By Petri net reachability encodings [8, 18, 38, 9, 16|, it must be at
least EXPSPACE-hard. Although Petri net reachability is decidable, there is
no known encoding of MELL formulas in Petri nets. A proof of decidability
of MELL may therefore lead to a new proof of the decidability of Petri net
reachability, and therefore be of independent interest. More effort has been
fruitlessly expended on the decidability of MELL than any other remaining
open problems in this area.

5.2 Higher-Order Linear Logic

Amiot has shown that MLL (and MALL) with first and second order quantifiers
and appropriate function symbols is undecidable [1, 2].

In recent work, pure second order intuitionistic MLL (IMLL2) has been
shown to be undecidable, through the encoding of second order intuitionistic
logic [34]. The key point is that it is possible to encode contraction and
weakening using second order formulas.

C 2 VX.Xo(X®X)

W 2 VX.X ol
(X Fre A]éca C,C, W, X FIMLL2 [A]

C encodes contraction and W encodes weakening. A second-order intuitionistic
logic (LJ2) sequent can be translated directly into IMLL2, and by adding
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enough copies of C' and W one can preserve provability. By the undecidability
of LJ2 shown in [37, 15|, IMLL2 is undecidable. This result can be extended
to show the undecidability of pure second order IMALL, but has not yet been
extended to pure second order MLL. The decision problem for second order
MLL where quantifiers cannot be instantiated with quantified formulas is also
still open. This latter fragment could correspond to the logic of a polymorphic
type system for a programming language.

5.3 Intuitionistic Fragments

For all of the main fragments considered above, the complexity of the decision
problem is unchanged when moving from the full two sided sequent calculus to
the Intuitionistic version, where the right-hand side is restricted to a single for-
mula (and % is replaced by —o in the multiplicatives, and negated propositions
are disallowed). However, for the case of second order MLL and second order
MALL no result is known, although IMLL2 and IMALL2 are known to be
undecidable. In some of the more restricted cases the intuitionistic restriction
does effect expressiveness [23]

5.4 Others

The !, ® propositional fragment, allowing arbitrary two sided sequents of propo-
sitional formulas using only ! and ®, has been shown to be decidable and non-
trivial (NP-hard) [14]. This fragment is of interest as it relates to full MELL.

The Horn fragment of MLL is NP-complete, and that the purely implicative
fragment built from only —o and the single constant — is NP-complete [26].

Many fragments of linear logic with a single propositional literal (and no
constants) match the complexity of the corresponding constant-only fragments,
which in turn match the complexity of the propositional fragments with arbi-
trary numbers of propositional symbols. This has been shown for full linear
logic, MALL, MLL, and MELL [26]. For example, full propositional linear
logic is undecidable. Therefore, constant-only linear logic is undecidable, as
is single-literal propositional linear logic. Of particular interest are the results
about MELL, where these results show that the reachability problem for arbi-
trary Petri nets can be encoded in single-literal MELL. In fact, further, Petri
net reachability can be encoded in the fragment containing only !, —o, and a
single propositional symbol. It is remarkable that the decidability of this very
small fragment is still open.

Independently, Danos and Winkler have both shown that the constant-only
additive-exponential linear logic evaluates in linear time. Even if multiplicative
constants are allowed this same result holds. In this fragment there are only
eight ‘values> —, 1, 71, !'— T, 0, — @ 1, and —&1. It happens that all
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expressions involving only the multiplicative and additive constants, and the
additive and exponential connectives is equivalent, up to provability, of one
of these eight formulas. For example, !'T = 1,171 =1, (- ® 1) = 1, and
(@) = .

A variant of MELL without unrestricted exchange (commutativity), but
with the additional property that exponentials can commute (and thus expo-
nentials enjoy all the structural rules, while other formulas exhibit none) has
been studied [47, 32]. It has been found to be undecidable by encoding Turing
machine tapes directly in the sequent [32]. Since the sequent comma is not
commutative, the entire state of the tape including the current state of the
machine and position of the read head is immediately apparent from a sequent
encoding. Instructions are encoded as exponential formulas that are copied
and then commute to their location of application, where they are applied to
change the state of the tape. However, noncommutative variants of linear logic
have some problematic aspects, and there are some seemingly arbitrary choices
to be made, so these fragments are somewhat speculative.

Variants of linear logic with unrestricted weakening (sometimes called Affine
Logic) have also been studied [32, 7]. Here again the logics are somewhat spec-
ulative, although there is a close relationship with direct logic [27, 11]. Some
fragments of linear logic with weakening have the same complexity as the
same fragment without weakening. For example, just as for linear logic, full
first-order affine logic is undecidable, as can be seen by the fact that Girard’s
encoding of classical logic into linear logic [17] is also sound and complete as a
translation into affine logic. Some fragments of affine logic are easier to decide
than their linear counterpart. For example, propositional affine logic is decid-
able [28], where propositional linear logic is not [32]. Finally, some fragments
of affine logic are harder to decide than their linear counterpart. For example,
the extended Horn fragment +HL is (PSPACE-complete) in affine logic, but
(NP-complete) in linear logic [23].

Finally, variants of linear logic with unrestricted contraction are very simi-
lar to relevance logic [3]. Urquhart has shown that some propositional variants
are undecidable, and has studied other fragments [45, 46]. However, the results
regarding relevance logic are very different in character than those described
above, since they rely in an essential way on a distributivity that appears in
relevance logic but does not appear in linear logic.

6 Conclusions

This survey has sketched the basic approaches used in the study of the com-
plexity of deciding linear logic formulas. This area has led to some new un-
derstanding of the fragments in question, and has pointed out some gaps in
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current understanding. Of the remaining open problems, perhaps the decid-
ability of propositional MELL and the decidability of pure second-order MALL
are of the most interest.

There are some surprisingly rich fragments of linear logic, and surpris-
ingly few differences between the complexity of many fragments at the first
order, propositional, and constant-only levels. For example, even constant-
only full linear logic is undecidable (as are the first-order and propositional
fragments), and first-order MLL, propositional MLL, and constant-only MLL
are all NpP-complete. However, MALL is PSPACE-complete at the constant-only
and propositional levels, but is NEXPTIME-complete at the first-order level.

This area of study is directly relevant to the logic-programming use of linear
logic, where linear logic sequents are taken to be logic programs which execute
by performing proof search [20, 5, 4, 19]. This area of research is also directly
relevant to the construction of linear logic theorem provers [40, 44, 35, 6, 11,
10, 41]. The results here also lead into the study of semantics of linear logic,
pointing to deep connections between various fragments of linear logic and
familiar structures from computer science [12, 29, 30]. In particular, work has
progressed in attempting to find viewpoints where the proof theory of linear
logic can be viewed as a machine. For example, Kanovich’s results derive from
his view of fragments of linear logic as acyclic programs with stack. Turing
machines can be seen as described above in special first-order encodings, but
various counter or Minsky machines can be seen as somewhat more direct
interpretation of the propositional fragments.

Finally, readers should not interpret the above results negatively: the fact
that linear logic is expressive is an important feature. Classical logic is degen-
erate in its small number of well-behaved fragments of different complexity.
Linear logic’s rich structure simply provides more detail than many other log-
ics. This detail negates the possibility of simple decision procedures, but can
carry important information regarding computational content, where other
logics record only simple binary results. That is, linear logic is not about
“Truth”; it is about computation.
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