Appeared in ACM Symposium on Logic In Computer Science 1992

Operational aspects of linear lambda calculus

Patrick Lincoln*
Computer Science Department

Stanford University
Stanford, CA, 94305

lincoln@cs.stanford.edu

Linear logic is a resource-aware logic that is based
on an analysis of theAlgstxakproof rules of contrac-
tion (copying) and weakening (throwing away). Sev-
eral previous researchers have studied functional pro-
gramming languages derived from linear logic accord-
ing to the “formulas-as-types” correspondence. In lan-
guages with linear logic types, one may hope that tra-
ditional implementation problems in functional lan-
guages such as update in place could be simplified by
careful use of the type system. In this paper, we
prove that the standard sequent calculus proof sys-
tem of linear logic is equivalent to a natural deduc-
tion style proof system. Using the natural deduction
system, we investigate the pragmatic problems of type
inference and type safety for a linear lambda calcu-
lus. Although terms do not have a single most-general
type (for either the standard sequent presentation or
our natural deduction formulation), there is a set of
most-general types that may be computed using unifi-
cation. The natural deduction system also facilitates
the proof that the type of an expression is preserved
by any evaluation step. We also describe an erecu-
tion model and implementation, using a variant of the
“three-instruction machine” (TIM). A novel feature
of the implementation is that we distinguish garbage-
collected “non-linear” memory from “linear” memory,
which does not require garbage collection and where it
is possible to do secure update in place.

*Supported by AT&T Doctoral Scholarship and SRI.

TSupported in part by an NSF PYI Award, matching funds
from Digital Equipment Corporation, the Powell Foundation,
and Xerox Corporation; a gift from Mitsubishi Corporation and
the Wallace F. and Lucille M. Davis Faculty Scholarship.

John Mitchell
Computer Science Department
Stanford University
Stanford, CA, 94305

jcm@cs.stanford.edu

1 Introduction

Linear logic is a resource-sensitive refinement of
classical logic, introduced by Girard [Gir87]. The logic
is more detailed than classical or intuitionistic logic,
distinguishing A and A from A, in a way that suggests
applications to reasoning about resource bounds or
resource management in computation. Propositional
linear logic is technically more expressive than either
classical or intuitionistic logic since propositional lin-
ear logic is undecidable [LMSS90]. The extra ex-
pressive power of linear logic has enabled the study
of practical problems in implementation of declara-
tive programming languages. For example, Lafont has
eliminated garbage collection in functional languages
[Laf88] and Cerrito has analyzed Prolog using linear
logic [Cer90].

In this paper we focus on the application of linear
logic to functional programming type systems. His-
torically, intuitionistic logic has been the basis for
type systems, via the Curry-Howard isomorphism, or
“formulas-as-types” principle [How80]. Through this
isomorphism, intuitionistic proofs of propositions may
be viewed as functional programs, and logical proposi-
tions may viewed as types. A similar use of linear logic
has been initiated by Girard and Lafont, and Abram-
sky [GL87, Abr90]. In [GL87], alinear calculus was de-
veloped which effectively determines reduction order,
while explicitly marking the points where contraction
and weakening are used. Abramsky further defined a
type inference system, here called SEQ, which is dis-
cussed in Section 3.3. Abramsky went on to generalize
this system into one incorporating quantifiers and full
linear logic, a move which enabled him to interpret
linear types in terms of concurrent computations. Re-
cently Chirimar, Gunter, and Riecke [CGR92] have
implemented a version of the linear calculus. In this
paper we restrict our attention to intuitionistic linear

logic.

One important property of type systems is subject
reduction, which states that if a term ¢ has type A4,
then any term produced by any number of reduction
(evaluation) steps still has type A. This is crucial if
we wish to use types to statically determine execution
properties of terms. While it may be possible to prove
subject reduction for a type system based on sequent
calculus rules, there is a significant technical obstacle.
If we wish to reason about the effect of reduction, we
need to understand the connection between the syn-
tactic form of a term and the set of possible types.
However, with sequent calculus rules such as SEQ, a
single term may have typing proofs of many different
forms. (This is because uses of Cut, which are es-
sential for typing terms not in normal form, are not
reflected in the syntax of terms.) To avoid this prob-
lem, we formulate an equivalent set of natural deduc-
tion style typing rules, called NAT. This system has
the property that for each form of linear term, there
is exactly one typing rule that may be used to give a
type. Using the natural deduction typing rules, sub-
ject reduction may be proved by traditional means. In
addition, with syntax-directed typing rules, it is possi-
ble to formulate a unification-based algorithm that de-
termines the most general types of any linear lambda
term.

An interesting property of NAT is that one essential
rule, !SR, based on the modal operator ! of linear
logic, involves substitution into terms. Since a term
may be written as the result of substitution in many
different ways, this rule gives us a system in which a
term may have several different principal linear types.
Of course, since NAT is equivalent to SEQ, this is not
an idiosyncrasy of our presentation, but a property
shared by Abramsky’s system SEQ that seems inherent
to linear logic. If we simplify the !SR typing rule
of NAT, we obtain an inequivalent system, which we
call NAT2. If we restrict reduction to closed terms,
then subject reduction holds for this system. However,
the provable typing judgements are not closed under
substitution. Essentially this system has been studied
by [Mac91], who proves the existence of unique most-
general types. Walder also discusses alternative rules
for !SR.. Since these systems are not equivalent to SEQ
and NAT, it seems an important research problem to
evaluate the trade-offs between the systems.

In the final part of the paper we explore implemen-
tations of the linear lambda calculus. One problem
with Lafont’s method of eliminating garbage collec-
tion is that it requires a tremendous amount of du-
plication. Essentially, in comparison with a standard

reference counting scheme, garbage collection is elim-
inated by making every datum have reference count
one. This is achieved by copying the datum whenever
we would otherwise increment the reference count. A
consequence is that there is a significant increase in
the amount of storage space required. We believe that
in practice, it is useful to consider the trade-offs be-
tween copying and garbage collection. In particular, if
a datum is large, then copying it even a small number
of times may be prohibitive, and may outweigh the
benefit of suspending garbage collection. In order to
explore such trade-off’s in a general setting, we have
developed an implementation with two forms of mem-
ory, called “linear” and “non-linear” memory. Within
this framework, we eliminate garbage collection in lin-
ear memory but retain traditional garbage collection
techniques in non-linear memory. Similarly, we may
perform array update in place on arrays in linear mem-
ory. Our implementation is based on an extension of
the “three instruction machine” (Tim) [FW85] with
additional operations of DELAY, FORCE, COPY, and
DISCARD to provide explicit control over evaluation or-
der and storage management, and arrays that are up-
dated in linear memory. The implementation of our
abstract machine is written in Common Lisp, with
garbage collection in non-linear memory handled by
the Lisp garbage collector.

In the next section, we describe the problems that
arise in using linear logic formulas as types for pure
lambda terms. This motivates the use of linear lambda
calculus with explicit copy and discard primitives. In
Section 3, we present the syntax of linear lambda cal-
culus and the typing rules. SEQ and NAT are proved
equivalent in Section 3, where we also prove comple-
mentary term subformula and type subformula prop-
erties for the two proof systems. A type inference al-
gorithm and proof of most general typing are given in
Section 4, with the subject reduction property proved
in Section 5. The remaining sections of the paper dis-
cuss our execution model and TiM-based implementa-
tion.

2 Why explicit storage operations?

In the pure lambda calculus (typed or untyped),
there are no explicit store, read, copy, or discard
primitives. The usual implementations of languages
based on lambda calculus perform these operations as
needed, according to one of several possible strate-
gies. In other words, these operations are implicit
in the language but explicit in the implementation.
Since store, read, copy, and discard are explicit in

the proof system of linear logic, we might attempt to
insert these operations into lambda terms as part of
inferring linear logic types. This was part of the pro-
gram we started to follow in collaboration with Sce-
drov in 1989, before discovering that this seemed to
require algorithms for deciding provability properties
of propositional linear logic; this led to the study of de-
cision problems reported in [LMSS90]. In the remain-
der of this motivational section, we sketch two partic-
ular problems that arise, namely, the lack of a natural
form of principal type and the failure of subject reduc-
tion theorem. The first, along with the undecidability
results of [LMSS90], suggests that the process of in-
ferring types will be algorithmically tractable only if
additional operations or typing constraints are added
to lambda calculus. The failure of subject reduction
reinforces this conclusion by showing that additional
operations are needed in the language to determine the
order of function application and discarding of data.

In this section only, we consider a type system de-
rived from the SEQ rules, in Appendix B, by modifying
each rule whose name begins with ! so that the term
in the consequent is the same as the term in the an-
tecedent. This has the effect of assigning —o, ! types to
pure lambda terms in a way that allows ! operations
to be done implicitly at any point in the evaluation
of terms. There is an equivalent presentation of this
type system derived from the NAT rules, but since our
intent is only to give a few intuitive examples, it does
not seem worthwhile to present the details. The main
properties of this system are that a function of type
A—oB must use its argument of type A “exactly once”
in producing a result of type B. However, if A is of
the form !C, then the copy and discard rules associ-
ated with ! types allow us to define functions that use
their argument zero or more times.

All of the intuitive points we will consider may be
illustrated using the the A term

Ag. Ar. ds. (Az.q)(r s)

The subterm (Az.g) must have a linear type of the
form

(Az.q): (IB—oA),

since only arguments of ! type need not appear in
the body of a function. Consequently, the applica-
tion (r s) must have type !B. There are two possible
types of r and s. One is that r is a non-discardable
function that produces discardable output. That is,
r:(C—o!B), s: C. The other possibility is more subtle
and requires more detailed understanding of the type
system. If r and s are both discardable resources, such
as r:!/(!C—oB) and s: !C, then by the usual application

rule we have rs: B. However, whenever we have an ex-
pression of type B such that all variables appearing in
the term have a type beginning with !, the !SR. rule
allows use to conclude that the term has type !B. Us-
ing our concepts of linear and nonlinear memory, the
ISR rule may be explained by saying that if we de-
fine a value of type B by referring only to values in
non-linear memory, the value we define may reside in
non-linear memory, and have type !B.

From the discussion above, we can see that there
are two types for the example A-term:

A—ol(IC—oB)—lC—oA

A—o(C—!B)—(C—oA

Associated with these types are two different orders of
evaluation. The first is the type of the function that
reduces the outermost application first; the applica-
tion (rs) is thrown away before it is ever evaluated.
The second type is the type of the function that first
reduces the inner term (7 s), to obtain a discardable
value, and then reduces the outer term. In the first
case neither r nor s are used at all. In the second case
they are both used, but the result is not.

The first general conclusion that follows from this
example is that not all terms have a most general type
with respect to substitution. This is evident since we
have two types for the example term such that neither
is a substitution instance of the other, and it can be
checked that no shorter type is derivable for this term.
Moreover, the two types are disjoint in this system: we
can find terms of each type that do not have the other
type.

A second conclusion follows from comparing the in-
formal operational readings of each typing with the
reduction rules of lambda calculus. In particular, con-
sider the type A—o(C—o!B)—oC-—oA. We may under-
stand the correctness of this type by saying that we
apply the second argument to the third and then dis-
card the resulting discardable value. However, this
informal reading assumes a particular reduction or-
der. By the usual reduction rules of lambda calculus,
we may obtain a term

AQ.AT.As.q

in which the second and third arguments do not occur.
Since this term does not have the linear type

A—(C—o!B)—o(C—0 A, the subject reduction property
fails for this simplified system. This is a serious prob-
lem, since we always expect types to be preserved by
reduction. If types are not preserved by reduction,
then reduction of well-typed terms may lead to terms

that are not well-typed. Essentially, this means that
static typing does not prevent run-time type errors.

Intuitively, the failure of subject reduction seems to
result from the contrast between a careful accounting
of resources in linear logic and the inherent ambiguity
in reduction order in the A calculus. This implies that
reduction order must be restricted in some way. The
most natural approach seems to be to introduce ad-
ditional constants that indicate where the operations
associated with ! types are performed. This restricts
the set of types in a way that makes type inference
possible and also provides a convenient framework for
restricting evaluation order. In particular, using ex-
plicit discard, we may say explicitly, inside a term,
whether a discard happens before or after a function
application.

3 The Linear Calculus

We describe the terms of linear lambda calculus in
Section 3.1 and give three sets of typing rules. The
first, SEQ, given in Appendix B, is the standard set
of rules given by applying the Curry-Howard isomor-
phism to Girard’s sequent calculus proof system, re-
stricted to intuitionistic linear logic. The second sys-
tem, NAT, given in Appendix C, is based on a Gentzen-
style sequent calculus presentation of natural deduc-
tion for intuitionistic linear logic. The third system,
NAT2, is closely related to NAT, differing only in the
!SR and Subst rules. The difference between NAT and
NAT2 lies in the point of view taken on whether the
ISR rule is a “left” rule or “right” rule of the sequent
calculus: it introduces a type constructor on the right,
so it appears to be a “right” rule, while it depends on
the form of the context, or left side of a sequent, so
it may also be a “left” rule. Traditionally, right rules
of sequent calculus and introduction rules of natural
deduction systems are analogous, while left rules of se-
quent calculus correspond to a combination of elimina-
tion rules and substitution. Consequently, the trans-
lation of left rules into natural deduction should be
closed under substitution while the translation of right
rules should be direct.

Other researchers have independently formulated
similar typing rules, although none we know of in-
corporate a rule of the form of the !SR rule of NAT.
Lafont, Girard, Abramsky, and others have studied
systems very similar to SEQ [GL87, Abr90]. In recent
unpublished notes [Abr91, Wad91b] and an MS the-
sis [Mac91], systems close to NAT2 have been studied.
Walder also discusses alternative rules for !SR and the
implications of syntaxless Subst rule in the context

of a NAT-like system. O’Hearn discusses similar issues
from a different viewpoint [O’H91]. We take this par-
allel development of ideas as evidence that these are
natural formulations of type systems based on linear
logic. We show that NAT and SEQ give the same set of
types to each linear term in Section 3.6, while NAT2
provides equivalence only up to a point. Technical the-
orems showing the “term-driven” nature of NAT and
NAT2 and the “type-driven” nature of SEQ are proved
in Section 3.7.

3.1 Linear terms and reduction

The linear calculus may be considered a functional
programming language with fine-grained control over
the use of data objects. To a first approximation, no
function may refer to an argument twice without ex-
plicitly copying, nor ignore an argument without ex-
plicitly discarding it. The reason we say, “to a first
approximation” is that the notion of referring to an
argument twice is somewhat subtle, especially in the
presence of additive type connectives. For example,
a variable should appear “once” in both branches of
a case statement, which is an additive operator. A
more precise understanding of the restrictions on use
and discard may be gained from reading the typing
rules. In our presentation of the linear calculus, we
have not restricted reduction order completely (in con-
trast to [Abr90], for example.) However, as pointed
out in Section 2, the order of certain reductions must
be determinate.

Using z, y, z for term variables, and ¢, u, v for terms,
the syntax of linear lambda terms are summarized by
the grammar given in Figure 1.

All the 1et A be B in C constructs bind variables
in A by pattern-matching A against the result of eval-
uating B, and then evaluate C. For example, consider
the term let z xy be (1 x ((Az.z)1)) in (z x y).
First the subject term is evaluated (to 1 x 1), then z
and y are bound (both to 1), and finally (z X y) is
evaluated (in the extended context) producing a final
result of (1 x 1).

The term store wu is areusable, or delayed version
of u. The copy operation inserts multiple copies of a
term store wu, while discard completely eliminates
a store u term. These copy and discard opera-
tions may be implemented by pointer manipulations
(implementing sharing) or by explicit copying. The
read construct forces evaluation of a store d term.
The interaction between read and store is the critical
point where the linear calculus determines reduction
order. In other terminology, store is a wrapper or
box which is only opened when the term must be read.

Z

let Xy bet in u

(t X u)
(tu)
(Az.t)
inr(t)
inl(t)

(t,
let (,z) be t in u
let (z,_) be t in u
let 1 be t in u
store u
discard t in u
read

copy zQy as t in u

\

\

\

\

\

\

| case t of inl(z) = u,inr(y) = v
\ u)

\

\

\

\

\

| store £ as t in u
\

variable

bind z to car and y to cdr of ¢ in u
eager pair (like cons in ML or lisp)
application

abstraction

determines right branch of case
determines left branch of case
evaluate ¢ then branch

lazy pair

bind z to cdr of lazy pair

bind z to car of lazy pair

evaluate ¢ to 1, then become u
store or delay u

throw away t

evaluate t to store t’, bind z to ¢t/
binds « and y to ¢

Figure 1: Grammar of the Linear Lambda Calculus

The reduction rules for linear lambda calculus are
given in Appendix A. A linear term ¢ reduces to a lin-
ear term s if £ — s can be inferred from the linear cal-
culus evaluation rules. Abramsky has demonstrated
determinacy for a more restricted form of reduction
relation in [Abr90]. The reduction relation given in
Appendix A only allows “nonlinear” reductions (in-
volving the !WL, !DL, and !CL reduction rules) to
apply at the “top level” of a term, in the empty con-
text. However, the remaining “linear” reduction steps
may be applied anywhere in a term. Thus reduction
is neither a congruence with respect to all term for-
mation rules, nor is it deterministic. With Mitschke’s
d-reduction theorem [Bar84] this reduction system can
be shown to be confluent on untyped terms, even
though not all untyped terms have a normal form. For
typed terms, the usual cut-elimination procedure pro-
vides a proof of weak normalization for this reduction
system.

3.2 Typing preliminaries

We review some standard definitions. A type mul-
tiset or type environment is a multiset of pairs x;:4;
of variables z; and linear logic formulas A;. A typing
judgement is a type multiset ['; a single linear term ¢,
and a single linear logic formula A, separated by a I+,
constructed as follows: [' - ¢:A. A typing deduction
is a tree, presented with the root at the bottom, and
the leaves at the top. Each branch of a deduction is
a sequence of applications of the proof rules, some of
which, such as ® R in SEQ, represent branching points

in the deduction tree, some, such as —oR, which ex-
tend the length of a branch, and some, such as identity,
which terminate a branch. Any branch not terminated
by identity or 1 R is called an assumption. The leaves
therefore embody the type assumptions and the root
the conclusion. Such a structure is said to be a deduc-
tion of the conclusion from the assumptions. A proof
is a typing deduction with no assumptions. That is, all
the branches terminate with an application or identity
or 1 R. A closed linear term ¢ is said to be linearly ty-
pable if there exists some proof with conclusion F ¢: A
for some linear formula A.

3.3 The sEqQ typing rules

The first system we will study is called SEQ, the
rules for which are given in Appendix B. This for-
mulation is due mainly to Abramsky [Abr90]. We
have modified the syntax used in the original presen-
tation slightly, but the idea is the same: take the rules
for (intuitionistic) propositional linear logic and deco-
rate them with linear terms. In the system SEQ, cut-
free derivations produce linear terms in normal form.
Some derivations with cut correspond to linear terms
in non-normal form, and cut-elimination steps trans-
form the term, essentially performing beta-reduction
and other linear reduction steps. Performing cut-
elimination on an SEQ proof is analogous to reduction
in the linear calculus, although the exact correspon-
dence is somewhat complicated.

3.4 The NAT typing rules

The typing rules for the second system, called NAT,
are given in Appendix C. The main difference between
the two systems is that NAT is more “term-driven”,
while SEQ is more “type-driven”. In Section 3.6, we
show that NAT is equivalent to SEQ for proving typing
judgements. This is not surprising since NAT is based
on a Gentzen-style sequent calculus presentation of
natural deduction for intuitionistic linear logic, while
SEQ is based on a sequent calculus presentation of the
same logic. The term “decorations” have been chosen
in NAT so that the provable sequents in these systems
are the same.

In devising the NAT rules from SEQ, we were guided
by the correspondence between intuitionistic sequent
calculus and natural deduction [Pra65, Appendix A].
The main idea is to interpret sequent proof rules as in-
structions for constructing natural deduction proofs.
The sequent rules acting on the left determine con-
structions on the top (hypotheses) of a natural de-
duction proof, while sequent rules acting on the right
extend the natural deduction proof from the bottom
(conclusion). The Cut rule is interpreted by substi-
tuting a proof for a hypothesis. In order for this to
work, the natural deduction proof system must have
the substitution property formalized by the derived
Subst rule in Appendix C.

A simple example that illustrates the general pat-
tern is the tensor rule acting on the left, QL. In the
conclusion of the sequent rule, there is a new term vari-
able z:(A ® B). However, we want natural deduction
proofs to be closed under the operation of substituting
terms for variables (hypotheses). If we use Cut in a
sequent proof to replace z:(A ® B), we end up with a
sequence of proof steps whose hypotheses and conclu-
sion are identical to the antecedent and consequent of
the natural deduction ®L rule in Appendix C.

The most unusual rule of the NAT system is the !SR.
rule. This may be understood by considering the !SR
rule of SEQ and remembering that when we substitute
proofs for hypotheses in NAT, we must still have a well-
formed natural deduction proof. If we follow SEQ !SR
with Cut, we may use A - ¢:!B and z:!B,!X I u:A to
prove A,!¥ F store u[t/z]:!A. Generalizing to any
number of Cut’s, so that natural deduction proofs
will be closed under substitution, we obtain the !SR
rule in Appendix C. This rule may without loss of
generality be restricted to the case where all the A;
contain some non-! type.

3.5 The NAT2 typing rules

The third and final system we consider is called
NAT2. The NAT2 rules are generated from the NAT
rules by removing the rules of Subst and !SR from
NAT and replacing them with:

YFt:A z:ATFuB let
Y,'+ leteysx be t in u:B Cleut
| .
Y FtA ISR

¥+ store t:!'4

The reason for the explicit syntax of let.,; is that
Subst is not a derived rule of NAT2, and for Theo-
rem 3.2 we need some cut-like rule. These differences
lead to subtlely different properties of NAT and NAT2
systems. For example, since Subst is syntaxless in
NAT, one can show that that one need not consider
Subst in searching for type derivations. On the other
hand, NAT2 is entirely driven by term syntax, leading
to a unique principle type theorem.

3.6 Equivalence of SEQ and NAT

In Theorem 3.1 below, we prove that the two sys-
tems are equivalent, that is, that any linear type judge-
ment provable in SEQ is also provable in NAT.

We should emphasize that although NAT and SEQ
are equivalent in the sense that any typing judgement
provable in SEQ is provable in NAT and vice-versa,
they are not equivalent with respect to operations on
proofs.

Theorem 3.1 (SEQ equiv NAT) A type sequent ' -
t:A is provable in SEQ if and only I' - t:A is provable
in NAT.

Proof. One can show that each rule in SEQ is
derivable in NAT, and vice versa, using local trans-
formations. All the right rules, identity, are the same
in both systems, and Cut and Subst take the same
form. For most left rules, one may simulate the NAT
version of the rule in SEQ with one application of the
rule of similar name and one application of Cut. One
may simulate the SEQ version of most left rules in NAT
by using the rule of the same name and identity. The
multi-hypothesis !SR rule of NAT is derivable in SEQ
with the use of !SR and multiple instances of Cut.
One may transform instances of the Cut rule in SEQ
as applications of Subst, which is a derivable rule in
NAT. Upon removal of Subst, one may see that Cut
in SEQ corresponds to introduction-elimination pairs
of rules in NAT. [

There is a somewhat looser correspondence between
NAT2 and SEQ, than that just claimed between NAT
and SEQ.

A term t' is related to a term t if ¢t can be obtained
from t' by replacing occurrences let.,;z be t in v
with v[t/z].

Theorem 3.2 (SEQ equiv NAT2) A
type sequent ' + t:A is provable in SEQ if and only
'k t':A is provable in NAT2 for some t' related to t.

This theorem may be proven in the same manner
as the above, although in some cases the extra syntax
of let,,; is used in the NAT2 term t'. The reason for
letqy: 1s that Subst is not a derived rule of NAT2.

3.7 Subformula properties

In this section, we demonstrate the main techni-
cal difference between the three sets of typing rules.
If we imagine searching for a cut-free proof of a typ-
ing derivation, beginning with a prospective conclu-
sion and progressing toward appropriate instances of
the axioms, our search will be driven by the form of
the term in NAT2 and the form of the type in SEQ. To
state this precisely, we begin by reviewing the routine
definitions of type subformula and term subformula.

A type A is a type subformula of a type B if A
syntacticly occurs in B. Similarly, a term ¢ is a term
subformula of a term s if ¢ syntacticly occurs in s.

Lemma 3.3 (NAT2 Term Subformula Property)
In any proof of F u:B in NAT2, every term t that ap-
pears anywhere in the proof is a subformula of u.

Note that the system NAT fails to have this property
because of the form of the !SR rule.

Lemma 3.4 (SEQ Type Subformula Property)
For any cut-free proof of = t:B in SEQ, any type A
that appears anywhere in the proof is a subformula of
B.

Note that the cut rule violates the subformula prop-
erty, and so Lemma 3.4 does not hold of SEQ proofs
with cut.

4 Most General Linear Type
4.1 Most General Types in NAT and SEQ

In this section, we show that every linearly typable
term has a finite set of most general types. This set

may be used to decide the set of types of the term.
More specifically, a linear formula, A, is more general
than another, B, if there exists a substitution ¢ map-
ping linear propositions to linear formulas such that
(A)o = B. A set, S, of formulas is more general than
another, T, if every element of T is a substitution in-
stance of some element of S. Given a term ¢, the
typing algorithm either returns a finite set of formulas
more general than all types of ¢, or terminates with
failure if t has no linear type. The number of formu-
las in the set of most general types is bounded by an
exponential function of the number of uses of store
in the term. Without store, every typable term has
a single most general type.

Up to !SR, the rules of NAT that are used in a
typing derivation, and the order of application, are
totally determined by the syntactic structure of the
linear term. For example, if the term is a variable
then the only possible proof in NAT is one use of iden-
tity. If the term is Az.t, then the only possible rule
is —o R. The only freedom, except for !SR, is in the
choice of linear types for variables and the division of
a type multiset among hypotheses (in the rules with
multiple hypotheses). However, type judgements con-
tain exactly the set of free variables of a term in the
type context. This property determines the division
of a multiset among hypotheses of the rule. Thus, for
NAT without !SR, we may compute the most general
typing by a simple Prolog program, obtained by trans-
lating the typing rules into Horn clauses in a straight-
forward manner.

An example that shows the complications associ-
ated with terms of the form store tis

Aa.Ab. store ((read store c as a in c)b)

which has the two incomparable NAT and SEQ types

I(!IB—oC)—o!B—o!C
(B—o!C)—oB-ollC

The basic idea is very similar to the example in Sec-
tion 2 that involves implicit store. If a:!A, then the
expression (read store ¢ as a in c¢) has type A.
This gives us the two typing judgements

a:!(!IB—C), b:!B | (read
a:!(B—ol!C), b: B - (read

store ¢ as a in ¢)b: C
store ¢ as a in ¢)b: IC

The common feature of these judgements is that they
both allow us to apply ! to the expression, in the first
case because all of the types of free variables begin
with ! and in the second case because the type of the
expression begins with !|. In NAT, the two typings of

the expression with storeare derived using two differ-
ent substitutions in the !SR rule. In SEQ, the two typ-
ings are derived using Cut to substitute into a store
expression in two different ways.

Accounting for the possibility of several different
substitutions in the !SR rules (some of which are prov-
ably unnecessary), all of the NAT rules are straight-
forward syntax-directed rules that may be translated
into Prolog Horn clauses without complication. This
gives us an algorithm that finds a finite set of most
general types for each linearly typable term or (since
the search is bounded) terminates with failure on un-
typable terms.

Theorem 4.1 (MGT) Every NAT typable term has
a finite set of most general types. There is a
unification-based algorithm that, given any term, ei-
ther computes a set of most general types or halts with
failure if the term is not typable.

4.2 Most General Types in NAT2

In the simplified NAT2 system, !SR is replaced by a
simple syntax-directed rule with no possibility of sub-
stitution. Consequently, the most general type of any
typable linear term may be computed by a unification-
based algorithm or simple Prolog program. The fol-
lowing most general typing theorem is due indepen-
dently to Mackie [Mac91].

Theorem 4.2 (MGT) There is a unification-based
algorithm that computes a most general linear type for
any NAT2 typable term t and terminates in failure on
any untypable term.

5 Type Soundness

In this section we prove a technical property com-
monly called “subject reduction” for both NAT and
SEQ. This property is that if linear term ¢ has type A,
and t reduces to t’, then ¢’ also has type A. The term
t" may also have other types; rewriting a term may
allow us to deduce more typing properties. However,
if the typing rules allows us to derive some property
of a term, this property remains as we reduce, or eval-
uate, the term. Without the subject reduction prop-
erty, it might be possible for a typed term to become
untypable during execution. In this case, we would
consider the type system “unsound” as a method for
determining the absence of type errors.

We prove subject reduction by considering NAT first
and then deriving the result for SEQ as a corollary.

The main reason that the proof is simpler for NAT
can be seen by comparing the —oL rule of SEQ with
the A (application) rule of NAT. When an application
(Az.t)u is B-reduced, the structure of the NAT rules
guarantee that this was typed by the A rule and ¢
was typed subject to some hypothesis about the type
of variable z. The same type may be given to t[u/z]
using a substitution instance of this proof. In SEQ, we
would need a series of detailed lemmas giving us some
information about the possible structure of the typ-
ing proof for (Az.t)u. In particular, since the sequent
rule —oL allows arbitrary substitution, the structure
of the typing proof is not determined by the form of
an application.

The following lemma is the key step in the inductive
proof of Theorem 5.2. It covers the case of the very
general !SR rule, essentially stating that for one-step
linear reduction, terms of ! type do not interact with
any other terms. Note that the reduction relation —>g
does not include any of the ! reductions.

Lemma 5.1 If t = r[s1 /21, -
and for 1 <i<n:A; F s;:!B;
then (u=r'[s1/z1,- -, sn/zy) and v =€ 1') or

(Hj:u:T[sl/'Tlv" '78;'/mja' "78n/mn] and Sj _>g S;)

“,8n/Tn], and t - u

Theorem 5.2 (NAT Subject Reduction) If there
is a proof of - t:A in NAT, and t — s, then there
is a proof of I s:A in NAT.

Proof. Induction on the derivation ¢t —» s. n

Corollary 5.3 If there is a proof of - t:A in SEQ, and
t — s, then there is a proof of - s:A in SEQ.

The stronger property that if there is any typing
proof of ¥ F #:A for term ¢ with free variables, and
t — s, then there is a typing proof of ¥ I s:A does
not hold. As we have seen, control over evaluation or-
der is of critical importance in maintaining linear type
soundness, as the following example demonstrates.

z:'AF discard z in 1

The above judgement is provable in SEQ, NAT, and
NAT2, but after one step of reduction, the judgement
becomes z:!A + 1 which is not provable in any type
system discussed in this paper. Chirimar, Gunter, and
Riecke have also noticed this failure of subject reduc-
tion for open terms [CGR92].

On the other hand, we do have this more general
form of subject reduction of the reflexive transitive
closure of —,. That is, we may reduce using —, any-
where in a term and still preserve the types.

With a slight modification of the systems we are
working with, an intermediate form of these subject
reduction theorems is possible. If I' and ¥ are mul-
tisets, then we write ¥ C I' to mean that ¥ may by
obtained from I' by removing elements or adding du-
plicates. The following theorem holds in a version of
these type systems where the restriction that every
variable occur exactly once in binding and once in use
is relaxed to the restriction that every variable occur
as many times in binding as it occurs in use, and all
occurrences of a variable have the same type.

Theorem 5.4 (Generalized Subject Reduction)
If there is a proof of 'I' b t:A in NAT or SEQ, and
t — s, then there is a proof of !X F s:A in NAT and
SEQ, where !X CIT.

Also, a weaker form of subject reduction theorem
holds for NAT2. The restrictions on reduction order
are sufficient to guarantee that whenever (Az.t)u is
reduced, under the conditions given in the theorem
below, ¢[u/z] has the same type.

Theorem 5.5 If there is a proof of - t:A in NAT2,
and t — s, then there is a proof of - s':A in NAT2,
for some term s' related to s.

6 Implementation of LC

We now give an overview of a compiled implemen-
tation of the linear calculus based on insights provided
by these studies of type systems. This implementation
is based on a modified version (LTim) of the Three In-
struction Machine (Tim).

The Tim is an extremely simple abstract machine
designed to facilitate lazy reduction of super combi-
nator expressions [FW85, WF89, Hug84, Pey87]. The
LTim extendeds the Tim with four special combina-
tors: DELAY, FORCE, COPY, and DISCARD, and modi-
fies some of the internal data structures of Tim to also
support eager evaluation and explicit storage manage-
ment. The LTim implementation was pursued for two
reasons. First, it provides further evidence that the
linear calculus may be executed efficiently. Second,
it embodies a natural dual space memory model well
suited to the execution of linear calculus terms.

The key point of departure of our implementation
from the previous implementations of the linear cal-
culus is the memory model. The LTim implements
two spaces, one linear, and one nonlinear. The idea
is that objects in the linear space are purely linear,

and thus have a reference count of exactly one at
all times. Objects in the nonlinear space represent
“stored” or reusable entities. Little or no static infor-
mation is available about reference counts of objects
in this space. The execution model we have in mind
is that a ! or store instruction (corresponding to the
ISR rule of linear logic) ensures that objects reside in
nonlinear space. Once an object is stored, it may be
discarded or copied, a discard operation removes a
pointer to a stored object, and a copy operation sim-
ply copies a pointer to an object in nonlinear space,
thus implementing sharing, or call-by-need. However,
in this nonlinear space, objects can be referenced any
number of times (including 0), requiring some form
of dynamic garbage collection. In the linear space,
objects are never shared; there is always exactly one
reference to all objects. Thus garbage collection is not
needed, since objects in that space become garbage
the first time they are used, and linear objects may
always be updated in place. In other words, in our
execution model dynamic garbage collection is never
applied to objects in linear space, but may occasion-
ally be applied to objects in nonlinear space. Update
in place is always applicable to linear objects, but is
never applied to nonlinear objects.

Other implementations of the linear calculus have
effectively assumed a single memory space. A poten-
tial disadvantage of the single memory space is that
it obfuscates the distinction between shared and un-
shared objects. Lafont built an implementation of
the linear calculus with the fantastic property that
dynamic garbage collection is never used: all terms
effectively have exactly one reference to them, and
thus become garbage the first (only) time they are
referenced. However, Lafont avoids garbage collec-
tion by copying, a rather costly implementation tech-
nique [GH90]. Chirimar, Gunter, and Riecke have de-
scribed an implementation which also focuses on the
issue of garbage collection [CGR92]. In their imple-
mentation, objects may be shared, so dynamic garbage
collection is potentially required on all objects. How-
ever, the linear types of terms may be used to identify
potential times at which objects may become garbage.
Their implementation does not include the additives,
but is extended with a recursion operator and poly-
morphism. Abramsky has described the implemen-
tation of a linear SECD machine further studied by
Mackie [Abr90, Mac91], and went on to generalize the
linear calculus to one based on classical linear logic
and described an implementation based on the chem-
ical abstract machine [BB90]. Wadler [Wad91b] has
also described several implementation issues regard-

ing the linear calculus. He points out the importance
of ' (1A) being isomorphic to 'A (which is true in our
operational model), and suggests several extensions,
including, for example, arrays, let! with read-only ac-
cess, the removal of syntax for weakening and con-
traction, etc. Wadler also discusses the separation of
types into linear and nonlinear, giving the types dif-
ferent syntax, very similar to our two memory spaces.
We have considered only the extension of the linear
calculus to include recursion and arrays, essentially as
mentioned by Wadler [Wad91a].

Our LTim implementation does not count the ref-
erences of integers, continuation frames, nor code. In
linear logic terms, it is assumed that code, contin-
uations, and and base integer values are of ! type.
That is, they are reusable. However, arrays, struc-
tures, and cons cells are not treated in this man-
ner. Since integer values are assumed one word long,
it is more efficient to copy them, rather than shar-
ing. Code is always assumed to be nonlinear, and is
shared. Code is traditionally assumed to be static and
reusable, and it is difficult to imagine an implemen-
tation taking much advantage of code-space freed up
when some code is executed for the last time. Contin-
uations are assumed to be nonlinear, and are shared.
This (mis)management of the storage for continuation
frames could be a serious deficiency of this implemen-
tation. Continuation frames contain a sequence of
pairs of pointers into code space and data. A contin-
uation frame is created upon entry into every combi-
nator, and must be preserved whenever a combinator
suspends computation while control is transferred to
some other combinator. That is, whenever a combi-
nator pushes a label on the argument stack, the label
contains a pointer to the current continuation frame,
and the space the current frame takes up cannot be
reclaimed. However, nonlinear values in frames are
overwritten once computed (in the lazy style of the
Tim), and whole frames can be shared, instead of be-
ing copied. The penalty for this is that some tradi-
tional garbage collection mechanism must be used on
frames.

All other objects are handled with explicit sharing
instructions. The objects handled in this way include
arrays, structures, and cons cells. These are sepa-
rated into two classes: linear and nonlinear. Linear
objects are not copyable, and are never referenced by
two pointers at the same time. In our implementa-
tion all arrays (even linear ones) have elements which
are reusable (of ! type), although the arrays can be
of arbitrary dimension. A nonlinear object is essen-
tially handled in the a traditional way, with sharing

of pointers to the same object. That is, nonlinear ob-
jects may be referenced by any number of pointers
simultaneously.

7 Conclusion

We have presented a linear calculus and three type
inference systems: SEQ, NAT, and NAT2. We have
shown that SEQ and NAT equivalent, and that NAT2
is closely related. We have demonstrated the exis-
tence of most general types and the subject reduction
theorem. The linear calculus and very closely related
type systems have appeared elsewhere, perhaps most
well known in [Laf88, Abr90].

Also, we have implemented a two-space abstract
machine based on the three instruction machine which
may be used to exploit the information available in lin-
ear types to generate more efficient code. For example,
one may perform update in place on arrays in linear
space. Although the study of opportunities for update
in place in functional languages has a long history, the
linear calculus and its type systems present a logical
foundation for this kind of “resource-conscious” com-
piler optimization.

References
[Abro0] S. Abramsky. Computational interpretations
of linear logic. Theoretical Computer Science,
1990. Special Issue on the 1990 Workshop on
Math. Found. Prog. Semantics. To appear.

[Abr91] S. Abramsky. Tutorial on linear logic. Lecture

Notes from Tutorial at ILPS, 1991.

[Bar84] H.P. Barendregt. The Lambda Calculus: Its

Syntaz and Semantics. North Holland, 1984.

[BBI0] G. Berry and G. Boudol. The chemical ab-
stract machine. In Proc. 17-th ACM Symp.
on Principles of Programming Languages, San

Francisco, pages 81-94, January 1990.

[Cer90] S. Cerrito. A linear semantics for allowed logic
programs. In Proc. 5th IEEE Symp. on Logic

in Computer Science, Philadelphia, June 1990.

[CGR92] J. Chirimar, C. Gunter, and J. Riecke. Lin-
ear ML. In Lisp and Functional Programming,

1992. To Appear.

[FW85] J. Fairbairn and S. Wray. Tim: A simple, lazy
abstract machine to execute supercombinators.

In 3rd Conf. on Functional Programming and

[GHY0]

[Gir87]

[GL8T]

[How80]

[Hug84]

[Laf88]

[LMSS90]

[Mac91]

[07H1]

[Pey87]

[Pra65]

[Wad91a]

[Wad91b]

[WF89]

Computer Architecture, Lecture Notes in Com-
puter Science 274, New York, 1985. Springer-
Verlag.

J. Guzman and P. Hudak. Single-threaded
polymorphic lambda calculus. In Proc. 5th
IEEE Symp. on Logic in Computer Science,
Philadelphia, June 1990.

J.-Y. Girard. Linear logic. Theoretical Com-
puter Science, 50:1-102, 1987.

J.-Y. Girard and Y. Lafont. Linear logic and
lazy computation. In TAPSOFT ’87, Volume
2, pages 52-66. Springer LNCS 250, 1987.

W. Howard. The formulas-as-types notion of
construction. In To H.B. Curry: Essays on
Combinatory Logic, Lambda-Calculus and For-
malism, pages 479-490. Academic Press, 1980.

R.J.M. Hughes. The Design and Implementa-
tion of Programming Languages. PhD thesis,
PRG-40, Oxford, 1984.

Y. Lafont. The linear abstract machine. The-
oretical Computer Science, 59:157-180, 1988.

P. Lincoln, J.C. Mitchell, A. Scedrov, and
N. Shankar. Decision problems for proposi-
tional linear logic. In Proc. 31st IEEE Symp.

on Foundations of Computer Science, pages
662671, 1990.

I.C. Mackie. Lilac - a functional programming
language based on linear logic. Master’s thesis,
Imperial College, London, 1991.

P. O’Hearn. Linear logic and interference con-
trol. In 4th Conf. on Category Thoery and CS,
1991.

S.L. Peyton Jones. The Implementation of
Functional Programming Languages. Prentice
Hall, 1987.

D. Prawitz. Natural Deduction. Almquist and
Wiksell, Stockholm, 1965.

P. Wadler. Linear types can change the world!
IFIP TC 2 Conf. on Prog. Concepts and Meth-
ods, 1991.

P. Wadler. There’s no substitute for linear
logic. Draft, 1991.

S. Wray and J. Fairbairn. Non-strict languages
- programming and implementation. Computer
Journal, 32(2):142-151, 1989.

A Linear Calculus

The reduction relation of interest here is —», where
the notation ¢ — w is meant to be read “t evaluates
in any number of steps to u”. However, to facilitate
the definition, we use an auxiliary relations —, which
captures the notion of one-step linear reduction with-
out ! rules, and —>OC, which denotes the congruence clo-
sure of — . The following rules are universally quan-
tified over terms ¢, u, v, w, and variables z, y.

—oL (Az.v)u —, vu/z]

®L let £ Xy be (sxt) in u —, u[s/z,t/y]
®OL case inl(t) of inl(z) = u,inr(y) = v —, ult/z]

®L case inr(t) of inl(z) = u,inr(y) = v —, v[t/y]

&L1 let (z,.) be (v,t) in u —, u[v/z]
& L2 let (,y) be (v,t) in u —, uft/y]
1L let 1 be 1l in u —, u
t—, v
Cone = ¢

As formally stated by the Cong rule below, the
above rules may be applied anywhere in a term. The
! rules, however, may only be applied to closed terms
at top level.

I t—t
Trans t—u U —» v
t— v
. t=Cuv
Linear —0
t— v
'WL discard ¢t in u — u
ICL copy zQy as ¢ in u —» ult/z,t/y]
DL t — store v Vv —> W

read store z as t in u —» u[w/z]

B

Cut

—oL

—oR

®L

®R

®L

®R1

®R2

& L1

& L2

&R

'WL

'DL

ICL

ISR

1L

1R

SEQ Proof Rules
T AFz:A

YEFtA z:A,T'+u:B
Y, T F ult/z]:B

YFtA I'z:BF u:C

%, T, f:(A—oB) - u[(ft)/z]:C

Y,o:AFt:B
Y F Az.t:(A—oB)

Y,z:Ay:BFt:C

X,22(A® B)F let (z xy) be z in &:C

YEtEA I'u:B
Y. TF(txu):(A® B)

Y2 AR uC

Y,y:BFuvC

C NAT Proof Rules

I

Subst

A

—oR

®L

®R

eL

Y,z:(A® B) Fcase z of inl(z) = u,inr(y) = v:C

YHtA
Y Finl(t):(A @ B)

Y FuB
Y Finr(u):(A® B)

Y, x:AFt:C

¥,2:(A&B)+ let (z,.) be z in :C

X, y:B F t:C

¥,2:(A&B)F let (,z) be z in :C

YFtA Y+ uB
Y+ (t,u):(A& B)

YHt:A

¥,z:!BF discard z in t:A

Y, z:AFt:B

Y,z!1AF read store z as z in t:B

N, z!A y:!AFt:B

¥,z:1AF copy zQy as z in :B

Y +t:A
¥+ store t:!A

YHt:A

¥,z:1F let 1 be z in t:A

F1:1

@®R1

©R2

& L1

& L2

&R

'WL

'DL

ICL

ISR

1L

1R

T A z:A

YFt:A z:ATFuB
Y, Tk wuft/z]:B

At u:(A—oB) YHtA
Y, AF (ut):B

Y,z:AFt:B
Y F Az.t:(A—oB)

Atuw(A®B) X,z:Ajy:BFt:C
Y,AF let (z xy) be u in &:C

YEuA I't:B
Y. TF(uxt):(A® B)

At t:(A® B)

YFtA
Y Finl(t):(A @ B)

Y+tB
Y Finr(t):(A e B)

AFu(A&B
Y,AF 1let

Y,z AFt:C
z,.) be u in :C

At u(A& B
Y,AF 1let

Y, y:BFt:.C
-,y) be u in t:C

)
(
)
(
YFtEA Y+ uB
Y+ (t,u):(A& B)

AFulA Y+t:B
¥,AF discard u in t:B

AFuld Y,o:AFt:B

YA uwC X, y:BFuvC
Y,AF case t of inl(z) = u,inr(y) = v:C

Y,AF read store z as u in t:B

AFuld Y,o!Ay:!AFt:B
¥,AF copy zQy as u in t:B

Ay ALY E store wfty [z -ty /zs] 1A

AFul YFtA
Y,AF let 1 be u in t:A

F1:1

The Subst rule is derivable in the rest of the system.

