
Appeared in ACM Symposium on Logic In Computer Science 1992Operational aspects of linear lambda calculusPatrick Lincoln� John MitchellyComputer Science Department Computer Science DepartmentStanford University Stanford UniversityStanford, CA, 94305 Stanford, CA, 94305lincoln@cs.stanford.edu jcm@cs.stanford.eduAbstractLinear logic is a resource-aware logic that is basedon an analysis of the classical proof rules of contrac-tion (copying) and weakening (throwing away). Sev-eral previous researchers have studied functional pro-gramming languages derived from linear logic accord-ing to the \formulas-as-types" correspondence. In lan-guages with linear logic types, one may hope that tra-ditional implementation problems in functional lan-guages such as update in place could be simpli�ed bycareful use of the type system. In this paper, weprove that the standard sequent calculus proof sys-tem of linear logic is equivalent to a natural deduc-tion style proof system. Using the natural deductionsystem, we investigate the pragmatic problems of typeinference and type safety for a linear lambda calcu-lus. Although terms do not have a single most-generaltype (for either the standard sequent presentation orour natural deduction formulation), there is a set ofmost-general types that may be computed using uni�-cation. The natural deduction system also facilitatesthe proof that the type of an expression is preservedby any evaluation step. We also describe an execu-tion model and implementation, using a variant of the\three-instruction machine" (tim). A novel featureof the implementation is that we distinguish garbage-collected \non-linear" memory from \linear" memory,which does not require garbage collection and where itis possible to do secure update in place.�Supported by AT&T Doctoral Scholarship and SRI.ySupported in part by an NSF PYI Award, matching fundsfrom Digital Equipment Corporation, the Powell Foundation,and Xerox Corporation; a gift from Mitsubishi Corporation andthe Wallace F. and Lucille M. Davis Faculty Scholarship.

1 IntroductionLinear logic is a resource-sensitive re�nement ofclassical logic, introduced by Girard [Gir87]. The logicis more detailed than classical or intuitionistic logic,distinguishing A and A from A, in a way that suggestsapplications to reasoning about resource bounds orresource management in computation. Propositionallinear logic is technically more expressive than eitherclassical or intuitionistic logic since propositional lin-ear logic is undecidable [LMSS90]. The extra ex-pressive power of linear logic has enabled the studyof practical problems in implementation of declara-tive programming languages. For example, Lafont haseliminated garbage collection in functional languages[Laf88] and Cerrito has analyzed Prolog using linearlogic [Cer90].In this paper we focus on the application of linearlogic to functional programming type systems. His-torically, intuitionistic logic has been the basis fortype systems, via the Curry-Howard isomorphism, or\formulas-as-types" principle [How80]. Through thisisomorphism, intuitionistic proofs of propositions maybe viewed as functional programs, and logical proposi-tions may viewed as types. A similar use of linear logichas been initiated by Girard and Lafont, and Abram-sky [GL87, Abr90]. In [GL87], a linear calculus was de-veloped which e�ectively determines reduction order,while explicitly marking the points where contractionand weakening are used. Abramsky further de�ned atype inference system, here called seq, which is dis-cussed in Section 3.3. Abramsky went on to generalizethis system into one incorporating quanti�ers and fulllinear logic, a move which enabled him to interpretlinear types in terms of concurrent computations. Re-cently Chirimar, Gunter, and Riecke [CGR92] haveimplemented a version of the linear calculus. In thispaper we restrict our attention to intuitionistic linear1

logic.One important property of type systems is subjectreduction, which states that if a term t has type A,then any term produced by any number of reduction(evaluation) steps still has type A. This is crucial ifwe wish to use types to statically determine executionproperties of terms. While it may be possible to provesubject reduction for a type system based on sequentcalculus rules, there is a signi�cant technical obstacle.If we wish to reason about the e�ect of reduction, weneed to understand the connection between the syn-tactic form of a term and the set of possible types.However, with sequent calculus rules such as seq, asingle term may have typing proofs of many di�erentforms. (This is because uses of Cut, which are es-sential for typing terms not in normal form, are notreected in the syntax of terms.) To avoid this prob-lem, we formulate an equivalent set of natural deduc-tion style typing rules, called nat. This system hasthe property that for each form of linear term, thereis exactly one typing rule that may be used to give atype. Using the natural deduction typing rules, sub-ject reduction may be proved by traditional means. Inaddition, with syntax-directed typing rules, it is possi-ble to formulate a uni�cation-based algorithm that de-termines the most general types of any linear lambdaterm.An interesting property of nat is that one essentialrule, !SR, based on the modal operator ! of linearlogic, involves substitution into terms. Since a termmay be written as the result of substitution in manydi�erent ways, this rule gives us a system in which aterm may have several di�erent principal linear types.Of course, since nat is equivalent to seq, this is notan idiosyncrasy of our presentation, but a propertyshared by Abramsky's system seq that seems inherentto linear logic. If we simplify the !SR typing ruleof nat, we obtain an inequivalent system, which wecall nat2. If we restrict reduction to closed terms,then subject reduction holds for this system. However,the provable typing judgements are not closed undersubstitution. Essentially this system has been studiedby [Mac91], who proves the existence of unique most-general types. Walder also discusses alternative rulesfor !SR. Since these systems are not equivalent to seqand nat, it seems an important research problem toevaluate the trade-o�s between the systems.In the �nal part of the paper we explore implemen-tations of the linear lambda calculus. One problemwith Lafont's method of eliminating garbage collec-tion is that it requires a tremendous amount of du-plication. Essentially, in comparison with a standard

reference counting scheme, garbage collection is elim-inated by making every datum have reference countone. This is achieved by copying the datum wheneverwe would otherwise increment the reference count. Aconsequence is that there is a signi�cant increase inthe amount of storage space required. We believe thatin practice, it is useful to consider the trade-o�s be-tween copying and garbage collection. In particular, ifa datum is large, then copying it even a small numberof times may be prohibitive, and may outweigh thebene�t of suspending garbage collection. In order toexplore such trade-o�'s in a general setting, we havedeveloped an implementation with two forms of mem-ory, called \linear" and \non-linear" memory. Withinthis framework, we eliminate garbage collection in lin-ear memory but retain traditional garbage collectiontechniques in non-linear memory. Similarly, we mayperform array update in place on arrays in linear mem-ory. Our implementation is based on an extension ofthe \three instruction machine" (tim) [FW85] withadditional operations of delay, force, copy, anddiscard to provide explicit control over evaluation or-der and storage management, and arrays that are up-dated in linear memory. The implementation of ourabstract machine is written in Common Lisp, withgarbage collection in non-linear memory handled bythe Lisp garbage collector.In the next section, we describe the problems thatarise in using linear logic formulas as types for purelambda terms. This motivates the use of linear lambdacalculus with explicit copy and discard primitives. InSection 3, we present the syntax of linear lambda cal-culus and the typing rules. seq and nat are provedequivalent in Section 3, where we also prove comple-mentary term subformula and type subformula prop-erties for the two proof systems. A type inference al-gorithm and proof of most general typing are given inSection 4, with the subject reduction property provedin Section 5. The remaining sections of the paper dis-cuss our execution model and tim-based implementa-tion.2 Why explicit storage operations?In the pure lambda calculus (typed or untyped),there are no explicit store, read, copy, or discardprimitives. The usual implementations of languagesbased on lambda calculus perform these operations asneeded, according to one of several possible strate-gies. In other words, these operations are implicitin the language but explicit in the implementation.Since store, read, copy, and discard are explicit in

the proof system of linear logic, we might attempt toinsert these operations into lambda terms as part ofinferring linear logic types. This was part of the pro-gram we started to follow in collaboration with Sce-drov in 1989, before discovering that this seemed torequire algorithms for deciding provability propertiesof propositional linear logic; this led to the study of de-cision problems reported in [LMSS90]. In the remain-der of this motivational section, we sketch two partic-ular problems that arise, namely, the lack of a naturalform of principal type and the failure of subject reduc-tion theorem. The �rst, along with the undecidabilityresults of [LMSS90], suggests that the process of in-ferring types will be algorithmically tractable only ifadditional operations or typing constraints are addedto lambda calculus. The failure of subject reductionreinforces this conclusion by showing that additionaloperations are needed in the language to determine theorder of function application and discarding of data.In this section only, we consider a type system de-rived from the seq rules, in Appendix B, by modifyingeach rule whose name begins with ! so that the termin the consequent is the same as the term in the an-tecedent. This has the e�ect of assigning ��; ! types topure lambda terms in a way that allows ! operationsto be done implicitly at any point in the evaluationof terms. There is an equivalent presentation of thistype system derived from the nat rules, but since ourintent is only to give a few intuitive examples, it doesnot seem worthwhile to present the details. The mainproperties of this system are that a function of typeA��B must use its argument of type A \exactly once"in producing a result of type B. However, if A is ofthe form !C, then the copy and discard rules associ-ated with ! types allow us to de�ne functions that usetheir argument zero or more times.All of the intuitive points we will consider may beillustrated using the the � term� q: � r: � s: (�x:q)(r s)The subterm (�x:q) must have a linear type of theform (�x:q): (!B��A);since only arguments of ! type need not appear inthe body of a function. Consequently, the applica-tion (r s) must have type !B. There are two possibletypes of r and s. One is that r is a non-discardablefunction that produces discardable output. That is,r: (C��!B), s:C. The other possibility is more subtleand requires more detailed understanding of the typesystem. If r and s are both discardable resources, suchas r: !(!C��B) and s: !C, then by the usual application

rule we have rs:B. However, whenever we have an ex-pression of type B such that all variables appearing inthe term have a type beginning with !, the !SR ruleallows use to conclude that the term has type !B. Us-ing our concepts of linear and nonlinear memory, the!SR rule may be explained by saying that if we de-�ne a value of type B by referring only to values innon-linear memory, the value we de�ne may reside innon-linear memory, and have type !B.From the discussion above, we can see that thereare two types for the example �-term:A��!(!C��B)��!C��AA��(C��!B)��C��AAssociated with these types are two di�erent orders ofevaluation. The �rst is the type of the function thatreduces the outermost application �rst; the applica-tion (r s) is thrown away before it is ever evaluated.The second type is the type of the function that �rstreduces the inner term (r s), to obtain a discardablevalue, and then reduces the outer term. In the �rstcase neither r nor s are used at all. In the second casethey are both used, but the result is not.The �rst general conclusion that follows from thisexample is that not all terms have a most general typewith respect to substitution. This is evident since wehave two types for the example term such that neitheris a substitution instance of the other, and it can bechecked that no shorter type is derivable for this term.Moreover, the two types are disjoint in this system: wecan �nd terms of each type that do not have the othertype.A second conclusion follows from comparing the in-formal operational readings of each typing with thereduction rules of lambda calculus. In particular, con-sider the type A��(C��!B)��C��A. We may under-stand the correctness of this type by saying that weapply the second argument to the third and then dis-card the resulting discardable value. However, thisinformal reading assumes a particular reduction or-der. By the usual reduction rules of lambda calculus,we may obtain a term� q: � r: � s: qin which the second and third arguments do not occur.Since this term does not have the linear typeA��(C��!B)��C��A, the subject reduction propertyfails for this simpli�ed system. This is a serious prob-lem, since we always expect types to be preserved byreduction. If types are not preserved by reduction,then reduction of well-typed terms may lead to terms

that are not well-typed. Essentially, this means thatstatic typing does not prevent run-time type errors.Intuitively, the failure of subject reduction seems toresult from the contrast between a careful accountingof resources in linear logic and the inherent ambiguityin reduction order in the � calculus. This implies thatreduction order must be restricted in some way. Themost natural approach seems to be to introduce ad-ditional constants that indicate where the operationsassociated with ! types are performed. This restrictsthe set of types in a way that makes type inferencepossible and also provides a convenient framework forrestricting evaluation order. In particular, using ex-plicit discard, we may say explicitly, inside a term,whether a discard happens before or after a functionapplication.3 The Linear CalculusWe describe the terms of linear lambda calculus inSection 3.1 and give three sets of typing rules. The�rst, seq, given in Appendix B, is the standard setof rules given by applying the Curry-Howard isomor-phism to Girard's sequent calculus proof system, re-stricted to intuitionistic linear logic. The second sys-tem, nat, given in Appendix C, is based on a Gentzen-style sequent calculus presentation of natural deduc-tion for intuitionistic linear logic. The third system,nat2, is closely related to nat, di�ering only in the!SR and Subst rules. The di�erence between nat andnat2 lies in the point of view taken on whether the!SR rule is a \left" rule or \right" rule of the sequentcalculus: it introduces a type constructor on the right,so it appears to be a \right" rule, while it depends onthe form of the context, or left side of a sequent, soit may also be a \left" rule. Traditionally, right rulesof sequent calculus and introduction rules of naturaldeduction systems are analogous, while left rules of se-quent calculus correspond to a combination of elimina-tion rules and substitution. Consequently, the trans-lation of left rules into natural deduction should beclosed under substitution while the translation of rightrules should be direct.Other researchers have independently formulatedsimilar typing rules, although none we know of in-corporate a rule of the form of the !SR rule of nat.Lafont, Girard, Abramsky, and others have studiedsystems very similar to seq [GL87, Abr90]. In recentunpublished notes [Abr91, Wad91b] and an MS the-sis [Mac91], systems close to nat2 have been studied.Walder also discusses alternative rules for !SR and theimplications of syntaxless Subst rule in the context

of a nat-like system. O'Hearn discusses similar issuesfrom a di�erent viewpoint [O'H91]. We take this par-allel development of ideas as evidence that these arenatural formulations of type systems based on linearlogic. We show that nat and seq give the same set oftypes to each linear term in Section 3.6, while nat2provides equivalence only up to a point. Technical the-orems showing the \term-driven" nature of nat andnat2 and the \type-driven" nature of seq are provedin Section 3.7.3.1 Linear terms and reductionThe linear calculus may be considered a functionalprogramming language with �ne-grained control overthe use of data objects. To a �rst approximation, nofunction may refer to an argument twice without ex-plicitly copying, nor ignore an argument without ex-plicitly discarding it. The reason we say, \to a �rstapproximation" is that the notion of referring to anargument twice is somewhat subtle, especially in thepresence of additive type connectives. For example,a variable should appear \once" in both branches ofa case statement, which is an additive operator. Amore precise understanding of the restrictions on useand discard may be gained from reading the typingrules. In our presentation of the linear calculus, wehave not restricted reduction order completely (in con-trast to [Abr90], for example.) However, as pointedout in Section 2, the order of certain reductions mustbe determinate.Using x; y; z for term variables, and t; u; v for terms,the syntax of linear lambda terms are summarized bythe grammar given in Figure 1.All the let A be B in C constructs bind variablesin A by pattern-matching A against the result of eval-uating B, and then evaluate C. For example, considerthe term let x � y be (1 � ((�x:x)1)) in (x � y).First the subject term is evaluated (to 1� 1), then xand y are bound (both to 1), and �nally (x � y) isevaluated (in the extended context) producing a �nalresult of (1� 1).The term store u is a reusable, or delayed versionof u. The copy operation inserts multiple copies of aterm store u, while discard completely eliminatesa store u term. These copy and discard opera-tions may be implemented by pointer manipulations(implementing sharing) or by explicit copying. Theread construct forces evaluation of a store d term.The interaction between read and store is the criticalpoint where the linear calculus determines reductionorder. In other terminology, store is a wrapper orbox which is only opened when the term must be read.

term : : = x variablej let x� y be t in u bind x to car and y to cdr of t in uj (t� u) eager pair (like cons in ML or lisp)j (t u) applicationj (�x:t) abstractionj inr(t) determines right branch of casej inl(t) determines left branch of casej case t of inl(x)) u; inr(y)) v evaluate t then branchj ht; ui lazy pairj let h ; xi be t in u bind x to cdr of lazy pairj let hx; i be t in u bind x to car of lazy pairj let 1 be t in u evaluate t to 1, then become uj store u store or delay uj discard t in u throw away tj read store x as t in u evaluate t to store t0, bind x to t0j copy x@y as t in u binds x and y to tFigure 1: Grammar of the Linear Lambda CalculusThe reduction rules for linear lambda calculus aregiven in Appendix A. A linear term t reduces to a lin-ear term s if t!! s can be inferred from the linear cal-culus evaluation rules. Abramsky has demonstrateddeterminacy for a more restricted form of reductionrelation in [Abr90]. The reduction relation given inAppendix A only allows \nonlinear" reductions (in-volving the !WL, !DL, and !CL reduction rules) toapply at the \top level" of a term, in the empty con-text. However, the remaining \linear" reduction stepsmay be applied anywhere in a term. Thus reductionis neither a congruence with respect to all term for-mation rules, nor is it deterministic. With Mitschke's�-reduction theorem [Bar84] this reduction system canbe shown to be conuent on untyped terms, eventhough not all untyped terms have a normal form. Fortyped terms, the usual cut-elimination procedure pro-vides a proof of weak normalization for this reductionsystem.3.2 Typing preliminariesWe review some standard de�nitions. A type mul-tiset or type environment is a multiset of pairs xi:Aiof variables xi and linear logic formulas Ai. A typingjudgement is a type multiset �, a single linear term t,and a single linear logic formula A, separated by a `,constructed as follows: � ` t:A. A typing deductionis a tree, presented with the root at the bottom, andthe leaves at the top. Each branch of a deduction isa sequence of applications of the proof rules, some ofwhich, such as
R in seq, represent branching points

in the deduction tree, some, such as ��R, which ex-tend the length of a branch, and some, such as identity,which terminate a branch. Any branch not terminatedby identity or 1 R is called an assumption. The leavestherefore embody the type assumptions and the rootthe conclusion. Such a structure is said to be a deduc-tion of the conclusion from the assumptions. A proofis a typing deduction with no assumptions. That is, allthe branches terminate with an application or identityor 1 R. A closed linear term t is said to be linearly ty-pable if there exists some proof with conclusion ` t:Afor some linear formula A.3.3 The seq typing rulesThe �rst system we will study is called seq, therules for which are given in Appendix B. This for-mulation is due mainly to Abramsky [Abr90]. Wehave modi�ed the syntax used in the original presen-tation slightly, but the idea is the same: take the rulesfor (intuitionistic) propositional linear logic and deco-rate them with linear terms. In the system seq, cut-free derivations produce linear terms in normal form.Some derivations with cut correspond to linear termsin non-normal form, and cut-elimination steps trans-form the term, essentially performing beta-reductionand other linear reduction steps. Performing cut-elimination on an seq proof is analogous to reductionin the linear calculus, although the exact correspon-dence is somewhat complicated.

3.4 The nat typing rulesThe typing rules for the second system, called nat,are given in Appendix C. The main di�erence betweenthe two systems is that nat is more \term-driven",while seq is more \type-driven". In Section 3.6, weshow that nat is equivalent to seq for proving typingjudgements. This is not surprising since nat is basedon a Gentzen-style sequent calculus presentation ofnatural deduction for intuitionistic linear logic, whileseq is based on a sequent calculus presentation of thesame logic. The term \decorations" have been chosenin nat so that the provable sequents in these systemsare the same.In devising the nat rules from seq, we were guidedby the correspondence between intuitionistic sequentcalculus and natural deduction [Pra65, Appendix A].The main idea is to interpret sequent proof rules as in-structions for constructing natural deduction proofs.The sequent rules acting on the left determine con-structions on the top (hypotheses) of a natural de-duction proof, while sequent rules acting on the rightextend the natural deduction proof from the bottom(conclusion). The Cut rule is interpreted by substi-tuting a proof for a hypothesis. In order for this towork, the natural deduction proof system must havethe substitution property formalized by the derivedSubst rule in Appendix C.A simple example that illustrates the general pat-tern is the tensor rule acting on the left,
L. In theconclusion of the sequent rule, there is a new term vari-able z:(A
 B). However, we want natural deductionproofs to be closed under the operation of substitutingterms for variables (hypotheses). If we use Cut in asequent proof to replace z:(A
B), we end up with asequence of proof steps whose hypotheses and conclu-sion are identical to the antecedent and consequent ofthe natural deduction
L rule in Appendix C.The most unusual rule of the nat system is the !SRrule. This may be understood by considering the !SRrule of seq and remembering that when we substituteproofs for hypotheses in nat, we must still have a well-formed natural deduction proof. If we follow seq !SRwith Cut, we may use � ` t:!B and x:!B; !� ` u:A toprove �; !� ` store u[t=x]:!A. Generalizing to anynumber of Cut's, so that natural deduction proofswill be closed under substitution, we obtain the !SRrule in Appendix C. This rule may without loss ofgenerality be restricted to the case where all the �icontain some non-! type.

3.5 The nat2 typing rulesThe third and �nal system we consider is callednat2. The nat2 rules are generated from the natrules by removing the rules of Subst and !SR fromnat and replacing them with:� ` t:A x:A;� ` u:B�;� ` letcut x be t in u:B letcut!� ` t:A!� ` store t:!A !SRThe reason for the explicit syntax of letcut is thatSubst is not a derived rule of nat2, and for Theo-rem 3.2 we need some cut-like rule. These di�erenceslead to subtlely di�erent properties of nat and nat2systems. For example, since Subst is syntaxless innat, one can show that that one need not considerSubst in searching for type derivations. On the otherhand, nat2 is entirely driven by term syntax, leadingto a unique principle type theorem.3.6 Equivalence of seq and natIn Theorem 3.1 below, we prove that the two sys-tems are equivalent, that is, that any linear type judge-ment provable in seq is also provable in nat.We should emphasize that although nat and seqare equivalent in the sense that any typing judgementprovable in seq is provable in nat and vice-versa,they are not equivalent with respect to operations onproofs.Theorem 3.1 (seq equiv nat) A type sequent � `t:A is provable in seq if and only � ` t:A is provablein nat.Proof. One can show that each rule in seq isderivable in nat, and vice versa, using local trans-formations. All the right rules, identity, are the samein both systems, and Cut and Subst take the sameform. For most left rules, one may simulate the natversion of the rule in seq with one application of therule of similar name and one application of Cut. Onemay simulate the seq version of most left rules in natby using the rule of the same name and identity. Themulti-hypothesis !SR rule of nat is derivable in seqwith the use of !SR and multiple instances of Cut.One may transform instances of theCut rule in seqas applications of Subst, which is a derivable rule innat. Upon removal of Subst, one may see that Cutin seq corresponds to introduction-elimination pairsof rules in nat.

There is a somewhat looser correspondence betweennat2 and seq, than that just claimed between natand seq.A term t0 is related to a term t if t can be obtainedfrom t0 by replacing occurrences letcutx be t in vwith v[t=x].Theorem 3.2 (seq equiv nat2) Atype sequent � ` t:A is provable in seq if and only� ` t0:A is provable in nat2 for some t0 related to t.This theorem may be proven in the same manneras the above, although in some cases the extra syntaxof letcut is used in the nat2 term t0. The reason forletcut is that Subst is not a derived rule of nat2.3.7 Subformula propertiesIn this section, we demonstrate the main techni-cal di�erence between the three sets of typing rules.If we imagine searching for a cut-free proof of a typ-ing derivation, beginning with a prospective conclu-sion and progressing toward appropriate instances ofthe axioms, our search will be driven by the form ofthe term in nat2 and the form of the type in seq. Tostate this precisely, we begin by reviewing the routinede�nitions of type subformula and term subformula.A type A is a type subformula of a type B if Asyntacticly occurs in B. Similarly, a term t is a termsubformula of a term s if t syntacticly occurs in s.Lemma 3.3 (nat2 Term Subformula Property)In any proof of ` u:B in nat2, every term t that ap-pears anywhere in the proof is a subformula of u.Note that the system nat fails to have this propertybecause of the form of the !SR rule.Lemma 3.4 (seq Type Subformula Property)For any cut-free proof of ` t:B in seq, any type Athat appears anywhere in the proof is a subformula ofB.Note that the cut rule violates the subformula prop-erty, and so Lemma 3.4 does not hold of seq proofswith cut.4 Most General Linear Type4.1 Most General Types in nat and seqIn this section, we show that every linearly typableterm has a �nite set of most general types. This set

may be used to decide the set of types of the term.More speci�cally, a linear formula, A, is more generalthan another, B, if there exists a substitution � map-ping linear propositions to linear formulas such that(A)� = B. A set, S, of formulas is more general thananother, T , if every element of T is a substitution in-stance of some element of S. Given a term t, thetyping algorithm either returns a �nite set of formulasmore general than all types of t, or terminates withfailure if t has no linear type. The number of formu-las in the set of most general types is bounded by anexponential function of the number of uses of storein the term. Without store, every typable term hasa single most general type.Up to !SR, the rules of nat that are used in atyping derivation, and the order of application, aretotally determined by the syntactic structure of thelinear term. For example, if the term is a variablethen the only possible proof in nat is one use of iden-tity. If the term is �x:t, then the only possible ruleis �� R. The only freedom, except for !SR, is in thechoice of linear types for variables and the division ofa type multiset among hypotheses (in the rules withmultiple hypotheses). However, type judgements con-tain exactly the set of free variables of a term in thetype context. This property determines the divisionof a multiset among hypotheses of the rule. Thus, fornat without !SR, we may compute the most generaltyping by a simple Prolog program, obtained by trans-lating the typing rules into Horn clauses in a straight-forward manner.An example that shows the complications associ-ated with terms of the form store t is�a:�b: store ((read store c as a in c) b)which has the two incomparable nat and seq types!(!B��C)��!B��!C!(B��!C)��B��!!CThe basic idea is very similar to the example in Sec-tion 2 that involves implicit store. If a: !A, then theexpression (read store c as a in c) has type A.This gives us the two typing judgementsa: !(!B��C); b: !B ` (read store c as a in c) b : Ca: !(B��!C); b:B ` (read store c as a in c) b : !CThe common feature of these judgements is that theyboth allow us to apply ! to the expression, in the �rstcase because all of the types of free variables beginwith ! and in the second case because the type of theexpression begins with !. In nat, the two typings of

the expression with storeare derived using two di�er-ent substitutions in the !SR rule. In seq, the two typ-ings are derived using Cut to substitute into a storeexpression in two di�erent ways.Accounting for the possibility of several di�erentsubstitutions in the !SR rules (some of which are prov-ably unnecessary), all of the nat rules are straight-forward syntax-directed rules that may be translatedinto Prolog Horn clauses without complication. Thisgives us an algorithm that �nds a �nite set of mostgeneral types for each linearly typable term or (sincethe search is bounded) terminates with failure on un-typable terms.Theorem 4.1 (MGT) Every nat typable term hasa �nite set of most general types. There is auni�cation-based algorithm that, given any term, ei-ther computes a set of most general types or halts withfailure if the term is not typable.4.2 Most General Types in nat2In the simpli�ed nat2 system, !SR is replaced by asimple syntax-directed rule with no possibility of sub-stitution. Consequently, the most general type of anytypable linear term may be computed by a uni�cation-based algorithm or simple Prolog program. The fol-lowing most general typing theorem is due indepen-dently to Mackie [Mac91].Theorem 4.2 (MGT) There is a uni�cation-basedalgorithm that computes a most general linear type forany nat2 typable term t and terminates in failure onany untypable term.5 Type SoundnessIn this section we prove a technical property com-monly called \subject reduction" for both nat andseq. This property is that if linear term t has type A,and t reduces to t0, then t0 also has type A. The termt0 may also have other types; rewriting a term mayallow us to deduce more typing properties. However,if the typing rules allows us to derive some propertyof a term, this property remains as we reduce, or eval-uate, the term. Without the subject reduction prop-erty, it might be possible for a typed term to becomeuntypable during execution. In this case, we wouldconsider the type system \unsound" as a method fordetermining the absence of type errors.We prove subject reduction by considering nat �rstand then deriving the result for seq as a corollary.

The main reason that the proof is simpler for natcan be seen by comparing the ��L rule of seq withthe A (application) rule of nat. When an application(�x:t)u is �-reduced, the structure of the nat rulesguarantee that this was typed by the A rule and twas typed subject to some hypothesis about the typeof variable x. The same type may be given to t[u=x]using a substitution instance of this proof. In seq, wewould need a series of detailed lemmas giving us someinformation about the possible structure of the typ-ing proof for (�x:t)u. In particular, since the sequentrule ��L allows arbitrary substitution, the structureof the typing proof is not determined by the form ofan application.The following lemma is the key step in the inductiveproof of Theorem 5.2. It covers the case of the verygeneral !SR rule, essentially stating that for one-steplinear reduction, terms of ! type do not interact withany other terms. Note that the reduction relation!C0does not include any of the ! reductions.Lemma 5.1 If t = r[s1=x1; � � � ; sn=xn], and t !C0 uand for 1 � i � n: �i ` si: !Bithen (u=r0[s1=x1; � � � ; sn=xn] and r !C0 r0) or(9j:u=r[s1=x1; � � � ; s0j=xj ; � � � ; sn=xn] and sj !C0 s0j).Theorem 5.2 (nat Subject Reduction) If thereis a proof of ` t:A in nat, and t !! s, then thereis a proof of ` s:A in nat.Proof. Induction on the derivation t!! s.Corollary 5.3 If there is a proof of ` t:A in seq, andt!! s, then there is a proof of ` s:A in seq.The stronger property that if there is any typingproof of � ` t:A for term t with free variables, andt !! s, then there is a typing proof of � ` s:A doesnot hold. As we have seen, control over evaluation or-der is of critical importance in maintaining linear typesoundness, as the following example demonstrates.x: !A ` discard x in 1The above judgement is provable in seq, nat, andnat2, but after one step of reduction, the judgementbecomes x: !A ` 1 which is not provable in any typesystem discussed in this paper. Chirimar, Gunter, andRiecke have also noticed this failure of subject reduc-tion for open terms [CGR92].On the other hand, we do have this more generalform of subject reduction of the reexive transitiveclosure of !0 . That is, we may reduce using !0 any-where in a term and still preserve the types.

With a slight modi�cation of the systems we areworking with, an intermediate form of these subjectreduction theorems is possible. If � and � are mul-tisets, then we write � � � to mean that � may byobtained from � by removing elements or adding du-plicates. The following theorem holds in a version ofthese type systems where the restriction that everyvariable occur exactly once in binding and once in useis relaxed to the restriction that every variable occuras many times in binding as it occurs in use, and alloccurrences of a variable have the same type.Theorem 5.4 (Generalized Subject Reduction)If there is a proof of !� ` t:A in nat or seq, andt !! s, then there is a proof of !� ` s:A in nat andseq, where !� �!�.Also, a weaker form of subject reduction theoremholds for nat2. The restrictions on reduction orderare su�cient to guarantee that whenever (�x:t)u isreduced, under the conditions given in the theorembelow, t[u=x] has the same type.Theorem 5.5 If there is a proof of ` t:A in nat2,and t !! s, then there is a proof of ` s0:A in nat2,for some term s0 related to s.6 Implementation of LCWe now give an overview of a compiled implemen-tation of the linear calculus based on insights providedby these studies of type systems. This implementationis based on a modi�ed version (LTim) of the Three In-struction Machine (Tim).The Tim is an extremely simple abstract machinedesigned to facilitate lazy reduction of super combi-nator expressions [FW85, WF89, Hug84, Pey87]. TheLTim extendeds the Tim with four special combina-tors: delay, force, copy, and discard, and modi-�es some of the internal data structures of Tim to alsosupport eager evaluation and explicit storage manage-ment. The LTim implementation was pursued for tworeasons. First, it provides further evidence that thelinear calculus may be executed e�ciently. Second,it embodies a natural dual space memory model wellsuited to the execution of linear calculus terms.The key point of departure of our implementationfrom the previous implementations of the linear cal-culus is the memory model. The LTim implementstwo spaces, one linear, and one nonlinear. The ideais that objects in the linear space are purely linear,

and thus have a reference count of exactly one atall times. Objects in the nonlinear space represent\stored" or reusable entities. Little or no static infor-mation is available about reference counts of objectsin this space. The execution model we have in mindis that a ! or store instruction (corresponding to the!SR rule of linear logic) ensures that objects reside innonlinear space. Once an object is stored, it may bediscarded or copied, a discard operation removes apointer to a stored object, and a copy operation sim-ply copies a pointer to an object in nonlinear space,thus implementing sharing, or call-by-need. However,in this nonlinear space, objects can be referenced anynumber of times (including 0), requiring some formof dynamic garbage collection. In the linear space,objects are never shared; there is always exactly onereference to all objects. Thus garbage collection is notneeded, since objects in that space become garbagethe �rst time they are used, and linear objects mayalways be updated in place. In other words, in ourexecution model dynamic garbage collection is neverapplied to objects in linear space, but may occasion-ally be applied to objects in nonlinear space. Updatein place is always applicable to linear objects, but isnever applied to nonlinear objects.Other implementations of the linear calculus havee�ectively assumed a single memory space. A poten-tial disadvantage of the single memory space is thatit obfuscates the distinction between shared and un-shared objects. Lafont built an implementation ofthe linear calculus with the fantastic property thatdynamic garbage collection is never used: all termse�ectively have exactly one reference to them, andthus become garbage the �rst (only) time they arereferenced. However, Lafont avoids garbage collec-tion by copying, a rather costly implementation tech-nique [GH90]. Chirimar, Gunter, and Riecke have de-scribed an implementation which also focuses on theissue of garbage collection [CGR92]. In their imple-mentation, objects may be shared, so dynamic garbagecollection is potentially required on all objects. How-ever, the linear types of terms may be used to identifypotential times at which objects may become garbage.Their implementation does not include the additives,but is extended with a recursion operator and poly-morphism. Abramsky has described the implemen-tation of a linear SECD machine further studied byMackie [Abr90, Mac91], and went on to generalize thelinear calculus to one based on classical linear logicand described an implementation based on the chem-ical abstract machine [BB90]. Wadler [Wad91b] hasalso described several implementation issues regard-

ing the linear calculus. He points out the importanceof !(!A) being isomorphic to !A (which is true in ouroperational model), and suggests several extensions,including, for example, arrays, let! with read-only ac-cess, the removal of syntax for weakening and con-traction, etc. Wadler also discusses the separation oftypes into linear and nonlinear, giving the types dif-ferent syntax, very similar to our two memory spaces.We have considered only the extension of the linearcalculus to include recursion and arrays, essentially asmentioned by Wadler [Wad91a].Our LTim implementation does not count the ref-erences of integers, continuation frames, nor code. Inlinear logic terms, it is assumed that code, contin-uations, and and base integer values are of ! type.That is, they are reusable. However, arrays, struc-tures, and cons cells are not treated in this man-ner. Since integer values are assumed one word long,it is more e�cient to copy them, rather than shar-ing. Code is always assumed to be nonlinear, and isshared. Code is traditionally assumed to be static andreusable, and it is di�cult to imagine an implemen-tation taking much advantage of code-space freed upwhen some code is executed for the last time. Contin-uations are assumed to be nonlinear, and are shared.This (mis)management of the storage for continuationframes could be a serious de�ciency of this implemen-tation. Continuation frames contain a sequence ofpairs of pointers into code space and data. A contin-uation frame is created upon entry into every combi-nator, and must be preserved whenever a combinatorsuspends computation while control is transferred tosome other combinator. That is, whenever a combi-nator pushes a label on the argument stack, the labelcontains a pointer to the current continuation frame,and the space the current frame takes up cannot bereclaimed. However, nonlinear values in frames areoverwritten once computed (in the lazy style of theTim), and whole frames can be shared, instead of be-ing copied. The penalty for this is that some tradi-tional garbage collection mechanism must be used onframes.All other objects are handled with explicit sharinginstructions. The objects handled in this way includearrays, structures, and cons cells. These are sepa-rated into two classes: linear and nonlinear. Linearobjects are not copyable, and are never referenced bytwo pointers at the same time. In our implementa-tion all arrays (even linear ones) have elements whichare reusable (of ! type), although the arrays can beof arbitrary dimension. A nonlinear object is essen-tially handled in the a traditional way, with sharing

of pointers to the same object. That is, nonlinear ob-jects may be referenced by any number of pointerssimultaneously.7 ConclusionWe have presented a linear calculus and three typeinference systems: seq, nat, and nat2. We haveshown that seq and nat equivalent, and that nat2is closely related. We have demonstrated the exis-tence of most general types and the subject reductiontheorem. The linear calculus and very closely relatedtype systems have appeared elsewhere, perhaps mostwell known in [Laf88, Abr90].Also, we have implemented a two-space abstractmachine based on the three instruction machine whichmay be used to exploit the information available in lin-ear types to generate more e�cient code. For example,one may perform update in place on arrays in linearspace. Although the study of opportunities for updatein place in functional languages has a long history, thelinear calculus and its type systems present a logicalfoundation for this kind of \resource-conscious" com-piler optimization.References[Abr90] S. Abramsky. Computational interpretationsof linear logic. Theoretical Computer Science,1990. Special Issue on the 1990 Workshop onMath. Found. Prog. Semantics. To appear.[Abr91] S. Abramsky. Tutorial on linear logic. LectureNotes from Tutorial at ILPS, 1991.[Bar84] H.P. Barendregt. The Lambda Calculus: ItsSyntax and Semantics. North Holland, 1984.[BB90] G. Berry and G. Boudol. The chemical ab-stract machine. In Proc. 17-th ACM Symp.on Principles of Programming Languages, SanFrancisco, pages 81{94, January 1990.[Cer90] S. Cerrito. A linear semantics for allowed logicprograms. In Proc. 5th IEEE Symp. on Logicin Computer Science, Philadelphia, June 1990.[CGR92] J. Chirimar, C. Gunter, and J. Riecke. Lin-ear ML. In Lisp and Functional Programming,1992. To Appear.[FW85] J. Fairbairn and S. Wray. Tim: A simple, lazyabstract machine to execute supercombinators.In 3rd Conf. on Functional Programming and

Computer Architecture, Lecture Notes in Com-puter Science 274, New York, 1985. Springer-Verlag.[GH90] J. Guzman and P. Hudak. Single-threadedpolymorphic lambda calculus. In Proc. 5thIEEE Symp. on Logic in Computer Science,Philadelphia, June 1990.[Gir87] J.-Y. Girard. Linear logic. Theoretical Com-puter Science, 50:1{102, 1987.[GL87] J.-Y. Girard and Y. Lafont. Linear logic andlazy computation. In TAPSOFT '87, Volume2, pages 52{66. Springer LNCS 250, 1987.[How80] W. Howard. The formulas-as-types notion ofconstruction. In To H.B. Curry: Essays onCombinatory Logic, Lambda-Calculus and For-malism, pages 479{490. Academic Press, 1980.[Hug84] R.J.M. Hughes. The Design and Implementa-tion of Programming Languages. PhD thesis,PRG-40, Oxford, 1984.[Laf88] Y. Lafont. The linear abstract machine. The-oretical Computer Science, 59:157{180, 1988.[LMSS90] P. Lincoln, J.C. Mitchell, A. Scedrov, andN. Shankar. Decision problems for proposi-tional linear logic. In Proc. 31st IEEE Symp.on Foundations of Computer Science, pages662{671, 1990.[Mac91] I.C. Mackie. Lilac - a functional programminglanguage based on linear logic. Master's thesis,Imperial College, London, 1991.[O'H91] P. O'Hearn. Linear logic and interference con-trol. In 4th Conf. on Category Thoery and CS,1991.[Pey87] S.L. Peyton Jones. The Implementation ofFunctional Programming Languages. PrenticeHall, 1987.[Pra65] D. Prawitz. Natural Deduction. Almquist andWiksell, Stockholm, 1965.[Wad91a] P. Wadler. Linear types can change the world!IFIP TC 2 Conf. on Prog. Concepts and Meth-ods, 1991.[Wad91b] P. Wadler. There's no substitute for linearlogic. Draft, 1991.[WF89] S. Wray and J. Fairbairn. Non-strict languages- programming and implementation. ComputerJournal, 32(2):142{151, 1989.

A Linear CalculusThe reduction relation of interest here is!!, wherethe notation t !! u is meant to be read \t evaluatesin any number of steps to u". However, to facilitatethe de�nition, we use an auxiliary relations!0 , whichcaptures the notion of one-step linear reduction with-out ! rules, and!C0 , which denotes the congruence clo-sure of !0 . The following rules are universally quan-ti�ed over terms t; u; v; w, and variables x; y.��L (�x:v)u!0 v[u=x]
L let x� y be (s� t) in u!0 u[s=x; t=y]�L case inl(t) of inl(x)) u; inr(y)) v !0 u[t=x]�L case inr(t) of inl(x)) u; inr(y)) v !0 v[t=y]&L1 let hx; i be hv; ti in u!0 u[v=x]&L2 let h ; yi be hv; ti in u!0 u[t=y]1L let 1 be 1 in u!0 uCong t!0 vC[t]!C0 C[v]As formally stated by the Cong rule below, theabove rules may be applied anywhere in a term. The! rules, however, may only be applied to closed termsat top level.I t!! tTrans t!! u u!! vt!! vLinear t!C0 vt!! v!WL discard t in u!! u!CL copy x@y as t in u!! u[t=x; t=y]!DL t!! store v v !! wread store x as t in u!! u[w=x]

B seq Proof RulesI x:A ` x:ACut � ` t:A x:A;� ` u:B�;� ` u[t=x]:B��L � ` t:A �; x:B ` u:C�;�; f :(A��B) ` u[(ft)=x]:C��R �; x:A ` t:B� ` �x:t:(A��B)
L �; x:A; y:B ` t:C�; z:(A
B) ` let (x � y) be z in t:C
R � ` t:A � ` u:B�;� ` (t� u):(A
B)�L �; x:A ` u:C �; y:B ` v:C�; z:(A�B) `case z of inl(x)) u; inr(y)) v:C�R1 � ` t:A� ` inl(t):(A�B)�R2 � ` u:B� ` inr(u):(A�B)&L1 �; x:A ` t:C�; z:(A&B) ` let hx; i be z in t:C&L2 �; y:B ` t:C�; z:(A&B) ` let h ; xi be z in t:C&R � ` t:A � ` u:B� ` ht; ui:(A&B)!WL � ` t:A�; z:!B ` discard z in t:A!DL �; x:A ` t:B�; z:!A ` read store x as z in t:B!CL �; x:!A; y:!A ` t:B�; z:!A ` copy x@y as z in t:B!SR !� ` t:A!� ` store t:!A1L � ` t:A�; z:1 ` let 1 be z in t:A1R ` 1:1

C nat Proof RulesI x:A ` x:ASubst � ` t:A x:A;� ` u:B�;� ` u[t=x]:BA � ` u:(A��B) � ` t:A�;� ` (u t):B��R �; x:A ` t:B� ` �x:t:(A��B)
L � ` u:(A
B) �; x:A; y:B ` t:C�;� ` let (x � y) be u in t:C
R � ` u:A � ` t:B�;� ` (u� t):(A
B)�L � ` t:(A�B) �; x:A ` u:C �; y:B ` v:C�;� ` case t of inl(x)) u; inr(y)) v:C�R1 � ` t:A� ` inl(t):(A�B)�R2 � ` t:B� ` inr(t):(A�B)&L1 � ` u:(A&B) �; x:A ` t:C�;� ` let hx; i be u in t:C&L2 � ` u:(A&B) �; y:B ` t:C�;� ` let h ; yi be u in t:C&R � ` t:A � ` u:B� ` ht; ui:(A&B)!WL � ` u:!A � ` t:B�;� ` discard u in t:B!DL � ` u:!A �; x:A ` t:B�;� ` read store x as u in t:B!CL � ` u:!A �; x:!A; y:!A ` t:B�;� ` copy x@y as u in t:B!SR �i ` ti:!Bi xi:!Bi; !� ` u:A�1 � � ��n; !� ` store u[t1=x1 � � � tn=xn]:!A1L � ` u:1 � ` t:A�;� ` let 1 be u in t:A1R ` 1:1The Subst rule is derivable in the rest of the system.

