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the level of proofs, and the level of proof reduction(cut-elimination steps). Furthermore, this embeddingextends naturally to �rst-order and second-order logic[Gir87].The possibility of a dramatic improvement overGirard's embedding is raised by a recent resultin [LMSS90], establishing the pspace-completeness ofthe so-called multiplicative additive fragment mall,i.e., propositional linear logic without the modality !or its dual ? . Statman [Sta79] has shown that propo-sitional intuitionistic logic, indeed, even its purely im-plicational fragment, is pspace-complete. Hence anatural question arises whether (beyond an immedi-ate Turing reduction) there exists another \logical"embedding of intuitionistic logic into linear logic, thatdoes not rely on the modalities.Let us be realistic. One cannot hope to have such anembedding which would be too \logical", because onthe one hand, �rst-order multiplicative additive linearlogic is pspace-complete (this follows from the resultsin [LMSS90] by using methods similar to [KW84]). Onthe other hand, �rst-order intuitionistic logic is unde-cidable (this is an immediate corollary of the negativeinterpretation of classical logic in intuitionistic logicand the undecidability of classical �rst-order logic,both of which may be found, for example, in [Kle52]).Therefore it is impossible to have a desired embeddingfor �rst-order quanti�ers.Another, more subtle, obstruction to obtaining a very\logical" embedding is the discrepancy in complexityon the level of cut-elimination (normalization). Al-ready for the purely implicational fragment of propo-sitional intuitionistic logic, cut-elimination is hyper-exponential (the equivalent fact about normalizationin the simple typed lambda calculus is usually one ofthe �rst exercises in a graduate course on the sub-ject). In contrast, cut-elimination for mall is knownto be much lower, at most exponential. In fact, thisis true not just in the propositional case, but also for�rst-order and for second-order mall. The required



bounds may be extracted from the Small Normaliza-tion Theorem in [Gir87] and are also explicitly com-puted in [LS90].These results still leave open the possibility of a syn-tactic translation of propositional intuitionistic logicinto mall so that such a translation does preservecut-free proofs of a certain normal form. In this pa-per we construct such a translation. Our translationis an instance of what Girard terms an \asymmetricalinterpretation," that is, positive occurrences of for-mulas are translated di�erently from negative occur-rences [GLT89]. It can therefore only be viewed as atranslation on cut-free proofs, unlike Girard's symmet-ric translation of intuitionistic logic into linear logic.We only consider propositional systems of intuition-istic and linear logic. We use the following notationsthat are common to both the intuitionistic and linearformalisms:li; pi; qi; ri Propositional literalsA;B;C Arbitrary formulas�;� Arbitrary multisets of formulas� ` A Sequent with antecedent �and consequent AWe entirely omit the linear negation operation ofmall. Note that a sequent is represented in terms oftwo multisets, not sets, of formulas. When we speakof a formula in a sequent, we are really referring to anoccurrence of the formula. A reduction is the processof applying a rule to a sequent matching the conclu-sion of the rule in order to generate the correspondingpremises. The principal formula of the rule is thensaid to be reduced by the reduction. The occurrenceof an instance of a rule in a proof is said to be an infer-ence. The proper subformulas of a principal formulaof a rule that appear in the premises of the rule arecalled the side formulas .The main result of this paper is an e�cient embed-ding of the implicational fragment of propositional in-tuitionistic logic ( iil) in the intuitionistic fragment ofmultiplicative-additive linear logic (imall). We pro-vide a transformation of an iil sequent � to an imallsequent � so that imall proves � exactly when iilproves �. The sequents � and � are then said to beequiprovable. The system iil is given by a fairly stan-dard sequent formulation of the intuitionistic implica-tional logic shown in Figure 4. These rules are similarto those of Kleene's G3. The target system, imall, isshown in Figure 9. Note that the rules for negation, P ,and the constant 0 are absent. Since the presentationis in terms of two sided sequents, cut-elimination for

imall holds despite these omissions. Cut-eliminationis of course a crucial tool in many of our proofs.The main distinction between iil and imall is in theirtreatment of the structural rules. iil has an explicitrule of contraction and the rule of weakening is implic-itly built into the I rule. Furthermore, the principalformula of an L � rule is copied into the premise se-quents of each iil rule. imall, on the other hand,has neither contraction nor weakening, and expresslyforbids the copying of the principal formula of anyrule into a premise. What imall does allow is thesharing of the non-principal formulas between the twopremises of an additive inference rule. The cut ruleand the contraction rule of iil can be shown to beeliminable. In order to further bridge the gap betweenthese two systems, it is important to establish controlover the use of structural rules in iil proofs so that anycopying of the principal formulas into the premises ismade inessential. Consider the iil proof of the sequentl � r; (p � q) � l; (q � r) � q ` r, where � denotesl � r; (p � q) � l; (q � r) � q given in Figure 1.One clear di�culty in translating that proof intoimall is that the multiset � appears in every sequentin the proof. In imall, a formula can appear as theprincipal formula of at most one inference along anybranch of the proof. In the above proof, the copying ofthe principal formula of an inference into the premisesseems essential. The formulas (p � q) � l and l � rappear twice as principal formulas, and in both cases,these duplicate occurrences are along the same branchof the proof. We can deal with the duplicate use ofl � r by rearranging the above proof as in Figure 2.The next step is to deal with the copying of the for-mula (p � q) � l. For this purpose, we modify theL � rule of IIL to the following two rules:� ` p �; B ` CL � 1�; (p � B) ` C�; (B � C) ` (A � B) �; C ` DL � 2�; ((A � B) � C) ` DWe call the resulting system iil*. The advantage ofiil* is that there is no copying.1 An antecedent prin-cipal formula of the form (A � B) � C is replaced1Grigori Mints directed our attention to iil*. He observesthat iil* provides a direct proof-theoretic explanation for themembership in pspace of the decision problem for propositionalintuitionistic logic. Cut-free proofs in iil* have a height thatis bounded by the number of connectives in the conclusion se-quent. An alternating Turing machine can therefore generateand check the proof of a given sequent in a nondeterministicmanner within polynomial time.



�; p; q; p ` qI�; p; q ` p � qR � �; p; q; l ` lIL ��; p; q ` l �; p; q; r ` rIL ��; p; q ` r�; p ` q � rR � �; p; q ` qI L ��; p ` q� ` p � qR � �; r ` rI �; l ` lIL ��; l ` r L �� ` rFigure 1: Proof of � ` r in iil�; p; q; p ` qI�; p; q ` p � qR � �; p; q; l ` lI �; p; q; l; r ` rIL ��; p; q; l ` r L ��; p; q ` r�; p ` q � rR � �; p; q ` qI L ��; p ` q� ` p � qR � �; r ` rI �; l ` lI�; l ` r L �� ` rFigure 2: Modi�ed Proofby the simpler formula B � C in one of the premisesof the L � 2 rule. Let A;B;C; and D label the for-mulas l � r, r � q, (q � r) � q, and q � l,respectively. With these new rules, the above proofcan be transformed to an iil* proof as in Figure 3:The cut-elimination theorem holds for iil* as well.The absence of contraction and copying in iil* alongwith the restriction on weakening make it possible toembed iil* in imall. We defer the discussion of thispart of the encoding until Section 3.In summary, we provide a transformation from iil se-quents to imall sequents by transforming iil proofs.Our main result is:Theorem 1.1 iil can be embedded into imall. Theembedding preserves the structure of cut-free proofs iniil*.iil proofs are transformed by eliminating any use ofthe cut and contraction rules, by reducing the depthof any formula in the proof to two or less, permutingthe order of the rules, and modifying the L � rule soas to eliminate the need for copying. The resultingiil* proofs can then be embedded in imall.

The main result of this paper addresses the issue ofreplacing copying and reuse in intuitionistic proofsby sharing. We believe that our results contributeto the understanding of the role of linear logic asan expressive and natural framework for describingthe control structure of logic programs. Indeed, thecut-free, implicational fragment of intuitionistic logicprovides a reasonable framework for logic program-ming [MNPS90].2 Properties of IILIn this section, we present a series of lemmas aboutiil that eventually establish the eliminability of con-traction, the admissibility of weakening, and the re-dundancy of copying in iil proofs.Proposition 2.1 For any sequent � ` A appearingin any iil proof of � ` B, the multiset � is a sub-multiset of �.This conservation of hypothesis formulas in iil proofsprovides the key to the elimination of contraction asshown by Propositions 2.2 and 2.3. The size of a proofis taken to be the number of inferences in it.



A;B; p; q ` qI B; p; q; l ` lI B; p; q; l; r ` rIL � 1A;B; p; q; l ` r L � 1A;D;B; p; q ` rA;D;B; p ` q � rR � A;D; p; q ` qI L � 2A;D; (q � r) � q; p ` qA;D; (q � r) � q ` p � qR � A;C; r ` rI A;C; l ` lIA;C; l ` r L � 2� ` rFigure 3: \Linear" Proof in iil*�; pi ` piI�; A ` B� ` (A � B)R ��; (A � B) ` A �; (A � B); B ` CL ��; (A � B) ` C�; A;A ` BContraction�; A ` B� ` C �; C ` BCut� ` BFigure 4: Rules for iilProposition 2.2 Given a proof of �; A;A ` B of sizen in iil, we can produce a proof of �; A ` B of size nin iil.Proposition 2.3 Given a proof of � ` A of size n iniil, we can construct a proof of � ` A in iil of sizeno greater than n that does not employ the contractionrule.Proposition 2.4 If there is a proof of � ` A in iilthen there is a proof of � ` A in iil that does notemploy the cut rule.(See the proof for G3 in [Kle52].)Proposition 2.5 Any proof of � ` A in iil can betransformed into a proof of � ` A in iil that does notemploy the contraction or cut rules.Proposition 2.6 Given a proof of � ` B of size n iniil, we can produce a proof of �; A ` B of size n iniil.

�; pi ` piI�; A ` B� ` (A � B)R �� ` pi �; B ` CL � 1�; (pi � B) ` C�; (B � C) ` (A � B) �; C ` DL � 2�; ((A � B) � C) ` DFigure 5: Rules for iil*Proposition 2.7 Given a proof of �; A � B;B ` Cof size n in iil, we can �nd a proof of �; B ` C of sizeless than or equal to n in iil.Proposition 2.8 For all iil formulas A;B;C the se-quent (A � B) � C ` B � C is provable in iil.Proposition 2.9 Given an iil proof of �; (A � B) �C;B � C;A ` D of size n, we can construct an iilproof of �; B � C;A ` D of size no more than n.We now introduce an interesting re�nement of iilcalled iil*, and prove that cut-free, contraction-freeiil proofs are easily transformed to proofs in iil*. Theproof rules for iil* are given in Figure 5. Similar log-ics have been studied by others [Vor58, Pli65, Hud89,Dyc91].Note that the identity rule is only applicable to atomicpropositions, and that weakening is only allowed atthe leaves of a proof, i.e., at an application of iden-tity. Most important, however, is the property thatthe principal formula is not duplicated in the premisesof any of the rules in iil*.



Proposition 2.10 Given a proof of � ` B of size nin iil*, we can produce a proof of �; A ` B of size nin iil*.Lemma 2.11 Given a proof of � ` A in iil*, a proofof � ` A can be constructed in iil.Proof. By induction on iil* proofs using Proposi-tions 2.10 and 2.9.The other direction of the equivalence of iil and iil* issomewhat more complicated. We adapt an argumentdue to Dyckho� [Dyc91] to achieve this result.Consider an L � inference in an iil proof with a prin-cipal antecedent formula of the form p � A. Let � ` Cbe the conclusion sequent of the inference. The infer-ence is said to be backward if p does not occur in �.A forward proof is one with no backward inferences.These names are chosen to be reminiscent of forwardand backward chaining.Lemma 2.12 Any cut-free, contraction-free iil proof� of size n can be transformed to a cut-free,contraction-free forward proof � of size no more thann with the same conclusion as �.Proof. The proof is by induction on the size of thecut-free, contraction-free proof �.If the �nal inference in � is not a backward inference,then we have the result immediately by induction.If the �nal step is a backward inference in �, then weuse the induction hypothesis to eliminate the back-ward inferences in the subproofs of the premises. Thistransforms the proof � to the form below, where theonly backward inference is the �nal one.�1 �2... ...�; p � A ` p �; p � A;A ` C L ��; p � A ` CThe premise �; p � A ` p cannot be an axiom since pdoes not occur in �. The �nal inference in the proof�1 of �; p � A ` p must therefore be an L � inferencewhose principal formula is either of the form (D �E) � F or of the form q � B where q occurs in �. Ineither case, these inferences can be permuted belowthe �nal inference in �, as in Figure 6.In Figure 6 �02 is obtained from �2 by Proposition 2.6but has the same size as �2. The backward inferencewith the subproofs �12 and �02 is smaller than � and

we can therefore employ the induction hypothesis toeliminate the backward inference from it. The result-ing proof is therefore free of backward inferences andhas size no larger than �.The other possibility is that the principal formula is ofthe form q � B where q occurs in �. In this case theinferences permute similarly, and the resulting proofmay be seen to be forward by induction, and the factthat q occurs in �.Lemma 2.13 Given a proof of � ` C in iil, a proofof � ` C can be constructed in iil*.Proof. By Lemma 2.12, we can restrict our atten-tion to forward proofs. We proceed by induction onweight(�) for a sequent �, as de�ned in Figure 7.It is easy to show by induction on the structure of Athat if 0 < c < d, then 0 < m(A; c) < m(A; d).If the given iil proof of � ` C is an axiom, then theproof is also an iil* proof.If the �nal inference in the given iil proof is R � ap-plied to a conclusion of the form � ` A � B to gen-erate the premise �; A ` B, then this premise is ofsmaller weight. We can therefore apply the induc-tion hypothesis to the premise to get an iil* proof of�; A ` B from which the iil* proof of � ` A � B canbe completed by the R � rule of iil*.If the �nal inference in the given iil rule is L � ap-plied to a principal formula of the form p � B where� has the form �; p � B, then p must occur in �.The nontrivial premise is then �; p � B;B ` C. ByProposition 2.7, the sequent �; B ` C must also havean iil proof and since it is of smaller weight than�; p � B ` C, the induction hypothesis can be ap-plied to it yielding an iil* proof of �; B ` C. Since poccurs in �, the sequent � ` p is an iil* axiom. Therequired iil* proof of �; p � B ` C can be constructedusing the L � 1 rule with the premises �; B ` C and� ` p.If the �nal inference in the given iil proof is L � ap-plied to a principal formula of the form (D � E) � F ,where � is of the form �; (D � E) � F , then we haveiil proofs for the two premises �; (D � E) � F `D � E and �; (D � E) � F; F ` C. Proposition 2.7applied to the second premise yields an iil proof of�; F ` C to which the induction hypothesis can beapplied yielding an iil* proof of �; F ` C. Since iniil we can prove D; (E � F ) ` (D � E) � F andD; (D � E) ` E, we can use the cut rule twice withthe sequent �; (D � E) � F ` D � E to get an iil



�11 �12... ...�; p � A ` D � E �; p � A;F ` p L ��; p � A ` p �2...�; p � A;A ` C L ��; p � A ` Cbecomes�11...�; p � A ` D � E �12...�; p � A;F ` p �02...�; p � A;F;A ` C L ��; p � A;F ` C L ��; p � A ` CFigure 6: Permuting backward inferencesweight(A1; : : : ; An ` C) = m(A1; 1) + : : :+m(An; 1) +m(C; 1)m(A � B; d) = m(A; d+ 1) + (d �m(B; d)) + 1m(p; d) = dFigure 7: De�nition of weightproof of �; E � F;D ` E. The di�erence in weightbetween this last sequent and the original conclusionsequent �; (D � E) � F ` C is given in Figure 8.So the induction hypothesis yields an iil* proof of�; E � F;D ` E which by R � yields an iil* proof of�; E � F ` D � E. This last sequent with �; F ` Cyield an iil* proof of �; (D � E) � F ` C by theL � 2 rule of iil*.The lack of contraction in iil* makes this formula-tion of the sequent rules for implicational intuitionisticpropositional logic amenable to encoding into imall.3 iil* to imallAn intuitionistic linear logic sequent is composed oftwo multisets of linear logic formulas separated by a`. We assume a set of propositional atoms pi to begiven. The rules of imall are such that every deriv-able sequent contains no more than one formula inits consequent multiset. Figure 9 gives the inferencerules for the intuitionistic linear sequent calculus, withthe slight restriction that the 0 rule is omitted. Thisomission does not pose problems for cut elimination.We now give a pair of translation functions whichtransform any iil* formula into an imall formula.

The simultaneous de�nitions of [ ]+ and [ ]� given inFigure 10 can be seen to be well de�ned by inductionon the size of the formulas.For any iil* sequent � ` C we de�ne�(� ` C) �= [�]�; k ` [C]+Here [�]� stands for the result of the application of[ ]� to each element of �. Note that the \key" k ispresent in the context of the encoding of a sequent.We have chosen the notations [ ]+ and [ ]� to suggestthe interpretation of positive and negative polarity ofoccurrences.Lemma 3.1 For any iil* � and C, the sequent[�]�; k;? ` [C]+ is provable in imall.This lemma is proved by induction on the right-handdepth of C. If C = pi is a proposition, we can con-struct an imall proof as in Figure 11.In the case that C = (A � B) is an implication, weknow that B is of smaller depth than C, and we canconstruct the proof as in Figure 12.



weight(�; (D � E) � F ` C)� weight(�; E � F;D ` E)= m((D � E) � F; 1) +m(C; 1)�m(E � F; 1)�m(D; 1)�m(E; 1)= m(D; 3) + 2m(E; 2) + 2 +m(F; 1) + 1 +m(C; 1)�m(E; 2)�m(F; 1)� 1�m(D; 1)�m(E; 1)> 0 Figure 8: Example calculation of weightI A ` A � ` A A;� ` B�;� ` B Cut
L �; A;B ` C�; (A
B) ` C � ` A � ` B�;� ` (A
B) 
R��L � ` A �; B ` C�;�; (A��B) ` C �; A ` B� ` (A��B) ��R�L �; A ` C �; B ` C�; (A�B) ` C � ` A � ` B� ` (A&B) &R&L1 �; A ` C�; (A&B) ` C � ` A� ` (A�B) �R1&L2 �; B ` C�; (A&B) ` C � ` B� ` (A�B) �R2?L ? ` � `� ` ? ?R1L � ` A�; 1 ` A ` 1 1R� ` > >RFigure 9: Rules for imall[A � B]+ �= k 
 ([A]���(k��[B]+))[pi]+ �= k 
 ((pi �?)
>)[pi]� �= pi[pi � A]� �= k��(((k��[pi]+)��(k 
?))� (k 
 [A]�))[(A � B) � C]� �= k��((([(B � C)]���(k��[(A � B)]+))��(k 
?))� (k 
 [C]�))Figure 10: De�nition of translation



? `?L? ` ??R? ` pi �?�R [�]� ` >>R
R[�]�;? ` (pi �?)
> k ` kI
R[�]�; k;? ` k 
 ((pi �?)
>)Figure 11: Case one of Lemma 3.1....[�]�; [A]�; k;? ` [B]+[�]�; [A]�;? ` k��[B]+��R[�]�;? ` [A]���(k��[B]+)��R k ` kI 
R[�]�; k;? ` k 
 ([A]���(k��[B]+))Figure 12: Case two of Lemma 3.1.Lemma 3.2 For any iil* multiset � and propositionpi, the sequent [�]�; [pi]�; k ` [pi]+ is provable inimall.This lemma is proved by expanding the de�nition of[pi]+, as seen in Figure 13.In order to show that the translation is correct andfaithful, we need to show that there exists a cut-freeproof of � ` C in iil* if and only if there is a cut-freeproof of �(� ` C) in imall. We demonstrate this intwo steps below, after demonstrating how parts of ourexample iil* sequent are translated into imall.Consider the sequent �0; (p � q) � l ` r, where �0abbreviates l � r; (q � r) � q. This sequent hasthe �-translation [�0]�; [(p � q) � l]�; k ` [r]+. Bythe above de�nition, [(p � q) � l]� = k��((([(q �l)]���(k��[(p � q)]+))��(k
?))� (k
 [l]�)). In theexample iil* proof given in Figure 3, the proof of thissequent ends in an application of the L � 2 rule.The intuitive structure of the proof in Figure 14 is asfollows. The leftmost application of I and the bottom-most application of��L correspond to \unlocking" theformula of interest. The unlocked formula correspond-ing to (p � q) � l has � as its main connective. Theproof tree therefore forks, and after a simple applica-tion of 
L, the rightmost branch can be seen to be thetranslation of the rightmost branch of the iil* proof.The left main branch of the proof progresses by apply-ing the ��L rule. Here there is a choice to be made in

the way we split the context �0 among the branches ofthe proof. However, because of the form of our trans-lation, we can without loss of generality choose to keepthe entire context on the left branch. By lemma 3.1k;? ` [r]+, the upper right branch, is provable. And�nally, we see that after two applications of R � weare left with the translation of the right hand branchof the iil* proof.In fact, the encoding is such that there are essentiallyno choices to be made in the proof of the imall trans-lation that cannot be made in the proof of an iil* for-mula. For example, once a formula is unlocked withthe \key" k, no other formula may be unlocked untilthe unlocked formula is reduced completely, at whichpoint it provides another key k. We argue that thereis a proof of an iil* formula if and only if there is aproof its translation in imall.Lemma 3.3 If there is a cut-free proof of � ` C iniil*, then there is a cut-free proof of �(� ` C) inimall.This lemma is proved by induction on the height ofproof in iil*.We now introduce two propositions which simplify theother direction of the main theorem. These proposi-tions are mild alterations of lemmas used to establishthe pspace-completeness of imall [LMSS90]. The�rst proposition is only used to prove the second, and



pi ` piIpi ` pi �?�R [�]� ` >>R
R[�]�; pi;` (pi �?)
> k ` kI
R[�]�; pi; k ` k 
 ((pi �?)
>)Figure 13: Proof of Proposition 3.2....�0; (q � l) ` (p � q) ...�0; l ` r L � 2�0; ((p � q) � l) ` r+
k ` kI

...[�0]�; [(q � l)]�; k ` [(p � q)]+[�0]�; [(q � l)]� ` k��[(p � q)]+��R[�0]� ` ([(q � l)]���(k��[(p � q)]+))��R ...k;? ` [r]+k 
? ` [r]+
L��L[�0]�; ([(q � l)]���(k��[(p � q)]+))��(k 
?) ` [r]+ ...[�0]�; k; [l]� ` [r]+[�0]�; k 
 [l]� ` [r]+
L�L[�0]�; (([(q � l)]���(k��[(p � q)]+))��(k 
?))� (k 
 [l]�) ` [r]+ ��L[�0]�; k; k��((([(q � l)]���(k��[(p � q)]+))��(k 
?))� (k 
 [l]�)) ` [r]+Figure 14: iil* and imall proofs of example.the second proposition formally states that in a cut-free imall proof no lock can be opened before thereis a key available at top level.Proposition 3.4 For any atomic proposition p, andsequence � not containing the constant 1 or the con-stant 0 the sequent � ` p is not provable in imallunless � is identically p, or contains a subformula ofthe form p&A, A&p, p�A, A� p, or A��p for someformula A.Note that the clause about the constant 0 is not ac-tually needed in our formulation of imall. However,this property could be of interest outside the scope ofthis paper, and thus we state it exactly for full intu-itionistic two-sided multiplicative additive linear logic.Proposition 3.5 For any formula F which is a sub-formula of an encoding [ ]� or [ ]+ and which is notidentically k, F must be reduced below any other for-mula in any imall proof of [�]�; F ` [C]+ or [�]� `F .Lemma 3.6 If there is a proof of �(� ` C) in imall,then there is a proof of � ` C in iil*.

Proof. (Sketch) To prove this lemma, we performcut-elimination on the given imall proof, and then ob-serve that the resulting proof must be of a very specialform. In fact, an iil* proof can be directly read fromany such proof. The action of the \locks and keys"encoded by the positive and negative occurrences ofk in the imall translations forces any cut-free imallproof of a sequent to have a very speci�c form. Propo-sition 3.5 states this formally. It is exactly this sortof control over the shape of a proof which one canencode in linear logic sequents, but which is impossi-ble to encode in intuitionistic and classical logic. Theproof of this lemma proceeds by induction on the sizeof cut-free imall proof.Given a cut-free imall proof of a sequent �(� ` C), wesee which imall proof rule was applied last. Becausethe proof is cut-free, the last rule cannot be cut. Inves-tigating the forms of imall formulas which can appearin a �-translation, we see that the last proof rule ap-plied must be either ��L, 
R, or identity. However,even identity cannot apply, since k always appears onthe left in any �-translation, and k never appears attop level on the right in such a translation. Thus thereare only two cases to consider, left implication, and



right tensor.For example, consider the case when 
R is the lastrule applied in a proof, and the principal formula isof the form k 
 ([A]���(k��[B]+)). The imall proofmust then have the form:...[�]�; [A]�; k ` [B]+[�]�; [A]� ` k��[B]+��R[�]� ` [A]���(k��[B]+)��R k ` kI 
R[�]�; k ` k 
 ([A]���(k��[B]+))We know that the imall proof takes this form, sinceif any part of [�]� were to be included in the rightpremise, imall identity would not apply, and in factthere could be no proof of that branch of the proof,as stated in proposition 3.4. Also, since there is no kat top level in the left premise of the 
R rule, reduc-ing any formulas in [�]� could not lead to a proof byproposition 3.5. This reasoning applies twice, leavingus with the proof displayed above. This proof can besimulated in iil* by applying the R � rule, and thehypothesis, itself a �-translation, can be simulated byinduction.The other case of 
R and the two cases of ��L aresimilar.4 E�ciency of TransformationFor any iil sequent � we have provided an equiprov-able imall sequent �(�). This encoding into imallcould be exponential in the size of �, but if � is ofdepth two or less, then �(�) is linear in the size of�. Below we give a depth-reduction procedure whichtakes polynomial time and which produces a depth twoterm �(�) which is only linearly larger than �. Thetransformation �(�(�)) therefore provides an argu-ment for the pspace-hardness of the decision problemfor imall. The argument for membership of this prob-lem in pspace is immediate and appears in [LMSS90].The transformation from iil* to imall is e�cient inanother stronger manner. It preserves the structureof iil* proofs. The imall translation of an iil* proofis linear in the size of the given iil* proof. Note thatour transformation from iil to iil* does not necessar-ily preserve the structure of cut-free proofs in iil dueto the permutations that are needed to achieve makecopying redundant. Neither of our transformationspreserves the structure of proofs with cut.4.1 Depth Reduction in IILAn iil formula of depth one is either an atom p or hasthe form (pi � pj). A formula of depth two is one of

the form (pi � (pj � pk)), or the form ((pi � pj) �pk). Given a sequent � ` D, we de�ne �(� ` D) to bethe result of repeatedly applying any of the the set oftransformations given in Figure 15 until none of themapply.These transformations each reduce the depth of impli-cations, at the expense of building a new implication(which is also shallower than the original). Thus thissequence of reductions always terminates. Notice thatthe only kinds of formulas left after the � transfor-mation are of the form: pi; pi � pj ; pi � (pj � pk);or (pi � pj) � pk, where pi; pj ; and pk are atomicpropositions. Although all the formulas appearing arevery small, there may be many more of them. Thistechnique goes back to [Waj38], see also [Min90].The following lemma is stated, without proof, for iil.The analogous lemma holds for iil* as well.Lemma 4.1 For any iil sequent �, the iil sequent�(�) contains formulas of depth at most two, and �(�)is provable exactly when � is provable.Depth reduction, �, de�ned above takes place in poly-nomial time and the size of �(�) is linear in the sizeof � since, in the worst case, we introduce a constantnumber of new formulas for each subformula of �.5 ConclusionLinear logic has already found a number of fruitfulapplications in computing. One reason for this isthat linear logic is a well-motivated re�nement of bothclassical and intuitionistic logic. It admits a Curry-Howard isomorphism that provides a mechanism fortyping programs in such a way that intensional as-pects of the program are made explicit in its type.The sequent formulation of linear logic admits a cut-elimination theorem. An interesting aspect of cutelimination is that it is possible in linear logic to en-code constraints on the form of a cut-free proof in theconclusion sequent. Linear logic is therefore expres-sive in a manner that intuitionistic and classical logicare not. Our classi�cation of the complexity and de-cidability of fragments of linear logic highlights someof this expressiveness [LMSS90].Our embedding of the implicational fragment ofpropositional intuitionistic logic in the imall frag-ment of linear logic provides an alternative proof forthe pspace-hardness of imall. More importantly, itprovides insight into the use and elimination of thestructural rules from iil through the embedding ofiil into iil*. The system iil* is an interesting op-timization of intuitionistic logic that could be useful



�; (A � B) � (C � D) ` Z ) x � (C � D);�; (A � B) � x ` Z�; pi � ((A � B) � C) ` Z ) (A � B) � x;�; pi � (x � C) ` Z�; pi � (A � (B � C)) ` Z ) x � (B � C);�; pi � (A � x) ` Z�; ((A � B) � C) � pi ` Z ) x � (A � B);�; (x � C) � pi ` Z�; (A � (B � C)) � pi ` Z ) (B � C) � x;�; (A � x) � pi ` Z� ` (A � B) � (C � D) ) (C � D) � x;� ` (A � B) � x� ` pi � (A � (B � C)) ) (B � C) � x;� ` pi � (A � x)� ` pi � ((A � B) � C)) ) x � (A � B);� ` pi � (x � C)� ` (A � (B � C)) � pi ) x � (B � C);� ` (A � x) � pi� ` ((A � B) � C)) � pi ) (A � B) � x;� ` (x � C) � piFigure 15: De�nition of �in theorem proving and logic programming applica-tions [Mil90].A number of questions remain open. An extension ofour techniques to all intuitionistic propositional con-nectives should be investigated. On the other hand,it would be interesting to know whether there is anembedding of intuitionistic implication in imall thatpreserves the structure of all cut-free proofs. We wouldalso like to know the complexity of cut-elimination forthe system iil* with a cut rule. It is worth examiningwhat transformations such as depth reduction meanat the level of proof terms given by the Curry-Howardisomorphism, and whether there are some useful opti-mizations in the evaluation of proof terms arising fromsuch a study.We would like to thank Jean-Yves Girard, GrigoriMints, and John Mitchell for very stimulating discus-sions. We are also grateful to Grigori Mints for helpin investigating the literature.


