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Abstract

An embedding of the implicational propositional intu-
itionistic logic (11L) into the nonmodal fragment of in-
tuitionistic linear logic (IMALL) is given. The embed-
ding preserves cut-free proofs in a proof system that is
a variant of 1IL. The embedding is efficient and pro-
vides an alternative proof of the PSPACE-hardness of
IMALL. It exploits several proof-theoretic properties of
intuitionistic implication that analyze the use of re-
sources in 1IL proofs.

1 Overview

Linear logic, invented by Girard [Gir87], is a refine-
ment of classical and intuitionistic logic that provides
an intrinsic and natural accounting of resources. In
Girard’s words [Gir87], “linear logic is a logic be-
hind logic.” He provides a conservative translation
from intuitionistic logic into linear logic that is com-
positional on subformulas and subproofs. In Girard’s
translation, intuitionistic implication A = B be-
comes !A—oB |, where ! is a modality indicating
unlimited availability of a resource, and —o is lin-
ear implication. In the propositions-as-type interpre-
tation, linear implication is seen as the type of func-
tions that use their argument exactly once. Girard’s
embedding in fact covers the full spectrum of the
propositions-as-types paradigm: the level of formulas,
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the level of proofs, and the level of proof reduction
(cut-elimination steps). Furthermore, this embedding
extends naturally to first-order and second-order logic
[Gir87].

The possibility of a dramatic improvement over
Girard’s embedding is raised by a recent result
in [LMSS90], establishing the PSPACE-completeness of
the so-called multiplicative additive fragment MALL,
i.e., propositional linear logic without the modality !
orits dual ? . Statman [Sta79] has shown that propo-
sitional intuitionistic logic, indeed, even its purely im-
plicational fragment, is PSPACE-complete. Hence a
natural question arises whether (beyond an immedi-
ate Turing reduction) there exists another “logical”
embedding of intuitionistic logic into linear logic, that
does not rely on the modalities.

Let us be realistic. One cannot hope to have such an
embedding which would be too “logical”, because on
the one hand, first-order multiplicative additive linear
logic is PSPACE-complete (this follows from the results
in [LMSS90] by using methods similar to [KW84]). On
the other hand, first-order intuitionistic logic is unde-
cidable (this is an immediate corollary of the negative
interpretation of classical logic in intuitionistic logic
and the undecidability of classical first-order logic,
both of which may be found, for example, in [Kle52]).
Therefore it is impossible to have a desired embedding
for first-order quantifiers.

Another, more subtle, obstruction to obtaining a very
“logical” embedding is the discrepancy in complexity
on the level of cut-elimination (normalization). Al-
ready for the purely implicational fragment of propo-
sitional intuitionistic logic, cut-elimination is hyper-
exponential (the equivalent fact about normalization
in the simple typed lambda calculus is usually one of
the first exercises in a graduate course on the sub-
ject). In contrast, cut-elimination for MALL is known
to be much lower, at most exponential. In fact, this
is true not just in the propositional case, but also for
first-order and for second-order MALL. The required



bounds may be extracted from the Small Normaliza-
tion Theorem in [Gir87] and are also explicitly com-
puted in [LS90].

These results still leave open the possibility of a syn-
tactic translation of propositional intuitionistic logic
into MALL so that such a translation does preserve
cut-free proofs of a certain normal form. In this pa-
per we construct such a translation. Our translation
is an instance of what Girard terms an “asymmetrical
interpretation,” that is, positive occurrences of for-
mulas are translated differently from negative occur-
rences [GLT89]. It can therefore only be viewed as a
translation on cut-free proofs, unlike Girard’s symmet-
ric translation of intuitionistic logic into linear logic.

We only consider propositional systems of intuition-
istic and linear logic. We use the following notations
that are common to both the intuitionistic and linear
formalisms:

li, pi,Qi, T Propositional literals
A B, C Arbitrary formulas
3,7 Arbitrary multisets of formulas
7HA Sequent with antecedent ?
and consequent A

We entirely omit the linear negation operation of
MALL. Note that a sequent is represented in terms of
two multisets, not sets, of formulas. When we speak
of a formula in a sequent, we are really referring to an
occurrence of the formula. A reduction is the process
of applying a rule to a sequent matching the conclu-
sion of the rule in order to generate the corresponding
premises. The principal formula of the rule is then
said to be reduced by the reduction. The occurrence
of an instance of a rule in a proof is said to be an infer-
ence. The proper subformulas of a principal formula
of a rule that appear in the premises of the rule are
called the side formulas.

The main result of this paper is an efficient embed-
ding of the implicational fragment of propositional in-
tuitionistic logic ( 11L) in the intuitionistic fragment of
multiplicative-additive linear logic (IMALL). We pro-
vide a transformation of an IIL sequent o to an IMALL
sequent p so that IMALL proves p exactly when IIL
proves o. The sequents o and p are then said to be
equiprovable. The system 1IL is given by a fairly stan-
dard sequent formulation of the intuitionistic implica-
tional logic shown in Figure 4. These rules are similar
to those of Kleene’s G3. The target system, IMALL, is
shown in Figure 9. Note that the rules for negation, P,
and the constant 0 are absent. Since the presentation
is in terms of two sided sequents, cut-elimination for

IMALL holds despite these omissions. Cut-elimination
is of course a crucial tool in many of our proofs.

The main distinction between 1IL and IMALL is in their
treatment of the structural rules. 1L has an explicit
rule of contraction and the rule of weakening is implic-
itly built into the I rule. Furthermore, the principal
formula of an L D rule is copied into the premise se-
quents of each I1IL rule. IMALL, on the other hand,
has neither contraction nor weakening, and expressly
forbids the copying of the principal formula of any
rule into a premise. What IMALL does allow is the
sharing of the non-principal formulas between the two
premises of an additive inference rule. The cut rule
and the contraction rule of 1IL can be shown to be
eliminable. In order to further bridge the gap between
these two systems, it is important to establish control
over the use of structural rules in 1IL proofs so that any
copying of the principal formulas into the premises is
made inessential. Consider the 1IL proof of the sequent
IDr,(pDgq) Dl,(g Dr) D gt r, where ¥ denotes
IDr,(pDg) DI, (g Dr) D q given in Figure 1.

One clear difficulty in translating that proof into
IMALL is that the multiset ¥ appears in every sequent
in the proof. In IMALL, a formula can appear as the
principal formula of at most one inference along any
branch of the proof. In the above proof, the copying of
the principal formula of an inference into the premises
seems essential. The formulas (p D ¢) Dland ! D r
appear twice as principal formulas, and in both cases,
these duplicate occurrences are along the same branch
of the proof. We can deal with the duplicate use of
I D r by rearranging the above proof as in Figure 2.

The next step is to deal with the copying of the for-
mula (p D q) D I. For this purpose, we modify the
L D rule of IIL to the following two rules:

"kp ?,BFC,
2, o> B)FC

?,(BOC)F(ADB) ?,CFD.
7,(A>B)>C)F D

D1

D2

We call the resulting system 11L*. The advantage of
IIL* is that there is no copying.! An antecedent prin-
cipal formula of the form (4 D B) O C is replaced

1Grigori Mints directed our attention to nL*. He observes
that 11L* provides a direct proof-theoretic explanation for the
membership in PSPACE of the decision problem for propositional
intuitionistic logic. Cut-free proofs in 1.* have a height that
is bounded by the number of connectives in the conclusion se-
quent. An alternating Turing machine can therefore generate
and check the proof of a given sequent in a nondeterministic
manner within polynomial time.
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Figure 1: Proof of ¥ - r in 1L

- I
¥,p,q,pF g

S0l Spglrrr

o]

=—R
S paFpog Y,p,qlkr

LD

Y.pgkr
= R
SpFqgor "

L

|
Xpaba

Y,pkgq
SFpog ”

SrFr ST
Y,lkr

Ykr

Figure 2: Modi

by the simpler formula B D C' in one of the premises
of the L D 2 rule. Let A, B,C, and D label the for-
mulas I Dr, r Dgq, (¢ Dr) Dg and ¢ DI,
respectively. With these new rules, the above proof
can be transformed to an L* proof as in Figure 3:

The cut-elimination theorem holds for 11L* as well.
The absence of contraction and copying in 1IL* along
with the restriction on weakening make it possible to
embed 1TL* in IMALL. We defer the discussion of this
part of the encoding until Section 3.

In summary, we provide a transformation from IIL se-
quents to IMALL sequents by transforming IIL proofs.
Our main result is:

Theorem 1.1 1IL can be embedded into IMALL. The
embedding preserves the structure of cut-free proofs in
Lk,

1L proofs are transformed by eliminating any use of
the cut and contraction rules, by reducing the depth
of any formula in the proof to two or less, permuting
the order of the rules, and modifying the L D rule so
as to eliminate the need for copying. The resulting
IIL* proofs can then be embedded in IMALL.

=

fied Proof

The main result of this paper addresses the issue of
replacing copying and reuse in intuitionistic proofs
by sharing. We believe that our results contribute
to the understanding of the role of linear logic as
an expressive and natural framework for describing
the control structure of logic programs. Indeed, the
cut-free, implicational fragment of intuitionistic logic
provides a reasonable framework for logic program-
ming [MNPS90].

2 Properties of IIL

In this section, we present a series of lemmas about
IIL that eventually establish the eliminability of con-
traction, the admissibility of weakening, and the re-
dundancy of copying in IIL proofs.

Proposition 2.1 For any sequent 3 + A appearing
in any 1L proof of 7 F B, the multiset 7 is a sub-
multiset of 3.

This conservation of hypothesis formulas in 1L proofs
provides the key to the elimination of contraction as
shown by Propositions 2.2 and 2.3. The size of a proof
is taken to be the number of inferences in it.
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Figure 4: Rules for 11L

Proposition 2.2 Given a proof of 7, A, A+ B of size
n in 1L, we can produce a proof of 7, A+ B of sizen
in TIL.

Proposition 2.3 Given a proof of 7 F A of size n in
1L, we can construct a proof of 7 + A in 1L of size
no greater than n that does not employ the contraction
rule.

Proposition 2.4 If there is a proof of 7 F A in IIL
then there is a proof of 7 F A in 1IL that does not
employ the cut rule.

(See the proof for G3 in [Kle52].)

Proposition 2.5 Any proof of 7 - A in 1IL can be
transformed into a proof of 7 F A in 1L that does not
employ the contraction or cut rules.

Proposition 2.6 Given a proof of 7 + B of size n in
1L, we can produce a proof of 7, A+ B of size n in
IIL.

Proposition 2.7 Given a proof of 7,A D B,B + C
of size n in 1L, we can find a proof of 7, B+ C of size
less than or equal to n in IIL.

Proposition 2.8 For all 1IL formulas A, B, C the se-
quent (A D B) D C+ B D C is provable in IIL.

Proposition 2.9 Given an 1L proof of 7,(A D B) D
C,B D C,AF D of size n, we can construct an 1IL
proof of 7, B D C, A+ D of size no more than n.

We now introduce an interesting refinement of 1IL
called 1IL*, and prove that cut-free, contraction-free
IIL proofs are easily transformed to proofs in 1IL*. The
proof rules for 1IL* are given in Figure 5. Similar log-
ics have been studied by others [Vor58, P1i65, Hud89,
Dyc91].

Note that the identity rule is only applicable to atomic
propositions, and that weakening is only allowed at
the leaves of a proof, i.e., at an application of iden-
tity. Most important, however, is the property that
the principal formula is not duplicated in the premises
of any of the rules in mL*.



Proposition 2.10 Given a proof of 7 = B of size n
in TIL*, we can produce a proof of 7, A F B of size n
in 1IL*,

Lemma 2.11 Given a proof of 7 F A in IL*, a proof
of 7 F A can be constructed in IIL.

Proof. By induction on 1IL* proofs using Proposi-
tions 2.10 and 2.9. ]

The other direction of the equivalence of 11L and 1IL* is
somewhat more complicated. We adapt an argument
due to Dyckhoff [Dyc91] to achieve this result.

Consider an L D inference in an 11L proof with a prin-
cipal antecedent formula of the formp D A. Let 7 - C
be the conclusion sequent of the inference. The infer-
ence is said to be backward if p does not occur in ?.
A forward proof is one with no backward inferences.
These names are chosen to be reminiscent of forward
and backward chaining.

Lemma 2.12 Any cut-free, contraction-free 1IL proof
IT of size n can be transformed to a cut-free,
contraction-free forward proof © of size no more than
n with the same conclusion as 1I.

Proof. The proof is by induction on the size of the
cut-free, contraction-free proof II.

If the final inference in II is not a backward inference,
then we have the result immediately by induction.

If the final step is a backward inference in II, then we
use the induction hypothesis to eliminate the back-
ward inferences in the subproofs of the premises. This
transforms the proof IT to the form below, where the
only backward inference is the final one.

@1 92

?,pDAFD ?,;DDA,AI—CTD
7, pDAERC

The premise ?,p O A F p cannot be an axiom since p
does not occur in 7. The final inference in the proof
©; of 7,p D A F p must therefore be an L D inference
whose principal formula is either of the form (D D
E) D F or of the form ¢ D B where ¢ occurs in 7. In
either case, these inferences can be permuted below
the final inference in I, as in Figure 6.

In Figure 6 O is obtained from ©2 by Proposition 2.6
but has the same size as ®3. The backward inference
with the subproofs ©15 and ©), is smaller than I and

we can therefore employ the induction hypothesis to
eliminate the backward inference from it. The result-
ing proof is therefore free of backward inferences and
has size no larger than II.

The other possibility is that the principal formula is of
the form ¢ O B where ¢ occurs in 7. In this case the
inferences permute similarly, and the resulting proof
may be seen to be forward by induction, and the fact
that ¢ occurs in 7. [

Lemma 2.13 Given a proof of 7 = C in 1L, a proof
of 7 b C can be constructed in 11L*.

Proof. By Lemma 2.12, we can restrict our atten-
tion to forward proofs. We proceed by induction on
weight(o) for a sequent o, as defined in Figure 7.

It is easy to show by induction on the structure of A
that if 0 < ¢ < d, then 0 < m(4,c) < m(4,d).

If the given 1L proof of ? F C is an axiom, then the
proof is also an TIL* proof.

If the final inference in the given 1IL proof is R D ap-
plied to a conclusion of the form ? - A D B to gen-
erate the premise 7, A - B, then this premise is of
smaller weight. We can therefore apply the induc-
tion hypothesis to the premise to get an 11IL* proof of
?7,AF B from which the 1iL* proof of 7 - A D B can
be completed by the R D rule of 11L.*.

If the final inference in the given 1L rule is L D ap-
plied to a principal formula of the form p O B where
? has the form ¥, p D B, then p must occur in X.
The nontrivial premise is then ¥,p D B,B F C. By
Proposition 2.7, the sequent 3, B - C' must also have
an I1IL proof and since it is of smaller weight than
¥,p D B I C, the induction hypothesis can be ap-
plied to it yielding an 11L* proof of ¥, B I C. Since p
occurs in X, the sequent X F p is an IIL* axiom. The
required 1IL* proof of 3, p D B I C can be constructed
using the L D 1 rule with the premises X, B F C' and
Y Fop.

If the final inference in the given IIL proof is L D ap-
plied to a principal formula of the form (D D FE) D F,
where ? is of the form ¥, (D D E) D F, then we have
1L proofs for the two premises ¥,(D D E) O F +
D> FEand X,(D D> E) D F,FI C. Proposition 2.7
applied to the second premise yields an IIL proof of
¥, F F C to which the induction hypothesis can be
applied yielding an 11L* proof of 3, FF  C. Since in
1L we can prove D, (E D F) + (D D E) D F and
D,(D D E)  E, we can use the cut rule twice with
the sequent ¥, (D D E) D F + D D E to get an IIL
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proof of ¥, F D F,D + E. The difference in weight The simultaneous definitions of [ |* and []~ given in

between this last sequent and the original conclusion
sequent ¥, (D D F) D F + C is given in Figure 8.

So the induction hypothesis yields an 11L* proof of
¥,E D F, D+ E which by R D yields an 11L* proof of
¥,E D FF D D E. This last sequent with ¥, F' - C
yield an 11L* proof of X,(D D> E) D F + C by the
L D 2 rule of nir*.

The lack of contraction in IIL* makes this formula-
tion of the sequent rules for implicational intuitionistic
propositional logic amenable to encoding into IMALL.

3 1IL* to IMALL

An intuitionistic linear logic sequent is composed of
two multisets of linear logic formulas separated by a
F. We assume a set of propositional atoms p; to be
given. The rules of IMALL are such that every deriv-
able sequent contains no more than one formula in
its consequent multiset. Figure 9 gives the inference
rules for the intuitionistic linear sequent calculus, with
the slight restriction that the 0 rule is omitted. This
omission does not pose problems for cut elimination.

We now give a pair of translation functions which
transform any 1L* formula into an IMALL formula.

Figure 10 can be seen to be well defined by induction
on the size of the formulas.

For any 11L* sequent ? - C we define
6(? - C)E[?],kF[CTF

Here [?]~ stands for the result of the application of
[]~ to each element of 7. Note that the “key” k is
present in the context of the encoding of a sequent.
We have chosen the notations [ |* and [ ]~ to suggest
the interpretation of positive and negative polarity of
occurrences.

Lemma 3.1 For any 1uL* ? and C, the sequent
[?]7,k,— F [C]T is provable in IMALL.

This lemma is proved by induction on the right-hand
depth of C. If C' = p; is a proposition, we can con-
struct an IMALL proof as in Figure 11.

In the case that C = (A D B) is an implication, we
know that B is of smaller depth than C, and we can
construct the proof as in Figure 12.



weight(X,(D D E) D FFC) — weight(X,ED F,DF E)

m((D D E) D F,1) + m(C,1) —m(E D F,1) —m(D,1) — m(E,1)
= m(D,3)+2m(E,2)+2+m(F,1)+ 1+ m(C,1) — m(E,2) — m(F,1) — 1 —m(D,1) — m(E, 1)
> 0

Figure 8: Example calculation of weight
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Figure 10: Definition of translation
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Lemma 3.2 For any IIL* multiset ? and proposition
pi, the sequent [?]7,[p;]”,k & [pi]T is provable in
IMALL.

This lemma is proved by expanding the definition of
[p;]T, as seen in Figure 13.

In order to show that the translation is correct and
faithful, we need to show that there exists a cut-free
proof of ? - C in 11L* if and only if there is a cut-free
proof of 8(? F C) in IMALL. We demonstrate this in
two steps below, after demonstrating how parts of our
example IIL* sequent are translated into IMALL.

Consider the sequent X', (p D q¢) D I + r, where ¥’
abbreviates [ D r,(¢ D r) D ¢. This sequent has
the 6-translation [X']7,[(p D ¢q) D I]",k F [r]*. By
the above definition, [(p D ¢) D I]7 = k—o((([(¢ D
1)]”—o(k—o[(p D ¢)]*))—o(k®—))® (k®[l]7)). In the
example IIL* proof given in Figure 3, the proof of this
sequent ends in an application of the L D 2 rule.

The intuitive structure of the proof in Figure 14 is as
follows. The leftmost application of I and the bottom-
most application of —oL correspond to “unlocking” the
formula of interest. The unlocked formula correspond-
ing to (p D ¢) D ! has @ as its main connective. The
proof tree therefore forks, and after a simple applica-
tion of ®L, the rightmost branch can be seen to be the
translation of the rightmost branch of the 11L* proof.

The left main branch of the proof progresses by apply-
ing the —oL rule. Here there is a choice to be made in

the way we split the context ¥’ among the branches of
the proof. However, because of the form of our trans-
lation, we can without loss of generality choose to keep
the entire context on the left branch. By lemma 3.1
k,— F [r]", the upper right branch, is provable. And
finally, we see that after two applications of R O we
are left with the translation of the right hand branch
of the 1IL* proof.

In fact, the encoding is such that there are essentially
no choices to be made in the proof of the IMALL trans-
lation that cannot be made in the proof of an 11L* for-
mula. For example, once a formula is unlocked with
the “key” k, no other formula may be unlocked until
the unlocked formula is reduced completely, at which
point it provides another key k. We argue that there
is a proof of an 1L* formula if and only if there is a
proof its translation in IMALL.

Lemma 3.3 If there is a cut-free proof of ¥ F C in
IIL*, then there is a cut-free proof of (X F C) in
IMALL.

This lemma is proved by induction on the height of
proof in 1IL*.

We now introduce two propositions which simplify the
other direction of the main theorem. These proposi-
tions are mild alterations of lemmas used to establish
the PSPACE-completeness of IMALL [LMSS90]. The
first proposition is only used to prove the second, and
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the second proposition formally states that in a cut-
free IMALL proof no lock can be opened before there
is a key available at top level.

Proposition 3.4 For any atomic proposition p, and
sequence A not containing the constant 1 or the con-
stant 0 the sequent A + p is not provable in IMALL
unless A is identically p, or contains a subformula of
the form p& A, A&p, p® A, A® p, or A—op for some
formula A.

Note that the clause about the constant 0 is not ac-
tually needed in our formulation of IMALL. However,
this property could be of interest outside the scope of
this paper, and thus we state it exactly for full intu-
itionistic two-sided multiplicative additive linear logic.

Proposition 3.5 For any formula F which is a sub-
formula of an encoding [ ]~ or []* and which is not
identically k, F' must be reduced below any other for-
mula in any IMALL proof of [?]7,F F [C]T or [?]”
F.

Lemma 3.6 If there is a proof of 6(? F C) in IMALL,
then there is a proof of 7 = C in 1IL*.

Proof. (Sketch) To prove this lemma, we perform
cut-elimination on the given IMALL proof, and then ob-
serve that the resulting proof must be of a very special
form. In fact, an 1IL* proof can be directly read from
any such proof. The action of the “locks and keys”
encoded by the positive and negative occurrences of
k in the IMALL translations forces any cut-free IMALL
proof of a sequent to have a very specific form. Propo-
sition 3.5 states this formally. It is exactly this sort
of control over the shape of a proof which one can
encode in linear logic sequents, but which is impossi-
ble to encode in intuitionistic and classical logic. The
proof of this lemma proceeds by induction on the size
of cut-free IMALL proof.

Given a cut-free IMALL proof of a sequent 8(? + C), we
see which IMALL proof rule was applied last. Because
the proof is cut-free, the last rule cannot be cut. Inves-
tigating the forms of IMALL formulas which can appear
in a f-translation, we see that the last proof rule ap-
plied must be either —oL,;, ®R, or identity. However,
even identity cannot apply, since k£ always appears on
the left in any f-translation, and k never appears at
top level on the right in such a translation. Thus there
are only two cases to consider, left implication, and



right tensor.

For example, consider the case when ®R is the last
rule applied in a proof, and the principal formula is
of the form k ® ([A]~ —o(k—o[B]*)). The IMALL proof
must then have the form:

17, (4], k F [B]*
1, [A] F k o[BJ*

2] F[A] ok o[B]) = EFFk
17,k F k® ([A]” —o(k—[B]Y))

We know that the IMALL proof takes this form, since
if any part of [?]~ were to be included in the right
premise, IMALL identity would not apply, and in fact
there could be no proof of that branch of the proof,
as stated in proposition 3.4. Also, since there is no k
at top level in the left premise of the ®R rule, reduc-
ing any formulas in [?]~ could not lead to a proof by
proposition 3.5. This reasoning applies twice, leaving
us with the proof displayed above. This proof can be
simulated in 1IL* by applying the R D rule, and the
hypothesis, itself a 8-translation, can be simulated by
induction.

The other case of ® R and the two cases of —oL are
similar. [ ]

4 Efficiency of Transformation

For any 11 sequent p we have provided an equiprov-
able IMALL sequent 6(p). This encoding into IMALL
could be exponential in the size of p, but if p is of
depth two or less, then 6(p) is linear in the size of
p. Below we give a depth-reduction procedure which
takes polynomial time and which produces a depth two
term Z(p) which is only linearly larger than p. The
transformation 6(Z(p)) therefore provides an argu-
ment for the PSPACE-hardness of the decision problem
for IMALL. The argument for membership of this prob-
lem in PSPACE is immediate and appears in [LMSS90].

The transformation from 1IL* to IMALL is efficient in
another stronger manner. It preserves the structure
of 1IL* proofs. The IMALL translation of an 1IL* proof
is linear in the size of the given 1IL* proof. Note that
our transformation from IIL to 1IL* does not necessar-
ily preserve the structure of cut-free proofs in IIL due
to the permutations that are needed to achieve make
copying redundant. Neither of our transformations
preserves the structure of proofs with cut.

4.1 Depth Reduction in IIL

An 11L formula of depth one is either an atom p or has
the form (p; D p;). A formula of depth two is one of

the form (p; D (p; D px)), or the form ((p; D p;) D
pr). Given a sequent ? + D, we define Z(? + D) to be
the result of repeatedly applying any of the the set of
transformations given in Figure 15 until none of them
apply.

These transformations each reduce the depth of impli-
cations, at the expense of building a new implication
(which is also shallower than the original). Thus this
sequence of reductions always terminates. Notice that
the only kinds of formulas left after the = transfor-
mation are of the form: p;,p; D pj,pi O (p; D pr),
or (p; D p;) O pk, where p;,p;, and p; are atomic
propositions. Although all the formulas appearing are
very small, there may be many more of them. This
technique goes back to [Waj38], see also [Min90].

The following lemma is stated, without proof, for IIL.
The analogous lemma holds for 1IL* as well.

Lemma 4.1 For any 1IL sequent o, the 1IL sequent
E(o) contains formulas of depth at most two, and E(o)
s provable exactly when o is provable.

Depth reduction, Z, defined above takes place in poly-
nomial time and the size of Z(¢) is linear in the size
of o since, in the worst case, we introduce a constant
number of new formulas for each subformula of o.

5 Conclusion

Linear logic has already found a number of fruitful
applications in computing. One reason for this is
that linear logic is a well-motivated refinement of both
classical and intuitionistic logic. It admits a Curry-
Howard isomorphism that provides a mechanism for
typing programs in such a way that intensional as-
pects of the program are made explicit in its type.
The sequent formulation of linear logic admits a cut-
elimination theorem. An interesting aspect of cut
elimination is that it is possible in linear logic to en-
code constraints on the form of a cut-free proof in the
conclusion sequent. Linear logic is therefore expres-
sive in a manner that intuitionistic and classical logic
are not. Our classification of the complexity and de-
cidability of fragments of linear logic highlights some
of this expressiveness [LMSS90].

Our embedding of the implicational fragment of
propositional intuitionistic logic in the IMALL frag-
ment of linear logic provides an alternative proof for
the PSPACE-hardness of IMALL. More importantly, it
provides insight into the use and elimination of the
structural rules from IIL through the embedding of
IIL into IIL*. The system IIL* is an interesting op-
timization of intuitionistic logic that could be useful



7, (ADB)D(CDOD)FZ
?,piD(ADB)DC)FZ
?piD(AD(BDOC)FZ
7, ((A>B)>C)Dopi+-2Z
7, (AD(BDC)Dpi-Z
?HF(ADB)D(CDOD)
?Fp; D(AD(BD(0))
?Fp; D ((ADB)D>(0))
?HAD(BDC)) Dp;
?HF({(AD>DB)DC))Dpi
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Figure 15:

in theorem proving and logic programming applica-
tions [Mil90].

A number of questions remain open. An extension of
our techniques to all intuitionistic propositional con-
nectives should be investigated. On the other hand,
it would be interesting to know whether there is an
embedding of intuitionistic implication in IMALL that
preserves the structure of all cut-free proofs. We would
also like to know the complexity of cut-elimination for
the system 1IL* with a cut rule. It is worth examining
what transformations such as depth reduction mean
at the level of proof terms given by the Curry-Howard
isomorphism, and whether there are some useful opti-
mizations in the evaluation of proof terms arising from
such a study.
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