Appeared in JSC 1989, vol 8

Adventures in Associative-Commutative Unification

PATRICK LINCOLN and JIM CHRISTIAN *
Department of Computer Science, Stanford University, Stanford, CA, 94305, USA
lincoln@polya. stanford. edu
and
Department of Computer Science, University of Texas at Austin, Austin, TX, 78712, USA

jitmc@rascal.ics.utezas. edu

(Received March 24, 1993)

Abstract

We have discovered an efficient algorithm for matching and unification in associa-
tive-commutative (AC) equational theories. In most cases of AC unification our
method obviates the need for solving diophantine equations, and thus avoids one
of the bottlenecks of other associative-commutative unification techniques. The
algorithm efficiently utilizes powerful constraints to eliminate much of the search
involved in generating valid substitutions. Moreover, it is able to generate solutions
lazily, enabling its use in an SLD-resolution-based environment like Prolog. We
have found the method to run much faster and use less space than other associative-
commutative unification procedures on many commonly encountered AC problems.

1 Introduction

Associative-commutative (AC) equational theories surface in a number of computer sci-
ence applications, including term rewriting, automatic theorem proving, software verifi-
cation, and database retrieval. As a simple example, consider trying to find a substitution
for variables in two sets — say {a,z,c} and {c,y, b} — which makes them identical up to
reordering of elements. We can represent each set by using the constructor cons. This
gives us the two terms cons(a, cons(z,c)) and cons(c, (cons(y,b)). Now, if we declare
cons to be associative and commutative, then two axioms can be applied to determine
equality of sets:
cons(cons(z,y), z) = cons(z, cons(y, z))

*Order irrelevant. Work completed at MCC, 3500 W. Balcones Cntr. Dr, Austin, TX, 78759.



cons(z,y) = cons(y, z)

From this we can decide that substituting b for z and a for y makes both sets equal
modulo the AC axioms.



Unfortunately, the introduction of equality axioms into a system like a theorem prover
brings with it unreasonably large search spaces. The commutativity axiom above, for
instance, can be applied in an infinite sequence if it can be applied at all. Termina-
tion of systems incorporating equality axioms can often be had only by compromising
completeness.

Happily, many of the problems caused by an equational theory can be circumvented
if there exists a complete unification procedure for the theory. By relying on unification
instead of search, troublesome axioms can be removed from a system.

A complete unification algorithm for AC theories was developed several years ago by
Mark Stickel [18]. Independently, Livesey and Siekmann published a similar algorithm
for AC and ACI unification. Their procedures center around generating solutions to a
linear diophantine equation, each coefficient of which represents the multiplicity of some
subterm in one of the unificands. There are two nagging properties of this method. First,
it requires generating a basis for the solution space of the diophantine equation. Second,
there can be a large amount of search involved in actually generating solutions once a
basis is discovered.

We have found an algorithm for dealing with associative-commutative theories with-
out resorting to the solution of diophantine equations. By weakening the variable ab-
straction introduced by Stickel, most cases of AC can be solved by working only with
equations in which all coefficients are unity. The basis of solutions of such an equation
possesses a highly regular structure; this allows us to optimize the representation of the
problem and avoid spending time finding a basis. We are able instead to begin generating
unifiers almost immediately. In addition, our representation allows the incorporation of
several simple but powerful constraints in a way that is much more natural and efficient
than previous methods have allowed.

Our algorithm can solve AC matching problems (so-called “one-way unification”),
and most cases of AC unification very efficiently — in most cases, several times faster
than Stickel’s algorithm. However, if repeated variables occur in one unificand, our
algorithm may return redundant unifiers. If repeated variables occur in both unificands,
our algorithm may not terminate. In these easily detected cases, it suffices to dispatch to
some complete algorithm, like Stickel’s; the overhead in making the decision to dispatch
is negligible. Fortunately, these cases occur in only a few percent of many applications
of AC unification like Knuth-Bendix completion [12]. In some applications like database
query compilation, these cases never occur. Thus our procedure can achieve a significant
improvement in average execution speed of AC unification. Furthermore, our procedure
requires nominal space overhead for generating solutions, and is amenable to the lazy
generation of solutions required in an SLD-resolution environment like that of Prolog.

2 What is AC Unification?

Before delving into the intricacies of our unification procedure, it is reasonable at this
point to clear any misunderstanding or confusion the reader might have with respect to
AC unification and matching. In the introduction, we presented a simple example; now



we shall try to evoke a more complete appreciation for the problem. We begin with some
requisite definitions.

We suppose the existence of three sets: constants, variables, and function symbols. A
term is inductively defined:

e A constant is a term.
e A variable is a term.

e Let f be a function symbol; then f(¢y,...,t,) is a term, where ¢1, ..., ¢, are terms.

A substitution is a function from variables to terms. We shall represent a substitution
as a set of assignments, where an assignment v < ¢ maps variable v to term ¢. In order
to justify applying substitutions to arbitrary terms, homomorphic extensions of substi-
tutions are used; a substitution maps all constants and function symbols to themselves.

A term u is an instantiation of a term v if there is a substitution 8 such that u = v6.
Two terms unify modulo a theory T if there is a substitution which, when applied to both
terms, yields two terms which can be proved equal in the theory. Ordinary unification is
the special case wherein T' is empty.

An associative-commutative theory is one comprising the following axioms:

o f(f(z,y),2) = f(z, f(y,2)) (Associativity)
e f(z,y) = f(y,z) (Commutativity)

We will sometimes write t; =a¢ t2 to indicate equality of ¢£; and ¢3 modulo associa-
tivity and commutativity.

AC unification is unification modulo the theory of associativity and commutativity.
AC matching is a restricted form of unification wherein assignments are allowed to vari-
ables in only one of the unificands. That is, the resulting substitution must not assign
terms to variables from one of the unificands.

Obviously, AC-ness implies the ability to permute subterms rather arbitrarily. As an
illustration, the terms f(a, f(b,c)), f(f(a,c),b), and f(b, f(a,c)) are equal by the AC
axioms. With the introduction of variables, terms may unify in ways which might at
first seem contrived. The terms f(z,y) and f(a, z), for instance, share four unifiers. One
of them is the substitution yielded by “ordinary” unification, namely, {z < a,y « z}.
By applying the commutativity axiom, we find the unifier {y < a,z <« z}. This is not
surprising. But notice that application of the associativity axiom can cause variables to
be distributed among subterms, as in the substitution {z « f(a,v),z « f(v,y)}, where
v is a new variable. Here, a most-general common instance is f(f(a,v),y)); notice how
components of z can be found both in the subterm f(a,v) and in the subterm y. The
last unifier is {y <« f(a,v),z «— f(v,z)}.

In general, the number of unifiers for any two terms can be exponential in the size
of the terms; AC unification is NP-complete [1]. When there are only a few variables in



the unificands, however, the number of unifiers can be markedly reduced. In [18] Stickel
shows that the two terms f(z, f(z, f(y, 2))) and f(u, f(u,v)) yield 69 unifiers, while their
instantiations f(z, f(z, f(y,a))) and f(b, f(b,v)) produce only four.

3 History Of AC Unification

Mark Stickel was the first to develop a complete, terminating algorithm for AC unifica-
tion; the algorithm was initially presented in 1975 [17]. Livesey and Siekmann published
a similar algorithm in 1976 [13]. Most AC unification procedures in use today are es-
sentially modifications of that of Stickel or of Livesey and Siekmann, but a few novel
approaches have been proposed. Within the loose framework of Stickel’s method there
are two hard problems: generating a basis of solutions to linear homogeneous diophan-
tine equations, and searching through all combinations of this basis for a solution to the
given AC unification problem.

Since Gordan’s study of diophantine equations in 1873 [5], only in the last few years
has there been any significant progress made regarding the generation of their bases.
Fortenbacher, Huet, and Lankford have separately proposed a number of refinements to
Gordan’s basic method [4, 7, 12]. Recently, Zhang has discovered a class of diophantine
equations which can be quickly solved [20]. However, no published algorithm has proven
to be superior in all cases.

The extraction of solutions to AC problems given a basis of solutions to the dio-
phantine equation is also an area of concern. In the past few years Fortenbacher [4] has
proposed a method of reducing the search space by eliminating certain basis elements.
Claude Kirchner has recently developed an AC unification algorithm within the frame-
work of the Martelli-Montanari unification procedure, but, like Stickel’s, his method
requires solving diophantine equations [11, 14]. Also, Hullot invented an algorithm for
AC unification which involves ordered partitions of multisets [9]. While his algorithm
is faster than Stickel’s, it does not seem to offer nearly the dramatic speed increases we
have obtained with our procedure. We have not implemented Hullot’s algorithm, but
base our judgement on timing comparisons listed in his paper. In Germany, Biittner has
developed a parallel algorithm for AC unification [2]. The method involves linear alge-
braic operations in multi-dimensional vector spaces, but he fails to provide the details
necessary for a realistic comparison. Recently, Kapur [10] has developed an algorithm
based on Stickel’s method that uses Zhang’s equation solving technique. A paper by
Herold and Siekmann [6] pursues some issues of unification further, and the surveys by
Huet and Oppen [8] and by Siekmann [16] summarize results in related areas.

4 Stickel’s Method

In a twisted sort of way, our procedure derived from Stickel’s; so we will briefly review
his algorithm before presenting our own. In case we fail to do justice to the algorithm,
the unfamiliar reader is encouraged to look up Stickel’s paper, which is straightforward



and lucid [18].

In order to unify two terms modulo the AC axioms, three preparation steps are
necessary.

First, they are both put through a “flattening” operation which removes nested
AC function symbols, thus transforming unification in the free algebra into unifica-
tion in an Abelian Semigroup. This operation can be viewed more precisely as term
reduction by root application of the rewrite rule f(t1,...,f(s1,.- ,8m)s---ytn) —
f(t1,...,81,---,8m,---,tn). Hence, the term f(f(a,a),a, f(g(u),y,z)) will be flattened
to f(a,a,a,g(u),y,z), while f(a, f(b,g(c)), f(y,y),z) will be changed to
fla,b,9(c),y,y,2). The validity of the flattening operation is guaranteed by the associa-
tivity axiom, which implies that nesting of AC function symbols is largely irrelevant.

After flattening terms, the next step is to remove subterms which occur in both
unificands. For instance, after deleting duplicate subterms from f(a,a,a, g(u),y, z) and
f(a,b,9(c),y,y, z) we obtain the terms f(a,a,g(u),z) and f(b,g(c),y, z), specifically by
removing one occurrence of a and one occurrence of y from each.

The final preparation step is to generalize each term, replacing each distinct argu-
ment with a variable. So f(a,a,g(u),z) will be generalized to f(z1,z1,z2,z3), and

f(b,g(c),y, 2) is generalized to f(y1,y2,y3,ya).

Now we get to the crux of the procedure. The goal is to construct a linear diophan-
tine equation — that is, a linear equation with non-negative integer coefficients — where
a coeflicient corresponds to the multiplicity of one of the variables in the generalized
terms. More accurately, given generalized terms ¢; with variables z1, ..., z,, and ty with
variables y1, ..., Yn, we set up an equation c;z1 +...+¢cmxTm = d1y1+...+dpy,. Eachc;
is an integer equal to the number of times z; occurs in ¢;, while d; represents the multi-
plicity of y; in t5. So the equation associated with the generalized terms f(z1, 21, 2, z3)
and f(y1,Y2,Y3,Ya) is 221 + T2 + T3 = y1 + Y2 + Y3 + Ya.

The motivation for constructing a diophantine equation is not hard to grasp. For each
assignment made by the unification algorithm of a term to a variable, the term must be
present in both unificands an equal number of times; thus, unifying substitutions can
be represented as solutions to the corresponding diophantine equation. The next step
toward producing solutions is to generate a basis for the diophantine equation, which
enables the systematic construction of solutions. We will not be concerned here with the
procedure for finding a basis, except to say that we prefer Lankford’s algorithm for most
common equations (that is, those with small coefficients) [12]. After generating the basis,
a new variable z; is associated with each vector v; in the basis. So, from the equation
2z1 + 2 + 3 = Y1 + Y2 + ys + y4, we produce the variable-labeled basis in Table 1.

Now, unifying substitutions are generated by picking certain subsets of the basis
vectors and summing them. If we choose basis vectors 2, 4, 7, and 9 from Table 1, we
remove all other basis vectors, and consider only the chosen vectors, as in Table 2.

So for each z and y, we construct a substitution by reading down that variable’s
column. For instance, looking at z1, we see that its substitution involves only zg, {1 «—
f(z9)}. If a term’s substitution only contains one element, as does z;, we simply write



—
)
~|
R R RN I R S R RN K R B B B B B =t I et
DaZZZZZZZZZZlZlZlhzzzzz
Il |le|le|—|lele|le|N|—H|lo|—|o|o|~|o|o|e
Sle—|lolelo|-|lole|le|=|a|e|=|o|o|-|o|e
Slelo|-lolo|lo|-|e|le|lelo|—|~|n|o|o|=|o
Slelelo|-lolo|ol—lo|lo|e|e|o|o |||~ |~
MllllUUUOOOOOUUUUUO
MUUUUIIIlUUUUUUUUUU
—
Sooc|o|o|o|o|o | [ [ [ [ [ || |||
]
-
2
O | | [ |t 10 [ |~ |00
m123456789111111111
4

Y1+ Y2 +ys+ya

Table 1: Basis for 2z1 + 25 + 23

Label

22

24

27

29

Y4

Y3

Y2

Y1

T2 T3

2z

Number

Y1+ Y2 +ys+ya

Table 2: Selected Basis Vectors for 221 + 2o + 23



{z1 « z9}. More exactly, for each coefficient c; in a basis vector v;, the corresponding
variable z; is assigned c; times to the corresponding variable in the generalized terms,
for each c¢; in the chosen solution. To continue the example, the full substitution is
{z1 — 29,22 — 27,23 — f(22,24),y1 — 24,Y2 < 27,Y3 — 22,Ya — f(29,29)}. Note that
since there is a 2 in y4’s position of vector vg, 29 we assign zg twice to ya, {ys — f(29,29)}.

The final step of the algorithm is to unify variables in the generalized terms with
their counterparts in the original terms. So, supposing we started with the terms
f(a,a,g(u),z) and f(b, g(c),y, z), the unifying substitution resulting from choosing basis
vectors 2, 4, 7, and 9 would be (after simplification) {z «— f(b,y),g(u) — g(c),z «
f(a,a)}. Note that the substitution g(u) < g(c) would require recursive unification of
terms, which would produce the substitution u « ¢. This happens to be a valid substi-
tution, which would be returned as one of the solutions to the original AC unification
problem.

Stickel briefly mentioned some obvious optimizations to the above algorithm in his
original paper, and Fortenbacher [4] has described some of these in detail, with formal
justification. Below we give a quick review of some of the more important constraints
used in actual implementations.

Notice that, given n basis vectors, there are potentially 2" solutions; however, there
are ordinarily a number of constraints on the solution space which reduce this number
considerably.

First, any basis vector which would force the unification of distinct constants can be
eliminated from the basis. In Table 1, the basis vectors 15, 16, 17, and 18 can never be
used in valid substitutions, since they each will require some unification of one constant
a with another, b. In this case eliminating these vectors reduces the search space by a
factor of 16. Also, vectors 8, 12, 13, and 14 would force unification of a constant with
a functional term headed by g, which must fail. Removing these and the above vectors
reduces the search space from over 262,144 to 1,024. Any basis vectors which has non
unit coefficients for variables representing constants or functional terms can be eliminated
since the use of that basis element would force the unification of, say, a constant with
something of the form f(z1,22). Basis vectors 14 and 18 from the above example could
thus be removed, if they were not already invalidated by other constraints. Finally, any
terms headed by distinct ununifiable function symbols can never be unified, and so any
basis which would require this kind of unification can be eliminated from the set of basis
elements.

During the construction of unifiers from subsets of basis elements, similar constraints
apply. Consider that each variable in the generalized term must be assigned to something.
Thus combinations of vectors which sum to zero in any column will not yield valid unifiers.
Also consider that any combination of basis vectors which assigns more than one z; to
a variable which is associated with a constant in the original term is invalid, since a
constant can not be unified with a term of the form, say, f(z;, z;). Furthermore, as soon
as we notice that we have chosen a combination of vectors which would cause a clash
of any type, we can abort that combination and try another, instead of waiting until
an entire substitution is complete before checking its consistency. Also, Stickel implies
that all the unifications be completed as the last step in his procedure. It turns out that



much of this unification work can be performed early, resulting in less total unifications,
although this is of marginal utility if only one unifier at a time is desired, due to the space
overhead of retaining early unification results. Fortenbacher also tries to take advantage
of early failures in a similar manner. In any realistic implementation of AC unification,
these types of constraints must be enforced.

5 Our Method

As previously mentioned, there are two basic difficulties with algorithms based on
Stickel’s approach. First, generation of a basis for a diophantine equation is an expen-
sive operation. Second, given a basis, the search which must be performed to produce
solutions can be very expensive. It is thus necessary to enforce many non-trivial con-
straints [4, 19]. Stickel, Kapur, and others have implemented quite impressive constraints
on the generation of solutions which tame this search problem. However, these efficient
implementations “require a less pure conceptual abstraction” [19] than other techniques
might. For example, efficient implementation of Stickel’s algorithm requires discovery of
basis elements of Diophantine Equations “with the additional constraints that certain
variables cannot have a value greater than one and that, for certain pairs of variables,
only one of them can be nonzero” [19].

We believe that our novel representation facilitates a much cleaner conceptual ab-
straction of constraints on AC unifiers than do previous methods, and thus enables our
algorithm to exploit powerful constraints in a very natural and efficient way. The main
contribution of our representation is that it allows us to avoid solving Diophantine equa-
tions in most cases. In particular, whenever there are no repeated variables in either
term, no diophantine equations need be solved. In other cases it is often, though not
always, necessary to solve a diophantine equation.

5.1 Slaying the Diophantine Dragon

The observation that certain classes of Diophantine equations have very simple solutions
is not new. Zhang’s diophantine equation solving technique is based on a similar notion; if
there are several unit coefficients in a diophantine equation, a complete basis of solutions
to that equation can be generated from the basis of a much simpler equation [20]. We
have gone further in our specialization, restricting our attention to equations which have
only unit coefficients. It turns out that we are able to force many AC unification problems
which do not appear to generate equations with unit coefficients into a form which can
be solved using our technique. In fact, it is only those AC unification problems with
repeated variables which we cannot completely solve in general.

The preparation phase of our algorithm is very similar to previous approaches. First,
both terms are put through the flattening operation described above. Then duplicate
subterms are removed pairwise from both unificands, and subterms are sorted so that
atomic constants are grouped together, followed by function terms, followed by variables.
For instance, f(a, g(u),a,y,a,z) would be sorted to produce f(a,a,a,g(u),y,z).



Number 1 T9 T3 T4 Y1 Y2 Y3 Y4 Label
1 0 0 0 1 0 0 0 1 z1
2 0 0 0 1 0 0 1 0 z2
3 0 0 0 1 0 1 0 0 z3
4 0 0 0 1 1 0 0 0 24
5 0 i} 1 0 0 0 0 1 25
6 0 i} 1 0 0 0 1 0 26
7 0 i} 1 0 0 1 0 0 27
8 0 i} 1 0 1 0 0 0 28
9 0 1 0 0 0 0 0 1 29
10 0 1 0 0 0 0 1 0 210
11 0 1 0 0 0 1 0 0 211
12 0 1 0 0 1 0 0 0 212
13 1 0 0 0 0 0 0 1 213
14 1 0 0 0 0 0 1 0 214
15 1 i} i} 0 0 1 0 0 215
16 1 i} i} 0 1 0 0 0 216

Table 3: Basis for 1 + 2o + T3 + T4 = y1 + Y2 + Y3 + ya

Now, our generalization step differs from others, in that we assign a distinct vari-
able for each argument. Thus, while Stickel’s algorithm would convert the f(a,a,g,z)
to f(X1, X1, Xe, X3), ours will produce f(X1, X2, X3, X4). Effectively, we convert the
problem of solving the unification problem f(zi,...,2Zs) = f(y1,...,¥ys) into the equiv-
alent conjunction of problems f(Xi,...,X,) = f(V1,...,.Yo) Az = Xa Ao Az =
XmAy1 =Y1A... ANy, =Y,, where the X; and Y, are distinct variables, and the z; and
and y; are subterms of the original equation.

Notice that the diophantine equation corresponding to any pair of such generalized
terms will have only unit coefficients. Such an equation has a nice property, as stated
in theorem 1. To illustrate, the equation z; + 2 + 3 + 4 = y1 + y2 + y3 + y4 has the
solution basis shown in Table 3.

Theorem 1 Given a diophantine equation of the form x1 + ...+ xpy =y1 + ...+ Yn, the
minimal solution basis is that set of solutions such that, for each solution, exactly one
z; has value one, exactly one y; has value one, and all other variables have value zero.
Also, the number of basis solutions is nm.

Proof: See Section 6. O

Knowing that the basis has such a nice, regular structure, we need not explicitly
generate it; for, given only the respective arities of the generalized unificands, we can
immediately construct a two dimensional matrix, where each column is labeled with
an z;, and each row is labeled with one of the y;. Each entry ¢,j in the matrix is a
boolean value, that corresponds to a new variable, z; j, which represents the solution
vector which assigns a one to z; and y;. Thus every true boolean value z; ; in a solution
matrix corresponds to one basis element of the solution of the diophantine equation. Any
assignment of true and false to all the elements of a matrix represents a potential solution



1 T2 3 T4
Y1 21,1 21,2 21,3 21,4
Y2 22,1 22,2 22,3 22,4
Y3 23,1 23,2 23,3 23,4
Y4 | 241 24,2 24,3 | 24,4

Table 4: Matrix representation of basis for z1 + z2 + 23 + T4 = y1 + y2 + Y3 + 4

a a g(u) z
T1 z2 T3 T4 c| T v
b y1 | 211 | 212 | 213 | 214 clo]o s
g(c) | ya | 221 | 222 | 223 | 224 T|o0o]|dH| <
y Y3 | 231 | 23,2 | 233 | 234 V| 1]1] any
z Ya | 241 | za2 | 243 | 244

Table 5: Matrix for a simple problem and some constraints

to the AC unification problem in the same way that any subset of the basis elements of
the diophantine equation represents a potential solution to the same AC problem.

For instance, suppose we are given the (already flattened) unificands f(a,a, g(u), z)
and f(b,g(c),y, z). Substituting new variables for each argument, we obtain
f(z1, 22,23, 24) and f(y1,y2,ys,ys). The associated solution matrix is displayed in Ta-
ble 5.

In our implementation, we do not create the entire n by m matrix; rather, we will
utilize a more convenient and compact data structure. But for now, let us pretend that
the matrix is represented as a simple 2-dimensional array. As we will demonstrate below,
the matrix representation is inherently amenable to constraining the search for unifiers.

5.2 Constraining Search

Remember that unificands are sorted in the preparation step of our algorithm. Hence,
a given solution matrix comprises nine regions, illustrated in Table 5. In the table, C,
T, and V stand, respectively, for atomic constants, functional terms, and variables. An
entry in the lower left region of the matrix, for instance, corresponds to an assignment
in the (unprepared) unificands of a constant in one and a variable in the other.

As Table 5 indicates, there are several constraints on the distribution of ones and
zeros within a solution matrix. First, notice that there must be at least one non-zero
entry in each row and column of a solution matrix, so that all variables in the generalized
terms receive an assignment. The upper left corner involves assignments to incompatible
constants (since we have removed duplicate arguments from the unificands, no constants
from one term can possibly unify with any constant from the other term). This part
of any solution matrix, then, must consist only of zeros. Similarly, the C/T and T/C
regions of a solution matrix must contain all zeros. The C/V region is constrained to



a a u T
1 | Z2 gz(‘g) Ta Unifying substitution:
GASSE SR L L z o f(b,9)
g(c) | y2 | O 0 1 0 z — f(a,a)
y Y3 0 0 0 1 U c
z ya | 1 1 0 0

Table 6: A solution to the matrix

have exactly a single one in each column, since any additional ones would cause the
attempted unification of a functional term, say f(z1.1,21,2), with a constant. Similarly,
any T row or T' column must contain exactly one one. Finally, the V/V region of a
matrix can have any combination of ones and zeros which does not leave a whole row or
column filled only with zeros.

5.3 Generating Solutions

Once a unification problem has been cast into our matrix representation, it is not a
difficult matter to find unifying substitutions. The approach is to determine a valid
configuration of ones and zeros within the matrix, perform the indicated assignments to
the variables in the generalized terms, and finally unify the arguments of the original
unificands with their variable generalizations.

Consider the matrix in Table 5. We know that location (1,1) must be zero, since it
falls within the C'/C region of the matrix. Likewise, (1,2), (1,3), (2,1), and (2,2) must
always be zero. In fact, the only possible position for the required one in the y; column
is at (1,4). Filling out the rest of the matrix, we arrive at the solution shown in Table 6
after assigning the nonzero z; ;’s to the z and y variables, and then unifying the variables
with the original unificand arguments, we obtain the substitution shown beside Table 6
g(u) < g(c) produces {u < c}. In general, such recursive unifications can involve full
AC unification.

5.4 Lazy generation of solutions

In other AC unification algorithms, the overhead in storing and restoring state in the
midst of discovering AC unifiers is prohibitive. Thus most other algorithms generate all
solutions to an AC unification problem at once. But in some contexts it is desirable
to return only one solution, and to delay discovery of additional unifiers until they are
demanded. Using our technique, as each unifier is generated, the matrix configuration
can be stored, and search suspended. If an additional unifier is demanded, it can be
generated directly from the stored matrix representation.

Since we can implement certain parts of the matrix as a binary representation of
a number, simple counting in binary is all that is required for complete enumeration.
Thus assuming that we are in an SLD-resolution framework, the information necessary



to generate the next solution can be represented as a sequence of binary numbers. Upon
backtracking, the binary representation is incremented, and checked for a few simple
constraints. If the constraints are satisfied, the binary numbers are stored and the unifier
is constructed and passed along.

The matrix can be represented very compactly, since most regions within it are sparse.
With each column or row, associate a counter; the value of the counter represents which
entry within a row or column contains a one. The variable-variable region cannot be rep-
resented so compactly, however, since nearly any assignment of ones and zeros is possible.
Additional information can be maintained along with the matrix data structure, such as
a tally of variable assignments up to the current point of the assignment procedure, and
auxiliary data structures to keep track of repeated arguments.

An important advantage of this approach to generating solutions is that it allows
early detection of failure; as soon as an inconsistent state is discovered, the procedure
can abort the state, effectively pruning entire branches of the search tree.

5.5 Repeated terms

Until now, we have assumed that all arguments within a unificand are distinct. However,
this is not necessarily the case for AC unification. In practice, repeated terms occur in-
frequently; Lankford, for instance, has found that more than 90 percent of the unification
problems encountered in some completion applications involve unificands with distinct
arguments. Nevertheless, the ability to handle repeated arguments is certainly desirable.

Our algorithm can easily be adapted to handle repetitions in constants and functional
terms in either or both unificands, but repeated variables are more difficult to manage.
If they occur in a single unificand, our algorithm is complete and terminating, but may
return redundant unifiers. Although the set of unifiers returned by Stickel’s algorithm
is similarly not guaranteed to be minimal, in many cases our algorithm generates many
more redundant unifiers than would Stickel’s. If a minimal set of unifiers is required, it
suffices to simply remove elements of the non-minimal set which are subsumed by other
unifiers in the set.

If repeated variables occur in both unificands, our algorithm might generate subprob-
lems at least as hard as the original, and thus may not terminate. Stickel’s algorithm can
be employed whenever repeated variables are detected; the overhead involved in making
this decision is negligible. Thus in the worst cases we do simple argument checking,
and dispatch to Stickel’s algorithm. We have several methods of minimizing the use of
Stickel’s algorithm but we have not yet discovered a straightforward, general method.
In section 6 we prove that our procedure does indeed terminate with a complete set of
unifiers whenever variables are repeated in at most one of the unificands.

Assuming no repeated variables in one term, our algorithm can handle arbitrary
repetitions of constants and functional terms. But before disclosing the modification to
our algorithm which facilitates handling of repeated arguments, we show with a simple
example why the modification is needed. Suppose we wish to unify f(a,a) with f(z,y),
which is a subproblem of the earlier example. Without alteration, our algorithm as



Table 7: Redundant matrix configurations for f(a,a) = f(z,y)

so far stated will generate the two configurations shown in Table 7. While the matrix
configurations are distinct, they represent identical unifying substitutions — namely {z «
a,y — a}.

The solution to this problem is surprisingly simple. In short, whenever adjacent rows
represent the same term, we require that the contents of the upper row, interpreted
as a binary number, be greater than or equal to the contents of the lower row. A
symmetric restriction is imposed on columns. Obviously, the information that a variable
x; corresponds to a repeated constant or term must be recorded in some auxiliary data
structure in a realistic implementation.

5.6 An Algorithm for Associative-Commutative Unification

Until now, we have concentrated almost exclusively on the matrix solution technique
which lies at the heart of our AC unification algorithm. Following is a statement of
the unification algorithm proper. This will serve, in the next section, as a basis for
results involving the completeness and termination of our method. The algorithm is
presented as four procedures: AC-Unify, Unify-With-Set, Unify-Conjunction, and
Matrix-Solve.

Procedure AC-Unify: Given two terms z and y, return a complete set of unifiers for the
equation r =4c y.

Step 1 If z is a variable, then see if y is a functional term and z occurs in y. If both are true,
return fail. Otherwise, return {{z «— y}}, unless ¢ = y — in that case, return the null
substitution set {{}}.

Step 2 If y is a variable, then see if y occurs in z. If it does, return fail. Otherwise, return
{{y < =}}.

Step 3 If z and y are distinct constants, return fail.

Step 4 If z and y are the same constant, return {{}}.

Step 5 At this point, z and y are terms of the form f(z1,...,z,) and g(y1,...,yn). If f # g,
return fail.

Step 6 If f is not an AC function symbol, and m = n, then call procedure Unify-With-Set with
the substitution set {{}} and the conjunction of equations 1 =ac y1 A ... A Zn =4C Yn,
and return the result. If m # n, return fail.

Step 7 Flatten and sort z and y, if they are not already flattened and sorted, and remove argu-
ments common to both terms. Call the resulting terms £ and g, respectively.
Assume £ = f(z1,...,z;) and § = f(y1,...,yx). Set up the conjunction of equations
f(Xl, AU X]') =AC f(Y1, RV Yk)/\X1 =4ac T1A.. . ANX; =40 £;AY1 =40 Y1 . . NYy =40
yr, where the X; and Y; are new, distinct variables. Call this conjunction E.



Step 8 Let T be the result of applying Matrix-Solve to the conjunction E. If T = fail, return
fail.

Step 9 Call procedure Unify-With-Set with the set of substitutions 7" and the conjunction of

equations X1 =4c 1 A...ANX; =ac zj AY1 =ac y1 N ... NYy =ac Yk, and return the
result.

Procedure Unify-With-Set: Given a set of substitutions 7" and a conjunction of equations F,
return U9GT CSU(OE), where CSU(X) is a complete set of unifiers for X.

Step 1 Let S = {}.

Step 2 For each € T, set S to SU {UU_EZ{GUUj}}, where Z is the result of applying procedure
J
Unify-Conjunction to E6.

Step 3 Return S.

Procedure Unify-Conjunction Given a conjunction of equations £ = e; A ... A e,, return a
complete set of unifiers for E.

Step 1 . Let V be the result of calling procedure AC-Unify with e;. If n = 1, return V. If
V = fail, return fail.

Step 2 . Call procedure Unify-With-Set with the set of substitutions V' and the conjunction
ea A ... A ey, and return the result.

Procedure Matrix-Solve Given a conjunction of equations f(Xi1,...,Xm) =ac f(Y1,...,Yn)A
X1 =acziN...NXm =ac Tm ANY1 =ac Y1 A...ANY, =ac yn, where the X; and Y; are distinct
variables, determine a set of substitutions which will unify f(Xi,..., Xm) with f(Y1,...,Ys).

Step 1 Establish an m-by-n matrix M where row i (respectively column j) is headed by X; (Yj).

Step 2 Generate an assignment of 1s and Os to the matrix, subject to the following constraints.
If z; (y;) is a constant or functional term, then exactly a single 1 must occur in row ¢
(column 7). If z; and y; are both constants, or if one is a constant and the other is a
functional term, then MTi, j] = 0. Also, there must be at least a single 1 in each row and
column. Finally, if ; = z;41 for some i, then row 7 interpreted as a binary number must
be less than or equal to row i + 1 viewed as a binary number. (Symmetrically for y; and

Yi+1-)
Step 3 With each entry Mz, j], associate a new variable z; j. For each row i (column j) construct
the substitution X; «— f(zij,,...,2ij,) where M[i,5i] = 1, or X; «— 2z, if & = 1.

(symmetrically for Y;).

Step 4 Repeat Step 2 and Step 3 until all possible assignments have been generated, recording
each new substitution. If there is no valid assignment, return fail.

Step 5 Return the accumulated set of substitutions.

When there are repeated variables in both unificands, it is possible that our algorithm
will not terminate. For example, in the unification of f(z,z) with f(y,y) one of the
recursive subproblems generated is identical (up to variable renaming) to the original
problem. However, as we prove in the next section our algorithm is totally correct in
other cases.



6 Theorems and Such

The intent of this section is to convince even skeptical readers of the viability of our
method. Thus we will attempt to establish somewhat carefully the correctness, com-
pleteness, and termination of our algorithm for AC matching and unification.

6.1 Partial Correctness

We demonstrate here that, whenever our algorithm terminates, it returns a complete set
of unifiers if one exists. We begin by establishing the soundness of certain steps of the
algorithm, and then show that each step of the algorithm preserves completeness.

Stickel showed in his paper that like arguments in unificands can be removed without
affecting correctness or completeness. We state his theorem here without proof.

Theorem 2 (Stickel) Let s1,...,5m,t1,...,tn be terms with s; = t; for some i,j. Let
0 be a unifier of f(s1,...,8m) and f(t1,...,tn) and o be a unifier of
f(s1,.--,8i—1,8ix1,---,8m) and f(t1,...,tj—1,tj41,...,tn). Then 6 is a unifier of
f(s1,--.,8i—1,Sit1,---58m) and f(t1,...,tj_1,tj+1,...,tn), and o is a unifier of
f(s1,...y8m) and f(t1,...,tn).

The following lemma justifies the variable generalization step of our algorithm.

Lemma 1 Lett; = f(z1,...,%Zm) and t2 = f(y1,...,yn), and let S be the conjunction
of equations f(X1,...,Xm) =ac f(V1,--,Yn) A 21 =ac X1 A...AN &y =4ac
X N y1=acYs AN...N y, =ac Yy, where the X; and Y; are distinct variables. Let
c=X1—z1,...,. Xm — 2, Y1 —y1,.. ., Yn — Yn. (1) If 0 is a unifier for the equation
t1 =ac t2, 0o is a unifier for S. (2) Let ¢ be a unifier for S. Then ¢ is a unifier of t
and ts.

Proof: (1) Obviously o is a valid substitution, since the X; and Y; are variables.
Applying o to t1 and t2, we obtain the equation for which 6 is a unifier. (2) ¢
applied to S must make both terms in any pair (X;,z;) or (Yi,y;) equal, since ¢
is a unifying substitution. Hence we may substitute equals for equals and produce
the equation ¢t1 =ac ¢t2, which is no more general than the equation t1 =4c t2.
So ¢ must be a unifier of ¢1 and ¢2. O

Certainly, if we have a complete unification procedure for S, then we can generate a
complete set of unifiers for ¢; and ¢5. Lemma 1 tells us that if 8 is a unifier of ¢; and t»,
then there exists an equivalent unifier o for S. Assuming the unification procedure is
complete, 8o must be an instance of a unifier returned by the procedure. So we can find
all most general unifiers of ¢; and ¢3 by determining those for S.

The next lemma is due to Huet; it’s proof can be found in his paper [7].



Lemma 2 (Huet) Let ai®1,...,0mTm = b1y1, ..., bnyn, and let (z,y) € N™ x N™ be
a minimal solution. Then, for any z; in ¢, z; < maz(by,...,b,) and, for any y; in y,
yi <maz(ay,...,am).

As noted before, the diophantine equation associated with the equation
f(X1,...,Xm) = f(Yh,...,Y,), where each X; and Y; is a distinct variable, is simply
Xi+...+ X, =Y +...4Y,. Since all coefficients have unit value, we know by Huet’s
lemma that all components of any basis vector can have a value of either zero or one.
Naturally, any basis vector must assign the value 1 to the same number of X; as Y;.
Also, it is clear that any vector which assigns a 1 to exactly one X; and one Y} is a basis
solution to the equation; call such a solution special. Now, any solution vector which
assigns 1 to more than a single variable on each side of the equation is reducible by some
special vector, since we can select some pair of ones within such a vector and produce a
special vector. So only the special vectors are basis vectors, and there are mn of them.
This establishes Theorem 1, stated earlier.

The point of all this is simply that our matrix representation is indeed a valid way
in which to cast the problem of AC unification. An AC unification problem can be
converted to one in which we need only worry about diophantine equations with unit
coefficients. This yields a special case of Stickel’s algorithm, in which the variable used
to label a basis vector can be assigned only to a single variable in each of the generalized
unificands; and this information can be conveniently represented in a two-dimensional
matrix.

By the isomorphism of AC unification in the all-variables case to the solving of dio-
phantine equations, and by the above facts, it is clear that the procedure Matrix-Solve
is sound. However, we must also demonstrate that the assignments which it rejects can-
not possibly contribute to a complete set of unifiers for a problem. While this seems
fairly intuitive, we state it explicitly in the next lemma. We will use CSU to abbreviate
“complete set of unifiers”, and CSU(X) to denote the complete set of unifiers for X.

Lemma 3 Let E be the equation f(X1,...,Xm) =ac f(Y1,...,Ys), where the X; and
Y; are distinct variables, and let S be the conjunction of equations 1 =ac X1 A ... A
Tm =40 Xm AY1 =ac Y1 AN ... ANyn =ac Yn. Then (1) the set of substitutions T
returned by the procedure Matrix-Solve applied to E is a subset of CSU(E); and (2)
CSU(E A S) = Uger CSU(SH).

Proof: (1) follows by Huet’s lemma and by the isomorphism of the solving of linear
diophantine equations to the AC unification in the all-variables case. In the case
of (2), it is a simple fact that CSU(E A S) = UaeCSU(E) CSU(S0); what remains
is to show that the substitutions in CSU(E) — T cannot yield valid unifiers. So
let us examine the cases in which Matrix-Solve discards substitutions. First, if
z; is a constant, then the assignment of a sum of variables to X; would make the
equation X; =4c¢ z; unsolvable. Likewise, if z; is a functional term, headed by a
non-AC function symbol, then the equation X; =4¢ z; is unsolvable when X; is
assigned a sum of variables. And finally, if z; is a functional term headed by an AC
function symbol, the equation X; =4c z; is unsolvable when X; is assigned a sum
of variables introduced by Matrix-Solve, since any such sum would be headed by



the root AC function symbol. Since all terms are flattened initially, any functional
subterm can not be headed by the root AC function symbol. The analysis is similar
when some y; is a constant or functional term. Since constants present in both
terms are removed during the preparation step, the assignment of the same variable
to X; and Y;, when z; and y; are both constants, will result in the attempted
solution of the equations z =4¢ z; and z =ac y; for some new variable z. But
this would force an attempt to unify z; with y;; and would fail, since they are
distinct constants. A similar argument applies to the case when one of z; and y;
is a constant and the other is a functional term. Furthermore, each column and
row in the matrix set up by Matrix-Solve must have at least a single 1 in it, since,
otherwise, the effect would be to make some X; or Y; “disappear”. While this
might be appropriate for a theory with an identity element, it is not for associative-
commutativity. Lastly, if z; and z;4+1 are identical, then interchanging rows ¢ and
i + 1 yields an equivalent substitution. Thus the ordering restriction applied by
Matrix-Solve preserves completeness. O

We are now in a position to state our main theorem regarding the partial correctness
of our algorithm.

Theorem 3 Given any two terms z and y, the procedure AC-Unify returns a complete
set of unifiers for the equation © =4c y, assuming that the algorithm terminates.

Proof: To see that our procedure is complete, we show that each step either returns
a complete set of unifiers for the given problem, or converts the problem to an
equivalent one, the solution to which yields a complete set for the original problem.
We look first at the procedure AC-Unify. Steps 1 through 5 obviously return a
complete set of unifiers for the appropriate input. Step 6 is justified by the fact
that CSU(f(Sl, ey Sn) =AC f(tl, . ,tn)) = CSU(Sl =AC t1 TAYAY Sn —AC tn),
where f is a non-AC function symbol. Step 7 is justified by Lemma 1. Steps 8 and
9 and procedure Unify-With-Set together satisfy the conditions of Lemma 3.
Procedure Unify-Conjunction is justified by the fact that CSU(e1 A...Ae,) =T,
where T' = UGECSU(el) CSU(e20 A\. .. Aen0) Finally, the completeness of procedure
Matrix-Solve was already established by Lemma 3. O

6.2 Termination

Fages’ work [3] is witness to the difficulty of demonstrating termination in the general
case of AC unification. We have discovered that some special mechanism is required
in order to assure termination of our algorithm in the case that both terms contain
repeated variables. We have come up with two alternatives: (1) we could dispatch to
Stickel’s algorithm, with its attendant proof of termination, in difficult cases; or (2) we
could incorporate loop detection into our algorithm. Since we have been unable to prove
completeness of the latter, we will be content for now with proving termination for those
cases when at least one term does mot contain repeated variables.

Our strategy is straightforward, if brutal. We will define a complexity measure on
equations, which we show to be decreased upon every recursive call of the algorithm.



Let us say that a pair of unificands is wvalid if, in at least one of the unificands, no
variable occurs more than once. A pair is invalid if both terms contain repeated variables.

First, we show that the algorithm terminates whenever both terms contain only vari-
ables, and the terms form a valid pair. Next, we demonstrate that AC-Unify will never
produce recursive calls involving invalid pairs of terms, assuming that the original argu-
ments were valid.

Theorem 4 Let X = f(z1,...,2m) andY = f(y1,...,yn) be flattened terms, where all
of the z; and y; are variables, and the x; are distinct. Then procedure AC-Unify applied
to X and Y terminates.

Proof:

Trivially, the algorithm terminates if both X and Y comprise distinct variables;
this case is dispatched to the matrix operations, which clearly require only a finite
number of steps.

Otherwise, AC-Unify will produce a list of recursive problems of the form
f(Xl,...,Xm) = f(Yl,...,Yn),Xl = Il,...,Xm = Im,Yl = yl,---,Yn = yn-

The first recursive call will be on the equation f(Xi,...,Xmn) = f(Y1,...,Ys),
which contains distinct new variables; hence this case will terminate. The solution
substitution generated by the matrix operations will involve only assignments of
the form X; «— z; or X; — f(z1,...,2,) (similarly for each Y;). Moreover, each X;
will be assigned a term whose variables are distinct from those in terms assigned to
any other Xj, j # 4. This is true for each Yj, too.

So, after application of the resulting substitution to the remaining equations, the list
will be of the form s1 = z1,...,8m = Tm,t1 = Y1,...,tn = Yn, where the variables
in each s; are distinct from s;,j # i, and similarly for the ¢s (though the variables
in each s; will overlap with those of some ¢;). Now, each z; is a distinct variable,
so the next m recursive calls terminate by one of the base cases of AC-Unify. In
addition, none of the variables in any s; will have been unified during these recursive
invocations (because each call will involve a completely “new” set of variables, even
when substitutions are accumulated), and so the variables in the ¢s remain distinct
from one another.

During the last n recursive calls, the left-hand term of the equation being solved
will contain distinct variables which have not been “bashed” by previous calls; and
the right-hand side will be either a variable (some y variable) or a term composed
of distinct variables (after substitution of a unifier for some repeated y variable).
Also, the variables in the left-hand side will be disjoint from those in the right-hand
side. Thus, the call will terminate by one of the base cases or after a call to the
matrix routine.

O
The proof of Theorem 4 is nearly identical to that required for the next fact:

Theorem 5 Assuming that at most one of X and Y contains repeated variables, then
no recursive call generated during the execution of AC-Unify of X and Y will attempt to
unify two terms containing repeated variables.



Proof: The proof is like that for Theorem 4, except that both X and Y may contain
non-variable arguments (though, in at least one of X and Y, no variable may occur
more than once). The reader need only convince herself that the unification of two
terms in which no variable occurs more than once will produce a most common
instance in which no variable occurs more than once. The only difficulty is the
case when a repeated variable from one unificand appears in a functional term of
the opposite unificand. For example, in f(X, Z,g(Y,b)) =ac f(Y,Y,g(a,b)), Y
appears as a repeated variable in the right hand unificand, but also appears in
a functional term on the left. In cases such as this, the validity of recursively
generated problems is guaranteed by the fact that unifiers from Matrix-Solve will
never assign a term containing repeated variables to a variable which was repeated
in the original problem. With these facts, the previous proof can be applied almost
directly. O

For concreteness in justifying the next theorem, we shall make use of a directed graph
representation of terms. Let ¢ be a term. If ¢ is not yet represented in the graph, then
create a new node N. If ¢ is a variable or atomic constant, label N with ¢. Otherwise,
let t = f(t1,...,t,). Label N with f, and for each t; add an edge from N to the root
node of the graph of ¢;. By a slight abuse of language, we shall often refer to a node
as a “variable node”, “constant node”, or anything else appropriate. We also say that a
variable v is “repeated n times” if v textually appears n times in printed representation
of a term, or equivalently, if the indegree of the node corresponding to v is n.

When a substitution is applied to a term, we modify its graph representation in the
obvious way. Given an assignment z < ¢ in the substitution, the representation of ¢ is
added to the graph, if necessary, and any edge directed to z is forwarded to the root of
the subgraph representation of ¢.

We now show that AC-Unify terminates in the base case, and in general any recursive
call to AC-Unify is made with a simpler equation.

The complexity metric we will use is a lexicographic extension

(Rn,RN_1,...,R2, R1,S) of noetherian relations. Intuitively, the R;s represent the de-
gree of variable repetition, and S is simply the number of nonvariable symbols present in
an equation. Formally, let e be an equation. Let R,, be the number of variables repeated
m times in e, and let S be the total number of nonvariable symbols in e. We define the
lexicographic composition to be (Ry, Rn_1,--.,R1,S5). N, the maximum degree of rep-
etition, can be determined from the initial equation. S is the total number of nonvariable
nodes in the graph representation of both sides of the equation.

Theorem 6 Let X and Y be terms such that in at least one of them, no variable occurs
more than once. Then AC-Unify terminates.

Proof: Without loss of generality, assume any repeated variables occur in Y.

Since none of steps 1 through 5 of AC-Unify cause recursive calls, they terminate
immediately.

If the head of each term is a non-AC function symbol, Step 6 will call
Unify-With-Set with a set of equations, each one of which is simpler than the origi-
nal equation. Even if repeated variables exist, each recursive problem will be simpler



than the original. Certainly, if no variables in one new equation are shared by any
other, then that equation is simpler than the original despite any substitutions
generated by previous equations. If some variable is shared among two equations,
then each equation will have less complexity than the original equation, since the
original equation had at least one more variable repetition than either subproblem.
After any substitution generated from previous equations is applied to one of these
equations, it must still be simpler than the original since either (1) some variable is
repeated less often, or (2) the degree of repetition is the same, but there are fewer
variables, or (3) there are the same number of variables and repetitions, but fewer
non variable symbols. Since (Ry, Rn-1,-..,(Rn—1),...,(Rn-m +k),...R},S") is
strictly less than (Rn, RN—1,...,Rn,..., Rn—m,... R1,S) lexicographically, R defi-
nitely decreases. This is the case because at the very least, the root function symbol
does not occur in the subproblem.

If the head of each term is an AC function symbol, termination is more difficult
to demonstrate, but it is the case that Steps 7-9 will either terminate or generate
recursive calls which are strictly simpler than the original problem.

If all immediate subterms of X and Y are variables, then by Theorem 4 AC-Unify
terminates.

During Step 7, the conjunction of equations E f(X1,...,Xmn) =ac f(Y1,..-,Yn) A
Xi=acz1 N...N X =4czZm N Yi=acy1 N...AN Y, =4ac yn, is created.
This step certainly terminates.

Step 8 solves the first equation of E, which is made up of distinct variables, and
thus by Theorem 4 Step 8 terminates.

Finally, Step 9 generates problems strictly simpler than the original. First, the
equations of F involving Xs are solved. All the X equations have sums of distinct
variables on the left, and terms from the original problem, the z;s, on the right.
After all the equations in E involving Xs are solved, the substitution must have
assigned to each variable z; some sum of new variables, and must have assigned to
some new variable each non-variable z;. Since the non-variable z; have no variables
in common (no repeated variables), each ¢; must have no variables in common with
any t; for which j # k. The remaining equations now look like:

tIZACyl JAYAN tn:ACyn

The variables in each t; are distinct from any other ¢, but may not be distinct from
some Yo, if the original problem was similar to f(X, Z, g(Y,b)) =ac f(Y,Y, g(a,b)),
in having variables from one side appear as deeper subterms in the opposite unifi-
cand.

Now, let y be the variable which is the immediate subterm with the highest degree
of repetition in the first subproblem, say r. Also, let s be the number of times y
appears as an immediate subterm of the current equation. Obviously, y occurs r — s
times elsewhere as a deeper subterm of some functional terms.

Any substitution generated will assign some term, in general f(z1,...2;) for some
k, or it will assign some subterm ¢ of the original equation to y. In the latter case,
let k be the number of variables embedded within ¢. ¢ must not include repeated
variables, since variables can only be repeated in one term originally, and as shown
by Theorem 5 this property is preserved. If y is assigned f(z1,...zx), the zs are
distinct, as shown above. Each equation is strictly simpler than the original since
either (1) some variable is repeated less often, or (2) the degree of repetition is the
same, but there are less variables, or (3) there are the same number of variables



and repetitions, but there are less non variable symbols. This is the case because
at the very least, the root function symbol does not occur in the subproblem.

After each equation is solved, any remaining equation in the conjunction will still
be less complex than the original problem. For each variable y with degree of
repetition r that appears on the right of an equation, y will be assigned some
term f(z1,...,2r) for some k. Any remaining equation must still be less complex
than the original problem, since R, will be decremented by at least 1 (y appears
one less time), and R,_ will be incremented by k if (r — s) > 0 (y is replaced by
f(z1,-..,2) elsewhere). Since (Rn, RN—1,---,(Rn—1),...,(Ra—m +k),... R}, S")
is strictly less than (Rn,Rn—_1,...,Rn,--.y Rn—m, ... R1,S) lexicographically, R
definitely decreases. If y is not repeated, then R;,i > 1 is uneffected, and R:
decreases. If there are no variables as immediated subterms (y was replaced by
some substitution), R;,7 > 1 will be unchanged, and the number of nonvariable
symbols will decrease, since the immediate nonvariable subterms no longer appear.
Since there are finitely many equations in the conjunction generated by Step 7, and
each is less complex than the original problem, the Steps 7-9 terminate. Also, since
each possibility of AC-Unify either terminates directly, or calls AC-Unify with a
simpler problem, AC-Unify terminates. O

7 Benchmarks

Table 8 reflects the time in seconds necessary to prepare the unificands and to find and
construct all AC unifiers. For each problem, timings were supplied by Kapur and Zhang
(RRL), Stickel (SRI), and ourselves (MCC). All data were collected on a Symbolics 3600
with IFU. As shown in the table, our algorithm is consistently three to five times faster
than Stickel’s and Kapur’s.

These benchmarks do not include any problems with repeated variables, since in such
cases, our algorithm would either return non-minimal sets of unifiers, or it would dispatch
to Stickel’s procedure. This is not as serious a concession as it might appear, since the
most common cases of AC Unification are the ones without repeated variables. In fact,
Lankford has found that less than eight percent of uses of AC unification in applications
like Knuth-Bendix completion have repetitions of anything, and less than three percent
have repetitions on both sides [12].

8 Future Extensions

With simple modifications, our algorithm can apparently handle arbitrary combinations
of associativity, commutativity, identity, and idempotence. We say “apparently” because
we have not yet proven completeness or termination in all these cases, but preliminary
findings have been encouraging. Also, our algorithm seems amenable to parallel imple-
mentation. The most efficient sequential implementation of our method makes use of
binary numbers to represent the state of the matrix, and thus distributing the search for
unifiers only requires communicating a starting and stopping point in the search, and



Problem f solns | RRL SRI MCC
zab = ucde 2 0.020 | 0.018 | 0.005
zab = uced 2 0.023 | 0.011 | 0.005
zab = uccc 2 0.018 | 0.008 | 0.004
zab = uvced 12 0.045 | 0.047 | 0.013
zab = uvce 12 0.055 | 0.032 0.014
zab = uvwc 30 0.113 | 0.096 | 0.034
zab = uvwt 56 0.202 | 0.171 | 0.079
raa = ucde 2 0.028 | 0.013 0.005
raa = uced 2 0.023 | 0.009 0.004
Taa = ucce 2 0.021 | 0.006 0.005
raa = uved 8 0.043 | 0.032 0.010
raa = uvce 8 0.035 | 0.020 0.011
Taa = uvwc 18 0.087 | 0.062 0.023
zraa = uvwt 32 0.192 | 0.114 | 0.051
zya = ucde 28 0.093 | 0.094 | 0.024
Tya = uccd 20 0.068 | 0.050 | 0.018
TYa = uccc 12 0.045 | 0.026 | 0.013
rya = uved 88 0.238 | 0.247 | 0.064
TYya = uvce 64 0.211 | 0.133 | 0.048
TYa = uvwce 204 0.535 | 0.538 | 0.160
Tya = uvwt 416 0.918 | 1.046 | 0.402
ryz = ucde 120 0.375 | 0.320 | 0.118
zyz = uccd 75 0.185 | 0.168 | 0.072
TYz = ucce 37 0.093 | 0.073 | 0.038
Yz = uved 336 0.832 | 0.840 | 0.269
TYz = uvce 216 0.498 | 0.431 | 0.171
TYZ = uvwec 870 2.050 | 2.102 | 0.729
ryz = uvwt 2161 5.183 | 5.030 | 1.994

Table 8: Benchmarks of AC Unification




the original problem. Other methods, such as Stickel’s, probably require either commu-
nicating the entire basis of solutions of a diophantine equation or recomputing that basis
at each node.

9 Conclusion

We have just described an algorithm which we believe to be the most efficient way of
solving a large class of associative-commutative matching and unification problems. Our
algorithm is based on a weakened form of Stickel’s variable abstraction method, which
obviates the need for solving diophantine equations. It utilizes a matrix representation
which conveniently enforces powerful search constraints. Compared to Stickel’s and Ka-
pur’s procedures, our method often yields a significant improvement in speed. Certainly,
applications of AC unification stand to benefit from our research.

We would like to thank Dallas Lankford for introducing us to his diophantine basis generation
algorithm, and for supplying us with pointers to some useful information. We would also like to
thank Hassan Ait-Kaci, Mike Ballantyne, Woody Bledsoe, Bob Boyer, and Roger Nasr for their
comments, criticisms, and laissez-faire supervision. Finally, we would like to thank Mark Stickel,
Hantao Zhang, and Deepak Kapur, for their insightful criticisms and for supplying benchmark
times.

References

[1] D.Bananev, D.Kapur, and P.Narendran. “Complexity of Matching Problems”. Rewriting
Techniques and Applications, Springer-Verlag. Lecture Notes in Computer Science Vol.202,
Dijon, France, May, 1985, pp 417-429.

[2] W.Biittner. “Unification in Datastructure Multisets”. Journal of Automated Reasoning, 2
1986 pp. 75-88.

[3] F.Fages. “Associative-Commutative Unification”. Journal of Symbolic Computation, Vol.
3, Number 3, June 1987 pp 257-275.

[4] A.Fortenbacher. “An Algebraic Approach to Unification Under Associativity and Commu-
tativity”. Rewriting Techniques and Applications, Dijon, France, May 1985, ed Jean-Pierre
Jouannaud. Springer-Verlag Lecture Notes in Computer Science Vol. 202, (1985) pp. 381-
397

[6] P.Gordan. “Ueber die Auflésung linearer Gleichungen mit reelen Coefficienten”. Mathema-
tische Annalen, VI Band, 1 Heft (1873), 23-28.

[6] A.Herold and J.Siekmann. “Unification in Abelian Semigroups”. Journal of Automated
Reasoning 3 Sept 1987 pp 247-283.

[7] G.Huet. “An Algorithm to Generate the Basis of Solutions to Homogeneous Linear Dio-
phantine Equations”. IRTA Research Report No. 274, January 1978.

[8] G.Huet and D.C.Oppen. “Equations and Rewrite Rules: a Survey”. In Formal Languages:
Perspectives and Open Problems, ed R. Book, Academic Press, 1980.

[9] J.M.Hullot. “Associative Commutative Pattern Matching”. Proc. International Joint Con-
ference on Artificial Intelligence, Volume One, pp406-412, Tokyo, August 1979.



[10]

[11]

[12]

[13]
[14]
[15]

[16]

[17]
18]

[19]

[20]

D.Kapur, G.Sivakumar, and H.Zhang. “RRL: A Rewrite Rule Laboratory”. Proc. of the
Eighth Conference on Automated Deduction, Oxford, England, 1986, Springer-Verlag Lec-
ture Notes in Computer Science Vol.230 pp 691-692.

C.Kirchner. “Methods and Tools for Equational Unification”. in Proc. Colloquium on the
Resolution of Equations in Algebraic Structures, May 1987, Austin, Texas.

D.Lankford. “New Non-negative Integer Basis Algorithms for Linear Equations with Integer
Coefficients”. May 1987. Unpublished. Available from the author, 903 Sherwood Drive,
Ruston, LA 71270.

M.Livesey and J.Siekmann. “Unification of A + C-terms (bags) and A + C + I-terms
(sets)”. Intern. Ber. Nr. 5/76, Institut fiir Informatik I, Unifersitdt Karsruhe, 1976.

A Martelli and U.Montanari. “An Efficient Unification Algorithm”. ACM Transactions on
Programming Languages and Systems, 4(2):258-282, 1982.

O.Shmueli, S.Tsur, and C.Zaniolo. “Rewriting of Rules Containing Set Terms in a Logic
Data Language”. Proc. Principles of Database Systems, Austin, TX, USA, March 1988.

J.Siekmann. “Universal Unification”. Proc. of the Seventh Conference on Automated De-
duction, Napa, CA, USA, May 1984, Springer-Verlag Lecture Notes in Computer Science
Vol.170 pp 1-42.

M.Stickel. “A Complete Unification Algorithm for Associative-Commutative Functions”.
Proc. 4th International Joint Conference on Artificial Intelligence, Thbilisi (1975), pp.71-82.

M.Stickel. “A Unification Algorithm for Associative-Commutative Functions”. Journal of
the ACM, Vol.28, No.3, July 1981, pp.423-434.

M.Stickel. “A Comparison of the Variable-Abstraction and Constant-Abstraction methods
for Associative-Commutative Unification”. Journal of Automated Reasoning 3, Sept 1987,
pp-285-289.

H.Zhang. “An Efficient Algorithm for Simple Diophantine Equations”. Tech. Rep. 87-26,
Dept. of Computer Science, RPI, 1987.



