
Appeared in JSC 1989, vol 8Adventures in Associative-Commutative Uni�cationPATRICK LINCOLN and JIM CHRISTIAN �Department of Computer Science, Stanford University, Stanford, CA, 94305, USAlincoln@polya.stanford.eduandDepartment of Computer Science, University of Texas at Austin, Austin, TX, 78712, USAjimc@rascal.ics.utexas.edu(Received March 24, 1993)AbstractWe have discovered an e�cient algorithm for matching and uni�cation in associa-tive-commutative (AC) equational theories. In most cases of AC uni�cation ourmethod obviates the need for solving diophantine equations, and thus avoids oneof the bottlenecks of other associative-commutative uni�cation techniques. Thealgorithm e�ciently utilizes powerful constraints to eliminate much of the searchinvolved in generating valid substitutions. Moreover, it is able to generate solutionslazily, enabling its use in an SLD-resolution-based environment like Prolog. Wehave found the method to run much faster and use less space than other associative-commutative uni�cation procedures on many commonly encountered AC problems.1 IntroductionAssociative-commutative (AC) equational theories surface in a number of computer sci-ence applications, including term rewriting, automatic theorem proving, software veri�-cation, and database retrieval. As a simple example, consider trying to �nd a substitutionfor variables in two sets { say fa; x; cg and fc; y; bg { which makes them identical up toreordering of elements. We can represent each set by using the constructor cons. Thisgives us the two terms cons(a; cons(x; c)) and cons(c; (cons(y; b)). Now, if we declarecons to be associative and commutative, then two axioms can be applied to determineequality of sets: cons(cons(x; y); z) = cons(x; cons(y; z))�Order irrelevant. Work completed at MCC, 3500 W. Balcones Cntr. Dr, Austin, TX, 78759.

cons(x; y) = cons(y; x)From this we can decide that substituting b for x and a for y makes both sets equalmodulo the AC axioms.

Unfortunately, the introduction of equality axioms into a system like a theorem proverbrings with it unreasonably large search spaces. The commutativity axiom above, forinstance, can be applied in an in�nite sequence if it can be applied at all. Termina-tion of systems incorporating equality axioms can often be had only by compromisingcompleteness.Happily, many of the problems caused by an equational theory can be circumventedif there exists a complete uni�cation procedure for the theory. By relying on uni�cationinstead of search, troublesome axioms can be removed from a system.A complete uni�cation algorithm for AC theories was developed several years ago byMark Stickel [18]. Independently, Livesey and Siekmann published a similar algorithmfor AC and ACI uni�cation. Their procedures center around generating solutions to alinear diophantine equation, each coe�cient of which represents the multiplicity of somesubterm in one of the uni�cands. There are two nagging properties of this method. First,it requires generating a basis for the solution space of the diophantine equation. Second,there can be a large amount of search involved in actually generating solutions once abasis is discovered.We have found an algorithm for dealing with associative-commutative theories with-out resorting to the solution of diophantine equations. By weakening the variable ab-straction introduced by Stickel, most cases of AC can be solved by working only withequations in which all coe�cients are unity. The basis of solutions of such an equationpossesses a highly regular structure; this allows us to optimize the representation of theproblem and avoid spending time �nding a basis. We are able instead to begin generatinguni�ers almost immediately. In addition, our representation allows the incorporation ofseveral simple but powerful constraints in a way that is much more natural and e�cientthan previous methods have allowed.Our algorithm can solve AC matching problems (so-called \one-way uni�cation"),and most cases of AC uni�cation very e�ciently { in most cases, several times fasterthan Stickel's algorithm. However, if repeated variables occur in one uni�cand, ouralgorithm may return redundant uni�ers. If repeated variables occur in both uni�cands,our algorithm may not terminate. In these easily detected cases, it su�ces to dispatch tosome complete algorithm, like Stickel's; the overhead in making the decision to dispatchis negligible. Fortunately, these cases occur in only a few percent of many applicationsof AC uni�cation like Knuth-Bendix completion [12]. In some applications like databasequery compilation, these cases never occur. Thus our procedure can achieve a signi�cantimprovement in average execution speed of AC uni�cation. Furthermore, our procedurerequires nominal space overhead for generating solutions, and is amenable to the lazygeneration of solutions required in an SLD-resolution environment like that of Prolog.2 What is AC Uni�cation?Before delving into the intricacies of our uni�cation procedure, it is reasonable at thispoint to clear any misunderstanding or confusion the reader might have with respect toAC uni�cation and matching. In the introduction, we presented a simple example; now

we shall try to evoke a more complete appreciation for the problem. We begin with somerequisite de�nitions.We suppose the existence of three sets: constants, variables, and function symbols. Aterm is inductively de�ned:� A constant is a term.� A variable is a term.� Let f be a function symbol; then f(t1; : : : ; tn) is a term, where t1; : : : ; tn are terms.A substitution is a function from variables to terms. We shall represent a substitutionas a set of assignments, where an assignment v t maps variable v to term t. In orderto justify applying substitutions to arbitrary terms, homomorphic extensions of substi-tutions are used; a substitution maps all constants and function symbols to themselves.A term u is an instantiation of a term v if there is a substitution � such that u = v�.Two terms unify modulo a theory T if there is a substitution which, when applied to bothterms, yields two terms which can be proved equal in the theory. Ordinary uni�cation isthe special case wherein T is empty.An associative-commutative theory is one comprising the following axioms:� f(f(x; y); z) = f(x; f(y; z)) (Associativity)� f(x; y) = f(y; x) (Commutativity)We will sometimes write t1 =AC t2 to indicate equality of t1 and t2 modulo associa-tivity and commutativity.AC uni�cation is uni�cation modulo the theory of associativity and commutativity.AC matching is a restricted form of uni�cation wherein assignments are allowed to vari-ables in only one of the uni�cands. That is, the resulting substitution must not assignterms to variables from one of the uni�cands.Obviously, AC-ness implies the ability to permute subterms rather arbitrarily. As anillustration, the terms f(a; f(b; c)), f(f(a; c); b), and f(b; f(a; c)) are equal by the ACaxioms. With the introduction of variables, terms may unify in ways which might at�rst seem contrived. The terms f(x; y) and f(a; z), for instance, share four uni�ers. Oneof them is the substitution yielded by \ordinary" uni�cation, namely, fx a; y zg.By applying the commutativity axiom, we �nd the uni�er fy a; x zg. This is notsurprising. But notice that application of the associativity axiom can cause variables tobe distributed among subterms, as in the substitution fx f(a; v); z f(v; y)g, wherev is a new variable. Here, a most-general common instance is f(f(a; v); y)); notice howcomponents of z can be found both in the subterm f(a; v) and in the subterm y. Thelast uni�er is fy f(a; v); z f(v; x)g.In general, the number of uni�ers for any two terms can be exponential in the sizeof the terms; AC uni�cation is NP-complete [1]. When there are only a few variables in

the uni�cands, however, the number of uni�ers can be markedly reduced. In [18] Stickelshows that the two terms f(x; f(x; f(y; z))) and f(u; f(u; v)) yield 69 uni�ers, while theirinstantiations f(x; f(x; f(y; a))) and f(b; f(b; v)) produce only four.3 History Of AC Uni�cationMark Stickel was the �rst to develop a complete, terminating algorithm for AC uni�ca-tion; the algorithm was initially presented in 1975 [17]. Livesey and Siekmann publisheda similar algorithm in 1976 [13]. Most AC uni�cation procedures in use today are es-sentially modi�cations of that of Stickel or of Livesey and Siekmann, but a few novelapproaches have been proposed. Within the loose framework of Stickel's method thereare two hard problems: generating a basis of solutions to linear homogeneous diophan-tine equations, and searching through all combinations of this basis for a solution to thegiven AC uni�cation problem.Since Gordan's study of diophantine equations in 1873 [5], only in the last few yearshas there been any signi�cant progress made regarding the generation of their bases.Fortenbacher, Huet, and Lankford have separately proposed a number of re�nements toGordan's basic method [4, 7, 12]. Recently, Zhang has discovered a class of diophantineequations which can be quickly solved [20]. However, no published algorithm has provento be superior in all cases.The extraction of solutions to AC problems given a basis of solutions to the dio-phantine equation is also an area of concern. In the past few years Fortenbacher [4] hasproposed a method of reducing the search space by eliminating certain basis elements.Claude Kirchner has recently developed an AC uni�cation algorithm within the frame-work of the Martelli-Montanari uni�cation procedure, but, like Stickel's, his methodrequires solving diophantine equations [11, 14]. Also, Hullot invented an algorithm forAC uni�cation which involves ordered partitions of multisets [9]. While his algorithmis faster than Stickel's, it does not seem to o�er nearly the dramatic speed increases wehave obtained with our procedure. We have not implemented Hullot's algorithm, butbase our judgement on timing comparisons listed in his paper. In Germany, B�uttner hasdeveloped a parallel algorithm for AC uni�cation [2]. The method involves linear alge-braic operations in multi-dimensional vector spaces, but he fails to provide the detailsnecessary for a realistic comparison. Recently, Kapur [10] has developed an algorithmbased on Stickel's method that uses Zhang's equation solving technique. A paper byHerold and Siekmann [6] pursues some issues of uni�cation further, and the surveys byHuet and Oppen [8] and by Siekmann [16] summarize results in related areas.4 Stickel's MethodIn a twisted sort of way, our procedure derived from Stickel's; so we will briey reviewhis algorithm before presenting our own. In case we fail to do justice to the algorithm,the unfamiliar reader is encouraged to look up Stickel's paper, which is straightforward

and lucid [18].In order to unify two terms modulo the AC axioms, three preparation steps arenecessary.First, they are both put through a \attening" operation which removes nestedAC function symbols, thus transforming uni�cation in the free algebra into uni�ca-tion in an Abelian Semigroup. This operation can be viewed more precisely as termreduction by root application of the rewrite rule f(t1; : : : ; f(s1; : : : ; sm); : : : ; tn) �!f(t1; : : : ; s1; : : : ; sm; : : : ; tn). Hence, the term f(f(a; a); a; f(g(u); y; x)) will be attenedto f(a; a; a; g(u); y; x), while f(a; f(b; g(c)); f(y; y); z) will be changed tof(a; b; g(c); y; y; z). The validity of the attening operation is guaranteed by the associa-tivity axiom, which implies that nesting of AC function symbols is largely irrelevant.After attening terms, the next step is to remove subterms which occur in bothuni�cands. For instance, after deleting duplicate subterms from f(a; a; a; g(u); y; x) andf(a; b; g(c); y; y; z) we obtain the terms f(a; a; g(u); x) and f(b; g(c); y; z), speci�cally byremoving one occurrence of a and one occurrence of y from each.The �nal preparation step is to generalize each term, replacing each distinct argu-ment with a variable. So f(a; a; g(u); x) will be generalized to f(x1; x1; x2; x3), andf(b; g(c); y; z) is generalized to f(y1; y2; y3; y4).Now we get to the crux of the procedure. The goal is to construct a linear diophan-tine equation { that is, a linear equation with non-negative integer coe�cients { wherea coe�cient corresponds to the multiplicity of one of the variables in the generalizedterms. More accurately, given generalized terms t1 with variables x1; : : : ; xm and t2 withvariables y1; : : : ; yn, we set up an equation c1x1+ : : :+cmxm = d1y1+ : : :+dnyn. Each ciis an integer equal to the number of times xi occurs in t1, while dj represents the multi-plicity of yj in t2. So the equation associated with the generalized terms f(x1; x1; x2; x3)and f(y1; y2; y3; y4) is 2x1 + x2 + x3 = y1 + y2 + y3 + y4.The motivation for constructing a diophantine equation is not hard to grasp. For eachassignment made by the uni�cation algorithm of a term to a variable, the term must bepresent in both uni�cands an equal number of times; thus, unifying substitutions canbe represented as solutions to the corresponding diophantine equation. The next steptoward producing solutions is to generate a basis for the diophantine equation, whichenables the systematic construction of solutions. We will not be concerned here with theprocedure for �nding a basis, except to say that we prefer Lankford's algorithm for mostcommon equations (that is, those with small coe�cients) [12]. After generating the basis,a new variable zi is associated with each vector vi in the basis. So, from the equation2x1 + x2 + x3 = y1 + y2 + y3 + y4, we produce the variable-labeled basis in Table 1.Now, unifying substitutions are generated by picking certain subsets of the basisvectors and summing them. If we choose basis vectors 2, 4, 7, and 9 from Table 1, weremove all other basis vectors, and consider only the chosen vectors, as in Table 2.So for each x and y, we construct a substitution by reading down that variable'scolumn. For instance, looking at x1, we see that its substitution involves only z9, fx1 f(z9)g. If a term's substitution only contains one element, as does x1, we simply write

a g(u) x b g(c) y zNumber 2x1 x2 x3 y1 y2 y3 y4 Label1 0 0 1 0 0 0 1 z12 0 0 1 0 0 1 0 z23 0 0 1 0 1 0 0 z34 0 0 1 1 0 0 0 z45 0 1 0 0 0 0 1 z56 0 1 0 0 0 1 0 z67 0 1 0 0 1 0 0 z78 0 1 0 1 0 0 0 z89 1 0 0 0 0 0 2 z910 1 0 0 0 0 1 1 z1011 1 0 0 0 0 2 0 z1112 1 0 0 0 1 0 1 z1213 1 0 0 0 1 1 0 z1314 1 0 0 0 2 0 0 z1415 1 0 0 1 0 0 1 z1516 1 0 0 1 0 1 0 z1617 1 0 0 1 1 0 0 z1718 1 0 0 2 0 0 0 z18Table 1: Basis for 2x1 + x2 + x3 = y1 + y2 + y3 + y4
a g(u) x b g(c) y zNumber 2x1 x2 x3 y1 y2 y3 y4 Label2 0 0 1 0 0 1 0 z24 0 0 1 1 0 0 0 z47 0 1 0 0 1 0 0 z79 1 0 0 0 0 0 2 z9Table 2: Selected Basis Vectors for 2x1 + x2 + x3 = y1 + y2 + y3 + y4

fx1 z9g. More exactly, for each coe�cient cj in a basis vector vi, the correspondingvariable zi is assigned cj times to the corresponding variable in the generalized terms,for each cj in the chosen solution. To continue the example, the full substitution isfx1 z9; x2 z7; x3 f(z2; z4); y1 z4; y2 z7; y3 z2; y4 f(z9; z9)g. Note thatsince there is a 2 in y4's position of vector v9, z9 we assign z9 twice to y4, fy4 f(z9; z9)g.The �nal step of the algorithm is to unify variables in the generalized terms withtheir counterparts in the original terms. So, supposing we started with the termsf(a; a; g(u); x) and f(b; g(c); y; z), the unifying substitution resulting from choosing basisvectors 2, 4, 7, and 9 would be (after simpli�cation) fx f(b; y); g(u) g(c); z f(a; a)g. Note that the substitution g(u) g(c) would require recursive uni�cation ofterms, which would produce the substitution u c. This happens to be a valid substi-tution, which would be returned as one of the solutions to the original AC uni�cationproblem.Stickel briey mentioned some obvious optimizations to the above algorithm in hisoriginal paper, and Fortenbacher [4] has described some of these in detail, with formaljusti�cation. Below we give a quick review of some of the more important constraintsused in actual implementations.Notice that, given n basis vectors, there are potentially 2n solutions; however, thereare ordinarily a number of constraints on the solution space which reduce this numberconsiderably.First, any basis vector which would force the uni�cation of distinct constants can beeliminated from the basis. In Table 1, the basis vectors 15, 16, 17, and 18 can never beused in valid substitutions, since they each will require some uni�cation of one constanta with another, b. In this case eliminating these vectors reduces the search space by afactor of 16. Also, vectors 8, 12, 13, and 14 would force uni�cation of a constant witha functional term headed by g, which must fail. Removing these and the above vectorsreduces the search space from over 262,144 to 1,024. Any basis vectors which has nonunit coe�cients for variables representing constants or functional terms can be eliminatedsince the use of that basis element would force the uni�cation of, say, a constant withsomething of the form f(z1; z2). Basis vectors 14 and 18 from the above example couldthus be removed, if they were not already invalidated by other constraints. Finally, anyterms headed by distinct ununi�able function symbols can never be uni�ed, and so anybasis which would require this kind of uni�cation can be eliminated from the set of basiselements.During the construction of uni�ers from subsets of basis elements, similar constraintsapply. Consider that each variable in the generalized term must be assigned to something.Thus combinations of vectors which sum to zero in any column will not yield valid uni�ers.Also consider that any combination of basis vectors which assigns more than one zi toa variable which is associated with a constant in the original term is invalid, since aconstant can not be uni�ed with a term of the form, say, f(zi; zj). Furthermore, as soonas we notice that we have chosen a combination of vectors which would cause a clashof any type, we can abort that combination and try another, instead of waiting untilan entire substitution is complete before checking its consistency. Also, Stickel impliesthat all the uni�cations be completed as the last step in his procedure. It turns out that

much of this uni�cation work can be performed early, resulting in less total uni�cations,although this is of marginal utility if only one uni�er at a time is desired, due to the spaceoverhead of retaining early uni�cation results. Fortenbacher also tries to take advantageof early failures in a similar manner. In any realistic implementation of AC uni�cation,these types of constraints must be enforced.5 Our MethodAs previously mentioned, there are two basic di�culties with algorithms based onStickel's approach. First, generation of a basis for a diophantine equation is an expen-sive operation. Second, given a basis, the search which must be performed to producesolutions can be very expensive. It is thus necessary to enforce many non-trivial con-straints [4, 19]. Stickel, Kapur, and others have implemented quite impressive constraintson the generation of solutions which tame this search problem. However, these e�cientimplementations \require a less pure conceptual abstraction" [19] than other techniquesmight. For example, e�cient implementation of Stickel's algorithm requires discovery ofbasis elements of Diophantine Equations \with the additional constraints that certainvariables cannot have a value greater than one and that, for certain pairs of variables,only one of them can be nonzero" [19].We believe that our novel representation facilitates a much cleaner conceptual ab-straction of constraints on AC uni�ers than do previous methods, and thus enables ouralgorithm to exploit powerful constraints in a very natural and e�cient way. The maincontribution of our representation is that it allows us to avoid solving Diophantine equa-tions in most cases. In particular, whenever there are no repeated variables in eitherterm, no diophantine equations need be solved. In other cases it is often, though notalways, necessary to solve a diophantine equation.5.1 Slaying the Diophantine DragonThe observation that certain classes of Diophantine equations have very simple solutionsis not new. Zhang's diophantine equation solving technique is based on a similar notion; ifthere are several unit coe�cients in a diophantine equation, a complete basis of solutionsto that equation can be generated from the basis of a much simpler equation [20]. Wehave gone further in our specialization, restricting our attention to equations which haveonly unit coe�cients. It turns out that we are able to force many AC uni�cation problemswhich do not appear to generate equations with unit coe�cients into a form which canbe solved using our technique. In fact, it is only those AC uni�cation problems withrepeated variables which we cannot completely solve in general.The preparation phase of our algorithm is very similar to previous approaches. First,both terms are put through the attening operation described above. Then duplicatesubterms are removed pairwise from both uni�cands, and subterms are sorted so thatatomic constants are grouped together, followed by function terms, followed by variables.For instance, f(a; g(u); a; y; a; x) would be sorted to produce f(a; a; a; g(u); y; x).

Number x1 x2 x3 x4 y1 y2 y3 y4 Label1 0 0 0 1 0 0 0 1 z12 0 0 0 1 0 0 1 0 z23 0 0 0 1 0 1 0 0 z34 0 0 0 1 1 0 0 0 z45 0 0 1 0 0 0 0 1 z56 0 0 1 0 0 0 1 0 z67 0 0 1 0 0 1 0 0 z78 0 0 1 0 1 0 0 0 z89 0 1 0 0 0 0 0 1 z910 0 1 0 0 0 0 1 0 z1011 0 1 0 0 0 1 0 0 z1112 0 1 0 0 1 0 0 0 z1213 1 0 0 0 0 0 0 1 z1314 1 0 0 0 0 0 1 0 z1415 1 0 0 0 0 1 0 0 z1516 1 0 0 0 1 0 0 0 z16Table 3: Basis for x1 + x2 + x3 + x4 = y1 + y2 + y3 + y4Now, our generalization step di�ers from others, in that we assign a distinct vari-able for each argument. Thus, while Stickel's algorithm would convert the f(a; a; g; x)to f(X1; X1; X2; X3), ours will produce f(X1; X2; X3; X4). E�ectively, we convert theproblem of solving the uni�cation problem f(x1; : : : ; xm) = f(y1; : : : ; yn) into the equiv-alent conjunction of problems f(X1; : : : ; Xm) = f(Y1; : : : ; Yn) ^ x1 = X1 ^ : : : ^ xm =Xm ^ y1 = Y1 ^ : : :^ yn = Yn, where the Xi and Yj are distinct variables, and the xi andand yj are subterms of the original equation.Notice that the diophantine equation corresponding to any pair of such generalizedterms will have only unit coe�cients. Such an equation has a nice property, as statedin theorem 1. To illustrate, the equation x1 + x2 + x3 + x4 = y1 + y2 + y3 + y4 has thesolution basis shown in Table 3.Theorem 1 Given a diophantine equation of the form x1+ : : :+xm = y1+ : : :+yn, theminimal solution basis is that set of solutions such that, for each solution, exactly onexi has value one, exactly one yj has value one, and all other variables have value zero.Also, the number of basis solutions is nm.Proof: See Section 6. 2Knowing that the basis has such a nice, regular structure, we need not explicitlygenerate it; for, given only the respective arities of the generalized uni�cands, we canimmediately construct a two dimensional matrix, where each column is labeled withan xi, and each row is labeled with one of the yj . Each entry i; j in the matrix is aboolean value, that corresponds to a new variable, zi;j , which represents the solutionvector which assigns a one to xj and yi. Thus every true boolean value zi;j in a solutionmatrix corresponds to one basis element of the solution of the diophantine equation. Anyassignment of true and false to all the elements of a matrix represents a potential solution

x1 x2 x3 x4y1 z1;1 z1;2 z1;3 z1;4y2 z2;1 z2;2 z2;3 z2;4y3 z3;1 z3;2 z3;3 z3;4y4 z4;1 z4;2 z4;3 z4;4Table 4: Matrix representation of basis for x1 + x2 + x3 + x4 = y1 + y2 + y3 + y4a a g(u) xx1 x2 x3 x4b y1 z1;1 z1;2 z1;3 z1;4g(c) y2 z2;1 z2;2 z2;3 z2;4y y3 z3;1 z3;2 z3;3 z3;4z y4 z4;1 z4;2 z4;3 z4;4 C T VC 0 0 $T 0 $l $V l l anyTable 5: Matrix for a simple problem and some constraintsto the AC uni�cation problem in the same way that any subset of the basis elements ofthe diophantine equation represents a potential solution to the same AC problem.For instance, suppose we are given the (already attened) uni�cands f(a; a; g(u); x)and f(b; g(c); y; z). Substituting new variables for each argument, we obtainf(x1; x2; x3; x4) and f(y1; y2; y3; y4). The associated solution matrix is displayed in Ta-ble 5.In our implementation, we do not create the entire n by m matrix; rather, we willutilize a more convenient and compact data structure. But for now, let us pretend thatthe matrix is represented as a simple 2-dimensional array. As we will demonstrate below,the matrix representation is inherently amenable to constraining the search for uni�ers.5.2 Constraining SearchRemember that uni�cands are sorted in the preparation step of our algorithm. Hence,a given solution matrix comprises nine regions, illustrated in Table 5. In the table, C,T , and V stand, respectively, for atomic constants, functional terms, and variables. Anentry in the lower left region of the matrix, for instance, corresponds to an assignmentin the (unprepared) uni�cands of a constant in one and a variable in the other.As Table 5 indicates, there are several constraints on the distribution of ones andzeros within a solution matrix. First, notice that there must be at least one non-zeroentry in each row and column of a solution matrix, so that all variables in the generalizedterms receive an assignment. The upper left corner involves assignments to incompatibleconstants (since we have removed duplicate arguments from the uni�cands, no constantsfrom one term can possibly unify with any constant from the other term). This partof any solution matrix, then, must consist only of zeros. Similarly, the C=T and T=Cregions of a solution matrix must contain all zeros. The C=V region is constrained to

a a g(u) xx1 x2 x3 x4b y1 0 0 0 1g(c) y2 0 0 1 0y y3 0 0 0 1z y4 1 1 0 0 Unifying substitution:x f(b; y)z f(a; a)u cTable 6: A solution to the matrixhave exactly a single one in each column, since any additional ones would cause theattempted uni�cation of a functional term, say f(z1;1; z1;2), with a constant. Similarly,any T row or T column must contain exactly one one. Finally, the V=V region of amatrix can have any combination of ones and zeros which does not leave a whole row orcolumn �lled only with zeros.5.3 Generating SolutionsOnce a uni�cation problem has been cast into our matrix representation, it is not adi�cult matter to �nd unifying substitutions. The approach is to determine a validcon�guration of ones and zeros within the matrix, perform the indicated assignments tothe variables in the generalized terms, and �nally unify the arguments of the originaluni�cands with their variable generalizations.Consider the matrix in Table 5. We know that location (1; 1) must be zero, since itfalls within the C=C region of the matrix. Likewise, (1; 2), (1; 3), (2; 1), and (2; 2) mustalways be zero. In fact, the only possible position for the required one in the y1 columnis at (1; 4). Filling out the rest of the matrix, we arrive at the solution shown in Table 6after assigning the nonzero zi;j 's to the x and y variables, and then unifying the variableswith the original uni�cand arguments, we obtain the substitution shown beside Table 6g(u) g(c) produces fu cg. In general, such recursive uni�cations can involve fullAC uni�cation.5.4 Lazy generation of solutionsIn other AC uni�cation algorithms, the overhead in storing and restoring state in themidst of discovering AC uni�ers is prohibitive. Thus most other algorithms generate allsolutions to an AC uni�cation problem at once. But in some contexts it is desirableto return only one solution, and to delay discovery of additional uni�ers until they aredemanded. Using our technique, as each uni�er is generated, the matrix con�gurationcan be stored, and search suspended. If an additional uni�er is demanded, it can begenerated directly from the stored matrix representation.Since we can implement certain parts of the matrix as a binary representation ofa number, simple counting in binary is all that is required for complete enumeration.Thus assuming that we are in an SLD-resolution framework, the information necessary

to generate the next solution can be represented as a sequence of binary numbers. Uponbacktracking, the binary representation is incremented, and checked for a few simpleconstraints. If the constraints are satis�ed, the binary numbers are stored and the uni�eris constructed and passed along.The matrix can be represented very compactly, since most regions within it are sparse.With each column or row, associate a counter; the value of the counter represents whichentry within a row or column contains a one. The variable-variable region cannot be rep-resented so compactly, however, since nearly any assignment of ones and zeros is possible.Additional information can be maintained along with the matrix data structure, such asa tally of variable assignments up to the current point of the assignment procedure, andauxiliary data structures to keep track of repeated arguments.An important advantage of this approach to generating solutions is that it allowsearly detection of failure; as soon as an inconsistent state is discovered, the procedurecan abort the state, e�ectively pruning entire branches of the search tree.5.5 Repeated termsUntil now, we have assumed that all arguments within a uni�cand are distinct. However,this is not necessarily the case for AC uni�cation. In practice, repeated terms occur in-frequently; Lankford, for instance, has found that more than 90 percent of the uni�cationproblems encountered in some completion applications involve uni�cands with distinctarguments. Nevertheless, the ability to handle repeated arguments is certainly desirable.Our algorithm can easily be adapted to handle repetitions in constants and functionalterms in either or both uni�cands, but repeated variables are more di�cult to manage.If they occur in a single uni�cand, our algorithm is complete and terminating, but mayreturn redundant uni�ers. Although the set of uni�ers returned by Stickel's algorithmis similarly not guaranteed to be minimal, in many cases our algorithm generates manymore redundant uni�ers than would Stickel's. If a minimal set of uni�ers is required, itsu�ces to simply remove elements of the non-minimal set which are subsumed by otheruni�ers in the set.If repeated variables occur in both uni�cands, our algorithm might generate subprob-lems at least as hard as the original, and thus may not terminate. Stickel's algorithm canbe employed whenever repeated variables are detected; the overhead involved in makingthis decision is negligible. Thus in the worst cases we do simple argument checking,and dispatch to Stickel's algorithm. We have several methods of minimizing the use ofStickel's algorithm but we have not yet discovered a straightforward, general method.In section 6 we prove that our procedure does indeed terminate with a complete set ofuni�ers whenever variables are repeated in at most one of the uni�cands.Assuming no repeated variables in one term, our algorithm can handle arbitraryrepetitions of constants and functional terms. But before disclosing the modi�cation toour algorithm which facilitates handling of repeated arguments, we show with a simpleexample why the modi�cation is needed. Suppose we wish to unify f(a; a) with f(x; y),which is a subproblem of the earlier example. Without alteration, our algorithm as

a ax 1 0y 0 1 a ax 0 1y 1 0Table 7: Redundant matrix con�gurations for f(a; a) = f(x; y)so far stated will generate the two con�gurations shown in Table 7. While the matrixcon�gurations are distinct, they represent identical unifying substitutions { namely fx a; y ag.The solution to this problem is surprisingly simple. In short, whenever adjacent rowsrepresent the same term, we require that the contents of the upper row, interpretedas a binary number, be greater than or equal to the contents of the lower row. Asymmetric restriction is imposed on columns. Obviously, the information that a variablexi corresponds to a repeated constant or term must be recorded in some auxiliary datastructure in a realistic implementation.5.6 An Algorithm for Associative-Commutative Uni�cationUntil now, we have concentrated almost exclusively on the matrix solution techniquewhich lies at the heart of our AC uni�cation algorithm. Following is a statement ofthe uni�cation algorithm proper. This will serve, in the next section, as a basis forresults involving the completeness and termination of our method. The algorithm ispresented as four procedures: AC-Unify, Unify-With-Set, Unify-Conjunction, andMatrix-Solve.Procedure AC-Unify: Given two terms x and y, return a complete set of uni�ers for theequation x =AC y.Step 1 If x is a variable, then see if y is a functional term and x occurs in y. If both are true,return fail. Otherwise, return ffx ygg, unless x = y | in that case, return the nullsubstitution set ffgg.Step 2 If y is a variable, then see if y occurs in x. If it does, return fail. Otherwise, returnffy xgg.Step 3 If x and y are distinct constants, return fail.Step 4 If x and y are the same constant, return ffgg.Step 5 At this point, x and y are terms of the form f(x1; : : : ; xm) and g(y1; : : : ; yn). If f 6= g,return fail.Step 6 If f is not an AC function symbol, and m = n, then call procedure Unify-With-Set withthe substitution set ffgg and the conjunction of equations x1 =AC y1 ^ : : : ^ xn =AC yn,and return the result. If m 6= n, return fail.Step 7 Flatten and sort x and y, if they are not already attened and sorted, and remove argu-ments common to both terms. Call the resulting terms x̂ and ŷ, respectively.Assume x̂ = f(x1; : : : ; xj) and ŷ = f(y1; : : : ; yk). Set up the conjunction of equationsf(X1; : : : ; Xj) =AC f(Y1; : : : ; Yk)^X1 =AC x1^: : :^Xj =AC xj^Y1 =AC y1^: : :^Yk =ACyk, where the Xi and Yi are new, distinct variables. Call this conjunction E.

Step 8 Let T be the result of applying Matrix-Solve to the conjunction E. If T = fail, returnfail.Step 9 Call procedure Unify-With-Set with the set of substitutions T and the conjunction ofequations X1 =AC x1 ^ : : : ^Xj =AC xj ^ Y1 =AC y1 ^ : : : ^ Yk =AC yk, and return theresult.Procedure Unify-With-Set: Given a set of substitutions T and a conjunction of equations E,return S�2T CSU(�E), where CSU(X) is a complete set of uni�ers for X.Step 1 Let S = fg.Step 2 For each � 2 T , set S to S[fS�j2Zf�[�jgg, where Z is the result of applying procedureUnify-Conjunction to E�.Step 3 Return S.Procedure Unify-Conjunction Given a conjunction of equations E = e1 ^ : : : ^ en, return acomplete set of uni�ers for E.Step 1 . Let V be the result of calling procedure AC-Unify with e1. If n = 1, return V . IfV = fail, return fail.Step 2 . Call procedure Unify-With-Set with the set of substitutions V and the conjunctione2 ^ : : : ^ en, and return the result.Procedure Matrix-Solve Given a conjunction of equations f(X1; : : : ; Xm) =AC f(Y1; : : : ; Yn)^X1 =AC x1^ : : :^Xm =AC xm^Y1 =AC y1^ : : :^Yn =AC yn, where the Xi and Yi are distinctvariables, determine a set of substitutions which will unify f(X1; : : : ; Xm) with f(Y1; : : : ; Yn).Step 1 Establish an m-by-n matrix M where row i (respectively column j) is headed by Xi (Yj).Step 2 Generate an assignment of 1s and 0s to the matrix, subject to the following constraints.If xi (yj) is a constant or functional term, then exactly a single 1 must occur in row i(column j). If xi and yj are both constants, or if one is a constant and the other is afunctional term, then M [i; j] = 0. Also, there must be at least a single 1 in each row andcolumn. Finally, if xi = xi+1 for some i, then row i interpreted as a binary number mustbe less than or equal to row i+ 1 viewed as a binary number. (Symmetrically for yj andyj+1.)Step 3 With each entryM [i; j], associate a new variable zi;j . For each row i (column j) constructthe substitution Xi f(zi;j1 ; : : : ; zi;jk) where M [i; jl] = 1, or Xi zi;jk if k = 1.(symmetrically for Yj).Step 4 Repeat Step 2 and Step 3 until all possible assignments have been generated, recordingeach new substitution. If there is no valid assignment, return fail.Step 5 Return the accumulated set of substitutions.When there are repeated variables in both uni�cands, it is possible that our algorithmwill not terminate. For example, in the uni�cation of f(x; x) with f(y; y) one of therecursive subproblems generated is identical (up to variable renaming) to the originalproblem. However, as we prove in the next section our algorithm is totally correct inother cases.

6 Theorems and SuchThe intent of this section is to convince even skeptical readers of the viability of ourmethod. Thus we will attempt to establish somewhat carefully the correctness, com-pleteness, and termination of our algorithm for AC matching and uni�cation.6.1 Partial CorrectnessWe demonstrate here that, whenever our algorithm terminates, it returns a complete setof uni�ers if one exists. We begin by establishing the soundness of certain steps of thealgorithm, and then show that each step of the algorithm preserves completeness.Stickel showed in his paper that like arguments in uni�cands can be removed withouta�ecting correctness or completeness. We state his theorem here without proof.Theorem 2 (Stickel) Let s1; : : : ; sm; t1; : : : ; tn be terms with si = tj for some i,j. Let� be a uni�er of f(s1; : : : ; sm) and f(t1; : : : ; tn) and � be a uni�er off(s1; : : : ; si�1; si+1; : : : ; sm) and f(t1; : : : ; tj�1; tj+1; : : : ; tn). Then � is a uni�er off(s1; : : : ; si�1; si+1; : : : ; sm) and f(t1; : : : ; tj�1; tj+1; : : : ; tn), and � is a uni�er off(s1; : : : ; sm) and f(t1; : : : ; tn).The following lemma justi�es the variable generalization step of our algorithm.Lemma 1 Let t1 = f(x1; : : : ; xm) and t2 = f(y1; : : : ; yn), and let S be the conjunctionof equations f(X1; : : : ; Xm) =AC f(Y1; : : : ; Yn) ^ x1 =AC X1 ^ : : : ^ xm =ACXm ^ y1 =AC Y1 ^ : : :^ yn =AC Yn, where the Xi and Yj are distinct variables. Let� = X1 x1; : : : ; Xm xm; Y1 y1; : : : ; Yn yn. (1) If � is a uni�er for the equationt1 =AC t2, �� is a uni�er for S. (2) Let � be a uni�er for S. Then � is a uni�er of t1and t2.Proof: (1) Obviously � is a valid substitution, since the Xi and Yj are variables.Applying � to t1 and t2, we obtain the equation for which � is a uni�er. (2) �applied to S must make both terms in any pair (Xi; xi) or (Yi; yi) equal, since �is a unifying substitution. Hence we may substitute equals for equals and producethe equation �t1 =AC �t2, which is no more general than the equation t1 =AC t2.So � must be a uni�er of t1 and t2. 2Certainly, if we have a complete uni�cation procedure for S, then we can generate acomplete set of uni�ers for t1 and t2. Lemma 1 tells us that if � is a uni�er of t1 and t2,then there exists an equivalent uni�er �� for S. Assuming the uni�cation procedure iscomplete, �� must be an instance of a uni�er returned by the procedure. So we can �ndall most general uni�ers of t1 and t2 by determining those for S.The next lemma is due to Huet; it's proof can be found in his paper [7].

Lemma 2 (Huet) Let a1x1; : : : ; amxm = b1y1; : : : ; bnyn, and let (x; y) 2 Nm �Nn bea minimal solution. Then, for any xi in x, xi � max(b1; : : : ; bn) and, for any yj in y,yi � max(a1; : : : ; am).As noted before, the diophantine equation associated with the equationf(X1; : : : ; Xm) = f(Y1; : : : ; Yn), where each Xi and Yj is a distinct variable, is simplyX1+ : : :+Xm = Y1 + : : :+ Yn. Since all coe�cients have unit value, we know by Huet'slemma that all components of any basis vector can have a value of either zero or one.Naturally, any basis vector must assign the value 1 to the same number of Xi as Yi.Also, it is clear that any vector which assigns a 1 to exactly one Xi and one Yj is a basissolution to the equation; call such a solution special. Now, any solution vector whichassigns 1 to more than a single variable on each side of the equation is reducible by somespecial vector, since we can select some pair of ones within such a vector and produce aspecial vector. So only the special vectors are basis vectors, and there are mn of them.This establishes Theorem 1, stated earlier.The point of all this is simply that our matrix representation is indeed a valid wayin which to cast the problem of AC uni�cation. An AC uni�cation problem can beconverted to one in which we need only worry about diophantine equations with unitcoe�cients. This yields a special case of Stickel's algorithm, in which the variable usedto label a basis vector can be assigned only to a single variable in each of the generalizeduni�cands; and this information can be conveniently represented in a two-dimensionalmatrix.By the isomorphism of AC uni�cation in the all-variables case to the solving of dio-phantine equations, and by the above facts, it is clear that the procedure Matrix-Solveis sound. However, we must also demonstrate that the assignments which it rejects can-not possibly contribute to a complete set of uni�ers for a problem. While this seemsfairly intuitive, we state it explicitly in the next lemma. We will use CSU to abbreviate\complete set of uni�ers", and CSU(X) to denote the complete set of uni�ers for X .Lemma 3 Let E be the equation f(X1; : : : ; Xm) =AC f(Y1; : : : ; Yn), where the Xi andYj are distinct variables, and let S be the conjunction of equations x1 =AC X1 ^ : : : ^xm =AC Xm ^ y1 =AC Y1 ^ : : : ^ yn =AC Yn. Then (1) the set of substitutions Treturned by the procedure Matrix-Solve applied to E is a subset of CSU(E); and (2)CSU(E ^ S) = S�2T CSU(S�).Proof: (1) follows by Huet's lemma and by the isomorphism of the solving of lineardiophantine equations to the AC uni�cation in the all-variables case. In the caseof (2), it is a simple fact that CSU(E ^ S) = S�2CSU(E)CSU(S�); what remainsis to show that the substitutions in CSU(E) � T cannot yield valid uni�ers. Solet us examine the cases in which Matrix-Solve discards substitutions. First, ifxi is a constant, then the assignment of a sum of variables to Xi would make theequation Xi =AC xi unsolvable. Likewise, if xi is a functional term, headed by anon-AC function symbol, then the equation Xi =AC xi is unsolvable when Xi isassigned a sum of variables. And �nally, if xi is a functional term headed by an ACfunction symbol, the equation Xi =AC xi is unsolvable when Xi is assigned a sumof variables introduced by Matrix-Solve, since any such sum would be headed by

the root AC function symbol. Since all terms are attened initially, any functionalsubterm can not be headed by the root AC function symbol. The analysis is similarwhen some yj is a constant or functional term. Since constants present in bothterms are removed during the preparation step, the assignment of the same variableto Xi and Yj , when xi and yj are both constants, will result in the attemptedsolution of the equations z =AC xi and z =AC yj for some new variable z. Butthis would force an attempt to unify xi with yj ; and would fail, since they aredistinct constants. A similar argument applies to the case when one of xi and yjis a constant and the other is a functional term. Furthermore, each column androw in the matrix set up by Matrix-Solve must have at least a single 1 in it, since,otherwise, the e�ect would be to make some Xi or Yj \disappear". While thismight be appropriate for a theory with an identity element, it is not for associative-commutativity. Lastly, if xi and xi+1 are identical, then interchanging rows i andi + 1 yields an equivalent substitution. Thus the ordering restriction applied byMatrix-Solve preserves completeness. 2We are now in a position to state our main theorem regarding the partial correctnessof our algorithm.Theorem 3 Given any two terms x and y, the procedure AC-Unify returns a completeset of uni�ers for the equation x =AC y, assuming that the algorithm terminates.Proof: To see that our procedure is complete, we show that each step either returnsa complete set of uni�ers for the given problem, or converts the problem to anequivalent one, the solution to which yields a complete set for the original problem.We look �rst at the procedure AC-Unify. Steps 1 through 5 obviously return acomplete set of uni�ers for the appropriate input. Step 6 is justi�ed by the factthat CSU(f(s1; : : : ; sn) =AC f(t1; : : : ; tn)) = CSU(s1 =AC t1 ^ : : : ^ sn =AC tn),where f is a non-AC function symbol. Step 7 is justi�ed by Lemma 1. Steps 8 and9 and procedure Unify-With-Set together satisfy the conditions of Lemma 3.Procedure Unify-Conjunction is justi�ed by the fact that CSU(e1 ^ : : :^ en) = T ,where T = S�2CSU(e1) CSU(e2�^ : : :^ en�) Finally, the completeness of procedureMatrix-Solve was already established by Lemma 3. 26.2 TerminationFages' work [3] is witness to the di�culty of demonstrating termination in the generalcase of AC uni�cation. We have discovered that some special mechanism is requiredin order to assure termination of our algorithm in the case that both terms containrepeated variables. We have come up with two alternatives: (1) we could dispatch toStickel's algorithm, with its attendant proof of termination, in di�cult cases; or (2) wecould incorporate loop detection into our algorithm. Since we have been unable to provecompleteness of the latter, we will be content for now with proving termination for thosecases when at least one term does not contain repeated variables.Our strategy is straightforward, if brutal. We will de�ne a complexity measure onequations, which we show to be decreased upon every recursive call of the algorithm.

Let us say that a pair of uni�cands is valid if, in at least one of the uni�cands, novariable occurs more than once. A pair is invalid if both terms contain repeated variables.First, we show that the algorithm terminates whenever both terms contain only vari-ables, and the terms form a valid pair. Next, we demonstrate that AC-Unify will neverproduce recursive calls involving invalid pairs of terms, assuming that the original argu-ments were valid.Theorem 4 Let X = f(x1; : : : ; xm) and Y = f(y1; : : : ; yn) be attened terms, where allof the xi and yj are variables, and the xi are distinct. Then procedure AC-Unify appliedto X and Y terminates.Proof:Trivially, the algorithm terminates if both X and Y comprise distinct variables;this case is dispatched to the matrix operations, which clearly require only a �nitenumber of steps.Otherwise, AC-Unify will produce a list of recursive problems of the formf(X1; : : : ; Xm) = f(Y1; : : : ; Yn); X1 = x1; : : : ; Xm = xm; Y1 = y1; : : : ; Yn = yn.The �rst recursive call will be on the equation f(X1; : : : ; Xm) = f(Y1; : : : ; Yn),which contains distinct new variables; hence this case will terminate. The solutionsubstitution generated by the matrix operations will involve only assignments ofthe form Xi zk or Xi f(z1; : : : ; zk) (similarly for each Yj). Moreover, each Xiwill be assigned a term whose variables are distinct from those in terms assigned toany other Xj , j 6= i. This is true for each Yj , too.So, after application of the resulting substitution to the remaining equations, the listwill be of the form s1 = x1; : : : ; sm = xm; t1 = y1; : : : ; tn = yn, where the variablesin each si are distinct from sj ,j 6= i, and similarly for the ts (though the variablesin each si will overlap with those of some tj). Now, each xi is a distinct variable,so the next m recursive calls terminate by one of the base cases of AC-Unify. Inaddition, none of the variables in any si will have been uni�ed during these recursiveinvocations (because each call will involve a completely \new" set of variables, evenwhen substitutions are accumulated), and so the variables in the ts remain distinctfrom one another.During the last n recursive calls, the left-hand term of the equation being solvedwill contain distinct variables which have not been \bashed" by previous calls; andthe right-hand side will be either a variable (some y variable) or a term composedof distinct variables (after substitution of a uni�er for some repeated y variable).Also, the variables in the left-hand side will be disjoint from those in the right-handside. Thus, the call will terminate by one of the base cases or after a call to thematrix routine.2The proof of Theorem 4 is nearly identical to that required for the next fact:Theorem 5 Assuming that at most one of X and Y contains repeated variables, thenno recursive call generated during the execution of AC-Unify of X and Y will attempt tounify two terms containing repeated variables.

Proof: The proof is like that for Theorem 4, except that both X and Y may containnon-variable arguments (though, in at least one of X and Y , no variable may occurmore than once). The reader need only convince herself that the uni�cation of twoterms in which no variable occurs more than once will produce a most commoninstance in which no variable occurs more than once. The only di�culty is thecase when a repeated variable from one uni�cand appears in a functional term ofthe opposite uni�cand. For example, in f(X;Z; g(Y; b)) =AC f(Y; Y; g(a; b)), Yappears as a repeated variable in the right hand uni�cand, but also appears ina functional term on the left. In cases such as this, the validity of recursivelygenerated problems is guaranteed by the fact that uni�ers from Matrix-Solve willnever assign a term containing repeated variables to a variable which was repeatedin the original problem. With these facts, the previous proof can be applied almostdirectly. 2For concreteness in justifying the next theorem, we shall make use of a directed graphrepresentation of terms. Let t be a term. If t is not yet represented in the graph, thencreate a new node N . If t is a variable or atomic constant, label N with t. Otherwise,let t = f(t1; : : : ; tn). Label N with f , and for each ti add an edge from N to the rootnode of the graph of ti. By a slight abuse of language, we shall often refer to a nodeas a \variable node", \constant node", or anything else appropriate. We also say that avariable v is \repeated n times" if v textually appears n times in printed representationof a term, or equivalently, if the indegree of the node corresponding to v is n.When a substitution is applied to a term, we modify its graph representation in theobvious way. Given an assignment x t in the substitution, the representation of t isadded to the graph, if necessary, and any edge directed to x is forwarded to the root ofthe subgraph representation of t.We now show that AC-Unify terminates in the base case, and in general any recursivecall to AC-Unify is made with a simpler equation.The complexity metric we will use is a lexicographic extensionhRN ; RN�1; : : : ; R2; R1; Si of noetherian relations. Intuitively, the Ris represent the de-gree of variable repetition, and S is simply the number of nonvariable symbols present inan equation. Formally, let e be an equation. Let Rm be the number of variables repeatedm times in e, and let S be the total number of nonvariable symbols in e. We de�ne thelexicographic composition to be hRN ; RN�1; : : : ; R1; Si. N , the maximum degree of rep-etition, can be determined from the initial equation. S is the total number of nonvariablenodes in the graph representation of both sides of the equation.Theorem 6 Let X and Y be terms such that in at least one of them, no variable occursmore than once. Then AC-Unify terminates.Proof: Without loss of generality, assume any repeated variables occur in Y .Since none of steps 1 through 5 of AC-Unify cause recursive calls, they terminateimmediately.If the head of each term is a non-AC function symbol, Step 6 will callUnify-With-Set with a set of equations, each one of which is simpler than the origi-nal equation. Even if repeated variables exist, each recursive problem will be simpler

than the original. Certainly, if no variables in one new equation are shared by anyother, then that equation is simpler than the original despite any substitutionsgenerated by previous equations. If some variable is shared among two equations,then each equation will have less complexity than the original equation, since theoriginal equation had at least one more variable repetition than either subproblem.After any substitution generated from previous equations is applied to one of theseequations, it must still be simpler than the original since either (1) some variable isrepeated less often, or (2) the degree of repetition is the same, but there are fewervariables, or (3) there are the same number of variables and repetitions, but fewernon variable symbols. Since hRN ; RN�1; : : : ; (Rn�1); : : : ; (Rn�m+k); : : : R01; S0i isstrictly less than hRN ; RN�1; : : : ; Rn; : : : ; Rn�m; : : : R1; Si lexicographically, R de�-nitely decreases. This is the case because at the very least, the root function symboldoes not occur in the subproblem.If the head of each term is an AC function symbol, termination is more di�cultto demonstrate, but it is the case that Steps 7-9 will either terminate or generaterecursive calls which are strictly simpler than the original problem.If all immediate subterms of X and Y are variables, then by Theorem 4 AC-Unifyterminates.During Step 7, the conjunction of equations E f(X1; : : : ; Xm) =AC f(Y1; : : : ; Yn) ^X1 =AC x1 ^ : : : ^ Xm =AC xm ^ Y1 =AC y1 ^ : : : ^ Yn =AC yn, is created.This step certainly terminates.Step 8 solves the �rst equation of E, which is made up of distinct variables, andthus by Theorem 4 Step 8 terminates.Finally, Step 9 generates problems strictly simpler than the original. First, theequations of E involving Xs are solved. All the X equations have sums of distinctvariables on the left, and terms from the original problem, the xis, on the right.After all the equations in E involving Xs are solved, the substitution must haveassigned to each variable xi some sum of new variables, and must have assigned tosome new variable each non-variable xi. Since the non-variable xi have no variablesin common (no repeated variables), each tj must have no variables in common withany tk for which j 6= k. The remaining equations now look like:t1 =AC y1 ^ : : : ^ tn =AC ynThe variables in each tj are distinct from any other tk, but may not be distinct fromsome yo, if the original problem was similar to f(X;Z; g(Y; b)) =AC f(Y; Y; g(a; b)),in having variables from one side appear as deeper subterms in the opposite uni�-cand.Now, let y be the variable which is the immediate subterm with the highest degreeof repetition in the �rst subproblem, say r. Also, let s be the number of times yappears as an immediate subterm of the current equation. Obviously, y occurs r�stimes elsewhere as a deeper subterm of some functional terms.Any substitution generated will assign some term, in general f(z1; :::zk) for somek, or it will assign some subterm t of the original equation to y. In the latter case,let k be the number of variables embedded within t. t must not include repeatedvariables, since variables can only be repeated in one term originally, and as shownby Theorem 5 this property is preserved. If y is assigned f(z1; :::zk), the zs aredistinct, as shown above. Each equation is strictly simpler than the original sinceeither (1) some variable is repeated less often, or (2) the degree of repetition is thesame, but there are less variables, or (3) there are the same number of variables

and repetitions, but there are less non variable symbols. This is the case becauseat the very least, the root function symbol does not occur in the subproblem.After each equation is solved, any remaining equation in the conjunction will stillbe less complex than the original problem. For each variable y with degree ofrepetition r that appears on the right of an equation, y will be assigned someterm f(z1; : : : ; zk) for some k. Any remaining equation must still be less complexthan the original problem, since Rr will be decremented by at least 1 (y appearsone less time), and Rr�s will be incremented by k if (r � s) � 0 (y is replaced byf(z1; : : : ; zk) elsewhere). Since hRN ; RN�1; : : : ; (Rn�1); : : : ; (Rn�m+k); : : : R01; S0iis strictly less than hRN ; RN�1; : : : ; Rn; : : : ; Rn�m; : : : R1; Si lexicographically, Rde�nitely decreases. If y is not repeated, then Ri; i > 1 is une�ected, and R1decreases. If there are no variables as immediated subterms (y was replaced bysome substitution), Ri; i � 1 will be unchanged, and the number of nonvariablesymbols will decrease, since the immediate nonvariable subterms no longer appear.Since there are �nitely many equations in the conjunction generated by Step 7, andeach is less complex than the original problem, the Steps 7-9 terminate. Also, sinceeach possibility of AC-Unify either terminates directly, or calls AC-Unify with asimpler problem, AC-Unify terminates. 27 BenchmarksTable 8 reects the time in seconds necessary to prepare the uni�cands and to �nd andconstruct all AC uni�ers. For each problem, timings were supplied by Kapur and Zhang(RRL), Stickel (SRI), and ourselves (MCC). All data were collected on a Symbolics 3600with IFU. As shown in the table, our algorithm is consistently three to �ve times fasterthan Stickel's and Kapur's.These benchmarks do not include any problems with repeated variables, since in suchcases, our algorithm would either return non-minimal sets of uni�ers, or it would dispatchto Stickel's procedure. This is not as serious a concession as it might appear, since themost common cases of AC Uni�cation are the ones without repeated variables. In fact,Lankford has found that less than eight percent of uses of AC uni�cation in applicationslike Knuth-Bendix completion have repetitions of anything, and less than three percenthave repetitions on both sides [12].8 Future ExtensionsWith simple modi�cations, our algorithm can apparently handle arbitrary combinationsof associativity, commutativity, identity, and idempotence. We say \apparently" becausewe have not yet proven completeness or termination in all these cases, but preliminary�ndings have been encouraging. Also, our algorithm seems amenable to parallel imple-mentation. The most e�cient sequential implementation of our method makes use ofbinary numbers to represent the state of the matrix, and thus distributing the search foruni�ers only requires communicating a starting and stopping point in the search, and

Problem] solns RRL SRI MCCxab = ucde 2 0.020 0.018 0.005xab = uccd 2 0.023 0.011 0.005xab = uccc 2 0.018 0.008 0.004xab = uvcd 12 0.045 0.047 0.013xab = uvcc 12 0.055 0.032 0.014xab = uvwc 30 0.113 0.096 0.034xab = uvwt 56 0.202 0.171 0.079xaa = ucde 2 0.028 0.013 0.005xaa = uccd 2 0.023 0.009 0.004xaa = uccc 2 0.021 0.006 0.005xaa = uvcd 8 0.043 0.032 0.010xaa = uvcc 8 0.035 0.020 0.011xaa = uvwc 18 0.087 0.062 0.023xaa = uvwt 32 0.192 0.114 0.051xya = ucde 28 0.093 0.094 0.024xya = uccd 20 0.068 0.050 0.018xya = uccc 12 0.045 0.026 0.013xya = uvcd 88 0.238 0.247 0.064xya = uvcc 64 0.211 0.133 0.048xya = uvwc 204 0.535 0.538 0.160xya = uvwt 416 0.918 1.046 0.402xyz = ucde 120 0.375 0.320 0.118xyz = uccd 75 0.185 0.168 0.072xyz = uccc 37 0.093 0.073 0.038xyz = uvcd 336 0.832 0.840 0.269xyz = uvcc 216 0.498 0.431 0.171xyz = uvwc 870 2.050 2.102 0.729xyz = uvwt 2161 5.183 5.030 1.994Table 8: Benchmarks of AC Uni�cation

the original problem. Other methods, such as Stickel's, probably require either commu-nicating the entire basis of solutions of a diophantine equation or recomputing that basisat each node.9 ConclusionWe have just described an algorithm which we believe to be the most e�cient way ofsolving a large class of associative-commutative matching and uni�cation problems. Ouralgorithm is based on a weakened form of Stickel's variable abstraction method, whichobviates the need for solving diophantine equations. It utilizes a matrix representationwhich conveniently enforces powerful search constraints. Compared to Stickel's and Ka-pur's procedures, our method often yields a signi�cant improvement in speed. Certainly,applications of AC uni�cation stand to bene�t from our research.We would like to thank Dallas Lankford for introducing us to his diophantine basis generationalgorithm, and for supplying us with pointers to some useful information. We would also like tothank Hassan A��t-Kaci, Mike Ballantyne, Woody Bledsoe, Bob Boyer, and Roger Nasr for theircomments, criticisms, and laissez-faire supervision. Finally, we would like to thank Mark Stickel,Hantao Zhang, and Deepak Kapur, for their insightful criticisms and for supplying benchmarktimes.References[1] D.Bananev, D.Kapur, and P.Narendran. \Complexity of Matching Problems". RewritingTechniques and Applications, Springer-Verlag. Lecture Notes in Computer Science Vol.202,Dijon, France, May, 1985, pp 417-429.[2] W.B�uttner. \Uni�cation in Datastructure Multisets". Journal of Automated Reasoning, 21986 pp. 75-88.[3] F.Fages. \Associative-Commutative Uni�cation". Journal of Symbolic Computation, Vol.3, Number 3, June 1987 pp 257-275.[4] A.Fortenbacher. \An Algebraic Approach to Uni�cation Under Associativity and Commu-tativity". Rewriting Techniques and Applications, Dijon, France, May 1985, ed Jean-PierreJouannaud. Springer-Verlag Lecture Notes in Computer Science Vol. 202, (1985) pp. 381-397[5] P.Gordan. \Ueber die Au�osung linearer Gleichungen mit reelen Coe�cienten". Mathema-tische Annalen, VI Band, 1 Heft (1873), 23-28.[6] A.Herold and J.Siekmann. \Uni�cation in Abelian Semigroups". Journal of AutomatedReasoning 3 Sept 1987 pp 247-283.[7] G.Huet. \An Algorithm to Generate the Basis of Solutions to Homogeneous Linear Dio-phantine Equations". IRIA Research Report No. 274, January 1978.[8] G.Huet and D.C.Oppen. \Equations and Rewrite Rules: a Survey". In Formal Languages:Perspectives and Open Problems, ed R. Book, Academic Press, 1980.[9] J.M.Hullot. \Associative Commutative Pattern Matching". Proc. International Joint Con-ference on Arti�cial Intelligence, Volume One, pp406-412, Tokyo, August 1979.

[10] D.Kapur, G.Sivakumar, and H.Zhang. \RRL: A Rewrite Rule Laboratory". Proc. of theEighth Conference on Automated Deduction, Oxford, England, 1986, Springer-Verlag Lec-ture Notes in Computer Science Vol.230 pp 691-692.[11] C.Kirchner. \Methods and Tools for Equational Uni�cation". in Proc. Colloquium on theResolution of Equations in Algebraic Structures, May 1987, Austin, Texas.[12] D.Lankford. \New Non-negative Integer Basis Algorithms for Linear Equations with IntegerCoe�cients". May 1987. Unpublished. Available from the author, 903 Sherwood Drive,Ruston, LA 71270.[13] M.Livesey and J.Siekmann. \Uni�cation of A + C-terms (bags) and A + C + I-terms(sets)". Intern. Ber. Nr. 5/76, Institut f�ur Informatik I, Unifersit�at Karsruhe, 1976.[14] A.Martelli and U.Montanari. \An E�cient Uni�cation Algorithm". ACM Transactions onProgramming Languages and Systems, 4(2):258-282, 1982.[15] O.Shmueli, S.Tsur, and C.Zaniolo. \Rewriting of Rules Containing Set Terms in a LogicData Language". Proc. Principles of Database Systems, Austin, TX, USA, March 1988.[16] J.Siekmann. \Universal Uni�cation". Proc. of the Seventh Conference on Automated De-duction, Napa, CA, USA, May 1984, Springer-Verlag Lecture Notes in Computer ScienceVol.170 pp 1-42.[17] M.Stickel. \A Complete Uni�cation Algorithm for Associative-Commutative Functions".Proc. 4th International Joint Conference on Arti�cial Intelligence, Tbilisi (1975), pp.71-82.[18] M.Stickel. \A Uni�cation Algorithm for Associative-Commutative Functions". Journal ofthe ACM, Vol.28, No.3, July 1981, pp.423-434.[19] M.Stickel. \A Comparison of the Variable-Abstraction and Constant-Abstraction methodsfor Associative-Commutative Uni�cation". Journal of Automated Reasoning 3, Sept 1987,pp.285-289.[20] H.Zhang. \An E�cient Algorithm for Simple Diophantine Equations". Tech. Rep. 87-26,Dept. of Computer Science, RPI, 1987.

