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1 IntroductionByzantine-resilient algorithms make no assumptions about the behavior of faultycomponents and are therefore maximally e�ective with respect to the kinds (ormodes) of faults they tolerate. But they are not uniformly e�ective with respect tothe number of faults they can tolerate: other algorithms can withstand more faultsfor a given level of redundancy than Byzantine-resilient ones, provided the faults areof particular kinds. However, these alternative algorithms may fail when confrontedby faults beyond the kinds they are designed to handle.These observations motivate the study of fault-tolerant architectures and al-gorithms with respect to hybrid fault models that include the Byzantine, or \ar-bitrary," fault mode, together with a limited number of additional fault modes.Inclusion of the arbitrary fault mode (i.e., faults whose behaviors are entirely un-constrained) eliminates the fear that some unforeseen mode may defeat the fault-tolerance mechanisms provided, while inclusion of other fault modes allows greaterresilience to be achieved for faults of those kinds than with a classical Byzantinefault-tolerant architecture.Our interest is architectures for digital 
ight-control systems, where fault-masking behavior is required to achieve ultra-high levels of reliability. This meansthat not only must stochastic modeling show that adequate numbers and kinds offaults are masked to satisfy the mission requirements, but that convincing analyti-cal evidence must attest to the soundness of the overall fault-tolerant architectureand to the correctness of the design and implementation of its mechanisms of faulttolerance.1In this paper, we focus on algorithms for reliably distributing single-source datato multiple channels in the presence of faults. This problem, known as \InteractiveConsistency" (although sometimes called \source congruence"), was �rst posed andsolved for the case where faulty channels can exhibit arbitrary behavior by Pease,Shostak, and Lamport [10] in 1980.The principal di�culty to be overcome in achieving Interactive Consistency isthe possibility of asymmetric behavior on the part of faulty channels: such a channelmay provide one value to a second channel, but a di�erent value to a third, therebymaking it di�cult for the recipients to agree on a common value. Interactive Consis-tency algorithms overcome this problem by using several rounds of message exchangeduring which channel p tells channel q what value it received from channel r and soon. The precise form of the algorithm depends on assumptions about what a faultychannel may do when relaying such a message; under the \Oral Messages" assump-tion, there is no guarantee that a faulty channel will relay messages correctly. This1There are examples where unanticipated behaviors of the mechanisms for fault tolerance becamethe primary source of system failure [6]. 2



corresponds to totally arbitrary behavior by faulty channels: not only can a faultychannel provide inconsistent data initially, but it can also relay data inconsistently.2Using m+1 rounds of message exchanges, the Oral Messages algorithm of Lam-port, Shostak, and Pease [3], which we denote OM(m), can withstand up to marbitrary faults, provided n, the number of channels, satis�es n > 3m. The boundn > 3m is optimal: Pease, Shostak, and Lamport proved that no algorithm based onthe Oral Messages assumptions can withstand more arbitrary faults than this [10].However, as we have already noted, OM(m) is not optimal when other than ar-bitrary faults are considered: other algorithms can withstand greater numbers ofsimpler faults for a given number of channels than OM(m).We are not the �rst to make these observations. Thambidurai and Park [13] andMeyer and Pradhan [7] have considered Interactive Consistency algorithms that re-sist multiple fault classes. Thambidurai and Park's \uni�ed" or \hybrid" fault modeldivides faults into three classes: nonmalicious (or benign), symmetric malicious, andasymmetric malicious. We �nd the anthropomorphism in terms such as \maliciousfaults" unhelpful and rename the cases to arbitrary , symmetric, and manifest faults,respectively. A manifest fault is one that produces detectably missing values (e.g.,timing, omission, or crash faults), or that produces a value that all nonfaulty recip-ients can detect as bad (e.g., it fails checksum or format tests). The other two faultmodes yield values that are not detectably bad (i.e., they are wrong , rather thanmissing or manifestly corrupted, values): a symmetric fault delivers the same wrongvalue to every nonfaulty receiver; an arbitrary fault is completely unconstrained andmay deliver (possibly) di�erent wrong values (or missing or detectably bad values)to di�erent nonfaulty receivers.Thambidurai and Park present a variant on the classical Oral Messages algorithmthat retains the e�ectiveness of that algorithm with respect to arbitrary faults, butthat is also capable of withstanding more faults of the other kinds considered.3Unfortunately, Thambidurai and Park's algorithm (which they call Algorithm Z)has a serious 
aw and fails in quite simple circumstances. In this paper, we describethe 
aw, and explain how straightforward attempts to repair it also fail. We thenpresent a correct algorithm for the problem of Interactive Consistency under a hybridfault model and present a proof of its correctness. Thambidurai and Park presenteda proof of correctness for their 
awed algorithm, and we have also developed somerather convincing \proofs" of incorrect algorithms for this problem ourselves. Wediscovered the errors in Thambidurai and Park's algorithm and in our own imperfectvariants while attempting to formally verify the algorithms concerned.2Under the \signed messages" assumption (which can be satis�ed using digital signatures), analtered message can be detected by the recipient.3Meyer and Pradhan [7] consider a fault model that, in our version of Thambidurai and Park'staxonomy, comprises only arbitrary and manifest faults. Their algorithm is derived from the algo-rithm of [2] and, like the parent algorithm, is not particularly well suited to the cases of practicalinterest (i.e., m = 1, or possibly m = 2, n less than 10).3



The algorithm presented here has been subjected to mechanically-checked for-mal veri�cation using the PVS veri�cation system [8]. We describe this formalveri�cation and claim that it is not particularly di�cult. Because informal proofsseem unreliable in this domain, and because the consequences of failure could becatastrophic, we argue that formal veri�cation should become standard.2 Requirements, Assumptions, and the AlgorithmsOM and ZInteractive Consistency is a symmetric problem: it is assumed that each channelhas a \private value" (e.g., a set of sensor samples) and the goal is to ensure thatevery nonfaulty channel achieves an accurate record of the private value of everyother nonfaulty channel. In 1982, Lamport, Shostak, and Pease [3] presented anasymmetric version of Interactive Consistency, which they called the \ByzantineGenerals Problem"; here, the goal is to communicate a single value from a desig-nated channel called the \Commanding General" to all the other channels, whichare known as \Lieutenant Generals." The problem of real practical interest is In-teractive Consistency, but the metaphor of the Byzantine Generals has proved somemorable that this formulation is better known; it can also be easier to describealgorithms informally using the Byzantine Generals formulation, although the bal-ance of advantage can be reversed in truly formal presentations. All the algorithmswe consider are presented here in their Byzantine Generals formulation. An algo-rithm for the Byzantine Generals problem can be converted to one for InteractiveConsistency by simply iterating it over all channels (each channel in turn taking therole of the Commander), so there is no disadvantage to considering the ByzantineGenerals formulation. See [11] for more extended discussion of this topic.2.1 RequirementsIn the Byzantine Generals formulation of the problem, there are n participants,which we call \processors." A distinguished processor, which we call the transmitter ,possesses a value to be communicated to all the other processors, which we call thereceivers. There are n processors in total, of which some (possibly including thetransmitter) may be faulty. The transmitter's value is denoted v and the problemis to devise an algorithm that will allow each receiver p to compute an estimate �pof the transmitter's value satisfying the following conditions.BG1: If receivers p and q are nonfaulty, then they agree on the value ascribed tothe transmitter|that is, for all nonfaulty p and q, �p = �q.4



BG2: If the transmitter is nonfaulty, then every nonfaulty receiver computes thecorrect value|that is, for all nonfaulty p, �p = v.Conditions BG1 and BG2 are sometimes known as \Agreement" and \Validity,"respectively.2.2 AssumptionsThe principal di�culty that must be overcome by a Byzantine Generals algorithmis that the transmitter may send di�erent values to di�erent receivers, thereby com-plicating satisfaction of condition BG1. To overcome this, algorithms use several\rounds" of message exchange during which processor p tells processor q what valueit received from processor r and so on. Under the \Oral Messages" assumptions,the di�culty is compounded because a faulty processor q may \lie" to processorr about the value it received from processor p. More precisely, the Oral Messagesassumptions are the following.A1: Every message that is sent between nonfaulty processors is correctly delivered.A2: The receiver of a message knows who sent it.A3: The absence of a message can be detected.In the classical Byzantine Generals problem, there are no constraints at all onthe behavior of a faulty processor.2.3 Algorithm OMLamport, Shostak, and Pease's Algorithm OM solves the Byzantine Generals prob-lem under the Oral Messages assumption. The algorithm is parameterized bym, thenumber of rounds of message exchanges performed. OM(m) can withstand up to mfaults, provided n > 3m, where n is the total number of processors. The algorithmis described recursively; the base case is OM(0).OM(0)1. The transmitter sends its value to every receiver.2. Each receiver uses the value obtained from the transmitter, or some arbitrary,but �xed, value if nothing is received.
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Next, we describe the general case.OM(m), m > 01. The transmitter sends its value to every receiver.2. For each p, let vp be the value receiver p obtains from the transmitter, or elsebe some arbitrary, but �xed, value if it obtains no value. Each receiver p actsas the transmitter in Algorithm OM(m � 1) to communicate its value vp toeach of the n� 2 other receivers.3. For each p, and each q 6= p, let vq be the value receiver p obtained from receiverq in step (2) (using Algorithm OM(m� 1)), or else some arbitrary, but �xed,value if nothing was received. Each receiver p calculates the majority valueamong all values vq it receives, and uses that as the transmitter's value (orsome arbitrary, but �xed, value if no absolute majority exists).The correctness of this algorithm (i.e., that it achieves BG1 and BG2 underassumptions A1 to A3) and its optimality (i.e., that no algorithm can mask thesame number of arbitrary faults with fewer processors) were proven in [3, page 390].These results have been formally veri�ed by Bevier and Young [1].2.4 Algorithm ZThambidurai and Park's Algorithm Z is a modi�cation of OM intended to operateunder their hybrid fault model described earlier. The di�erence between OM and Zis that the latter has a distinguished \error" value, E. Any processor that receives amissing or manifestly bad value replaces that value by E and uses E as the value thatit passes on in the recursive instances of the algorithm. The majority voting thatis required in OM, is replaced in Z by a majority vote with all E values eliminated(we call this a hybrid-majority vote). Thambidurai and Park claim that an m-round implementation of Algorithm Z can withstand a+ s+ c simultaneous faults,where a is the number of arbitrary faults, s the number of symmetric faults, and cthe number of manifest faults,4 provided a � m, and n, the number of processors,satis�es n > 2a + 2s + c +m. In the case of no symmetric or manifest faults (i.e.,Byzantine faults only), we have m = a and s = c = 0, so that n > 3m and thealgorithm provides the same performance as the classical Oral Messages algorithm.We and our colleagues at SRI have undertaken mechanically checked formalveri�cations for a number of fault-tolerant algorithms, including OM [11], and haveidenti�ed de�ciencies in some of the previously published analyses (though not in4We cannot use m for the number of manifest-faulty processors, because the parameter m istraditionally used for the number of rounds (although Thambidurai and Park use r). The symbolc can be considered a mnemonic for \crashed," which is one of the failures that can generatemanifest-faulty behavior. 6



the algorithms) [9, 12]. Any changes to the established algorithms for InteractiveConsistency must be subjected to intense scrutiny, for errors in these algorithmsare single points of failure in any system that employs them. Changes that widenthe classi�cation of faults considered are likely to increase the case analysis, andhence the complexity and potential fallibility of arguments for the correctness ofmodi�ed algorithms. We therefore considered Thambidurai and Park's AlgorithmZ an interesting candidate for formal veri�cation.We began our attempt to formally verify Algorithm Z by studying the proof ofits correctness provided by Thambidurai and Park [13, pages 96 and 97]. This prooffollows the outline of the standard proof for OM [3, page 390] quite closely. How-ever, we found that Thambidurai and Park's proof of their Lemma 1 (all nonfaultyreceivers get the correct value of a nonfaulty transmitter) fails to consider the casewhere the value sent by the transmitter is E. This can arise in recursive instancesof the algorithm when nonfaulty receivers are passing on the value received froma faulty source. Further thought reveals that not only is the proof 
awed, but thealgorithm is incorrect: even systems with large numbers of processors may fail withonly two faulty components.The simplest counterexample comprises �ve processors in which the transmitterhas a manifest fault, one of the receivers has an arbitrary fault, and the algorithmis Z with one round (i.e., n = 5; a = 1; s = 0; c = 1;m = 1). All the nonfaultyreceivers note E as the value received from the transmitter, and relay the value E toall the other receivers. The faulty receiver sends a di�erent (non-E) value to eachof the nonfaulty receivers. Each nonfaulty receiver then has three E values, and onenon-E value; because E values are discarded in the majority vote, each nonfaultyreceiver selects the value received from the faulty receiver as the value sent by thetransmitter. Since these values are all di�erent, the algorithm has failed to achieveagreement among the nonfaulty receivers.3 The Algorithm OMHIn this section we introduce our new algorithm OMH for interactive consistencyunder a hybrid fault model. Before describing the algorithm, we present the faultmodel.3.1 Hybrid Fault ModelAs noted, the fault modes we distinguish for processors are arbitrary-faulty ,symmetric-faulty , and manifest-faulty . Of course, we also need a class of good (alsocalled nonfaulty) processors. We specify these fault modes semiformally as follows.
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When a transmitter sends its value v to the receivers, the value obtained by anonfaulty receiver p is:� v, if the transmitter is nonfaulty� E, if the transmitter is manifest-faulty5� Unknown, if the transmitter is symmetric-faulty, but all receivers obtain thesame value,� Completely unconstrained, if the transmitter is arbitrary-faulty.Note that it is not necessary to de�ne the value received by a faulty receiver,because such receivers may send values completely unrelated to their inputs.Algorithm OMH must satisfy the Byzantine Generals conditions extended to thefault model described above.BGH1: If processors p and q are nonfaulty, then they agree on the value ascribedto the transmitter; that is, �p = �q.When the transmitter is symmetric-faulty, it is convenient to call the uniquevalue received by all nonfaulty receivers the value actually sent by the transmitter.BGH2: If processor p is nonfaulty, the value ascribed to the transmitter by p is� The correct value v, if the transmitter is nonfaulty,� The value actually sent, if the transmitter is symmetric-faulty,� The value E, if the transmitter is manifest-faulty.3.2 The AlgorithmIt seems that the 
aw in Algorithm Z stems from the fact that it does not distinguishbetween values received frommanifest-faulty processors and the report of such valuesreceived from nonfaulty processors; the single value E is used for both cases. Thus,a plausible repair for Algorithm Z introduces an additional distinguished value RE(for Reported Error); when a manifestly faulty value is received, the receiver notes itas E, but passes it on as RE; if an RE is received, it is noted and passed on as such.Only E values are discarded when the majority vote is taken. In the counterexampleto Algorithm Z given above, the nonfaulty receivers in this modi�ed algorithm will5Some preprocessing of timeouts, parity and \reasonableness" checks, etc. may be necessaryto identify manifestly faulty values. The intended interpretation is that the receiver detects theincoming value as missing or bad, and then replaces it by the distinguished value E.8



each interpret the value received from the transmitter as E, and pass it on to theother receivers as RE. In their majority votes, each nonfaulty receiver has a singleE (from the transmitter) which it discards, two REs (from the other nonfaultyreceivers), and an arbitrary value (from the faulty receiver). All will therefore selectRE as the value ascribed to the transmitter.Unfortunately this modi�ed algorithm has two defects. First, a receiver thatobtains a manifest-faulty value from the transmitter notes it as E, but passes it onas RE. Thus, this receiver will omit the value from its majority vote, but the otherswill include it (as RE). This asymmetry can be exploited by an arbitrary-faultytransmitter to force the receivers into disagreement (consider an arbitrary-faultytransmitter and three nonfaulty receivers, where the transmitter sends the valuesE, RE, and a normal value).It therefore seems that receivers must distinguish between an E received fromthe transmitter (which must be treated locally as RE and passed on as such), andone received from another receiver (which can be discarded in the majority vote).This repair �xes one problem, but leaves the other: the value ascribed to a manifestfaulty transmitter is not E, but RE. This might seem a small inconvenience, butit causes the algorithm to fail when m, the number of rounds, is greater than 1(consider the case n = 6, m = 2 when there is a nonfaulty transmitter and threemanifest-faulty receivers).A repair to this di�culty might be to return the value E whenever the majorityvote yields the value RE. This modi�cation has the problem that receivers cannotdistinguish a manifest-faulty receiver from a nonfaulty one reporting that another ismanifest-faulty (consider the case n = 4, m = 1, all the processors are nonfaulty, andthe transmitter is trying to send RE|as can arise in recursive cases when m > 1).Like Thambidurai and Park did for Algorithm Z, we produced rather convincing,but nonetheless 
awed, informal \proofs of correctness" for these erroneous repairsto Algorithm Z. Eventually, the discipline of formal veri�cation (where one mustdeal with the implacable skepticism of a mechanical proof checker and is eventuallyforced to confront overlooked cases and unstated assumptions) enabled us to developa genuinely correct algorithm for this problem.Our new algorithm, OMH (for \Oral Messages, Hybrid"), is somewhat relatedto the last of the modi�cations to Algorithm Z indicated above, but recognizes thata single \reported error" value is insu�cient. OMH therefore employs two functionsR and UnR that act as a \wrapper" and an \unwrapper" for error values.The basic idea of OMH is that at each round, the processors do not forwardthe actual value they received. Instead, each processor sends a value correspondingto the statement \I'm reporting value." One can imagine that after several rounds,messages corresponding to \I'm reporting that he's reporting that she's reporting anError value" arise. This wrapper is only required for error values, but for simplicitywe assume for the time being that the functions R and UnR are applied to all values9



(alternatives are explored in Section 5). This gives the following intuitive picture ofthe algorithm.Proceed as in the usual OM Byzantine agreement algorithm presented above,with the following exceptions. Add a distinguished error value E, and two functionson values R and UnR. When a manifestly bad value is received, temporarily recordit as the special value E. When passing along a value received from the transmitteror incorporating it into the local majority vote, apply R, standing for \I report: : : "to the value. Discard all E values (received from other receivers) before voting, buttreat all other error values (R(E), R(R(E)), etc.) as normal, potentially valid valuesduring voting. After voting, apply UnR (strip o� one R) before returning the value.The key idea here is that in Z and related algorithms there is a confusion aboutwhich processors have manifest faults: if there is only one error value, E, howcan a processor distinguish between a manifest-faulty receiver and a good receiverreporting a bad value (or the lack of a value) from a manifest-faulty transmitter? Thecounterexample to Algorithm Z given above exploits this confusion, but it is handledcorrectly by OMH, because the nonfaulty receivers in OMH(1) each receive a singleE from the transmitter, which they pass on to the other receivers and themselves asR(E). The values thus voted on include three R(E)s and an arbitrary value (fromthe arbitrary-faulty receiver). All nonfaulty receivers therefore select R(E) as themajority value. After stripping one R from this value, the result correctly identi�esthe transmitter as manifest-faulty. In short, OMH incorporates the diagnosis ofmanifest faults into the agreement algorithm.The Hybrid Oral Messages Algorithm OMH(m) is de�ned more formally below.OMH(0)1. The transmitter sends its value to every receiver.2. Each receiver uses the value received from the transmitter, or uses the valueE if a missing or manifestly erroneous value is received.OMH(m), m > 01. The transmitter sends its value to every receiver.2. For each p, let vp be the value receiver p obtains from the transmitter, or E ifno value, or a manifestly bad value, is received.Each receiver p acts as the transmitter in Algorithm OMH(m� 1) to commu-nicate the value R(vp) to all of the n� 1 receivers, including itself.3. For each p and q, let vq be the value receiver p received from receiver q instep (2) (using Algorithm OMH(m � 1)), or else E if no such value, or amanifestly bad value, was received. Each receiver p calculates the majorityvalue among all non-E values vq received, (i.e., the hybrid-majority); if no such10



majority exists, the receiver uses some arbitrary, but functionally determinedvalue. Receiver p then applies UnR to that value, using the result as thetransmitter's value.3.3 Correctness ArgumentsWe make explicit a few unsurprising technical assumptions:� All processors are either nonfaulty, arbitrary-faulty, symmetric-faulty, ormanifest-faulty. (Any fault not otherwise classi�ed is considered arbitrary.)� Processors do not change fault status during the procedure; for example, ifa nonfaulty processor were to become manifest-faulty during this procedure,we would say that processor is arbitrary-faulty because it has e�ectively sentdi�erent values to other processors.� For all values v, R(v) 6= E. (Wrapped values are never mistaken for errors.)� For all values v, UnR(R(v)) = v. (Unwrapping a wrapped value results in theoriginal value.)The argument for the correctness of OMH is an adaptation of that for the Byzan-tine Generals formulation of OM [3, page 390]. We de�ne� n, the number of processors,� a, the maximum number of arbitrary-faulty processors the algorithm is totolerate,� s, the maximum number of symmetric-faulty processors the algorithm is totolerate,� c, the maximum number of manifest-faulty processors the algorithm is to tol-erate,� m, the number of rounds the algorithm is to perform.Lemma 1 For any a, s, c and m, Algorithm OMH(m) satis�es BGH2 if there aremore than2(a+ s) + c+m processors.Proof: The proof is by induction on m. BGH2 speci�es only what must happenif the transmitter is not arbitrary-faulty. In the base casem = 0, a nonfaulty receiverobtains the transmitter's value if the transmitter is nonfaulty. If the transmitter issymmetric-faulty the value obtained is the value actually sent. If the transmitter is11



manifest-faulty the receiver obtains the value E. So the trivial algorithm OMH(0)works as advertised and the lemma is true for m = 0. We now assume the lemmais true for m� 1 (m > 0), and prove it for m.In step (1) of the algorithm, the transmitter e�ectively sends some value � to alln� 1 receivers. If the transmitter is nonfaulty, � will be v, the correct value; if it issymmetric-faulty, � is the value actually sent; if it is manifest-faulty, � is E. In anycase, we want all the nonfaulty receivers to decide on �.In step (2), each receiver applies OMH(m � 1) with n � 1 participants. Thosereceivers that are nonfaulty will apply the algorithm to the value R(�). Since byhypothesis n > 2(a + s) + c +m, we have n � 1 > 2(a + s) + c + (m � 1), so wecan apply the induction hypothesis to conclude that the nonfaulty receiver p getsvq = R(�) for each nonfaulty receiver q. Let c0 denote the number of manifest-faultyprocessors among the receivers. At most (a + s + c0) of the n � 1 receivers arefaulty, so each nonfaulty receiver p obtains a minimum of n� 1� (a+ s+ c0) valuesequal to R(�). Since there are c0 manifest-faulty processors among the receivers, anonfaulty receiver p also obtains a minimum of c0 values equal to E and, therefore,at most n � 1 � c0 values di�erent from E. The value R(�) will therefore win thehybrid-majority vote performed by each nonfaulty processor p, provided2(n� 1� (a+ s+ c0)) > n� 1� c0;that is, provided n > 2(a + s) + c0 + 1. Now, c0 � c, and 1 � m, so this conditionis ensured by the constraint n > 2(a + s) + c +m. Finally, UnR is applied to theresult R(�), which results in �nal value �. 2Theorem 1 For any m, Algorithm OMH(m) satis�es conditions BGH1 and BGH2if there are more than 2(a+ s) + c+m processors and m � a.Proof: The proof is by induction on m. In the base case m = 0 there can be noarbitrary-faulty processors, since m � a. If there are no arbitrary-faulty processorsthen the previous lemma ensures that OMH(0) satis�es BGH1 and BGH2. Wetherefore assume that the theorem is true for OMH(m�1) and prove it for OMH(m),m > 0.We next consider the case in which the transmitter is not arbitrary-faulty. ThenBGH2 is ensured by Lemma 1, and BGH1 follows from BGH2.Now consider the case where the transmitter is arbitrary-faulty. There are atmost a arbitrary-faulty processors, and the transmitter is one of them, so at mosta�1 of the receivers are arbitrary-faulty. Since there are more than 2(a+s)+ c+mprocessors, there are more than 2(a+ s) + c+m� 1 receivers, and2(a+ s) + c+m� 1 > 2([a� 1] + s) + c+ [m� 1]:12



We may therefore apply the induction hypothesis to conclude that OMH(m � 1)satis�es conditions BGH1 and BGH2. Hence, for each q, any two nonfaulty re-ceivers get the same value for vq in step (3). (This follows from BGH2 if one of thetwo receivers is processor q, and from BGH1 otherwise). Hence, any two nonfaultyreceivers get the same vector of values v1; : : : ; vn�1, and therefore obtain the samevalue hybrid-majority(v1; : : : ; vn�1) in step (3) (since this value is functionally de-termined), thereby proving BGH1. 23.4 Bene�tsRecall that OM achieves agreement and validity if there are more than three timesas many good processors as arbitrary-faulty processors (n > 3a) and at least asmany rounds as arbitrary-faulty processors (m � a). From the bounds given inTheorem 1, n > 2(a + s) + c +m and m � a, it may be seen that OMH achievesthe same resilience to arbitrary faults if there are no symmetric-faulty or manifest-faulty processors (i.e., if s = c = 0). However, OMH achieves can withstand largernumbers of symmetric and manifest faults than OM|which does not distinguishsuch faults from arbitrary ones.However, even OMH appears suboptimal in the number of faults tolerated insome of the extreme circumstances. In some cases, this is because algorithm istruly suboptimal; in others, the algorithm is optimal, but the general analysis givenabove is too conservative. As an example of the latter, consider the case whereonly manifest faults are present. Then the general analysis above indicates thatthe number of manifest faults that can be tolerated is n �m � 1: in other words,the greater the number of rounds, the fewer manifest faults that can be tolerated.In fact, alternative analysis shows that OMH(m) tolerates the maximum possiblenumber of manifest-faulty processors when there are no arbitrary nor symmetricfaults. The only constraint is that there must be more processors (whether faultyor not) than rounds (since otherwise some recursive instances would be run on theempty set of processors).Theorem 2 If arbitrary and symmetric faults are not present, Algorithm OMH(m)satis�es conditions BGH1 and BGH2 provided there are more than m processors.This theorem has been formalized and mechanically veri�ed [4].When only symmetric faults are present, it is the algorithm, rather than itsgeneral analysis, that is less than optimal. Here, the additional rounds of messageexchanges are actively counterproductive in the cases m > 0 (compare n = 4, s = 2for the cases m = 0 and m = 1). Additional rounds of messages are the price paidfor overcoming arbitrary faults, and these seem to reduce the ability to deal withsymmetric faults. An interesting topic for future research is to investigate whetherthis trade-o� can be mitigated. 13



Number of FaultsArbitrary (a) Symmetric (s) Manifest (c)1 1 01 0 20 2 00 1 20 0 5Table 1: Fault-Masking Ability of OMH(1) with n = 6Table 1 summarizes the di�erent numbers of simultaneous faults that a 6-plexcan withstand using OMH(1); for comparison, observe that the standard analysisindicates that OM(1) can withstand only a single (arbitrary) fault in this con�gu-ration. Thambidurai, Park and Trivedi [14] present reliability analyses that showthis increased fault-tolerance indeed provides superior reliability under plausibleassumptions6.In fact, OM(1) can itself withstand more faults than its standard analysis sug-gests. When there are no manifest faults, Algorithm OMH becomes similar to thetraditional Algorithm OM. A related point was made in [13]: in the absence of errorvalues, hybrid majority is equivalent to majority. Thus the only substantive di�er-ence between OMH and OM are the wrapper and unwrapper functions applied tovalues. As discussed in Section 5 these functions may be identity on nonerror values,in which case OMH becomes exactly OM. Thus the analysis of the previous sectionmay be applied, showing that the traditional algorithm OM(m) satis�es conditionsBGH1 and BGH2 if there are more than 2(a+ s) +m processors and m � a. Thus,the real distinction between OM and OMH is that the latter can distinguish mani-fest from (other) symmetric faults. In the case tabulated above (n = 6;m = 1), thisrevised analysis means that OM can withstand two simultaneous faults, provided atmost one of them is arbitrary.4 Formal Veri�cation of OMHWe have formally veri�ed Lemma 1 and Theorems 1 and 2 for OMH(n) using thePVS veri�cation system [8]. That is, we have expressed the algorithm, its assump-tions, and desired properties in the formal speci�cation language of PVS, and havedeveloped formal proofs of the desired properties that have been accepted by thePVS proof checker. Technical descriptions of the formal speci�cation and veri�-cation are given in a companion paper [5], and presented in complete detail in a6Although algorithm Z is somewhat 
awed, the analysis in [14] can be correctly applied to OMH14



technical report [4]; here we focus on how we performed the formal veri�cation andon the bene�ts we derived.The speci�cation language of PVS is a higher-order logic with a rather richtype system in which it is comparatively straightforward to state the desired spec-i�cation. Although OMH is conceived as a distributed, concurrent algorithm, itscorrectness argument need not involve a model of distributed computation and wewere therefore able to specify OMH as a simple recursive function. Such abstractionis one of the keys to making formal analysis of di�cult algorithms tractable. Theformal speci�cation of OMH was derived from one we had previously constructedfor the classical OM algorithm [11] and was developed iteratively as failed attemptsat formal veri�cation exposed the errors described earlier in Algorithm Z and itsplausible variants.Ideally, formal veri�cation should resemble a dialog with a tirelessly skepticalcolleague who checks every detail of a purported proof and makes sure that no casesare overlooked. The proof checker of PVS falls a long way short of this ideal, butcomes closer to it than others. In contrast to more automatic theorem provers, whichmust be coaxed to \discover" the proof themselves, the user of PVS proposes themain proof steps directly (e.g., \use induction on formula 3," or \consider the casem = 0") and PVS carries them out. The primitive inference steps of PVS are quitepowerful and include decision procedures for linear arithmetic, so that trivial stepssuch as m + 1 � 1 = m are dealt with instantaneously. Less powerfully automatedproof checkers require user assistance to discharge the hundreds of such trivial factsthat arise in a proof; this considerably slows the development of a proof and, moreimportantly, distracts the user from the main line of the argument.The greatest bene�t of formal speci�cation and veri�cation in this case has beenthe re�nement of our own understanding. It is very easy for humans to be convincedof the correctness of 
awed algorithms in domains where lots of detail and specialcases must be considered. In more than one case during the development of OMH, wedeveloped convincing informal arguments and attempted to verify the claims usingPVS. The proof checker would not accept these 
awed arguments, and eventually ledus to discover counterexamples. Finally, we were able to develop the new algorithmpresented above, and prove it correct.It is sometimes argued that a large part of the value of formal methods liesin formal speci�cation rather than veri�cation. Formal speci�cations can serve toclarify thinking and also provide a means of communication less subject to errorand misinterpretation than traditional natural-language documentation. However,the additional step of veri�cation proved crucial in our case. Formal speci�cationof the 
awed algorithms strengthened our erroneous convictions about them; onlythrough failed attempts at formal veri�cation were the errors detected.Even formal veri�cation is insu�cient to guarantee that an algorithm is �t for itsintended purpose: validation is required as well, in order to ensure that the assump-tions are realistic, and that the properties established match those required for the15



intended application. Peer review is an essential element in validation, but anothertechnique we use is to pose \challenges" that are evaluated by theorem proving.For example, an axiomatization of the hybrid majority function can be challengedby proving that the hybrid majority of a collection of values not containing E isthe same as the simple majority of that collection. In our case, we produced onespeci�cation of a 
awed algorithm for which we were able to formally verify thevalidity property. However, one of our axioms about hybrid majority was statedincorrectly. Only through challenges and attempting to re�ne the speci�cation intoan implementation did the inadequacy of the axiom become apparent.5 Implementing R and UnRAlthough our presentation of the OMH Algorithm suggests that R and UnR areapplied to all values at every round, this is unnecessary. R and UnR may be identityon nonerror values. Thus, values v could be passed with an extra (say, highest order)bit denoting whether the word actually stands for a data value or for Rv(E). R andUnR would then become increment and decrement operations conditional on thehighest bit.If R and UnR are applied to all values at every round, perhaps as uncondi-tional increment and decrement operations, then intermediate error values such asR(R(E)) may coincide with valid data values. The algorithm remains correct be-cause UnR (decrement) is always applied to the output of the majority vote.Both of these implementations of R and UnR require unbounded integers inorder to truly satisfy the requirements on R and UnR (for all v, R(v) 6= E, andUnR(R(v)) = v). However, for an m round OMH, just m+ 1 error values (E up toRm(E)) su�ce with suitable modi�cations to the algorithm.One could add a comparison of the number of applications of R with the depthof recursion in the algorithm OMH. (Simply computing Rx(E) where x is takenmodulo the total number of rounds leads to erroneous results.) Any values withmore R's than elapsed rounds may correctly be considered to indicate manifestfaults and treated as E, thus reducing the number of possible error values to onemore than the number of rounds. In the common case of one-round OMH, two errorvalues, corresponding to E and R(E) su�ce. With only a small set of error values,it may no longer be necessary to distinguish them by setting a special bit: theycould simply be allocated to values beyond the valid data range.Using these techniques, one may reduce the overhead of using OMH-like algo-rithms (as compared to OM) to a small constant number of extra data values, anda slightly more complex algorithm. These implementation techniques have not beenformally veri�ed. 16



6 ConclusionsThambidurai and Park's hybrid fault model extends the design and analysis ofByzantine fault-tolerant algorithms in an important and useful way. Hybrid fault-tolerant algorithms can tolerate greater numbers of \simple" faults than classicalByzantine fault-tolerant algorithms, without sacri�cing the ability to withstandByzantine, or arbitrary, faults. Unfortunately, their Algorithm Z for achieving Inter-active Consistency under a hybrid fault model is 
awed. In the preceding sections,we have described the problem with Algorithm Z and presented OMH, a correctalgorithm for this problem.A crucial tool in our detection of the 
aw in Thambidurai and Park's algorithm,and also in detecting 
aws in our own early attempts to repair this algorithm, wasour use of mechanically-checked formal veri�cation. The discipline of formal speci-�cation and veri�cation was also instrumental in helping us to develop the correctalgorithm presented here. The rigor of a mechanically-checked proof enhances ourconviction that this algorithm is, indeed, correct, and also helped us develop theinformal, but detailed, proof given here in the style of a traditional mathematicalpresentation.It is worth repeating that no formal veri�cation proves any program \correct."At most, a model of the program is shown to satisfy a speci�cation, and shownto exhibit certain properties under a certain set of assumptions. The true bene�tof formal speci�cation and veri�cation is not in getting a theorem prover to sayproved, but rather in re�ning one's understanding through dialogue with a tirelessmechanical skeptic.The e�ort required to perform this formal veri�cation was not particularly largeand did not seem to us to demand special skill. We attribute some of this ease inperforming formal veri�cation of a relatively tricky algorithm to the e�ectivenessof the tools employed [8]. These tools (and others that may be of similar e�ective-ness) are freely available. In light of the 
aws we discovered in Thambidurai andPark's algorithm, and had previously found in the proofs for other fault-tolerant al-gorithms [9,12], we suggest that formal veri�cation should become a routine part ofthe social process of development and analysis for fault-tolerant algorithms intendedfor practical application in safety-critical systems.Acknowledgments: PVS was constructed by our colleagues Sam Owre andNatarajan Shankar. Michelle McElvany-Hugue and Chris Walter of Allied Sig-nal provided helpful discussion on hybrid fault models. The anonymous refereesprovided very useful comments. 17
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