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Abstract

The Rewrite Rule Machine (RRM) is a massively
parallel machine being developed at SRI International
that combines the power of SIMD with the general-
ity of MIMD. The RRM exploits both extremely fine-
grain and coarse-grain paraellelism, and is based on
an abstract model of computation that eases creating
and porting parallel programs. In particular, the RRM
can be programmed very naturally with very high-level
declarative languages featuring implicit parallelism.
This paper gives an overview of the RRM’s archi-
tecture and discusses performance estimates based on
very detailed register-level simulations at the chip level
together with more abstract simulations and modeling
for higher levels.

1 Introduction

Following an overview of the Rewrite Rule Machine
(RRM) architecture and model of computation, this
paper discusses recent performance estimates based on
simulation. The architecture is a multi-level hierarchy,
which is SIMD at the lower (chip) levels, and MIMD
at the higher levels. This enables the RRM to combine
the advantages of the SIMD and MIMD approaches.
The RRM model of computation is concurrent graph
rewriting, which supports extremely fine-grain paral-
lelism, dynamic resource allocation, and simple se-
mantics.

Since performance estimation for a machine like the
RRM is difficult, we must carefully justify our ap-
proach. We discuss the problems and how we address
them in Section 3. Our approach to performance es-
timation may be summarized as follows: we chose a
diversity of problems to stress the design in different
ways, including communication, memory, and compu-
tation; we chose problems representative of different
application areas; and we built and used different
simulators to get a variety of performance estimates.

1.1 Multigrain Concurrency and Applica-

tions

Many important real-life applications involve a
number of diverse, relatively independent processes,
many of which are computationally homogeneous.
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For example, a large simulation problem may involve
many independent loosely coupled processes.

Let us call a computation homogeneous if at each
moment, it consists of many instances of the same in-
struction being applied to many data items in parallel;
sometimes this is called data parallelism. While many
familiar numerical algorithms have this form, many
complex computational tasks are locally homogeneous
but globally inhomogeneous.

Because of its very fine-grain SIMD parallelism at
the chip level combined with its flexible coarser-grain
MIMD parallelism at the network level that allows dif-
ferent chips to work on very different subtasks of the
same problem at once, the RRM can exploit a prob-
lem’s parallelism at several levels. We call this prop-
erty multigrain concurrency; it makes the RRM very
well suited for solving, not only homogeneous prob-
lems, but also complex, locally homogeneous but glob-
ally inhomogeneous problems in many areas, including
discrete event simulation, decision support systems,
rapid prototyping, vision, computational geometry,
automated deduction, finite element methods, neural
nets, and hardware simulation.

1.2 Combining SIMD and MIMD

At present, the two main approaches to massive
parallelism are SIMD machines and MIMD multicom-
puters. Examples of the state of the art in each cat-
egory are the Connection Machine, CM-2 (Thinking
Machines Inc. [14, 4]) and the MP1216 (MasPar Com-
puter Corporation [23]), for SIMD computers; and
Mosaic (Chuck Seitz, Caltech [22]), the J-machine
(William Dally, MIT [5]), Paragon (Intel Corporation
[?]), and the CM-5 (Thinking Machines, which simu-
lates SIMD by MIMD broadcast), for MIMD comput-
ers. These two approaches are quite different. Each
has unique advantages not shared by the other ap-
proach. The strength of SIMD machines is their ex-
ploitation of fine-grain data parallelism, which makes
them a good choice for homogeneous problems; their
weakness is their centralized control, executing the
same code everywhere, which makes them perform
poorly on large nonhomogeneous applications. MIMD
machines are much more flexible because they allow
different code to be run in different processors simul-
taneously; however, their communication—typically
asynchronous interprocessor message passing over a
network—is not well suited to data parallelism.

A key goal of the RRM is to combine the best of



Figure 1: Concurrent rewriting of Fibonacci expressions

these two approaches in a single architectural design.
It shares with SIMD machines the capability for fine-
grain data parallelism, which is carried to an even finer
level in the RRM ensemble; however, because of its de-
centralized MIMD control, the RRM can perform well
on both homogeneous and nonhomogeneous problems,
whereas SIMD machines can excel only on homoge-
neous problems. Compared with MIMD machines, the
RRM enjoys the same flexibility and generality, based
on distributed control and asynchronous message pass-
ing, but because the RRM is SIMD at the chip level,
it can exploit fine-grain data parallelism locally, even
for highly nonhomogeneous applications, whereas, at
present, purely MIMD machines can get large degrees
of parallelism only at the interprocessor level.

1.3 Programmability

The RRM is programmable in a wide variety
of declarative ultra-high-level languages that permit
massive exploitation of implicit parallelism and ease
creating and porting parallel programs. We believe
that declarative languages are good choices for pro-
gramming such applications as vision, real-time plant
control, simulations, and expert systems, because they
do not require explicit commitment to specific forms
of synchronization or scheduling. These convictions
are supported by extensive simulations, and by com-
pilation techniques [12, 1, 20] making functional (e.g.,
OBJ [8]), object-oriented (e.g., Maude [17], FOOPS
[11]) and relational (e.g., Eqlog [10]) programming lan-
guages easy to compile into RRM code.

However, it is a fact of life that some parts of large
applications programs have already been written, and
it may not be practical to rewrite them in a declarative
language. Because its flexible model of computation
also supports imperative features, a compiler for the
RRM from a conventional language, even a sequential
one, could be written relatively straightforwardly.

1.4 The Concurrent Rewriting Model of
Computation

The RRM’s model of computation is concurrent
rewriting. In this model, data are terms constructed
from a given set of constant and function symbols, and
a program is a set of equations that are interpreted as
left to right rewrite rules. The lefthand side (abbre-
viated, LHS) and righthand side (RHS) of a rewrite
rule may have variables as well as function symbols.
A variable can be instantiated with any term of the
appropriate sort, and a set of instantiations for vari-
ables is called a substitution.

A rewriting computation starts with a given term

as its data and a given set of rewrite rules as its pro-
gram. Applying a rewrite rule has two phases, called
matching and replacement. The matching phase
attempts to find a substitution which yields a sub-
term of the input term when applied to the rewrite
rule’s lefthand side. Then, in the replacement phase,
the matched subterm, called the redex, is replaced
by the righthand side of the rule, instantiated with
the same substitution. Rules are applied until no more
matches can be found; then the resulting term is called
reduced and considered to be the final result.

In the concurrent rewriting model of computation,
more than one rule can be applied at once, and each
rule can be applied to many subterms of the given
term at once. Let us explain this by example. Here is
a simple program to compute the Fibonacci numbers:

(1)  f£ibo(0) = 0

(2)  fibo(1) = 1

(3)  fibo(N) = fibo(N-2) + fibo(N-1)
if N> 1

If you give fibo(3) as data, the top node will match

rule (3), thus the whole term will be replaced by
fibo(1) + fibo(2)

In the next step, the first fibo node will match rule

(2), and the second fibo will match rule (3) again,

and the simultaneous application of these rules yields
1 + (£fibo(0) + fibo(1))

in just one step of concurrent rewriting. Figure 1 il-

lustrates these two concurrent rewriting steps, using

tree representation for expressions.

We say that a concurrent rewriting computation
is SIMD, when just one rewrite rule is applied con-
currently at each moment; in the RRM, this style of
concurrent rewriting is realized by an ensemble chip
(see Sections 2-2.1). If several rules are concurrently
being applied, each to possibly many instances, we
have MIMD concurrent rewriting; this general case
is the correct model for the RRM as a whole. See [9]
for general background on the concurrent rewriting
model, [6] for definitions of SIMD and MIMD rewrit-
ing (called parallel and concurrent rewriting in that
paper), and [18, 19, 17] for a definition of concurrent
rewriting as deduction in rewriting logic and a system-
atic treatment of concurrent object-oriented computa-
tion by means of concurrent rewriting.

2 RRM Architecture

The RRM architecture is hierarchical, with each
unit consisting of a collection of cooperating units at
the next lower level. The most basic processing ele-
ment is the cell, with four cells making up a tile. An
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Figure 2: Hierarchical Structure of the RRM

ensemble chip contains hundreds of cells (576 is our
current estimate). A cluster is a collection of ensem-
ble chips connected on a board, and the machine as
a whole is a network. Figure 2 provides a pictorial
representation of the RRM hierarchy.

A single ensemble yields very fast extremely fine-
grain SIMD rewriting, but RRM execution is coarse-
grain MIMD at the cluster and network levels, since
each ensemble independently executes its own rewrites
on its own data, communicating with other ensembles
when necessary.

2.1 Cell, Tile and Ensemble Architecture

The most basic computational element in the RRM
is the cell [16, 2], which stores one data item with
pointers to other cells, and also provides basic com-
putational and communication capabilities; thus cells
mix storage, computation and communication. A cell
consists of:

e Several registers (mostly 16-bit) including;:

— token, which encodes the operation or con-
stant symbol of a data node,

— left and right, which point to the descen-
dant nodes!,

— a 32-bit marks register, which holds volatile
information (similar to condition codes),

— flags, which holds less volatile information,
such as type and reduction status,

— Twelve general-purpose registers, including
ntoken, nleft, nright and nflags.

e An ALU to operate on and test the contents of
registers.

e Interfaces to communication channels and the
controller.

We divide the silicon area of the ensemble chip into
a 12 x 12 mesh of tiles, each with four cells. Adja-
cent tiles are directly connected by short wires, so that
placing logically linked nodes in cells located in adja-
cent tiles permits very efficient communication. Plac-
ing several cells in one tile increases the probability of
logically related data being in adjacent cells.

1Unary operations only use left, and n-ary operations for
n > 2 are decomposed into binary ones.

Our new ensemble design is simpler and has sub-
stantially better overall performance than previous de-
signs [7, 2]. Its simpler instructions allow a faster clock
(100 MHz seems a reasonable estimate) and provide
much better support for communication between cells.

An ensemble has a single SIMD controller that
broadcasts its instructions to all cells. The controller
can obtain very fast feedback (one clock cycle) about
the state of the cells (such as type of data and oper-
ation symbols in cells, remote references, success or
failure of an instruction, termination, etc.) and can
use such feedback to branch to different SIMD code
segments. Obeying SIMD instructions, cells can com-
municate with adjacent cells (each cell has 16 adjacent
cells in its 4 adjacent tiles) to find local patterns for
rewriting; hundreds of such patterns may be found and
transformed simultaneously. Other SIMD instructions
allow communication among nonadjacent cells, reloca-
tion of data, and input-output.

SIMD concurrent rewriting takes place by broad-
casting instructions that implement matching and
then replacement of the patterns found. Al-
though for very regular computations it is possi-
ble to avoid remote—i.e., not physically adjacent—
references within a single ensemble, in general the dy-
namic nature of the computation will require remote
references, and then matching will require relocation
of some data. This is accomplished with specialized
instructions and chip-level hardware support.

We use a reference counting scheme for storage
management, both within ensembles and in the RRM
as a whole. We have fully simulated the details of
this within the ensemble for the examples discussed in
Section 3.

2.2 Cluster and Network Architecture

The cluster architectural level corresponds to
board-level structure in the actual implementation.
At this level, ensemble chips can be arranged in a
2D mesh with fast connections to each of four neigh-
bors, giving 8 connections per ensemble (4 in and 4
out). With current technology, these could be 16-
bit-wide connections running at 50 MHz, giving 800
Mbps per connection and 6.4 Gbps total bandwidth
per chip. Additional interconnection hardware at the
board level beyond the fast, local connections is also



desirable, as in the iWARP [3] and DataWave [21] de-
signs. The performance we assume is not that much
beyond that provided by these designs; the iWARP
has 8 ports, each 8 bits wide at 40 MHz, giving 320
Mbps per port and 2.56 Gbps total (100 to 150 ns la-
tency), and the DataWave has 8 ports, each 12 bits,
at 60 MHz giving 5.76 Gbps total. We are estimating
that a cluster will have about 100 ensembles.

The network level interconnection for the RRM has
not been fixed. We have been considering the worm-
hole routing networks of Seitz [22] and Dally [5]. Ac-
tual realizations of these designs have achieved high
communication rates: 205 Mbps for Ametek 2010, and
200 Mbps for the Intel Paragon [?]. For a 2D mesh,
average case communication time for 10,000 nodes is
estimated at 1885 ns, or 188 clock cycles. For a 3D
mesh, the average case communication cost for 10,000
nodes is estimated at 976 ns, or 98 clock cycles.

In general, interchip communication in the RRM is
asynchronous message passing that imposes no criti-
cal timing requirements on the network or switching
technology. Thus, the RRM can exploit the best com-
munication technology available, and take advantage
of any future improvements. However, the RRM can
exploit locality and use fast local interensemble con-
nections at the cluster level to get very high perfor-
mance for certain problems.

2.3 Interensemble Computation

Sometimes active cells in one ensemble need infor-
mation from descendents in another ensemble. We
call references from one ensemble to another ensemble
distant references, to distinguish them from the re-
mote references which occur from cell to nonneighbor
cell within a single ensemble. Although distant refer-
ences can be reduced by relocating data to ensembles
which reference it most often, it is impossible to com-
pletely eliminate distant data references, even using
static memory allocation, because, in general, struc-
tures will not fit in a single ensemble. To efficiently
support interensemble communication, we have devel-
oped two related mechanisms.

For symbolic computation, where data is laid
out dynamically and computation is asynchronous
or delay-insensitive, we use an incremental symbolic
cache approach. When a distant reference is made,
and it is determined that the distant node should not
be relocated to the local ensemble, then a ghost node
is instead allocated in a cell of the local ensemble, and
data from the target of the distant reference is copied
into the ghost node. However, unlike true relocation,
the ghost node is prevented from being the root of a
rewrite, i.e., is temporarily frozen. Also, a ghost node
maintains a copy of the original distant pointer, and
thus acts as a passive incremental “symbolic cache” of
data which actually resides on another ensemble. Af-
ter some time, under SIMD control, ghost nodes, flush
their data, and use the stored distant pointer to refresh
their contents. This flush-refresh of ghost information
may be performed at any time. Also, at some times
the parent of a ghost may copy the distant pointer
from its descendent ghost, and then cause deletion of
the ghost.
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Figure 3: Before and After Creation of Ghost (of b)

For example, in Figure 3, in the before (left) pic-
ture, ensemble A contains a cell labeled a which has
a distant pointer to a cell labeled b in ensemble B.
In the course of pattern matching, cell a requires in-
formation from its descendent b. In the after (right)
picture, a ghost node for b has been created in ensem-
ble A, and the distant pointer from a to b has been
replaced with a local pointer from a to the new ghost
of b. Thus the ghost of node b has distant pointers to
the children of b, and also has a copy of the original
distant pointer (shown as a dashed arrow to node b in
ensemble B). Note that this process cannot continue
indefinitely, since ghosts are not allowed to initiate the
matching process themselves. Thus even if the struc-
ture underneath b is large, only that portion of the
structure needed to verify a match rooted at a is ever
copied to ensemble A.

The mechanism used in the systolic case is simi-
lar in spirit to the symbolic case described above, but
can be implemented somewhat more efficiently, due
to the locality of reference which (in part) character-
izes systolic computations. Because this locality does
not change during a computation, we should place ele-
ments which communicate frequently on the same en-
semble. As in the symbolic case, structures may be
too large to fit on a single ensemble, and then we must
place portions of the problem on neighboring ensem-
bles, while keeping local copies of the border data cur-
rent on both ensembles. Since systolic computation is
synchronous and delay-sensitive, we must ensure that
the border data is updated correctly when it is read
by the local ensemble. In general the systolic compu-
tation must wait every cycle for the block transfer of
data between ensembles.

In Figure 4, ensembles A and B each contain an
area of active cells delineated by the dashed box. Out-
side this box are border cells which do no necessar-
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Figure 4: Systolic Interensemble Computation

ily perform computations, but instead store copies of
the near-edge cells of neighboring ensembles. Figure 4
shows a block copy of information from active cells
in ensemble B to (passive) edge cells in ensemble A.
After information from each neighboring ensemble is
copied into ensemble A, the next step of computation
can proceed.

In many cases we can overlap communication with
computation. This potential overlap, or rudimentary
pipelining of I/O and computation, is another con-
sequence of our architectural choice of multiple cells
per tile. The current design of the ensemble with four
cells per tile allows simultaneous systolic computation
of four distinct two-dimensional layers at a time. In
fact, one or two layers could perform I/O at the same
time that the other layers perform their systolic com-
putations. In this way, we may hide some of the po-
tential I/O penalty of inter-ensemble computations.

2.4 Load Balancing

Allocation in an ensemble normally ensures that al-
located cells are neighbors of the allocating cell. How-
ever, when an ensemble becomes too full, allocations
are made on other ensembles. This process can be de-
scribed as pushing out computational subtasks. The
SIMD controller can gather (perhaps imprecise) infor-
mation about the utilization level of an ensemble in
order to determine when the ensemble is full. For cer-
tain computations, it may be advisable to push out
subtasks at the outset. Large symbolic computations
usually require building and manipulating very large
term structures, which may be distributed over sev-
eral ensembles when they are initialized, may be dis-
tributed explicitly by a specially tuned SIMD broad-
cast, or may migrate implicitly to neighboring ensem-
bles during computation.

Allocation is important in architectures like the
RRM, due to the sensitivity of computation to local-
ity. Thus, initial placement may have a large impact
on performance, especially for relatively short compu-
tations with large amounts of data. After initial allo-
cation, the compiled SIMD code may explicitly push
subcomputations out of an ensemble, perhaps forming
a ghost node in its place. Thus the local copy does not
perform rewrites itself, although it would still partici-
pate passively in other rewrites.

Finally, automatic migration can be performed by
pushing subtasks out of an ensemble based on the
depth of the subterm from a root node of the en-

semble, forcing subcomputations to be pushed out
more quickly. However, spreading computation more
quickly, and thus more evenly among ensembles,
trades off against interensemble communication over-
head. The techniques described in Section 2.3 sub-
stantially alleviate this overhead, but it still exists.

3 Simulation and Performance Esti-

mation

Estimating the performance of computer systems
is a difficult art at best, and is even more difficult for
radically new machines that have not yet been built.
The performance limitations of simulators mean that
large problems are very difficult to run. To test differ-
ent aspects of a design on the largest possible problems
may force using multiple simulators to abstract differ-
ent details for various choices of performance measure
and problem. But then it may be difficult to justify
the abstractions, and to ensure that the problems fit
the assumptions behind their justifications. For the
RRM, these difficulties seem particularly acute, be-
cause of the high performance figures that we seek to
justify.

Our simulations at the ensemble level have a great
level of detail and give quite accurate performance
estimates, but our overall performance estimates for
the RRM are still preliminary, and more studies and
experiments are required to increase their accuracy.
The present estimates are based on detailed ensem-
ble simulations, high-level interensemble simulations,
estimates of communication requirements, and analy-
sis using simple approximate models. More definitive
performance estimates will require more detailed sim-
ulations and analytic studies for a wider collection of
examples and applications.

The performance models are based on simple pre-
dictions of the computation times for specific strate-
gies for performing the computations. Beginning in
Subsection 3.3, we discuss RRM performance predic-
tions for a variety of examples which were chosen be-
cause their patterns of computation are representative
of different kinds of computations; they represent ba-
sic examples of general symbolic computations (nu-
meric Fibonacci and the TAK function), highly regu-
lar symbolic computations (sorting), and systolic com-
putations (fluid flow and a simple hardware simula-
tor).

When describing RRM performance at the cluster
or network levels, we specify efficiency as a percentage
of the ideal performance. The ideal performance corre-
sponds to a linear extrapolation of a single ensemble’s
performance, i.e., a linear speedup. We will also give
“idealized Sun-relative speedup,” which simply is the
product of the number of ensembles, the Sun-relative
speedup, and the efficiency.

3.1 Ensemble Simulations and Perfor-
mance
The new ensemble design and estimates of its per-
formance have been validated by running a variety of
benchmarks on a new ensemble simulator written in
C which models the ensemble computation in great
detail at the register transfer level.



We assume a 100 MHz clock and a 12 x 12 array
of tiles requiring approximately six million transistors.
These figures seem achievable since speeds and sizes
of this kind have already been demonstrated. For ex-
ample, the 1991 Hot Chips conference [15] presented
two chips with 100 MHz clocks (one of them with 4.1
million transistors), and another chip with 14 million
transistors.

There are many different performance measures
for machines, including machine instruction execution
rates, and actual elapsed time. The most intrinsic en-
semble performance estimate is the number of clock
cycles needed for a given computation. By assuming
a specific clock rate, this measure can be translated
into seconds. However, some relative comparison of
performance between the ensemble and existing se-
quential processors is also desirable. We use the Sun-
relative speedup for this purpose. To obtain this com-
parative measure we write one program in ensemble
SIMD code or with rewrite rules, and another in effi-
cient C. By comparing the actual performance of the
C program on a Sun workstation with the performance
of the SIMD code on the ensemble simulator, we ob-
tain for each problem a speedup measure “Sun-relative
speedup.” In our case, we take a Sun SparcStation
IPC as the basis for comparison. This could also be
used to assign a “MIPS” rating to the ensemble by
multiplying this speedup by the published MIPS rat-
ings of the specific Sun workstation, which is roughly
15 MIPS for the SparcStation IPC. In most cases, the
aim is to compare a good algorithm for a problem on
the RRM with a good sequential algorithm on a Sun.
In some cases, the optimized sequential Sun version
involves significant variations from the algorithm used
on the RRM. When we discuss each benchmark below,
at the ensemble level and levels above, we will mention
the specific assumptions made.

3.2 Interensemble Simulations and Com-
munication Requirements

We developed a high-level interensemble simulator
for the RRM to study interensemble communication.
This simulator models the RRM as a 2D array of clus-
ters, each a 2D array of ensembles. An overall 2D
topology was chosen because it is a relatively mod-
est and unproblematic interconnection structure. The
simulator was instrumented to track communication
at different levels, so that we could estimate commu-
nication requirements for the RRM as a whole and
between clusters. The high level of abstraction of this
simulator means that the results are not precise pre-
dictions of the behavior of the RRM, but we do expect
large scale behavior to be roughly similar.

We have used the high-level interensemble simula-
tor on certain examples to estimate upper bounds on
the communication demands of an ensemble. The fol-
lowing summarize the estimated communication re-
quirements of an ensemble: the estimated ensemble
I/0O rate was 160-520 Mbps (estimate based on spe-
cially instrumented interensemble simulations), given
this estimate we can see that pins are not a bottleneck
(4 Gbps for 100 pins at 40 MHz), and the commu-
nication capacity seems to be in the range of newer

network and interconnection designs (which were dis-
cussed in Section 2.2).

3.3 Performance Estimates for TAK

The TAK benchmark is a subtle modification of
the function Ikuo Takeuchi originated specifically to
test Lisp systems. The modification accidentally intro-
duced by Richard Gabriel and John McCarthy makes
the function more difficult to optimize, but preserves
its simple, recursion-intensive structure. We have im-
plemented TAK for the RRM and in C for purposes of
comparison. The Lisp and C code are shown below:

(defun tak (x y z)
(if (not (< y x))

z

(tak (tak (1- x) y z)
(tak (1- y) z x)
(tak (1- 2) x y))))

tak(x,y,z) register int x,y,z;
{ int r1, r2, r3;
while (1) {
if (x<=y) return z;

rl = tak(x-1,y,2);
r2 = tak(y-1,z,x);
r3 = tak(z-1,x,y);

= r3; }}

Because our most detailed simulations are limited
to a single ensemble, we have used the arguments
12,8,4, instead of the more traditional 18,12,6. The
RRM code completes this benchmark in 22,428 cy-
cles, while the C version finishes in .0015 seconds
on a SparcStation IPC. This leads to a Sun-relative
speedup of 6.7 (= .0015/.00022428). We currently
don’t have cluster or RRM estimates for this exam-
ple.

x=rl; y=r2; z

3.4 Performance Estimates for Numeric
Fibonacci
A strategy for computing numeric Fibonacci—
which yields a simple approximate model for estimat-
ing performance—is to do the computation directly if
it fits in one ensemble, and otherwise apply the last of
the rewrite rules for fibo below

fibo(0) = 0
fibo(1) =1
fibo(N) = fibo(N-1) + fibo(N-2) if N>1

once, and then push out the subcomputation of
fibo(N-2), to proceed in parallel with that of
fibo(N-1), which may either be done locally or may
push out further subcomputations. This strategy al-
ways keeps a significant subcomputation for the cur-
rent ensemble. Detailed ensemble simulations allow
quite accurate estimates of time required for n up to
10 (it is linear in n). By comparing with the time re-
quired to run the same algorithm in C on a Sun work-
station, we obtain a Sun-relative speedup of 6.7. The
cost for larger n is the time to set up the subcomputa-
tions, plus the maximum of the cost to finish the local
subcomputation and the cost to finish the pushed out
subcomputation, plus the cost to finish the computa-
tion. Assuming that network I/O can be overlapped
with SIMD broadcast, but that transferring a simple



expression like fibo (10) out of an ensemble or trans-
ferring a result such as 2584 takes just a small number
of SIMD instructions, the complete time to compute
the numeric Fibonacci can be modeled by a recursive
function allowing different assumptions about the net-
work communication delays. For very fast networks,
the network communication times and the computa-
tion times (for setup and finishing) are roughly compa-
rable, so that network I/O cannot dominate the overall
computation time (usually it will be overlapped with
computation).

The cost of numeric Fibonacci within an ensemble
is approximated by

fibens(n) = 250 x n — 50

for n > 3. The approximate cost to compute the n-th
Fibonacci, for n > 10, is then

fibgen(n) = simdcost+
max(fibgen(n — 1),
fibgen(n — 2) + pushcost)

where simdcost is the SIMD execution cost to setup
the subcomputations, push out, pull in, and finish the
Fibonacci computation (approximately 300 clock cy-
cles), pushcost is the cost to do two I/O operations
(estimated to be less than 200 clock cycles for 10,000
ensembles, see Section 2.2), and fibgen(n) = fibens(n)
for n < 10. With these estimates the simdcost domi-
nates, I/O is overlapped, and efficiency is very good.
For larger n, fibgen(n) = 300 x n — 455. For a 10,000
ensemble RRM, the predicted worst case efficiency for
this example is 88%, which seems quite encouraging.
The idealized Sun-relative speedup is 59,000.

3.5 Performance Estimates for Sorting

A simple way to sort a sequence of numbers on an
RRM ensemble is to use a two-dimensional (2D) ex-
change sort that uses both “bubblesort” exchanges of
consecutive elements of the sequence and “shortcut”
exchanges between nonconsecutive elements. By ap-
propriate placement of the sequence within an ensem-
ble, both types of exchanges can be accomplished by
simple, local transformations. For a 23 x 23 array of
values we can form a linear sequence of numbers in
the array by going down the first tile column, up the
second column, and so forth. We can also establish
horizontal shortcut links between list elements that
are adjacent elements of the same row. By folding the
2D array twice, it is possible to embed the array in an
ensemble and fit a list with 23 x 23 (= 529) elements
inside an ensemble in this way in such a way that all
links are direct neighbor-to-neighbor connections. The
2D exchange sort algorithm alternates bubble sort ex-
changes between consecutive elements in the sequence
with shortcut exchanges between nonconsecutive, but
horizontally adjacent elements. For a list of length n
placed in this manner, the time to do a 2D sort within
single ensemble is proportional to 4/n, and requires
approximately 221 x /n — 468 clock cycles. The av-
erage number of instructions for either the bubblesort
or the shortcut exchanges phases is 42, giving a main
loop size of 84. Comparing with the time taken by a
simple quicksort algorithm written in C and running
on a Sun workstation yields a Sun-relative speedup of

127. Uniformly distributed random data was used for
the tests.

At the interensemble level, one can use the same
pattern, i.e., ensembles in a mesh and interchanges in
the long chain or rows, but interchanges will always
exchange the maximal value from one ensemble with
the minimal value from the next. For this problem,
the computation within an ensemble has a different
structure than the structure at the cluster level and
higher. The simple, fixed connectivity is one advan-
tage of this approach; it should be possible to allocate
ensembles so that all I/O connections are local, best-
case links. The data would be broken into chunks,
that start interchanging data internally and across en-
semble boundaries, in one of two directions, at their
endpoints. When data items are exchanged across a
boundary, an item is pushed out and another is pulled
in, preserving the size of the chunk in the ensemble. It
seems better not to have a lock step process, in which
data items are always exchanged, but instead to only
exchange data when there is a need, e.g., when a new
value has been interchanged into an end position.

In order to get estimates at the cluster level, a spe-
cial simulator was written in C that simulates the
two-level 2D sorting algorithm and calculates clock-
count estimates. Note that, because of reduction of
the bandwidth through a cross section of the machine,
one expects that sorting at the cluster level should
be at least 23 times slower than within an ensemble.
Since there are 100 ensembles at the cluster level, one
might still see some further speedup; however, the al-
gorithms are more complex and less efficient. If very
fast neighbor-to-neighbor connections can be used at
the cluster level (and this should also be possible at
the level of the RRM as a whole), then exchanging
data with a neighbor should take only 5-10 clock
cycles. The phases consist of local plus global lin-
ear exchanges, with an additional smallest to largest
shortcut, and local plus global row exchanges. The
additional cost, due primarily to communication, of
global operations is estimated at 20 to 30 instructions.
The estimated time to sort in a cluster was compared
against the time to quicksort on a Sun giving an esti-
mated Sun-relative speedup, for a 100 ensemble clus-
ter, of 114.

For a wormhole routing network, when data items
are exchanged between two ensembles, a round trip
message is required with estimated time, assuming a
single hop is required, of perhaps 20 clock cycles. The
estimated idealized Sun-relative speedup for the RRM
would be very close to the cluster case. It is very possi-
ble that the network latency could be overlapped with
other computation, and the increase in the total com-
putation time compared with the cluster case should
not be more than 20%.

3.6 Performance Estimates for Fluid

Flow

Fluid dynamics can be studied using a two dimen-
sional cellular automaton model [13]. This computa-
tional model is nearly ideal for the RRM, due to its
very regular structure heavily using instructions that
efficiently interchange bits among neighboring cells.



The same communication pattern could be used for
many other 2D processing and cellular automata prob-
lems. In fact, we have implemented Conway’s game of
Life using these same techniques, and have achieved
similar performance. Many other problems, such as
certain vision algorithms, stress analysis and particle
diffusion in solids, fit this pattern of computation.

We have implemented a version of the cellular au-
tomata approach based on a regular two dimensional
hexagonal lattice. Each cell is connected to its six
neighbors by links which may hold at most one parti-
cle traveling in each direction in each time step. We
use unit time steps, unit particle masses, and unit ve-
locity. Each particle is completely described by the
link it currently resides on, and all particles have con-
stant kinetic energy, and zero potential energy. At
each time step, particles move along their links, pos-
sibly interact with other particles at the center of a
hexagonal cell, and move to some other link.

We have implemented this model using one RRM
cell to simulate each hexagonal cell of the model. Each
RRM cell contains six bits which encode the presense
or absence of outgoing particles on the links to its six
neighbors. Communication is handled by transferring
the six bits from each cell to the appropriate neighbor.
Computation is handled by performing certain bitwise
operations (such as and, or, equal) and a form of table
lookup.

We used 1000 iterations of 529 hexagonal cells as
the benchmark. Assuming that the ensemble chips
will have a clock speed of 100 MHz, the whole bench-
mark should run in 2.2-2.6 ms. There are multiple
ways to implement this problem in C for comparison.
The fastest implementation we developed (using regis-
ter declarations for variables, changing the way table
lookup was handled, moving conditional expressions
out of the main loop) ran in 1.4 seconds. This results
in a Sun-relative speedup of between 400 and 670 for
a single ensemble.

The instruction count for the main loop for this
problem is about 220 instructions. We estimate that
the communication overhead within a cluster, using
neighbor-to-neighbor connections, could be as low as
48 clock cycles (6 bits x 4 cells per tile x 2). The
transfers of marks between ensembles can take place
in 12 bit parallel transfers (one cell for each tile on the
edge of the ensemble). This gives 268 clock cycles per
main loop or 2680 ns at 100 MHz. This gives a cluster-
level performance that is 82% of ideal (= 220/268).

3.7 Performance Estimates for a Hard-
ware Simulator

It is possible to do a simple kind of hardware simu-
lation on the RRM extremely fast. The code to simu-
late two-input NAND and OR gates, where the output
state of a gate is represented by status of a specific
mark, has only 24 instructions. This simple simulator
cannot simulate arbitrary circuits, since there can be
lay-out problems; gates must be close to the gates that
produce their input signals. For a specific very simple
circuit, comparison of the simulations with a highly
optimized C program running on a Sun workstation
gives a Sun-relative speedup estimate for an ensem-

ble of 533, and for an optimized C program that is a
more general circuit simulator an estimated speedup
of 1,500.

The cluster-level performance estimate is close to a
linear scale up of this. Only a single mark per edge
cell needs to be transferred across the ensemble bound-
aries. It seems reasonable to assume that this could be
done in 8 clock cycles. The cluster performance would
then be 75% of ideal (= 24/32). The idealized Sun-
relative speedup for a cluster would be from 40,000 to
110,000.

4 Summary and Conclusions

First we summarize the performance estimates for
the RRM, and then we briefly discuss the status of the
project.

For a 10,000 ensemble RRM, our present estimates
are as follows:

e Raw peak performance: 576 trillion operations
per second.

e For general symbolic applications (the numeric
Fibonacci problem is taken as a typical example
and the TAK function is a secondary example):

— Ensemble Sun-relative speedup is roughly
6.7.

— RRM performance with wormhole network
at 88% efficiency gives an idealized Sun-
relative speedup of 59,000.

e For highly regular symbolic applications (the
sorting problem is taken as a typical example):

— Ensemble performance is a Sun-relative
speedup of 127.

— Cluster-level performance is a Sun-relative
speedup of 114.

— RRM performance is estimated at over 80%
efficiency (relative to the cluster perfor-
mance) yielding a Sun-relative speedup of
over 91.

e For systolic applications (a 2D fluid flow problem
is taken as a typical example; a secondary exam-
ple is a hardware simulator):

— Ensemble performance is a Sun-relative

speedup of 400-670.

— Cluster-level performance, which should be
attainable in practice, is 82% efficiency.
This yields idealized Sun-relative speedups
of 33,000-55,000.

The RRM project is now in an advanced stage of its
proof-of-concept phase that will culminate in building
and demonstrating an ensemble prototype, and in fur-
ther performance and application studies to evaluate
the expected behavior of the RRM as a whole.
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