
Simulation and Performance Estimationfor the Rewrite Rule Machine�Hitoshi Aida Joseph A. GoguenDept. of Electrical Engineering Programming Research GroupUniversity of Tokyo Oxford UniversitySany Leinwand,Patrick Lincoln, Jos�e Meseguer, Babak Taheri, and Timothy WinklerSRI International, Menlo Park CA 94025AbstractThe Rewrite Rule Machine (RRM) is a massivelyparallel machine being developed at SRI Internationalthat combines the power of SIMD with the general-ity of MIMD. The RRM exploits both extremely �ne-grain and coarse-grain parallelism, and is based onan abstract model of computation that eases creatingand porting parallel programs. In particular, the RRMcan be programmed very naturally with very high-leveldeclarative languages featuring implicit parallelism.This paper gives an overview of the RRM's archi-tecture and discusses performance estimates based onvery detailed register-level simulations at the chip leveltogether with more abstract simulations and modelingfor higher levels.1 IntroductionFollowing an overview of the Rewrite Rule Machine(RRM) architecture and model of computation, thispaper discusses recent performance estimates based onsimulation. The architecture is a multi-level hierarchy,which is SIMD at the lower (chip) levels, and MIMDat the higher levels. This enables the RRM to combinethe advantages of the SIMD and MIMD approaches.The RRM model of computation is concurrent graphrewriting, which supports extremely �ne-grain paral-lelism, dynamic resource allocation, and simple se-mantics.Since performance estimation for a machine like theRRM is di�cult, we must carefully justify our ap-proach. We discuss the problems and how we addressthem in Section 3. Our approach to performance es-timation may be summarized as follows: we chose adiversity of problems to stress the design in di�erentways, including communication, memory, and compu-tation; we chose problems representative of di�erentapplication areas; and we built and used di�erentsimulators to get a variety of performance estimates.1.1 Multigrain Concurrency and Applica-tionsMany important real-life applications involve anumber of diverse, relatively independent processes,many of which are computationally homogeneous.�Supported by O�ce of Naval Research Contracts N00014-90-C-0210 and N00014-90-C-0086, and NSF Grant CCR-9007010.

For example, a large simulation problem may involvemany independent loosely coupled processes.Let us call a computation homogeneous if at eachmoment, it consists of many instances of the same in-struction being applied to many data items in parallel;sometimes this is called data parallelism. While manyfamiliar numerical algorithms have this form, manycomplex computational tasks are locally homogeneousbut globally inhomogeneous.Because of its very �ne-grain SIMD parallelism atthe chip level combined with its exible coarser-grainMIMD parallelism at the network level that allows dif-ferent chips to work on very di�erent subtasks of thesame problem at once, the RRM can exploit a prob-lem's parallelism at several levels. We call this prop-erty multigrain concurrency; it makes the RRM verywell suited for solving, not only homogeneous prob-lems, but also complex, locally homogeneous but glob-ally inhomogeneous problems in many areas, includingdiscrete event simulation, decision support systems,rapid prototyping, vision, computational geometry,automated deduction, �nite element methods, neuralnets, and hardware simulation.1.2 Combining SIMD and MIMDAt present, the two main approaches to massiveparallelism are SIMD machines and MIMD multicom-puters. Examples of the state of the art in each cat-egory are the Connection Machine, CM-2 (ThinkingMachines Inc. [14, 4]) and the MP1216 (MasPar Com-puter Corporation [23]), for SIMD computers; andMosaic (Chuck Seitz, Caltech [22]), the J-machine(William Dally, MIT [5]), Paragon (Intel Corporation[?]), and the CM-5 (Thinking Machines, which simu-lates SIMD by MIMD broadcast), for MIMD comput-ers. These two approaches are quite di�erent. Eachhas unique advantages not shared by the other ap-proach. The strength of SIMD machines is their ex-ploitation of �ne-grain data parallelism, which makesthem a good choice for homogeneous problems; theirweakness is their centralized control, executing thesame code everywhere, which makes them performpoorly on large nonhomogeneous applications. MIMDmachines are much more exible because they allowdi�erent code to be run in di�erent processors simul-taneously; however, their communication|typicallyasynchronous interprocessor message passing over anetwork|is not well suited to data parallelism.A key goal of the RRM is to combine the best of



Figure 1: Concurrent rewriting of Fibonacci expressionsthese two approaches in a single architectural design.It shares with SIMD machines the capability for �ne-grain data parallelism, which is carried to an even �nerlevel in the RRM ensemble; however, because of its de-centralized MIMD control, the RRM can perform wellon both homogeneous and nonhomogeneous problems,whereas SIMD machines can excel only on homoge-neous problems. Compared with MIMD machines, theRRM enjoys the same exibility and generality, basedon distributed control and asynchronous message pass-ing, but because the RRM is SIMD at the chip level,it can exploit �ne-grain data parallelism locally, evenfor highly nonhomogeneous applications, whereas, atpresent, purely MIMD machines can get large degreesof parallelism only at the interprocessor level.1.3 ProgrammabilityThe RRM is programmable in a wide varietyof declarative ultra-high-level languages that permitmassive exploitation of implicit parallelism and easecreating and porting parallel programs. We believethat declarative languages are good choices for pro-gramming such applications as vision, real-time plantcontrol, simulations, and expert systems, because theydo not require explicit commitment to speci�c formsof synchronization or scheduling. These convictionsare supported by extensive simulations, and by com-pilation techniques [12, 1, 20] making functional (e.g.,OBJ [8]), object-oriented (e.g., Maude [17], FOOPS[11]) and relational (e.g., Eqlog [10]) programming lan-guages easy to compile into RRM code.However, it is a fact of life that some parts of largeapplications programs have already been written, andit may not be practical to rewrite them in a declarativelanguage. Because its exible model of computationalso supports imperative features, a compiler for theRRM from a conventional language, even a sequentialone, could be written relatively straightforwardly.1.4 The Concurrent Rewriting Model ofComputationThe RRM's model of computation is concurrentrewriting. In this model, data are terms constructedfrom a given set of constant and function symbols, anda program is a set of equations that are interpreted asleft to right rewrite rules. The lefthand side (abbre-viated, LHS) and righthand side (RHS) of a rewriterule may have variables as well as function symbols.A variable can be instantiated with any term of theappropriate sort, and a set of instantiations for vari-ables is called a substitution.A rewriting computation starts with a given term

as its data and a given set of rewrite rules as its pro-gram. Applying a rewrite rule has two phases, calledmatching and replacement. The matching phaseattempts to �nd a substitution which yields a sub-term of the input term when applied to the rewriterule's lefthand side. Then, in the replacement phase,the matched subterm, called the redex, is replacedby the righthand side of the rule, instantiated withthe same substitution. Rules are applied until no morematches can be found; then the resulting term is calledreduced and considered to be the �nal result.In the concurrent rewriting model of computation,more than one rule can be applied at once, and eachrule can be applied to many subterms of the giventerm at once. Let us explain this by example. Here isa simple program to compute the Fibonacci numbers:(1) fibo(0) = 0(2) fibo(1) = 1(3) fibo(N) = fibo(N-2) + fibo(N-1)if N > 1If you give fibo(3) as data, the top node will matchrule (3), thus the whole term will be replaced byfibo(1) + fibo(2)In the next step, the �rst fibo node will match rule(2), and the second fibo will match rule (3) again,and the simultaneous application of these rules yields1 + (fibo(0) + fibo(1))in just one step of concurrent rewriting. Figure 1 il-lustrates these two concurrent rewriting steps, usingtree representation for expressions.We say that a concurrent rewriting computationis SIMD, when just one rewrite rule is applied con-currently at each moment; in the RRM, this style ofconcurrent rewriting is realized by an ensemble chip(see Sections 2-2.1). If several rules are concurrentlybeing applied, each to possibly many instances, wehave MIMD concurrent rewriting; this general caseis the correct model for the RRM as a whole. See [9]for general background on the concurrent rewritingmodel, [6] for de�nitions of SIMD and MIMD rewrit-ing (called parallel and concurrent rewriting in thatpaper), and [18, 19, 17] for a de�nition of concurrentrewriting as deduction in rewriting logic and a system-atic treatment of concurrent object-oriented computa-tion by means of concurrent rewriting.2 RRM ArchitectureThe RRM architecture is hierarchical, with eachunit consisting of a collection of cooperating units atthe next lower level. The most basic processing ele-ment is the cell, with four cells making up a tile. An2



cell ensemble cluster networkFigure 2: Hierarchical Structure of the RRMensemble chip contains hundreds of cells (576 is ourcurrent estimate). A cluster is a collection of ensem-ble chips connected on a board, and the machine asa whole is a network. Figure 2 provides a pictorialrepresentation of the RRM hierarchy.A single ensemble yields very fast extremely �ne-grain SIMD rewriting, but RRM execution is coarse-grain MIMD at the cluster and network levels, sinceeach ensemble independently executes its own rewriteson its own data, communicating with other ensembleswhen necessary.2.1 Cell, Tile and Ensemble ArchitectureThe most basic computational element in the RRMis the cell [16, 2], which stores one data item withpointers to other cells, and also provides basic com-putational and communication capabilities; thus cellsmix storage, computation and communication. A cellconsists of:� Several registers (mostly 16-bit) including:{ token, which encodes the operation or con-stant symbol of a data node,{ left and right, which point to the descen-dant nodes1,{ a 32-bit marks register, which holds volatileinformation (similar to condition codes),{ flags, which holds less volatile information,such as type and reduction status,{ Twelve general-purpose registers, includingntoken, nleft, nright and nflags.� An ALU to operate on and test the contents ofregisters.� Interfaces to communication channels and thecontroller.We divide the silicon area of the ensemble chip intoa 12 � 12 mesh of tiles, each with four cells. Adja-cent tiles are directly connected by short wires, so thatplacing logically linked nodes in cells located in adja-cent tiles permits very e�cient communication. Plac-ing several cells in one tile increases the probability oflogically related data being in adjacent cells.1Unary operations only use left, and n-ary operations forn > 2 are decomposed into binary ones.

Our new ensemble design is simpler and has sub-stantially better overall performance than previous de-signs [7, 2]. Its simpler instructions allow a faster clock(100 MHz seems a reasonable estimate) and providemuch better support for communication between cells.An ensemble has a single SIMD controller thatbroadcasts its instructions to all cells. The controllercan obtain very fast feedback (one clock cycle) aboutthe state of the cells (such as type of data and oper-ation symbols in cells, remote references, success orfailure of an instruction, termination, etc.) and canuse such feedback to branch to di�erent SIMD codesegments. Obeying SIMD instructions, cells can com-municate with adjacent cells (each cell has 16 adjacentcells in its 4 adjacent tiles) to �nd local patterns forrewriting; hundreds of such patterns may be found andtransformed simultaneously. Other SIMD instructionsallow communication among nonadjacent cells, reloca-tion of data, and input-output.SIMD concurrent rewriting takes place by broad-casting instructions that implement matching andthen replacement of the patterns found. Al-though for very regular computations it is possi-ble to avoid remote|i.e., not physically adjacent|references within a single ensemble, in general the dy-namic nature of the computation will require remotereferences, and then matching will require relocationof some data. This is accomplished with specializedinstructions and chip-level hardware support.We use a reference counting scheme for storagemanagement, both within ensembles and in the RRMas a whole. We have fully simulated the details ofthis within the ensemble for the examples discussed inSection 3.2.2 Cluster and Network ArchitectureThe cluster architectural level corresponds toboard-level structure in the actual implementation.At this level, ensemble chips can be arranged in a2D mesh with fast connections to each of four neigh-bors, giving 8 connections per ensemble (4 in and 4out). With current technology, these could be 16-bit-wide connections running at 50 MHz, giving 800Mbps per connection and 6.4 Gbps total bandwidthper chip. Additional interconnection hardware at theboard level beyond the fast, local connections is also3



desirable, as in the iWARP [3] and DataWave [21] de-signs. The performance we assume is not that muchbeyond that provided by these designs; the iWARPhas 8 ports, each 8 bits wide at 40 MHz, giving 320Mbps per port and 2.56 Gbps total (100 to 150 ns la-tency), and the DataWave has 8 ports, each 12 bits,at 60 MHz giving 5.76 Gbps total. We are estimatingthat a cluster will have about 100 ensembles.The network level interconnection for the RRM hasnot been �xed. We have been considering the worm-hole routing networks of Seitz [22] and Dally [5]. Ac-tual realizations of these designs have achieved highcommunication rates: 205 Mbps for Ametek 2010, and200 Mbps for the Intel Paragon [?]. For a 2D mesh,average case communication time for 10,000 nodes isestimated at 1885 ns, or 188 clock cycles. For a 3Dmesh, the average case communication cost for 10,000nodes is estimated at 976 ns, or 98 clock cycles.In general, interchip communication in the RRM isasynchronous message passing that imposes no criti-cal timing requirements on the network or switchingtechnology. Thus, the RRM can exploit the best com-munication technology available, and take advantageof any future improvements. However, the RRM canexploit locality and use fast local interensemble con-nections at the cluster level to get very high perfor-mance for certain problems.2.3 Interensemble ComputationSometimes active cells in one ensemble need infor-mation from descendents in another ensemble. Wecall references from one ensemble to another ensembledistant references, to distinguish them from the re-mote references which occur from cell to nonneighborcell within a single ensemble. Although distant refer-ences can be reduced by relocating data to ensembleswhich reference it most often, it is impossible to com-pletely eliminate distant data references, even usingstatic memory allocation, because, in general, struc-tures will not �t in a single ensemble. To e�cientlysupport interensemble communication, we have devel-oped two related mechanisms.For symbolic computation, where data is laidout dynamically and computation is asynchronousor delay-insensitive, we use an incremental symboliccache approach. When a distant reference is made,and it is determined that the distant node should notbe relocated to the local ensemble, then a ghost nodeis instead allocated in a cell of the local ensemble, anddata from the target of the distant reference is copiedinto the ghost node. However, unlike true relocation,the ghost node is prevented from being the root of arewrite, i.e., is temporarily frozen. Also, a ghost nodemaintains a copy of the original distant pointer, andthus acts as a passive incremental \symbolic cache" ofdata which actually resides on another ensemble. Af-ter some time, under SIMD control, ghost nodes, ushtheir data, and use the stored distant pointer to refreshtheir contents. This ush-refresh of ghost informationmay be performed at any time. Also, at some timesthe parent of a ghost may copy the distant pointerfrom its descendent ghost, and then cause deletion ofthe ghost.
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Figure 3: Before and After Creation of Ghost (of b)For example, in Figure 3, in the before (left) pic-ture, ensemble A contains a cell labeled a which hasa distant pointer to a cell labeled b in ensemble B.In the course of pattern matching, cell a requires in-formation from its descendent b. In the after (right)picture, a ghost node for b has been created in ensem-ble A, and the distant pointer from a to b has beenreplaced with a local pointer from a to the new ghostof b. Thus the ghost of node b has distant pointers tothe children of b, and also has a copy of the originaldistant pointer (shown as a dashed arrow to node b inensemble B). Note that this process cannot continueinde�nitely, since ghosts are not allowed to initiate thematching process themselves. Thus even if the struc-ture underneath b is large, only that portion of thestructure needed to verify a match rooted at a is evercopied to ensemble A.The mechanism used in the systolic case is simi-lar in spirit to the symbolic case described above, butcan be implemented somewhat more e�ciently, dueto the locality of reference which (in part) character-izes systolic computations. Because this locality doesnot change during a computation, we should place ele-ments which communicate frequently on the same en-semble. As in the symbolic case, structures may betoo large to �t on a single ensemble, and then we mustplace portions of the problem on neighboring ensem-bles, while keeping local copies of the border data cur-rent on both ensembles. Since systolic computation issynchronous and delay-sensitive, we must ensure thatthe border data is updated correctly when it is readby the local ensemble. In general the systolic compu-tation must wait every cycle for the block transfer ofdata between ensembles.In Figure 4, ensembles A and B each contain anarea of active cells delineated by the dashed box. Out-side this box are border cells which do no necessar-4



Ensemble BEnsemble A
Figure 4: Systolic Interensemble Computationily perform computations, but instead store copies ofthe near-edge cells of neighboring ensembles. Figure 4shows a block copy of information from active cellsin ensemble B to (passive) edge cells in ensemble A.After information from each neighboring ensemble iscopied into ensemble A, the next step of computationcan proceed.In many cases we can overlap communication withcomputation. This potential overlap, or rudimentarypipelining of I/O and computation, is another con-sequence of our architectural choice of multiple cellsper tile. The current design of the ensemble with fourcells per tile allows simultaneous systolic computationof four distinct two-dimensional layers at a time. Infact, one or two layers could perform I/O at the sametime that the other layers perform their systolic com-putations. In this way, we may hide some of the po-tential I/O penalty of inter-ensemble computations.2.4 Load BalancingAllocation in an ensemble normally ensures that al-located cells are neighbors of the allocating cell. How-ever, when an ensemble becomes too full, allocationsare made on other ensembles. This process can be de-scribed as pushing out computational subtasks. TheSIMD controller can gather (perhaps imprecise) infor-mation about the utilization level of an ensemble inorder to determine when the ensemble is full. For cer-tain computations, it may be advisable to push outsubtasks at the outset. Large symbolic computationsusually require building and manipulating very largeterm structures, which may be distributed over sev-eral ensembles when they are initialized, may be dis-tributed explicitly by a specially tuned SIMD broad-cast, or may migrate implicitly to neighboring ensem-bles during computation.Allocation is important in architectures like theRRM, due to the sensitivity of computation to local-ity. Thus, initial placement may have a large impacton performance, especially for relatively short compu-tations with large amounts of data. After initial allo-cation, the compiled SIMD code may explicitly pushsubcomputations out of an ensemble, perhaps forminga ghost node in its place. Thus the local copy does notperform rewrites itself, although it would still partici-pate passively in other rewrites.Finally, automatic migration can be performed bypushing subtasks out of an ensemble based on thedepth of the subterm from a root node of the en-

semble, forcing subcomputations to be pushed outmore quickly. However, spreading computation morequickly, and thus more evenly among ensembles,trades o� against interensemble communication over-head. The techniques described in Section 2.3 sub-stantially alleviate this overhead, but it still exists.3 Simulation and Performance Esti-mationEstimating the performance of computer systemsis a di�cult art at best, and is even more di�cult forradically new machines that have not yet been built.The performance limitations of simulators mean thatlarge problems are very di�cult to run. To test di�er-ent aspects of a design on the largest possible problemsmay force using multiple simulators to abstract di�er-ent details for various choices of performance measureand problem. But then it may be di�cult to justifythe abstractions, and to ensure that the problems �tthe assumptions behind their justi�cations. For theRRM, these di�culties seem particularly acute, be-cause of the high performance �gures that we seek tojustify.Our simulations at the ensemble level have a greatlevel of detail and give quite accurate performanceestimates, but our overall performance estimates forthe RRM are still preliminary, and more studies andexperiments are required to increase their accuracy.The present estimates are based on detailed ensem-ble simulations, high-level interensemble simulations,estimates of communication requirements, and analy-sis using simple approximate models. More de�nitiveperformance estimates will require more detailed sim-ulations and analytic studies for a wider collection ofexamples and applications.The performance models are based on simple pre-dictions of the computation times for speci�c strate-gies for performing the computations. Beginning inSubsection 3.3, we discuss RRM performance predic-tions for a variety of examples which were chosen be-cause their patterns of computation are representativeof di�erent kinds of computations; they represent ba-sic examples of general symbolic computations (nu-meric Fibonacci and the TAK function), highly regu-lar symbolic computations (sorting), and systolic com-putations (uid ow and a simple hardware simula-tor).When describing RRM performance at the clusteror network levels, we specify e�ciency as a percentageof the ideal performance. The ideal performance corre-sponds to a linear extrapolation of a single ensemble'sperformance, i.e., a linear speedup. We will also give\idealized Sun-relative speedup," which simply is theproduct of the number of ensembles, the Sun-relativespeedup, and the e�ciency.3.1 Ensemble Simulations and Perfor-manceThe new ensemble design and estimates of its per-formance have been validated by running a variety ofbenchmarks on a new ensemble simulator written inC which models the ensemble computation in greatdetail at the register transfer level.5



We assume a 100 MHz clock and a 12 � 12 arrayof tiles requiring approximately six million transistors.These �gures seem achievable since speeds and sizesof this kind have already been demonstrated. For ex-ample, the 1991 Hot Chips conference [15] presentedtwo chips with 100 MHz clocks (one of them with 4:1million transistors), and another chip with 14 milliontransistors.There are many di�erent performance measuresfor machines, including machine instruction executionrates, and actual elapsed time. The most intrinsic en-semble performance estimate is the number of clockcycles needed for a given computation. By assuminga speci�c clock rate, this measure can be translatedinto seconds. However, some relative comparison ofperformance between the ensemble and existing se-quential processors is also desirable. We use the Sun-relative speedup for this purpose. To obtain this com-parative measure we write one program in ensembleSIMD code or with rewrite rules, and another in e�-cient C. By comparing the actual performance of theC program on a Sun workstation with the performanceof the SIMD code on the ensemble simulator, we ob-tain for each problem a speedup measure \Sun-relativespeedup." In our case, we take a Sun SparcStationIPC as the basis for comparison. This could also beused to assign a \MIPS" rating to the ensemble bymultiplying this speedup by the published MIPS rat-ings of the speci�c Sun workstation, which is roughly15 MIPS for the SparcStation IPC. In most cases, theaim is to compare a good algorithm for a problem onthe RRM with a good sequential algorithm on a Sun.In some cases, the optimized sequential Sun versioninvolves signi�cant variations from the algorithm usedon the RRM. When we discuss each benchmark below,at the ensemble level and levels above, we will mentionthe speci�c assumptions made.3.2 Interensemble Simulations and Com-munication RequirementsWe developed a high-level interensemble simulatorfor the RRM to study interensemble communication.This simulator models the RRM as a 2D array of clus-ters, each a 2D array of ensembles. An overall 2Dtopology was chosen because it is a relatively mod-est and unproblematic interconnection structure. Thesimulator was instrumented to track communicationat di�erent levels, so that we could estimate commu-nication requirements for the RRM as a whole andbetween clusters. The high level of abstraction of thissimulator means that the results are not precise pre-dictions of the behavior of the RRM, but we do expectlarge scale behavior to be roughly similar.We have used the high-level interensemble simula-tor on certain examples to estimate upper bounds onthe communication demands of an ensemble. The fol-lowing summarize the estimated communication re-quirements of an ensemble: the estimated ensembleI/O rate was 160{520 Mbps (estimate based on spe-cially instrumented interensemble simulations), giventhis estimate we can see that pins are not a bottleneck(4 Gbps for 100 pins at 40 MHz), and the commu-nication capacity seems to be in the range of newer

network and interconnection designs (which were dis-cussed in Section 2.2).3.3 Performance Estimates for TAKThe TAK benchmark is a subtle modi�cation ofthe function Ikuo Takeuchi originated speci�cally totest Lisp systems. The modi�cation accidentally intro-duced by Richard Gabriel and John McCarthy makesthe function more di�cult to optimize, but preservesits simple, recursion-intensive structure. We have im-plemented TAK for the RRM and in C for purposes ofcomparison. The Lisp and C code are shown below:(defun tak (x y z)(if (not (< y x))z(tak (tak (1- x) y z)(tak (1- y) z x)(tak (1- z) x y))))tak(x,y,z) register int x,y,z;{ int r1, r2, r3;while (1) {if (x<=y) return z;r1 = tak(x-1,y,z);r2 = tak(y-1,z,x);r3 = tak(z-1,x,y);x = r1; y = r2; z = r3; }}Because our most detailed simulations are limitedto a single ensemble, we have used the arguments12; 8; 4, instead of the more traditional 18; 12; 6. TheRRM code completes this benchmark in 22,428 cy-cles, while the C version �nishes in .0015 secondson a SparcStation IPC. This leads to a Sun-relativespeedup of 6.7 (= :0015=:00022428). We currentlydon't have cluster or RRM estimates for this exam-ple.3.4 Performance Estimates for NumericFibonacciA strategy for computing numeric Fibonacci|which yields a simple approximate model for estimat-ing performance|is to do the computation directly ifit �ts in one ensemble, and otherwise apply the last ofthe rewrite rules for fibo belowfibo(0) = 0fibo(1) = 1fibo(N) = fibo(N-1) + fibo(N-2) if N>1once, and then push out the subcomputation offibo(N-2), to proceed in parallel with that offibo(N-1), which may either be done locally or maypush out further subcomputations. This strategy al-ways keeps a signi�cant subcomputation for the cur-rent ensemble. Detailed ensemble simulations allowquite accurate estimates of time required for n up to10 (it is linear in n). By comparing with the time re-quired to run the same algorithm in C on a Sun work-station, we obtain a Sun-relative speedup of 6.7. Thecost for larger n is the time to set up the subcomputa-tions, plus the maximum of the cost to �nish the localsubcomputation and the cost to �nish the pushed outsubcomputation, plus the cost to �nish the computa-tion. Assuming that network I/O can be overlappedwith SIMD broadcast, but that transferring a simple6



expression like fibo(10) out of an ensemble or trans-ferring a result such as 2584 takes just a small numberof SIMD instructions, the complete time to computethe numeric Fibonacci can be modeled by a recursivefunction allowing di�erent assumptions about the net-work communication delays. For very fast networks,the network communication times and the computa-tion times (for setup and �nishing) are roughly compa-rable, so that network I/O cannot dominate the overallcomputation time (usually it will be overlapped withcomputation).The cost of numeric Fibonacci within an ensembleis approximated by�bens(n) = 250� n� 50for n � 3. The approximate cost to compute the n-thFibonacci, for n � 10, is then�bgen(n) = simdcost+max(�bgen(n� 1);�bgen(n� 2) + pushcost)where simdcost is the SIMD execution cost to setupthe subcomputations, push out, pull in, and �nish theFibonacci computation (approximately 300 clock cy-cles), pushcost is the cost to do two I/O operations(estimated to be less than 200 clock cycles for 10,000ensembles, see Section 2.2), and �bgen(n) = �bens(n)for n < 10. With these estimates the simdcost domi-nates, I/O is overlapped, and e�ciency is very good.For larger n, �bgen(n) = 300� n� 455. For a 10,000ensemble RRM, the predicted worst case e�ciency forthis example is 88%, which seems quite encouraging.The idealized Sun-relative speedup is 59,000.3.5 Performance Estimates for SortingA simple way to sort a sequence of numbers on anRRM ensemble is to use a two-dimensional (2D) ex-change sort that uses both \bubblesort" exchanges ofconsecutive elements of the sequence and \shortcut"exchanges between nonconsecutive elements. By ap-propriate placement of the sequence within an ensem-ble, both types of exchanges can be accomplished bysimple, local transformations. For a 23� 23 array ofvalues we can form a linear sequence of numbers inthe array by going down the �rst tile column, up thesecond column, and so forth. We can also establishhorizontal shortcut links between list elements thatare adjacent elements of the same row. By folding the2D array twice, it is possible to embed the array in anensemble and �t a list with 23� 23 (= 529) elementsinside an ensemble in this way in such a way that alllinks are direct neighbor-to-neighbor connections. The2D exchange sort algorithm alternates bubble sort ex-changes between consecutive elements in the sequencewith shortcut exchanges between nonconsecutive, buthorizontally adjacent elements. For a list of length nplaced in this manner, the time to do a 2D sort withinsingle ensemble is proportional to pn, and requiresapproximately 221 �pn � 468 clock cycles. The av-erage number of instructions for either the bubblesortor the shortcut exchanges phases is 42, giving a mainloop size of 84. Comparing with the time taken by asimple quicksort algorithm written in C and runningon a Sun workstation yields a Sun-relative speedup of

127. Uniformly distributed random data was used forthe tests.At the interensemble level, one can use the samepattern, i.e., ensembles in a mesh and interchanges inthe long chain or rows, but interchanges will alwaysexchange the maximal value from one ensemble withthe minimal value from the next. For this problem,the computation within an ensemble has a di�erentstructure than the structure at the cluster level andhigher. The simple, �xed connectivity is one advan-tage of this approach; it should be possible to allocateensembles so that all I/O connections are local, best-case links. The data would be broken into chunks,that start interchanging data internally and across en-semble boundaries, in one of two directions, at theirendpoints. When data items are exchanged across aboundary, an item is pushed out and another is pulledin, preserving the size of the chunk in the ensemble. Itseems better not to have a lock step process, in whichdata items are always exchanged, but instead to onlyexchange data when there is a need, e.g., when a newvalue has been interchanged into an end position.In order to get estimates at the cluster level, a spe-cial simulator was written in C that simulates thetwo-level 2D sorting algorithm and calculates clock-count estimates. Note that, because of reduction ofthe bandwidth through a cross section of the machine,one expects that sorting at the cluster level shouldbe at least 23 times slower than within an ensemble.Since there are 100 ensembles at the cluster level, onemight still see some further speedup; however, the al-gorithms are more complex and less e�cient. If veryfast neighbor-to-neighbor connections can be used atthe cluster level (and this should also be possible atthe level of the RRM as a whole), then exchangingdata with a neighbor should take only 5{10 clockcycles. The phases consist of local plus global lin-ear exchanges, with an additional smallest to largestshortcut, and local plus global row exchanges. Theadditional cost, due primarily to communication, ofglobal operations is estimated at 20 to 30 instructions.The estimated time to sort in a cluster was comparedagainst the time to quicksort on a Sun giving an esti-mated Sun-relative speedup, for a 100 ensemble clus-ter, of 114.For a wormhole routing network, when data itemsare exchanged between two ensembles, a round tripmessage is required with estimated time, assuming asingle hop is required, of perhaps 20 clock cycles. Theestimated idealized Sun-relative speedup for the RRMwould be very close to the cluster case. It is very possi-ble that the network latency could be overlapped withother computation, and the increase in the total com-putation time compared with the cluster case shouldnot be more than 20%.3.6 Performance Estimates for FluidFlowFluid dynamics can be studied using a two dimen-sional cellular automaton model [13]. This computa-tional model is nearly ideal for the RRM, due to itsvery regular structure heavily using instructions thate�ciently interchange bits among neighboring cells.7



The same communication pattern could be used formany other 2D processing and cellular automata prob-lems. In fact, we have implemented Conway's game ofLife using these same techniques, and have achievedsimilar performance. Many other problems, such ascertain vision algorithms, stress analysis and particledi�usion in solids, �t this pattern of computation.We have implemented a version of the cellular au-tomata approach based on a regular two dimensionalhexagonal lattice. Each cell is connected to its sixneighbors by links which may hold at most one parti-cle traveling in each direction in each time step. Weuse unit time steps, unit particle masses, and unit ve-locity. Each particle is completely described by thelink it currently resides on, and all particles have con-stant kinetic energy, and zero potential energy. Ateach time step, particles move along their links, pos-sibly interact with other particles at the center of ahexagonal cell, and move to some other link.We have implemented this model using one RRMcell to simulate each hexagonal cell of the model. EachRRM cell contains six bits which encode the presenseor absence of outgoing particles on the links to its sixneighbors. Communication is handled by transferringthe six bits from each cell to the appropriate neighbor.Computation is handled by performing certain bitwiseoperations (such as and, or, equal) and a form of tablelookup.We used 1000 iterations of 529 hexagonal cells asthe benchmark. Assuming that the ensemble chipswill have a clock speed of 100 MHz, the whole bench-mark should run in 2.2{2.6 ms. There are multipleways to implement this problem in C for comparison.The fastest implementation we developed (using regis-ter declarations for variables, changing the way tablelookup was handled, moving conditional expressionsout of the main loop) ran in 1.4 seconds. This resultsin a Sun-relative speedup of between 400 and 670 fora single ensemble.The instruction count for the main loop for thisproblem is about 220 instructions. We estimate thatthe communication overhead within a cluster, usingneighbor-to-neighbor connections, could be as low as48 clock cycles (6 bits � 4 cells per tile � 2). Thetransfers of marks between ensembles can take placein 12 bit parallel transfers (one cell for each tile on theedge of the ensemble). This gives 268 clock cycles permain loop or 2680 ns at 100 MHz. This gives a cluster-level performance that is 82% of ideal (= 220/268).3.7 Performance Estimates for a Hard-ware SimulatorIt is possible to do a simple kind of hardware simu-lation on the RRM extremely fast. The code to simu-late two-input NAND and OR gates, where the outputstate of a gate is represented by status of a speci�cmark, has only 24 instructions. This simple simulatorcannot simulate arbitrary circuits, since there can belay-out problems; gates must be close to the gates thatproduce their input signals. For a speci�c very simplecircuit, comparison of the simulations with a highlyoptimized C program running on a Sun workstationgives a Sun-relative speedup estimate for an ensem-

ble of 533, and for an optimized C program that is amore general circuit simulator an estimated speedupof 1,500.The cluster-level performance estimate is close to alinear scale up of this. Only a single mark per edgecell needs to be transferred across the ensemble bound-aries. It seems reasonable to assume that this could bedone in 8 clock cycles. The cluster performance wouldthen be 75% of ideal (= 24/32). The idealized Sun-relative speedup for a cluster would be from 40,000 to110,000.4 Summary and ConclusionsFirst we summarize the performance estimates forthe RRM, and then we briey discuss the status of theproject.For a 10,000 ensemble RRM, our present estimatesare as follows:� Raw peak performance: 576 trillion operationsper second.� For general symbolic applications (the numericFibonacci problem is taken as a typical exampleand the TAK function is a secondary example):{ Ensemble Sun-relative speedup is roughly6.7.{ RRM performance with wormhole networkat 88% e�ciency gives an idealized Sun-relative speedup of 59,000.� For highly regular symbolic applications (thesorting problem is taken as a typical example):{ Ensemble performance is a Sun-relativespeedup of 127.{ Cluster-level performance is a Sun-relativespeedup of 114.{ RRM performance is estimated at over 80%e�ciency (relative to the cluster perfor-mance) yielding a Sun-relative speedup ofover 91.� For systolic applications (a 2D uid ow problemis taken as a typical example; a secondary exam-ple is a hardware simulator):{ Ensemble performance is a Sun-relativespeedup of 400{670.{ Cluster-level performance, which should beattainable in practice, is 82% e�ciency.This yields idealized Sun-relative speedupsof 33,000{55,000.The RRM project is now in an advanced stage of itsproof-of-concept phase that will culminate in buildingand demonstrating an ensemble prototype, and in fur-ther performance and application studies to evaluatethe expected behavior of the RRM as a whole.AcknowledgementsWe thank Dr. Tom Blank, Dr. Keith Bromley, Dr.Bill Carlson, and Prof. Al Despain for comments andsuggestions that have helped improve the expositionof this paper.8
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