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Decision Problems for Propositional Linear Logic
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Abstract

Linear logic, introduced by Girard, is a refinement of
classical logic with a natural, intrinsic accounting of re-
sources. We show that unlike most other propositional
(quantifier-free) logics, full propositional linear logic is
undecidable. Further, we prove that without the modal
storage operator, which indicates unboundedness of re-
sources, the decision problem becomes PSPACE-complete.
We also establish membership in NP for the multiplica-
tive fragment, NP-completeness for the multiplicative
fragment extended with unrestricted weakening, and
undecidability for certain fragments of noncommuta-
tive propositional linear logic.

1 Introduction

Linear logic, introduced by Girard [14, 18, 17], is a re-
finement of classical logic which may be derived from a
Gentzen-style sequent calculus axiomatization of clas-
sical logic in three steps. The resulting sequent system
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is given in Appendix A, where some standard notation
is also defined.

The first step in deriving linear logic from classi-
cal logic is to eliminate two structural rules, contrac-
tion and weakening. We view hypothesis as resources,
and conclusions as requirements to be met using the
resources. Therefore the formula A implies A means
that the resource A can be use to meet the require-
ment A. Contraction allows any property which fol-
lows from two assumptions of a formula to be derived
from a single assumption of that formula. For exam-
ple the formula (A and A) implies A is derivable us-
ing contraction. Weakening allows deductions which
do not use all of their hypotheses, e.g., the formula
(A and B) implies A is derivable with weakening, but
not without. Since contraction and weakening make it
possible to use an assumption as little or as often as
desired, these rules are responsible for what we see in
hindsight as a loss of control over resources in both clas-
sical and intuitionistic logic. Excluding these rules pro-
duces a linear system in which each assumption must
be used ezactly once. In the resulting linear logic, for-
mulas indicate bounded or finite resources which can-
not necessarily be discarded or duplicated.

The second step in deriving linear logic involves the
propositional connectives. Briefly, the change in struc-
tural rules leads naturally to two forms of conjunction,
one called “multiplicative” and the other “additive”,
and similarly two forms of disjunction. The multi-
plicative forms disallow sharing of resources, while the
additive forms require resource sharing.

Finally, in order to recover the full deductive power
of classical logic, a storage or reuse operator, !, is
added. Intuitively, the formula !A provides unlim-
ited use of the resource A. Using a computational
metaphor, the formula !4 means that, “the datum A
is stored in the memory and may be referenced an un-
limited number of times.” There is also a dual modal
operator 7, definable from ! using negation. The for-
mula ?B allows the unlimited consumption of B.



Since the basic framework remains linear, unbounded
reuse or consumption is only allowed “locally”, at for-
mulas specifically marked with ! or ? (respectively).
The resulting logic is natural from both proof-theoretic
and computational standpoints. In particular, Gentzen-
style cut-elimination, a central property in the proof-
theoretic tradition (see [13, 18], for example), has been
established for linear logic [14]. Cut elimination es-
tablishes consistency and provides a natural computa-
tional mechanism that resembles reduction in lambda
calculus (e.g., [22, 18]).

An early application of the resource-sensitive as-
pect of the logic was the implementation of a func-
tional programming language in which garbage collec-
tion was replaced by explicit duplication operations
based on linear logic [25]. Further studies have demon-
strated connections with Petri nets [3, 20, 30, 4, 12, 10]
and other models of concurrency [26, 1]. With re-
gard to concurrency, there is a similarity between proof
nets, the inherent model of computation associated
with cut-elimination in multiplicative linear logic (c.f.
[14, 15, 9, 26]), and connection graphs, which were de-
signed to model connection machine computation [5].
Other applications include optimization of copying in
lazy functional programming language implementation
[21] and the control structure of logic programs [7, 2].
A natural characterization of polynomial time compu-
tations can be given in a bounded version of linear logic
[19] obtained by limiting reuse to specified bounds, i.e.,
by bounding the number of references to each datum
in memory.

In this paper, we study the complexity of provability
for several fragments of propositional (quantifier-free)
linear logic. Perhaps our most notable result is that full
propositional linear logic is undecidable. However, we
begin the description of our results with the smallest
fragment considered, the so-called multiplicative linear
logic.

The multiplicative fragment contains only linear im-
plication, negation, and forms of conjunction and dis-
junction which require the available resource to be par-
titioned among subformulas, rather than shared. We
show that the decision problem for this fragment is
in NP. Moreover, if unrestricted weakening is allowed,
then the multiplicative fragment becomes NP-complete.

There are two natural fragments extending pure
multiplicative linear logic. We show that the first ex-
tension, with additive and multiplicative connectives
but not !, is PSPACE-complete.

We note in passing that the second extension, with
only multiplicative connectives and storage (!), is at
least as hard as the reachability problem for Petri nets
(or, equivalently, commutative semi-Thue systems or
vector addition systems). This follows from conserva-

tivity properties established in this paper and previous
work relating linear logic and Petri nets. Although
reachability is decidable [32, 24], the best known lower
bound is EXPSPACE [29, 31]. A likely upper bound is
primitive recursive in the Ackermann function [33, 8].

Finally, we show that provability in full proposi-
tional linear logic, with additive and multiplicative con-
nectives and modal storage operator, is undecidable.
(Provability is trivially r.e., since the proof system is
effective.) We also establish the undecidability of a
noncommutative variant of linear logic (even without
additive connectives), a system that extends the calcu-
lus in [27], see [16, 34].

In the remainder of this paper we state the requisite
lemmas and give a brief overview of the proofs of our
theorems. Complete detailed proofs may be found in
our technical report [28].

2 Multiplicative Additive Linear Logic is PSPACE-
complete

This section deals with the fragment of propositional
linear logic, called MALL, which contains the multi-
plicative connectives, ® and &, the additive connec-
tives, & and @, the constants 0, 1, T, and L, but ex-
cludes the modal storage operators ! and 7. The proof
rules of MALL are all of the rules in the Appendix A that
are associated with these connectives and constants.
MALL has been studied by Girard and Bellin, and used
by Andreoli, Pareschi, and Cerrito [16, 6, 2, 7]. In con-
trast to classical propositional logic, which is co-NP-
complete, we show below that provability for MALL is
PSPACE-complete.

The cut-elimination theorem for the MALL fragment
follows from the cut-elimination theorem and the sub-
formula property for linear logic.

Lemma 2.1 The provability in MALL of a given se-
quent can be decided by a polynomial space bounded
Turing machine.

Proof. There is a linear bound on the depth of
cut-free MALL proofs so that an alternating Turing ma-
chine could generate and check all branches of a cut-
free proof in parallel. [

2.1 Informal Outline of PSPACE-hardness of MALL

The PSPACE-hardness of MALL provability is demon-
strated by a reduction from the validity problem for
quantified Boolean formulas (QBF). In this brief ab-
stract, only the key intuitions are emphasized.

A quantified Boolean formula has the (prenex) form
QX ... Q1 X1 M, where M is a quantifier-free Boolean
matriz and each Q; is either V or 3 quantifying Boolean



variables in M. The syntactic variable G ranges over
QBF's, M ranges quantifier-free Boolean formulas, and
X ranges over Boolean variables. An assignment I for
G maps the free variables in G to truth values T or F'.
The validity of G under I is written as I = G. The
QBF validity problem is: Given a closed QBF G, is
EG?

We provide a succinct encoding of a closed QBF G
as a MALL sequent that is provable ezactly when G is
valid. One part encodes the Boolean matrix, and a sec-
ond part encodes the quantifier prefix. The encoding
is carried out in a one-sided formulation of the MALL
sequent calculus where, for example, the provable two-
sided sequent A, AloB F B is written as
FA+ A® BY,B.

2.1.1 Encoding Boolean Evaluation.

The encoding of the Boolean connectives and quanti-
fiers in MALL is described by means of an example. Let
G be the valid QBF

VXQEXIZ _l(_|X1 N X2) N _l(_|X2 N Xl)

G is a restatement of VX,3Xy: (X; < Xa1), so
that with the quantifier reversed, 3X;VXs: (X; <~
Xs) is falsifiable. The encoding of the Boolean ma-
trix M of G describes the formula as a circuit with
signals labeled by MALL literals. If the assignment [
is encoded by a sequence of MALL formulas (I), and
[M], is the MALL formula encoding M with output la-
beled by the literal a, then I = M is encoded by the
sequent - (I),[M],,a, whereas I = M is encoded by
F(I),[M],,at.

The assignment ({X; « T, X5 « F'}) is encoded by
the sequence of formulas zi-, z2. These literals are the
input signals to the encoding of the Boolean formula.

The encoding [-X1], of =X; with output labeled a
is the formula NOT(z1, a) expressing the truth table for
negation within MALL.

NOT(z1,y) = (21 ® y) @ (flcll ® yl) (1)

Which is the negation of the formula
(z1 loat) & (zi loa). The sequent

F z1,NOT(z1,0a),a (2)

encodes the situation where the input X; is F', and
asserts (correctly) that the output —X; is T'. The se-
quent (2) is easily seen to have the proof

oy, ot Fal,a
F iI}l,(-'Ef_ ®G’L)7a
F 21, (21 ®a) ® (21 ®ab),a

Similarly, the sequent (3) representing {X; «— T'} [~
- X7 is also provable.

bz, NoT(z1,a),at (3)
On the other hand, the sequent
bz, NOT(z1,a),a (4)

asserts (falsely) that {X; <« T} = —X;. Sequent (4)
is not provable because MALL is a refinement of clas-
sical logic in which no falsifiable sequents of ordinary
propositional logic are provable.

The truth tables for the other Boolean connectives
can similarly be expressed as MALL formulas and the
entire matrix M encoded as above. The only subtlety
is that when the fanout of a signal exceeds one, the
encoding must provide an explicit means for duplicat-
ing the corresponding MALL literal, since MALL lacks a
contraction rule.

2.1.2 Encoding Boolean Quantification

To encode Boolean quantification, we need to encode
individual quantifiers as well as the dependencies be-
tween quantifiers. Given the above encoding for assign-
ments and the Boolean connectives, an almost correct
way to encode Boolean quantifiers would be to encode
3X,; by the formula (z; ® z1-), and VX3 by (z2 & z7°).
The reason the formula (z; @ z1-) behaves like existen-
tial quantification in proof search is that a nondeter-
ministic choice can be made between

b, ?
F (121 D Cl)ll),?

F 131,?

and F(z @ mlI), ?

according to the assignment (T or F', respectively) to
X; which makes 3X: M valid. Similarly, the formula
of (z2 & z3) in a sequent behaves like universal quan-
tification requiring proofs of both F z3,? and F x5, ?:

Fxy,? Fxzo,?
F(za&zy),?

However, with this representation of quantifiers, the
MALL encoding of 3X;VXs M would be the same as
that of VX53X1: M, but only the latter formula is valid
since M expresses (X; < X»).

To guarantee that 3X;V X5 M has been correctly
encoded, we need to ensure that if the encoding is prov-
able, there is a proof in which the choice of witness for
X does not depend on whether X5 is 7" or F'. Such a
dependency of X; on X5 is shown in the proof below.

1 L
"fEl,ng,? I—:L‘l,a:2,?

Flz@ai) 29,7 F(e1®zf),25,7
F(zi @z1), (2 &23),7?




?
Faib, a1, 20
7J_ ©
F q; 7Q1@1¢1

1 ®
2,03 o, ((0z) @ (190 )) . :

F a2, qi, 3 ® (1921) @ (10z7)) F (qof2) & (qo8z3 ), g5 @ [M]y, g o

F a2, a5 @ (1021) ® (1921)), ¢ © ((qoPx2) & (9073 )), 05 @ [M]g, g

Figure 1: A failed proof attempt
F a1z, g8 @ ((q82) & (qo27)), g5 ® [M]mgm
. Fa1971, 08" ® ((90972) & (90973)), 95 ® [M]y, 9 -

Faz,q5  F ((1Pz1) @ (1¥zi)), Qf®((%mz) (q0¥23)), 095 ® [M]y, g o

F 2,05 @ (10z1) & (102)), ¢ @ ((qoP22) & (qo825)), 95 © [M]y, g

Figure 2: A correct deduction respecting quantifier order

The solution is to encode the quantifier order in
a way that forces (z; @ zi) to be introduced below
(z2 & x3) in any cut-free proof. For this we introduce
new MALL atoms qg, ¢1, g2, and define the encoding
[[ELX:[VXQZ G]]g as

F o go,
3 ® (@19z1) ® (@9z7)),
g ® ((qo¥z2) & (q¥z3)),
qé‘ ®[M]y, g

The quantifier encoding for 3X; now hides the “key”
g1 that is needed to unlock the quantifier encoding for
VXs. One attempt to violate the quantifier ordering
as before, is shown in Figure 1, where the subgoal
F gi,q1, T is unprovable in MALL due to the absence
of an applicable weakening rule.

All other attempts at violating the quantifier order-
ing also fail, but the deduction which does respect the
quantifier order succeeds as shown in Figure 2.

2.2 Proof of rspacE-hardness of MALL

Lemma 2.2 Let M be a Boolean formula and I an
assignment for the variables in M, then

iff = (I),[M]g, g
2. 1W M iff v (I),[M],, g*

1.1=M

The next lemma establishes the correctness of the
encoding of quantifiers.

Lemma 2.3 Let M be a Boolean formula in the vari-
ables X1,...,Xn, then for any m, 0 < m < n, and as-
signment I for X,pq1,..., Xn, I F QX ...Q1 X M
i Gm, (1), [QmXm ... Q1 X1 M],, g is provable.

Lemma 2.4 Given a closed QBF Q,X,,...QoXo M

|: Qan .. Q(]X(]Z M Zﬁ " qn, IIQan .. Q(]X(]Z M]]g,g
is provable in MALL.

The size of the sequent encoding a QBF G is poly-
nomial in G and the encoding takes place in polynomial
time. Along with Lemmas 2.4 and 2.1 yields the final
result.

Theorem 2.5 MALL provability is PSPACE-complete.

With two-sided sequents, the intuitionistic fragment
of MALL constrains the right-hand side of the sequent
to contain at most one formula. A two-sided reformu-
lation of the above proof could be carried out entirely
within the intuitionistic fragment of MALL so that in-
tuitionistic MALL is also PSPACE-complete.

3 Propositional Linear Logic is Undecidable

We show that propositional linear logic is undecidable
by reduction from the halting problem for a form of
counter machine. More specifically, we begin by ex-
tending linear logic with theories whose axioms may
be used any number of times in a proof. We then de-
scribe a form of and-branching two-counter machines
with undecidable halting problem and show how to en-
code these machines in propositional linear logic with
theories. Since the axioms of our theories must have a



special form, we are able to show the faithfulness of this
encoding using a natural form of cut-elimination with
non-logical axioms. To illustrate the encoding of two-
counter machines, we present an example simulation
of a simple computation in Section 3.5. On first read-
ing, the reader may wish to jump ahead to that section
since it demonstrates the basic mechanism used in the
undecidability proof.

3.1 Linear Logic Augmented With Theories

We begin by augmenting linear logic with a notion of
theory. Essentially, a theory is a set of non-logical ax-
ioms (sequents) that may occur as leaves of a proof
tree. The theories described here are an extension of
earlier work on multiplicative theories [20, 30].

We define a positive literal as one of the given p;
propositions, a negative literal as one of the p;- propo-
sitions, and an atomic formula as any positive or neg-
ative literal.

For the theories of interest here, an azxiom may be
any linear logic sequent of the form - C, p;,p;:, ..., p;
where C' is any linear logic formula, and the remain-
der of the sequent is made up of negative literals. For
example, the sequents - pi,py, F (p1 ® pa),py, F
?(p#p1), and F pi, p; may all be axioms. However,
F p1,p1 and F (p1®p2), p3 may not. We use this restric-
tion on axioms to achieve strict control over the shape
of a proof as provided by Lemma 3.1. Some of this
control is lost if the definition of theory is generalized,
although for some applications the weaker available re-
sults would be sufficient.

Any finite set of axioms is a theory. We consider
only finite theories so that theories may be encoded as
formulas of linear logic, which would be impossible if
we allowed arbitrary sets of axioms. For any theory
T, we say that a sequent F ? is provable in T exactly
when we are able to derive F 7 using the standard set
of linear logic proof rules and axioms from 7. Thus
each axiom of T is treated as a reusable sequent which
may occur as a leaf of a proof tree.

A directed cut is one where at least one premise is
an axiom and where the cut formula is not a negative
literal of the axiom. A cut between two axioms is there-
fore always directed. A directed or standardized proof
where all the cuts are directed. With these definitions,
we may obtain the following result.

Lemma 3.1 (Cut Standardization) If there is a
proof of F 7  in theory T, then there is a directed
proof of 7  in theory T.

The proof of this lemma follows by induction on the
length of proofs. At each step of the induction we ap-
peal to a modified version of the usual cut-elimination
procedure.

3.2 Coding Theories in Formulas

We define the translation [T'] of a theory T with &
axioms into a pure linear logic formula by

'7t1€}]

where [t;] is defined for each axiom t; as follows:

[{t17t27" = ?[tl]a?[tQ]""7?[tk]

A
[l_ Cvpi_apé_v"'vpj_] = (CL ®pa ®pb & - ®pz)

Thus each axiom becomes a reusable formula, where
the parity of the subformulas of the axiom have been
inverted in the formula.

With this translation we are able to achieve the fol-
lowing result.

Lemma 3.2 For any finite set of axioms T, the se-
quent = 7 is provable in theory T if and only if - [T],?
s provable.

3.3 And-Branching Two Counter Machines With-
out Zero-Test

We introduce a nondeterministic two counter machine
with and-branching but without a zero-test instruc-
tion. Intuitively, @Q; Fork @;, Qy is an instruction which
allows a machine in state ); to continue computation
from both states Q; and @, each computation contin-
uing with the current counter values. For brevity in the
following proofs, we emphasize two counter machines.
More formally, an And-Branching Two Counter Ma-
chine Without Zero-Test, or ACM for short, is given by
a finite set @ of states, a finite set ¢ of transitions, and
distinguished initial and final states, @; and QF, as
follows.

An instantaneous description, or ID, of an AcM M
is a list of ordered triples (Q;, A, B), where Q; € @,
and A and B are natural numbers, each corresponding
to a counter of the machine.

We define the accepting triple as (Qr,0,0). We also
define an accepting ID as any ID where every element
of the ID is the accepting triple. That is, every and-
branch of the computation has reached an accepting
triple. We say that an ACM accepts input n if and only
if there is some computation from initial ID {{Qr,n,0)}
to an accepting ID. It is essential for our undecidability
result that both counters be zero in all elements of an
accepting ID.

The set § may contain transitions of the following



form:

(Q; Increment A @Q;) taking
(Qi, A, B) to (Q;,A+1,B)
(Q; Increment B @;) taking
(Qi, A, B) to (Q;,A,B +1)
(Q; Decrement A @;) taking
(Qi, A+1,B) to (Q;, A, B)
(Q; Decrement B Q;) taking
(Qi,A,B+1) to (Q,, A, B)
(Qi Fork Q;, Q) taking
(Qi, A, B) to ((Qj, 4, B), (Qk, 4, B))

where the Q;, @, and @}, are states in (). Note that the
Decrement instructions only apply if the appropriate
counter is not zero.

Thus, for example, the single transition @; Incre-
ment (), takes an ACM from ID: {---,(Q;,A,B),---}
toID: {---,(Q;,A+1,B),--}

Since we may simulate a zero-test with and-
branching, using the fact that all branches must termi-
nate with counters set to zero, acceptance by an and-
branching machines is undecidable.

Lemma 3.3 It is undecidable whether an and-
branching two counter machine without zero-test ac-
cepts input 0. This remains so if the transition rela-
tion of the machine is restricted so that there are no
outgoing transitions from the final state.

3.4 From Machines to Logic

We will write C" to indicate a sequence of n C'’s, sep-
arated by commas.

We have already seen how the linear connective &
may be used to achieve and-branching in the proof of
PSPACE-completeness of MALL. We now make use of
that, along with some other machinery, to simulate
ACM computation.

Given an AcM M = (Q, 9, Qr, Qr) we define a linear
logic theory from the transition relation § as follows:

Q; Increment A Q; — +g;",(gj ®a)
Q; Increment B Q; — Fgi', (q; ®b)
Q; Decrement A Q; — F qil,aL,Qj
Q; Decrement B Q; +— g, bt q;
Q; Fork Q;,Qr — g, (¢ ®ar)

Using linear implication, the “Q; Increment B @Q;”
transition may be viewed as - ¢; lo(g; ® b), i.e., from
state ();, move to state (); and add one to B.

Given an element of an ID of an AcM (Q;, z,y), we
define a translation 6:

0((Qi,2,9)) 2 F g, (@), (b)Y, qr

Thus all sequents which correspond to elements of ACM
ID’s have exactly one positive literal, gr, some number
of ats, and b's, the multiplicity of which correspond to
the values of the two counters of the AcM, and exactly
one other negative literal, which corresponds to the
current state of the ACM.

The translation of an AcMm ID is simply the set of
translations of the elements of the ID. We claim that
an ACM M halts from ID if and only if every element
of 8(ID) is provable in the theory corresponding to the
transition relation of the machine.

Lemma 3.4 (Machine =) An and-branching counter
machine M accepts from ID only if 6(1D) is provable
in the theory derived from M.

Given a halting computation of an ACM machine
M from ID we must build a proof of §(ID) in the
theory derived from M. This may be accomplished by
induction on the length of accepting ACM computation.

Lemma 3.5 (Machine <) An and-branching counter
machine M accepts from ID if §(ID) is provable in the
theory derived from M.

Given a proof of §(ID) in the theory derived from
M, we must show that a halting computation of the
ACM M from state ID can be extracted from that proof.
We achieve this with the aid of cut standardization,
Lemma 3.1, which in this case leaves cuts in the proof
only where they correspond to applications of ACM in-
structions. We may thus simply read the description
of the computation from the normalized proof. The
formal proof of this lemma proceeds by induction on
the length of the standardized proof, and depends on
the particular encoding of the AcMm state.

3.5 Example Computation

This section is intended to give an overview of the
mechanisms we have defined above, and lend some
insight into our undecidability result, stated below.
We present a simple computation of an ordinary two
counter machine with zero-test instruction, a corre-
sponding ACM computation, and a corresponding linear
logic proof. The overall structure is that searching for
a proof of a sequent is analogous to searching for an
accepting ACM computation.

If the transition relation § of a standard two counter
machine with zero-test consists of the following:

61 ::= Qg Increment A Q-
02 ::= @3 Decrement A Qp
03 ::= @2 ZeroTest B @3

then the machine may perform the following transi-
tions, where an instantaneous description of a two
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Figure 4: Proof corresponding to computation

counter machine is given by the triple consisting of @;,
the current state, and the values of counters A and B.

(Qr,0,0) 5 (Q5,1,0) I’ (Q3,1,0) I (Qr, 0,0)

This computation starts in state )7, increments the
A counter and steps to state (). Then it tests the
B counter for zero, and moves to ()3, where it then
decrements the A counter, moves to @, and accepts.

The transition relation § may be translated into a
transition relation ¢’ for an and-branching two counter
machine without zero-test. The modified relation &'
(shown on the left below), may then be encoded as a
linear logic theory (shown on the right):

Transitions Theory Azxioms
! ::= QlIncrement A Q2 Fqr,(2®a) Ty
8y = Q3 Decrement A Qr F g3 ,at,qr T,
63 := Q2 Fork Zp,Q3 Fay,(z®qs) T
4 := Zp Decrement A Zg F 23,a", 28 T,
t = Zp Fork Qp,QF Fzg, (qr ®qr) Ts

Notice how the first two transitions (4; and d2) of the
standard two counter machine are preserved in the
translation from 4§ to §'. Also, the ZeroTest instruc-
tion d3 is encoded as three ACM transitions — 45, 4y,
and ;. The transition d5 is a fork to a special state
7B, and one other state, Q3. The two extra transi-
tions, 8 and d;, embody the encoding of that special
zero-testing state, Zp, of the AcM. Given the above
transitions, the and-branching machine without zero-
test may then perform these moves:

{(@1,0,00} 5 (@2, 1,00} £ {(Z5,1,0),(Qs,1,0))
12 {(25,0,0),(@a,1,0)} £

{(Qr,0,0),(QF,0,0),(Qs,1,00} 1=
{<QFa070>1 <QF,0,0), <QF,0,0>}

Note that the instantaneous descriptions of this and-
branching machine is a list of triples, and the machine
accepts if and only if it is able to reach (QF,0,0) in
all branches of its computation. This particular com-
putation starts in state @, increments the A counter
and steps to state (2. Then it forks into two separate
computations; one which verifies that the B counter is
zero, and the other which proceeds to state @J3. The
B counter is zero, so the proof of that branch proceeds
by decrementing the A counter to zero, and essentially
jumping to the final state Q. The other branch from
state @3 simply decrements A and moves to Q. Thus
all branches of the computation terminate in the fi-
nal state with both counters at zero, resulting in an
accepting computation.

The linear logic proof corresponding to this com-
putation is displayed in Figures 3 and 4. In these
proofs, each application of a theory axiom (T rule) cor-
responds to one step of ACM computation. We repre-
sent the values of the ACM counters in unary by copies
of the formulas a' and b. In this example the B
counter is always zero, so there are no occurrences of
bt.

The proof shown in Figure 3 of - zfg‘, a’,gp in the
above linear logic theory (T4 through T5) corresponds



to the AcM verifying that the B counter is zero. Read-
ing the proof bottom up, it begins by cutting against
the theory axiom Ty, leaving the sequent + 23, gr as
an intermediate step. Correlating with the AcM com-
putation, T4 corresponds to the Decrement A instruc-
tion d;, and zf,s,qF has exactly one less a' than
+ zé,al,qp. The next step is to cut against axiom
T, and after application of the & rule, we have two
sequents left to prove —  q5,qr and g5, qp. Both
of these correspond to the AcM triple (@, 0,0) which
is the accepting triple, and are provable by the iden-
tity rule. If we had attempted to prove this sequent
with some occurrences of b', we would be unable to
complete the proof.

The proof shown in Figure 4 of I ¢, gF in the same
theory demonstrates the remainder of the ACM machin-
ery. The lowermost introduction of a theory axiom, T4,
cut, and # together correspond to the application of
the increment instruction ;. That is, the g; has been
“traded in” for g5 along with a*. The application of
T3, cut, and & correspond to the fork instruction, 4%,
which requires that both branches of the proof be suc-
cessful in the same way that and-branching machines
require all branches to reach an accepting configura-
tion. The elided proof of - 23, a*, gr appears in Fig-
ure 3, and corresponds to the verification that the B
counter is zero. The application of Ts, cut, and iden-
tity correspond to the final decrement instruction of
the computation, and complete the proof.

From the earlier lemmas, our main result is prov-

able.

Theorem 3.6 The provability problem for propositional
linear logic is recursively unsolvable.

As mentioned earlier, linear logic, like classical logic,
has an intuitionistic fragment. Briefly, the intuitionis-
tic fragment is restricted so that there is only one pos-
itive formula in any sequent. In fact, the entire con-
struction above was carried out in intuitionistic linear
logic, and thus the undecidability result also holds for
this logic.

4 Additional Results

The pure multiplicative fragment (without additive con-
nectives or storage operator) is the simplest fragment
of linear logic that we have investigated.

Theorem 4.1 !-free multiplicative linear logic is in NP.

The proof is straightforward: Each connective in the
conclusion sequent is the principle connective in ex-
actly one proof step in any cut-free proof, thus giving
a polynomial bound on the size of cut-free proofs. Thus
the entire proof may be guessed in polynomial time.

We have been unable to prove this fragment NP-
complete. We now believe that this may be very diffi-
cult, due to the lack of redundancy in this problem [11].
As part of our investigation of the need to discard arbi-
trary resources to achieve Np-completeness, we studied
propositional logic with weakening, but without con-
traction, which is sometimes called Direct Logic [23].
This is equivalent to linear logic with the structural
modification of adding the weakening rule.

FX

Weakening TAS

Theorem 4.2 !-free multiplicative linear logic with weak-

ening is NP-Complete.

Provability in this logic is in NP by the same reason-
ing as the previous fragment: multiplicative sequent
proofs are polynomially short, and may be guessed.
Provability is NP-hard by reduction from Vertex Cover.
In this reduction, weakening appears essential since an
edge may be covered by selecting one endpoint or both.

Finally, we investigate linear logic where we con-
sider sequents to be cyclic lists of formula, instead of
multisets, and add an explicit exchange rule limited to
reusable formulas. We also add a Rotate rule which
allows formulas to circulate, so that the proof rules in
Appendix A are applicable to more than just the end
formulas of a sequent. This logic has been called non-
commutative linear logic, cyclic linear logic, but we call
it circular logic [16, 34].

FX,7,74

Exchange ? Ty AT
FXY A

Rotate iy

Theorem 4.3 Noncommutative propositional multiplica-

tive linear logic is undecidable, even without additives.

This result is obtained by reduction from semi-Thue
systems. A rule such as “ABC — DE” is faithfully
represented by the circular logic formula (A ® B ®
C lo D ® E), since in this logic ® is not commuta-
tive. Although the main idea behind this reduction is
straightforward, substantial proof-theoretic machinery
is required to demonstrate that the reduction is correct.
An immediate corollary of this theorem is that full non-
commutative propositional linear logic (with additives)
is undecidable.

5 Conclusion

We have investigated the complexity of provability for
several fragments of propositional linear logic. Our



most significant results are that provability for full
propositional linear logic is undecidable, but that prov-
ability becomes PSPACE complete when the modal stor-
age operator is removed. This gives some interest-
ing insight into the power of reuse when combined
with linear propositional connectives. We have also
shown that the decision problem for the multiplica-
tive fragment is in NP, and becomes NP-complete in
the presence of unrestricted weakening. Finally, we
have shown that provability for circular logic (the non-
commutative fragment of linear logic without additive
connectives) is also undecidable.

A few open problems remain. We have been unable
to establish tight bounds for the multiplicative frag-
ment or settle the decidability of the multiplicatives
with the storage operator. The latter seems particu-
larly difficult, since a positive solution would involve an
extension of the reachability algorithm for Petri nets.
The final open problem, which may have logical inter-
est, is the decidability of the !-free fragment, extended
with propositional quantifiers.
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A Propositional Linear Logic Proof Rules

A linear logic sequent is a - followed by a multiset of
linear logic formulas. We assume a set of propositions
p; given, along with their associated negations, p;-. Be-
low we give the inference rules for the linear sequent
calculus, along with the definition of negation and im-
plication. The reader should note that negation is a
defined concept, not an operator.

The following notational conventions are followed
throughout this paper:

i Positive propositional literal

pil Negative propositional literal
A, B,C Arbitrary formulas
3,7,A Arbitrary multisets of formulas

Thus the identity rule (I below) is restricted to atomic
formulas, although in fact the identity rule for arbitrary
formulas (- A, A1) is derivable in this system. For
notational convenience, it is usually assumed that Lo
and ® associate to the right, and that ® has higher
precedence than lo. The notation 7Y is used to denote
a multiset of formulas which all begin with ?. The
english names for the rules given below are identity,
cut, tensor, par, plus, with, weakening, contraction,
dereliction, storage, bottom, one, and top, respectively.
Note that there is no rule for the 0 constant.

I F pi,piT
Fy, A L7 AL
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. FY, A 7.8
F%.7, (A B)
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Linear negation is defined as follows:
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Linear implication, lo, is defined as follows:

AloB & A'pB



