
Appeared in FOCS 1990Decision Problems for Propositional Linear LogicPatrick Lincoln� John Mitchelly Andre Scedrovz Natarajan Shankarx
AbstractLinear logic, introduced by Girard, is a re�nement ofclassical logic with a natural, intrinsic accounting of re-sources. We show that unlike most other propositional(quanti�er-free) logics, full propositional linear logic isundecidable. Further, we prove that without the modalstorage operator, which indicates unboundedness of re-sources, the decision problem becomes pspace-complete.We also establish membership in np for the multiplica-tive fragment, np-completeness for the multiplicativefragment extended with unrestricted weakening, andundecidability for certain fragments of noncommuta-tive propositional linear logic.1 IntroductionLinear logic, introduced by Girard [14, 18, 17], is a re-�nement of classical logic which may be derived from aGentzen-style sequent calculus axiomatization of clas-sical logic in three steps. The resulting sequent system�Lincoln@CS.Stanford.EDU Department of Computer Science,Stanford University, Stanford, CA 94305, and the Computer ScienceLaboratory, SRI International, Menlo Park, CA 94025. Supportedby AT&T Bell Laboratories Doctoral Scholarship, and SRI internalfunding.yJCM@CS.Stanford.EDU Department of Computer Science,Stanford University, Stanford, CA 94305. Supported in part by anNSF PYI Award, matching funds from Digital Equipment Corpo-ration, the Powell Foundation, and Xerox Corporation; NSF grantCCR-8814921 and the Wallace F. and Lucille M. Davis FacultyScholarship.zAndre@Saul.CIS.Upenn.EDUDepartment of Mathematics, Uni-versity of Pennsylvania, Philadelphia, PA 19104. Partially supportedby NSF Grant CCR-87-05596, by ONR Grant NOOO14-88-K-0635and by the 1987 Young Scientist Award from the Natural SciencesAssociation of the University of Pennsylvania. Work completed whileon sabbatical at the Computer Science Department and Center forthe Study of Language and Information, Stanford University, Stan-ford, CA.xShankar@CSL.SRI.COM Computer Science Laboratory, SRI In-ternational, Menlo Park, CA 94025. Supported by SRI internalfunding.

is given in Appendix A, where some standard notationis also de�ned.The �rst step in deriving linear logic from classi-cal logic is to eliminate two structural rules, contrac-tion and weakening . We view hypothesis as resources,and conclusions as requirements to be met using theresources. Therefore the formula A implies A meansthat the resource A can be use to meet the require-ment A. Contraction allows any property which fol-lows from two assumptions of a formula to be derivedfrom a single assumption of that formula. For exam-ple the formula (A and A) implies A is derivable us-ing contraction. Weakening allows deductions whichdo not use all of their hypotheses, e.g., the formula(A and B) implies A is derivable with weakening, butnot without. Since contraction and weakening make itpossible to use an assumption as little or as often asdesired, these rules are responsible for what we see inhindsight as a loss of control over resources in both clas-sical and intuitionistic logic. Excluding these rules pro-duces a linear system in which each assumption mustbe used exactly once. In the resulting linear logic, for-mulas indicate bounded or �nite resources which can-not necessarily be discarded or duplicated.The second step in deriving linear logic involves thepropositional connectives. Briey, the change in struc-tural rules leads naturally to two forms of conjunction,one called \multiplicative" and the other \additive",and similarly two forms of disjunction. The multi-plicative forms disallow sharing of resources, while theadditive forms require resource sharing.Finally, in order to recover the full deductive powerof classical logic, a storage or reuse operator, ! , isadded. Intuitively, the formula !A provides unlim-ited use of the resource A. Using a computationalmetaphor, the formula !A means that, \the datum Ais stored in the memory and may be referenced an un-limited number of times." There is also a dual modaloperator ?, de�nable from ! using negation. The for-mula ?B allows the unlimited consumption of B.

Since the basic framework remains linear, unboundedreuse or consumption is only allowed \locally", at for-mulas speci�cally marked with ! or ? (respectively).The resulting logic is natural from both proof-theoreticand computational standpoints. In particular, Gentzen-style cut-elimination, a central property in the proof-theoretic tradition (see [13, 18], for example), has beenestablished for linear logic [14]. Cut elimination es-tablishes consistency and provides a natural computa-tional mechanism that resembles reduction in lambdacalculus (e.g., [22, 18]).An early application of the resource-sensitive as-pect of the logic was the implementation of a func-tional programming language in which garbage collec-tion was replaced by explicit duplication operationsbased on linear logic [25]. Further studies have demon-strated connections with Petri nets [3, 20, 30, 4, 12, 10]and other models of concurrency [26, 1]. With re-gard to concurrency, there is a similarity between proofnets, the inherent model of computation associatedwith cut-elimination in multiplicative linear logic (c.f.[14, 15, 9, 26]), and connection graphs, which were de-signed to model connection machine computation [5].Other applications include optimization of copying inlazy functional programming language implementation[21] and the control structure of logic programs [7, 2].A natural characterization of polynomial time compu-tations can be given in a bounded version of linear logic[19] obtained by limiting reuse to speci�ed bounds, i.e.,by bounding the number of references to each datumin memory.In this paper, we study the complexity of provabilityfor several fragments of propositional (quanti�er-free)linear logic. Perhaps our most notable result is that fullpropositional linear logic is undecidable. However, webegin the description of our results with the smallestfragment considered, the so-called multiplicative linearlogic.The multiplicative fragment contains only linear im-plication, negation, and forms of conjunction and dis-junction which require the available resource to be par-titioned among subformulas, rather than shared. Weshow that the decision problem for this fragment isin np. Moreover, if unrestricted weakening is allowed,then the multiplicative fragment becomes np-complete.There are two natural fragments extending puremultiplicative linear logic. We show that the �rst ex-tension, with additive and multiplicative connectivesbut not !, is pspace-complete.We note in passing that the second extension, withonly multiplicative connectives and storage (!), is atleast as hard as the reachability problem for Petri nets(or, equivalently, commutative semi-Thue systems orvector addition systems). This follows from conserva-

tivity properties established in this paper and previouswork relating linear logic and Petri nets. Althoughreachability is decidable [32, 24], the best known lowerbound is expspace [29, 31]. A likely upper bound isprimitive recursive in the Ackermann function [33, 8].Finally, we show that provability in full proposi-tional linear logic, with additive and multiplicative con-nectives and modal storage operator, is undecidable.(Provability is trivially r.e., since the proof system ise�ective.) We also establish the undecidability of anoncommutative variant of linear logic (even withoutadditive connectives), a system that extends the calcu-lus in [27], see [16, 34].In the remainder of this paper we state the requisitelemmas and give a brief overview of the proofs of ourtheorems. Complete detailed proofs may be found inour technical report [28].2 Multiplicative Additive Linear Logic is PSPACE-completeThis section deals with the fragment of propositionallinear logic, called mall, which contains the multi-plicative connectives,
 and }, the additive connec-tives, & and �, the constants 0, 1, >, and ?, but ex-cludes the modal storage operators ! and ?. The proofrules of mall are all of the rules in the Appendix A thatare associated with these connectives and constants.mall has been studied by Girard and Bellin, and usedby Andreoli, Pareschi, and Cerrito [16, 6, 2, 7]. In con-trast to classical propositional logic, which is co-NP-complete, we show below that provability for mall ispspace-complete.The cut-elimination theorem for the mall fragmentfollows from the cut-elimination theorem and the sub-formula property for linear logic.Lemma 2.1 The provability in mall of a given se-quent can be decided by a polynomial space boundedTuring machine.Proof. There is a linear bound on the depth ofcut-free mall proofs so that an alternating Turing ma-chine could generate and check all branches of a cut-free proof in parallel.2.1 Informal Outline of PSPACE-hardness of mallThe pspace-hardness of mall provability is demon-strated by a reduction from the validity problem forquanti�ed Boolean formulas (QBF). In this brief ab-stract, only the key intuitions are emphasized.A quanti�ed Boolean formula has the (prenex) formQmXm : : :Q1X1:M , whereM is a quanti�er-free Booleanmatrix and eachQi is either 8 or 9 quantifying Boolean

variables in M . The syntactic variable G ranges overQBFs, M ranges quanti�er-free Boolean formulas, andX ranges over Boolean variables. An assignment I forG maps the free variables in G to truth values T or F .The validity of G under I is written as I j= G. TheQBF validity problem is: Given a closed QBF G, isj= G?We provide a succinct encoding of a closed QBF Gas a mall sequent that is provable exactly when G isvalid. One part encodes the Boolean matrix, and a sec-ond part encodes the quanti�er pre�x. The encodingis carried out in a one-sided formulation of the mallsequent calculus where, for example, the provable two-sided sequent A;A��B ` B is written as` A?; A
B?; B.2.1.1 Encoding Boolean Evaluation.The encoding of the Boolean connectives and quanti-�ers in mall is described by means of an example. LetG be the valid QBF8X29X1::(:X1 ^X2) ^ :(:X2 ^X1)G is a restatement of 8X29X1: (X1 () X2), sothat with the quanti�er reversed, 9X18X2: (X1 ()X2) is falsi�able. The encoding of the Boolean ma-trix M of G describes the formula as a circuit withsignals labeled by mall literals. If the assignment Iis encoded by a sequence of mall formulas hIi, and[M]a is the mall formula encoding M with output la-beled by the literal a, then I j= M is encoded by thesequent ` hIi; [M]a; a, whereas I 6j= M is encoded by` hIi; [M]a; a?.The assignment hfX1 T;X2 Fgi is encoded bythe sequence of formulas x?1 ; x2. These literals are theinput signals to the encoding of the Boolean formula.The encoding [:X1]a of :X1 with output labeled ais the formula not(x1; a) expressing the truth table fornegation within mall.not(x1; y) = (x1
 y)� (x?1
 y?) (1)Which is the negation of the formula(x1��a?)& (x?1 ��a). The sequent` x1;not(x1; a); a (2)encodes the situation where the input X1 is F , andasserts (correctly) that the output :X1 is T . The se-quent (2) is easily seen to have the proof` x1; x?1 ` a?; a` x1; (x?1
 a?); a` x1; (x1
 a)� (x?1
 a?); a

Similarly, the sequent (3) representing fX1 Tg 6j=:X1 is also provable.` x?1 ;not(x1; a); a? (3)On the other hand, the sequent` x?1 ;not(x1; a); a (4)asserts (falsely) that fX1 Tg j= :X1. Sequent (4)is not provable because mall is a re�nement of clas-sical logic in which no falsi�able sequents of ordinarypropositional logic are provable.The truth tables for the other Boolean connectivescan similarly be expressed as mall formulas and theentire matrix M encoded as above. The only subtletyis that when the fanout of a signal exceeds one, theencoding must provide an explicit means for duplicat-ing the corresponding mall literal, since mall lacks acontraction rule.2.1.2 Encoding Boolean Quanti�cationTo encode Boolean quanti�cation, we need to encodeindividual quanti�ers as well as the dependencies be-tween quanti�ers. Given the above encoding for assign-ments and the Boolean connectives, an almost correctway to encode Boolean quanti�ers would be to encode9X1 by the formula (x1 � x?1), and 8X2 by (x2&x?2).The reason the formula (x1�x?1) behaves like existen-tial quanti�cation in proof search is that a nondeter-ministic choice can be made between` x?1 ;�` (x1 � x?1);� and ` x1;�` (x1 � x?1);�according to the assignment (T or F , respectively) toX1 which makes 9X1:M valid. Similarly, the formulaof (x2&x?2) in a sequent behaves like universal quan-ti�cation requiring proofs of both ` x?2 ;� and ` x2;�:` x?2 ;� ` x2;�` (x2&x?2);�However, with this representation of quanti�ers, themall encoding of 9X18X2:M would be the same asthat of 8X29X1:M , but only the latter formula is validsince M expresses (X1 () X2).To guarantee that 9X18X2:M has been correctlyencoded, we need to ensure that if the encoding is prov-able, there is a proof in which the choice of witness forX1 does not depend on whether X2 is T or F . Such adependency of X1 on X2 is shown in the proof below.` x1; x2;� ` x?1 ; x?2 ;�` (x1 � x?1); x2;� ` (x1 � x?1); x?2 ;�` (x1 � x?1); (x2&x?2);�

` q2; q?2 I ?` q?1 ; q1; x1` q?1 ; q1}x1}` q?1 ; ((q1}x1)� (q1}x?1))�
` q2; q?1 ; q?2
 ((q1}x1)� (q1}x?1)) ...` (q0}x2)& (q0}x?2); q?0
 [M]g; g
` q2; q?2
 ((q1}x1)� (q1}x?1)); q?1
 ((q0}x2)& (q0}x?2)); q?0
 [M]g ; gFigure 1: A failed proof attempt
` q2; q?2 I ` q1; x1; q?1
 ((q0}x2)& (q0}x?2)); q?0
 [M]g; g` q1}x1; q?1
 ((q0}x2)& (q0}x?2)); q?0
 [M]g; g}` ((q1}x1)� (q1}x?1)); q?1
 ((q0}x2)& (q0}x?2)); q?0
 [M]g; g�
` q2; q?2
 ((q1}x1)� (q1}x?1)); q?1
 ((q0}x2)& (q0}x?2)); q?0
 [M]g ; gFigure 2: A correct deduction respecting quanti�er orderThe solution is to encode the quanti�er order ina way that forces (x1 � x?1) to be introduced below(x2&x?2) in any cut-free proof. For this we introducenew mall atoms q0; q1; q2, and de�ne the encoding[[9X18X2:G]]g as` q2;q?2
 ((q1}x1)� (q1}x?1));q?1
 ((q0}x2)& (q0}x?2));q?0
 [M]g; gThe quanti�er encoding for 9X1 now hides the \key"q1 that is needed to unlock the quanti�er encoding for8X2. One attempt to violate the quanti�er orderingas before, is shown in Figure 1, where the subgoal` q?1 ; q1; x1 is unprovable in mall due to the absenceof an applicable weakening rule.All other attempts at violating the quanti�er order-ing also fail, but the deduction which does respect thequanti�er order succeeds as shown in Figure 2.2.2 Proof of pspace-hardness of mallLemma 2.2 Let M be a Boolean formula and I anassignment for the variables in M , then1. I j=M i� ` hIi; [M]g ; g2. I 6j=M i� ` hIi; [M]g ; g?The next lemma establishes the correctness of theencoding of quanti�ers.

Lemma 2.3 Let M be a Boolean formula in the vari-ables X1; : : : ; Xn, then for any m, 0 � m � n, and as-signment I for Xm+1; : : : ; Xn, I j= QmXm : : :Q1X1:Mi� ` qm; hIi; [[QmXm : : : Q1X1:M]]g ; g is provable.Lemma 2.4 Given a closed QBF QnXn : : :Q0X0:M ,j= QnXn : : :Q0X0:M i� ` qn; [[QnXn : : :Q0X0:M]]g ; gis provable in mall.The size of the sequent encoding a QBF G is poly-nomial in G and the encoding takes place in polynomialtime. Along with Lemmas 2.4 and 2.1 yields the �nalresult.Theorem 2.5 mall provability is pspace-complete.With two-sided sequents, the intuitionistic fragmentof mall constrains the right-hand side of the sequentto contain at most one formula. A two-sided reformu-lation of the above proof could be carried out entirelywithin the intuitionistic fragment of mall so that in-tuitionistic mall is also pspace-complete.3 Propositional Linear Logic is UndecidableWe show that propositional linear logic is undecidableby reduction from the halting problem for a form ofcounter machine. More speci�cally, we begin by ex-tending linear logic with theories whose axioms maybe used any number of times in a proof. We then de-scribe a form of and -branching two-counter machineswith undecidable halting problem and show how to en-code these machines in propositional linear logic withtheories. Since the axioms of our theories must have a

special form, we are able to show the faithfulness of thisencoding using a natural form of cut-elimination withnon-logical axioms. To illustrate the encoding of two-counter machines, we present an example simulationof a simple computation in Section 3.5. On �rst read-ing, the reader may wish to jump ahead to that sectionsince it demonstrates the basic mechanism used in theundecidability proof.3.1 Linear Logic Augmented With TheoriesWe begin by augmenting linear logic with a notion oftheory. Essentially, a theory is a set of non-logical ax-ioms (sequents) that may occur as leaves of a prooftree. The theories described here are an extension ofearlier work on multiplicative theories [20, 30].We de�ne a positive literal as one of the given pipropositions, a negative literal as one of the p?i propo-sitions, and an atomic formula as any positive or neg-ative literal.For the theories of interest here, an axiom may beany linear logic sequent of the form ` C; p?i1 ; p?i2 ; :::; p?in ,where C is any linear logic formula, and the remain-der of the sequent is made up of negative literals. Forexample, the sequents ` p1; p?2 , ` (p1
 p2); p?2 , `?(p1}p1), and ` p?1 ; p?2 may all be axioms. However,` p1; p1 and ` (p1
p2); p3 may not. We use this restric-tion on axioms to achieve strict control over the shapeof a proof as provided by Lemma 3.1. Some of thiscontrol is lost if the de�nition of theory is generalized,although for some applications the weaker available re-sults would be su�cient.Any �nite set of axioms is a theory. We consideronly �nite theories so that theories may be encoded asformulas of linear logic, which would be impossible ifwe allowed arbitrary sets of axioms. For any theoryT , we say that a sequent ` � is provable in T exactlywhen we are able to derive ` � using the standard setof linear logic proof rules and axioms from T . Thuseach axiom of T is treated as a reusable sequent whichmay occur as a leaf of a proof tree.A directed cut is one where at least one premise isan axiom and where the cut formula is not a negativeliteral of the axiom. A cut between two axioms is there-fore always directed. A directed or standardized proofwhere all the cuts are directed. With these de�nitions,we may obtain the following result.Lemma 3.1 (Cut Standardization) If there is aproof of ` � in theory T , then there is a directedproof of ` � in theory T .The proof of this lemma follows by induction on thelength of proofs. At each step of the induction we ap-peal to a modi�ed version of the usual cut-eliminationprocedure.

3.2 Coding Theories in FormulasWe de�ne the translation [T] of a theory T with kaxioms into a pure linear logic formula by[ft1; t2; � � � ; tkg] = ?[t1]; ?[t2]; � � � ; ?[tk]where [ti] is de�ned for each axiom ti as follows:[` C; p?a ; p?b ; :::; p?z] �= (C?
 pa
 pb
 � � �
 pz)Thus each axiom becomes a reusable formula, wherethe parity of the subformulas of the axiom have beeninverted in the formula.With this translation we are able to achieve the fol-lowing result.Lemma 3.2 For any �nite set of axioms T , the se-quent ` � is provable in theory T if and only if ` [T];�is provable.3.3 And-Branching Two Counter Machines With-out Zero-TestWe introduce a nondeterministic two counter machinewith and -branching but without a zero-test instruc-tion. Intuitively, Qi Fork Qj ; Qk is an instruction whichallows a machine in state Qi to continue computationfrom both states Qj and Qk, each computation contin-uing with the current counter values. For brevity in thefollowing proofs, we emphasize two counter machines.More formally, an And-Branching Two Counter Ma-chine Without Zero-Test, or acm for short, is given bya �nite set Q of states, a �nite set � of transitions, anddistinguished initial and �nal states, QI and QF , asfollows.An instantaneous description, or ID, of an acm Mis a list of ordered triples hQi; A;Bi, where Qi 2 Q,and A and B are natural numbers, each correspondingto a counter of the machine.We de�ne the accepting triple as hQF ; 0; 0i. We alsode�ne an accepting ID as any ID where every elementof the ID is the accepting triple. That is, every and-branch of the computation has reached an acceptingtriple. We say that an acm accepts input n if and onlyif there is some computation from initial ID fhQI ; n; 0igto an accepting ID. It is essential for our undecidabilityresult that both counters be zero in all elements of anaccepting ID.The set � may contain transitions of the following

form:(Qi Increment A Qj) takinghQi; A;Bi to hQj ; A+ 1; Bi(Qi Increment B Qj) takinghQi; A;Bi to hQj ; A;B + 1i(Qi Decrement A Qj) takinghQi; A+ 1; Bi to hQj ; A;Bi(Qi Decrement B Qj) takinghQi; A;B + 1i to hQj ; A;Bi(Qi Fork Qj ; Qk) takinghQi; A;Bi to (hQj ; A;Bi, hQk; A;Bi)where theQi; Qj ; andQk are states in Q. Note that theDecrement instructions only apply if the appropriatecounter is not zero.Thus, for example, the single transition Qi Incre-ment Qj takes an acm from ID: f� � � ; hQi; A;Bi; � � �gto ID: f� � � ; hQj ; A+ 1; Bi; � � �gSince we may simulate a zero-test with and-branching, using the fact that all branches must termi-nate with counters set to zero, acceptance by an and-branching machines is undecidable.Lemma 3.3 It is undecidable whether an and-branching two counter machine without zero-test ac-cepts input 0. This remains so if the transition rela-tion of the machine is restricted so that there are nooutgoing transitions from the �nal state.3.4 From Machines to LogicWe will write Cn to indicate a sequence of n C's, sep-arated by commas.We have already seen how the linear connective &may be used to achieve and-branching in the proof ofpspace-completeness of mall. We now make use ofthat, along with some other machinery, to simulateacm computation.Given an acmM = hQ; �;QI ; QF i we de�ne a linearlogic theory from the transition relation � as follows:Qi Increment A Qj 7! ` q?i ; (qj
 a)Qi Increment B Qj 7! ` q?i ; (qj
 b)Qi Decrement A Qj 7! ` q?i ; a?; qjQi Decrement B Qj 7! ` q?i ; b?; qjQi Fork Qj ; Qk 7! ` q?i ; (qj � qk)Using linear implication, the \Qi Increment B Qj"transition may be viewed as ` qi��(qj
 b), i.e., fromstate Qi, move to state Qj and add one to B.Given an element of an ID of an acm hQi; x; yi, wede�ne a translation �:�(hQi; x; yi) �= ` q?i ; (a?)x; (b?)y; qF

Thus all sequents which correspond to elements of acmID's have exactly one positive literal, qF , some numberof a?s, and b?s, the multiplicity of which correspond tothe values of the two counters of the acm, and exactlyone other negative literal, which corresponds to thecurrent state of the acm.The translation of an acm ID is simply the set oftranslations of the elements of the ID. We claim thatan acm M halts from ID if and only if every elementof �(ID) is provable in the theory corresponding to thetransition relation of the machine.Lemma 3.4 (Machine)) An and-branching countermachine M accepts from ID only if �(ID) is provablein the theory derived from M .Given a halting computation of an ACM machineM from ID we must build a proof of �(ID) in thetheory derived from M . This may be accomplished byinduction on the length of accepting acm computation.Lemma 3.5 (Machine () An and-branching countermachine M accepts from ID if �(ID) is provable in thetheory derived from M .Given a proof of �(ID) in the theory derived fromM , we must show that a halting computation of theacmM from state ID can be extracted from that proof.We achieve this with the aid of cut standardization,Lemma 3.1, which in this case leaves cuts in the proofonly where they correspond to applications of acm in-structions. We may thus simply read the descriptionof the computation from the normalized proof. Theformal proof of this lemma proceeds by induction onthe length of the standardized proof, and depends onthe particular encoding of the acm state.3.5 Example ComputationThis section is intended to give an overview of themechanisms we have de�ned above, and lend someinsight into our undecidability result, stated below.We present a simple computation of an ordinary twocounter machine with zero-test instruction, a corre-sponding acm computation, and a corresponding linearlogic proof. The overall structure is that searching fora proof of a sequent is analogous to searching for anaccepting acm computation.If the transition relation � of a standard two countermachine with zero-test consists of the following:�1 : : = QI Increment A Q2�2 : : = Q3 Decrement A QF�3 : : = Q2 ZeroTest B Q3then the machine may perform the following transi-tions, where an instantaneous description of a two

` z?B ; a?; zBT4 ` z?B ; (qF � qF)T5 ` q?F ; qF I ` q?F ; qF I&` (q?F & q?F); qF Cut` z?B ; qF Cut` z?B ; a?; qFFigure 3: Zero-test proof
` q?I ; (q2
 a)T1 ` q?2 ; (zB � q3)T3 ...` z?B ; a?; qF ` q?3 ; a?; qFT2 ` q?F ; qF ICut` q?3 ; a?; qF &` (z?B & q?3); a?; qF Cut` q?2 ; a?; qF` (q?2 }a?); qF } Cut` q?I ; qFFigure 4: Proof corresponding to computationcounter machine is given by the triple consisting of Qj ,the current state, and the values of counters A and B.hQI ; 0; 0i �1�!hQ2; 1; 0i �3�!hQ3; 1; 0i �2�!hQF ; 0; 0iThis computation starts in state QI , increments theA counter and steps to state Q2. Then it tests theB counter for zero, and moves to Q3, where it thendecrements the A counter, moves to QF , and accepts.The transition relation � may be translated into atransition relation �0 for an and-branching two countermachine without zero-test. The modi�ed relation �0(shown on the left below), may then be encoded as alinear logic theory (shown on the right):Transitions�01 : : = QI Increment A Q2�02 : : = Q3 Decrement A QF�03 : : = Q2 Fork ZB ; Q3�04 : : = ZB Decrement A ZB�05 : : = ZB Fork QF ; QF

Theory Axioms` q?I ; (q2
 a) T1` q?3 ; a?; qF T2` q?2 ; (zB � q3) T3` z?B ; a?; zB T4` z?B ; (qF � qF) T5Notice how the �rst two transitions (�1 and �2) of thestandard two counter machine are preserved in thetranslation from � to �0. Also, the ZeroTest instruc-tion �3 is encoded as three acm transitions | �03, �04,and �05. The transition �03 is a fork to a special stateZB , and one other state, Q3. The two extra transi-tions, �04 and �05, embody the encoding of that specialzero-testing state, ZB , of the acm. Given the abovetransitions, the and-branching machine without zero-test may then perform these moves:

fhQI ; 0; 0ig �01�!fhQ2; 1; 0ig �03�!fhZB ; 1; 0i; hQ3; 1; 0ig�04�!fhZB; 0; 0i; hQ3; 1; 0ig �05�!fhQF ; 0; 0i; hQF ; 0; 0i; hQ3; 1; 0ig �02�!fhQF ; 0; 0i; hQF ; 0; 0i; hQF ; 0; 0igNote that the instantaneous descriptions of this and-branching machine is a list of triples, and the machineaccepts if and only if it is able to reach hQF ; 0; 0i inall branches of its computation. This particular com-putation starts in state QI , increments the A counterand steps to state Q2. Then it forks into two separatecomputations; one which veri�es that the B counter iszero, and the other which proceeds to state Q3. TheB counter is zero, so the proof of that branch proceedsby decrementing the A counter to zero, and essentiallyjumping to the �nal state QF . The other branch fromstate Q3 simply decrements A and moves to QF . Thusall branches of the computation terminate in the �-nal state with both counters at zero, resulting in anaccepting computation.The linear logic proof corresponding to this com-putation is displayed in Figures 3 and 4. In theseproofs, each application of a theory axiom (T rule) cor-responds to one step of acm computation. We repre-sent the values of the acm counters in unary by copiesof the formulas a? and b?. In this example the Bcounter is always zero, so there are no occurrences ofb?.The proof shown in Figure 3 of ` z?B ; a?; qF in theabove linear logic theory (T1 through T5) corresponds

to the acm verifying that the B counter is zero. Read-ing the proof bottom up, it begins by cutting againstthe theory axiom T4, leaving the sequent ` z?B ; qF asan intermediate step. Correlating with the acm com-putation, T4 corresponds to the Decrement A instruc-tion �04, and ` z?B ; qF has exactly one less a? than` z?B ; a?; qF . The next step is to cut against axiomT5, and after application of the & rule, we have twosequents left to prove | ` q?F ; qF and ` q?F ; qF . Bothof these correspond to the acm triple hQF ; 0; 0i whichis the accepting triple, and are provable by the iden-tity rule. If we had attempted to prove this sequentwith some occurrences of b?, we would be unable tocomplete the proof.The proof shown in Figure 4 of ` q?I ; qF in the sametheory demonstrates the remainder of the acmmachin-ery. The lowermost introduction of a theory axiom, T1,cut, and } together correspond to the application ofthe increment instruction �01. That is, the q?I has been\traded in" for q?2 along with a?. The application ofT3, cut, and & correspond to the fork instruction, �03,which requires that both branches of the proof be suc-cessful in the same way that and-branching machinesrequire all branches to reach an accepting con�gura-tion. The elided proof of ` z?B ; a?; qF appears in Fig-ure 3, and corresponds to the veri�cation that the Bcounter is zero. The application of T2, cut, and iden-tity correspond to the �nal decrement instruction ofthe computation, and complete the proof.From the earlier lemmas, our main result is prov-able.Theorem 3.6 The provability problem for propositionallinear logic is recursively unsolvable.As mentioned earlier, linear logic, like classical logic,has an intuitionistic fragment. Briey, the intuitionis-tic fragment is restricted so that there is only one pos-itive formula in any sequent. In fact, the entire con-struction above was carried out in intuitionistic linearlogic, and thus the undecidability result also holds forthis logic.4 Additional ResultsThe pure multiplicative fragment (without additive con-nectives or storage operator) is the simplest fragmentof linear logic that we have investigated.Theorem 4.1 !-free multiplicative linear logic is in np.The proof is straightforward: Each connective in theconclusion sequent is the principle connective in ex-actly one proof step in any cut-free proof, thus givinga polynomial bound on the size of cut-free proofs. Thusthe entire proof may be guessed in polynomial time.

We have been unable to prove this fragment np-complete. We now believe that this may be very di�-cult, due to the lack of redundancy in this problem [11].As part of our investigation of the need to discard arbi-trary resources to achieve np-completeness, we studiedpropositional logic with weakening, but without con-traction, which is sometimes called Direct Logic [23].This is equivalent to linear logic with the structuralmodi�cation of adding the weakening rule.Weakening ` �` A;�Theorem 4.2 !-free multiplicative linear logic with weak-ening is NP-Complete.Provability in this logic is in np by the same reason-ing as the previous fragment: multiplicative sequentproofs are polynomially short, and may be guessed.Provability is np-hard by reduction from Vertex Cover.In this reduction, weakening appears essential since anedge may be covered by selecting one endpoint or both.Finally, we investigate linear logic where we con-sider sequents to be cyclic lists of formula, instead ofmultisets, and add an explicit exchange rule limited toreusable formulas. We also add a Rotate rule whichallows formulas to circulate, so that the proof rules inAppendix A are applicable to more than just the endformulas of a sequent. This logic has been called non-commutative linear logic, cyclic linear logic, but we callit circular logic [16, 34].Exchange ? ` �;�; ?A` �; ?A;�Rotate ` �; A` A;�Theorem 4.3 Noncommutative propositional multiplica-tive linear logic is undecidable, even without additives.This result is obtained by reduction from semi-Thuesystems. A rule such as \ABC ! DE" is faithfullyrepresented by the circular logic formula !(A
 B
C �� D
 E), since in this logic
 is not commuta-tive. Although the main idea behind this reduction isstraightforward, substantial proof-theoretic machineryis required to demonstrate that the reduction is correct.An immediate corollary of this theorem is that full non-commutative propositional linear logic (with additives)is undecidable.5 ConclusionWe have investigated the complexity of provability forseveral fragments of propositional linear logic. Our

most signi�cant results are that provability for fullpropositional linear logic is undecidable, but that prov-ability becomes pspace complete when the modal stor-age operator is removed. This gives some interest-ing insight into the power of reuse when combinedwith linear propositional connectives. We have alsoshown that the decision problem for the multiplica-tive fragment is in np, and becomes np-complete inthe presence of unrestricted weakening. Finally, wehave shown that provability for circular logic (the non-commutative fragment of linear logic without additiveconnectives) is also undecidable.A few open problems remain. We have been unableto establish tight bounds for the multiplicative frag-ment or settle the decidability of the multiplicativeswith the storage operator. The latter seems particu-larly di�cult, since a positive solution would involve anextension of the reachability algorithm for Petri nets.The �nal open problem, which may have logical inter-est, is the decidability of the !-free fragment, extendedwith propositional quanti�ers.References[1] S. Abramsky and S. Vickers. Quantales, observationallogic, and process semantics. Preprint, January 1990.[2] J.-M. Andreoli and R. Pareschi. Linear objects: Log-ical processes with built-in inheritance. In Proc. 7-th International Conference on Logic Programming,Jerusalem, May 1990.[3] A. Asperti. A logic for concurrency. Technical report,Dipartimento di Informatica, Universit�a di Pisa, 1987.[4] A. Asperti, G.-L. Ferrari, and R. Gorrieri. Implicativeformulae in the `proofs as computations' analogy. InProc. 17-th ACM Symp. on Principles of ProgrammingLanguages, San Francisco, pages 59{71, January 1990.[5] A. Bawden. Connection graphs. In Proc. ACM Symp.on Lisp and Functional Programming, pages 258{265,1986.[6] G. Bellin. Mechanizing Proof Theory: Resource-AwareLogics and Proof-Transformations to Extract ImplicitInformation. PhD thesis, Stanford University, 1990.[7] S. Cerrito. A linear semantics for allowed logic pro-grams. In Proc. 5-th IEEE Symp. on Logic in Com-puter Science, Philadelphia, June 1990.[8] P. Clote. On the �nite containment problem for Petrinets. Theoretical Computer Science, 43:99{105, 1986.[9] V. Danos and L. Regnier. The structure of multiplica-tives. Archive for Mathematical Logic, 28:181{203,1989.[10] U. Engberg and G. Winskel. Petri nets as mod-els of linear logic. In A. Arnold, editor, Proceed-ings of CAAP'90. Lecture Notes in Computer Sciencevol. 431, Springer, 1990.

[11] M.R. Garey and D.S. Johnson. Computers andIntractability: A Guide to the Theory of NP-Completeness. W.H. Freeman and Co., 1979.[12] V. Gehlot and C.A. Gunter. Normal process represen-tatives. In Proc. 5-th IEEE Symp. on Logic in Com-puter Science, Philadelphia, June 1990.[13] G. Gentzen. Collected Works. Edited by M.E. Szabo.North-Holland, Amsterdam, 1969.[14] J.-Y. Girard. Linear logic. Theoretical Computer Sci-ence, 50:1{102, 1987.[15] J.-Y. Girard. Multiplicatives. Rendiconti delSeminario Matematico dell' Universit�a e PolitecnicoTorino, Special Issue on Logic and Computer Science,pages 11{33, 1987.[16] J.-Y. Girard. Towards a geometry of interaction. In:Contemporary Math. 92, Amer. Math. Soc., 1989. 69-108.[17] J.-Y. Girard. La logique lin�eaire. Pour La Science,�Edition Francaise de Scienti�c American, 150:74{85,April 1990.[18] J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs andTypes. Cambrige Tracts in Theoretical Computer Sci-ence, Cambridge University Press, 1989.[19] J.-Y. Girard, A. Scedrov, and P.J. Scott. Boundedlinear logic: A modular approach to polynomial timecomputability. In Proc. Math. Sci. Institute Workshopon Feasible Mathematics, Cornell University, June,1988. Birkhauser, 1990.[20] C.A. Gunter and V. Gehlot. Nets as tensor theories.In G. De Michelis, editor, Proc. 10-th InternationalConference on Application and Theory of Petri Nets,Bonn, pages 174{191, 1989.[21] J.C. Guzman and P. Hudak. Single-threaded polymor-phic lambda calculus. In Proc. 5-th IEEE Symp. onLogic in Computer Science, Philadelphia, June 1990.[22] J.R. Hindley and J.P. Seldin. Introduction to Combi-nators and Lambda Calculus. London MathematicalSociety Student Texts, Cambridge University Press,1986.[23] J. Ketonen and R. Weyhrauch. A decidable fragmentof predicate calculus. Theoretical Computer Science,32, 1984.[24] S.R. Kosaraju. Decidability of reachability in vectoraddition systems. In Proc. 14-th ACM Symp. on The-ory of Computing, pages 267{281, 1982.[25] Y. Lafont. The linear abstract machine. TheoreticalComputer Science, 59:157{180, 1988.[26] Y. Lafont. Interaction nets. In Proc. 17-th ACM Symp.on Principles of Programming Languages, San Fran-cisco, pages 95{108, January 1990.[27] J. Lambek. The mathematics of sentence structure.Amer. Math. Monthly, 65:154{169, 1958.

[28] P. Lincoln, J. Mitchell, A. Scedrov, and N. Shankar.Decision problems for propositional linear logic. Tech-nical Report SRI-CSL-90-08, CSL, SRI International,1990.[29] R. Lipton. The reachability problem is exponential-space hard. Technical Report 62, Department of Com-puter Science, Yale University, January 1976.[30] N. Marti-Oliet and J. Meseguer. From Petri nets tolinear logic. In: Springer LNCS 389, ed. by D.H. Pittet al., 1989. 313-340.[31] E. Mayr and A. Meyer. The complexity of the wordproblems for commutative semigroups and polynomialideals. Advances in Mathematics, 46:305{329, 1982.[32] E.W. Mayr. An algorithm for the general Petri netreachability problem. In Proc. 13-th ACM Symp.on Theory of Computing, Milwaukee, pages 238{246,1981.[33] K. McAloon. Petri nets and large sets. TheoreticalComputer Science, 32:173{183, 1984.[34] D.N. Yetter. Quantales and (noncommutative) linearlogic. Journal of Symbolic Logic, 55:41{64, 1990.A Propositional Linear Logic Proof RulesA linear logic sequent is a ` followed by a multiset oflinear logic formulas. We assume a set of propositionspi given, along with their associated negations, p?i . Be-low we give the inference rules for the linear sequentcalculus, along with the de�nition of negation and im-plication. The reader should note that negation is ade�ned concept, not an operator.The following notational conventions are followedthroughout this paper:pi Positive propositional literalp?i Negative propositional literalA;B;C Arbitrary formulas�;�;� Arbitrary multisets of formulasThus the identity rule (I below) is restricted to atomicformulas, although in fact the identity rule for arbitraryformulas (` A;A?) is derivable in this system. Fornotational convenience, it is usually assumed that ��and
 associate to the right, and that
 has higherprecedence than ��. The notation ?� is used to denotea multiset of formulas which all begin with ?. Theenglish names for the rules given below are identity,cut, tensor, par, plus, with, weakening, contraction,dereliction, storage, bottom, one, and top, respectively.Note that there is no rule for the 0 constant.

I ` pi; pi?Cut ` �; A ` �; A?` �;�
 ` �; A ` �; B` �;�; (A
B)} ` �; A;B` �; (A}B)� ` �; A ` �; B` �; (A�B) ` �; (A�B)& ` �; A ` �; B` �; (A&B)?W ` �` �; ?A?C ` �; ?A; ?A` �; ?A?D ` �; A` �; ?A!S `?�; A`?�; !A? ` �` �;?1 ` 1> ` �;>Linear negation is de�ned as follows:(pi)? �= p?i(p?i)? �= pi(A
B)? �= A?}B?(A}B)? �= A?
B?(A�B)? �= A?&B?(A&B)? �= A? �B?(!A)? �= ?A?(?A)? �= !A?(1)? �= ?(?)? �= 1(0)? �= >(>)? �= 0Linear implication, ��, is de�ned as follows:A��B �= A?}B

