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APPENDIX E. NAT PROOF RULES 224!WL � ` u :!A � ` t :B�;� ` discard u in t :B!DL � ` u :!A �; x :A ` t :B�;� ` read store x as u in t :B!CL � ` u :!A �; x :!A; y :!A ` t :B�;� ` copy x@y as u in t :B!SR �i ` ti :!Bi xi :!Bi; !� ` u :A�1 � � ��n; !� ` store u[t1=x1 � � � tn=xn] :!A1L � ` u :1 � ` t :A�;� ` let 1 be u in t :A1R ` 1 :1



APPENDIX E. NAT PROOF RULES 223I x :A ` x :ASubst � ` t :A x :A;� ` u :B�;� ` u[t=x] :BExch. Left �; x :A; y :B;� ` u :A�; y :B;x :A;� ` u :AA � ` u :(A��B) � ` t :A�;� ` (u t) :B��R �; x :A ` t :B� ` �x:t :(A��B)
L � ` u :(A
B) �; x :A; y :B ` t :C�;� ` let (x� y) be u in t :C
R � ` u :A � ` t :B�;� ` (u� t) :(A
B)�L � ` t :(A�B) �; x :A ` u :C �; y :B ` v :C�;� ` case t of inl(x)) u; inr(y)) v :C�R1 � ` t :A� ` inl(t) :(A�B)�R2 � ` t :B� ` inr(t) :(A�B)&L1 � ` u :(A&B) �; x :A ` t :C�;� ` let hx; i be u in t :C&L2 � ` u :(A&B) �; y :B ` t :C�;� ` let h ; yi be u in t :C&R � ` t :A � ` u :B� ` ht; ui :(A&B)



Appendix ENAT Proof RulesThe informal reading of nat sequents is the same as the reading of seq sequents.That is, an nat sequent is composed of a type context, a `, a linear term, and alinear type. The informal meaning of a sequent is that if one assumes the types ofvariables given by the type context, then the linear term has the given linear type.

222



APPENDIX D. SEQ PROOF RULES 221!WL � ` t :A�; z :!B ` let z be in t :A!DL �; x :A ` t :B�; z :!A ` let z be !x in t :B?DR � ` t :A� ` ?t :?A!CL �; x :!A; y :!A ` t :B�; z :!A ` let z be x@y in t :B?SL !�; x :A ` t :?B!�; z :?A ` let z be ?x in t :?B!SR !� ` t :A!� ` !t :!A1L � ` t :A�; z :1 ` let z be 1 in t :A1R ` 1 :10L �; z :0 ` let z be 0 in t :A>R � ` > :>



APPENDIX D. SEQ PROOF RULES 220I x :A ` x :ACut � ` t :A x :A;� ` u :B�;� ` u[t=x] :BE Left �; x :A; y :B;� ` u :A�; y :B;x :A;� ` u :A
L �; x :A; y :B ` t :C�; z :(A
B) ` let z be (x� y) in t :C
R � ` t :A � ` u :B�;� ` (t� u) :(A
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Appendix DSEQ Proof RulesAn seq sequent is composed of a type context, a `, a linear term, and a linear type.The informal meaning of a sequent is that if one assumes the types of variables givenby the type context, then the linear term has the given linear type.
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Appendix CLinear CalculusThe notation t !! u is meant to be read \t evaluates in any number of steps to u".As usual, the following rules are universally quanti�ed over terms t; u; v, and variablesx; y; z.
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APPENDIX B. PROP. INTUITIONISTIC LINEAR LOGIC 216I A ` A � ` A A;� ` B�;� ` B CutE Left �1; A;B;�2 ` C�1; B;A;�2 ` C
L �; A;B ` C�; (A
B) ` C � ` A � ` B�;� ` (A
B) 
R��L � ` A �; B ` C�;�; (A��B) ` C �; A ` B� ` (A��B) ��R�L �; A ` C �; B ` C�; (A�B) ` C � ` A � ` B� ` (A&B) &R&L1 �; A ` C�; (A&B) ` C � ` A� ` (A�B) �R1&L2 �; B ` C�; (A&B) ` C � ` B� ` (A�B) �R2!WL � ` A�; !B ` A!DL �; A ` B�; !A ` B � ` A� `?A ?DR!CL �; !A; !A ` B�; !A ` B?SL !�; A `?B!�; ?A `?B !� ` A!� `!A !SR1L � ` A�; 1 ` A ` 1 1R0L �; 0 ` A � ` > >R



Appendix BProp. Intuitionistic Linear LogicAn intuitionistic linear logic sequent is composed of a multiset of linear logic formulas,and a single formula separated by a `. This intuitionistic proof system is restrictedso that there is no way to derive a sequent where the multiset on the right of the `contains more than one element. Belowwe give the inference rules for the intuitionisticlinear sequent calculus. We assume a set of propositions pi given.
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APPENDIX A. LINEAR LOGIC SEQUENT CALCULUS RULES 214I A ` A �1 ` A;�1 �2; A ` �2�1;�2 ` �1;�2 CutE Left �1; A;B;�2 ` ��1; B;A;�2 ` � � ` �1; A;B;�2� ` �1; B;A;�2 E Right
 Left �; A;B ` ��; (A
B) ` � �1 ` A;�1 �2 ` B;�2�1;�2 ` (A
B);�1;�2 
 RightP Left �1; A ` �1 �2; B ` �2�1;�2; (APB) ` �1;�2 � ` A;B;�� ` (APB);� P Right� Left �; A ` � �; B ` ��; (A�B) ` � � ` A;� � ` B;�� ` (A&B);� & Right& Left1 �; A ` ��; (A&B) ` � � ` A;�� ` (A�B);� � Right1& Left2 �; B ` ��; (A&B) ` � � ` B;�� ` (A�B);� � Right2! W � ` ��; !A ` � �; !A; !A ` ��; !A ` � ! C! D �; A ` ��; !A ` � !� ` A; ?�!� `!A; ?� ! S? W � ` �� `?A;� � `?A; ?A;�� `?A;� ? C? D � ` A;�� `?A;� !�; A `?�!�; ?A `?� ? S? Left � ` A;��; A? ` � �; A ` �� ` A?;� ? Right0 Left �; 0 ` � � ` >;� > Right1 Left � ` ��; 1 ` � � ` �� ` ?;� ? Right? Left ? ` ` 1 1 Right



Appendix ALinear Logic Sequent CalculusRulesA linear logic sequent is composed of two sequences of linear logic formulas separatedby a `. In most proofs, sequents are assumed to be constructed from multisets oflinear logic formulas, e�ectively ignoring applications of the exchange rule.The following notational conventions are usedpi Positive propositional literalp?i Negative propositional literalA;B;C Arbitrary formulas�;�;�;� Arbitrary sequences of formulas
 Tensor, the multiplicative conjunction1 One, the unit of tensorP Par, the multiplicative disjunction? Bottom, the unit of par& With, the additive conjunction> Top, the unit of with� Plus, the additive disjunction0 Zero, the unit of plus213



CHAPTER 8. CONCLUSION 212systems is a promising approach for the study of proof theory and for the study ofmore mainstream computer science. Indeed, linear logic has been introduced onlyrecently and the body of work connecting theoretical computer science and linearlogic is already quite large. This thesis contributes to this exciting application oflogic in computer science, showing that linear logic is not about \Truth"; it is aboutcomputation.



CHAPTER 8. CONCLUSION 211linear logic and counter machines. This connection shows how to read proofs as de-scriptions of (successful) computations. This connection also provides a proof thatpropositional linear logic is undecidable. Other computationally interesting classesare also naturally represented in fragments of linear logic: semi-Thue systems may beembedded in noncommutative linear logic, classical quanti�ed boolean formulas maybe encoded in mall, showing that mall is pspace-complete, and 3-Partition can beencoded in constant-only multiplicative linear logic, showing that constant-only mllis np-complete.Finally, exploring an additional computational interpretation of linear logic basedon the Curry-Howard isomorphism, this thesis continues a line of research begunearly in the history of linear logic. This thesis proves the subject-reduction (type-soundness) and the most general type theorems for ml��, a language related to thosestudied by others [53, 1, 91, 93, 21, 65, 16]. This thesis pushes proof theory a littlefurther further into compilation, providing a sound theoretical basis for some compileroptimizations which are currently performed in an ad hoc manner.For future directions, the complexity of a few interesting decision problems forlinear logic is still unknown. Without additives, multiplicative exponential linear logic(mell) can encode Petri-net reachability problems, which are known to be expspace-hard, but decidable [64, 71, 70, 69, 52]. Without positive polarity occurrences of !,or negative polarity occurrences of ?, mell is decidable, by reduction to a Petri-netreachability problem. However, in general the decidability of the decision problem formell is open. Another decision problem of interest involves the quanti�ers. Workis currently progressing on computational interpretations of �rst order mall and full�rst order linear logic [61, 83]. Although some preliminary work has been done onsecond order mall [5], the decidability of pure second-order mall is open.Future work in the functional language direction involves the translation of typedlambda calculus into the linear lambda calculus. It also involves further study of thecomputational e�ciency of implementations of the linear lambda calculus. Work onboth end of this problem is required in order to make practical use of the results ofthis thesis.Establishing close connections between intuitive computational models and logical



Chapter 8ConclusionThis thesis investigates computational aspects of linear logic. The main results of thiswork support the proposition: \Linear logic is a computational logic behind logics."This thesis augments the proof theoretic framework of linear logic by provid-ing theorems such as permutability, impermutability, and cut-standardization withnon-logical theories. On this expanded proof theoretic base, many complexity re-sults are proved using the Girard correspondence between proofs and computations.Among these results are the undecidability of propositional linear logic, the pspace-completeness of mall, and the np-completeness of the constant-only multiplicativefragment of linear logic. Another application of proof theory to computation is ex-plored for a functional language ml�� and its (compiled) implementation. The pro-posed linear type system for ml�� yields compile-time type information about re-source manipulation, which can be used to control aspects of program execution suchas storage allocation, garbage collection, and array update in place. Most general typeand subject reduction theorems are proved, and a compiled implementation based onthe Three Instruction Machine is described.In more detail, we demonstrate the power of the Girard correspondence betweenlinear logic proofs and computation, establishing the complexity of the decision prob-lem in several fragments of linear logic. There had been little previous work on deci-sion problems in linear logic, and full propositional linear logic had been suspected tobe decidable. Using the Girard correspondence, this thesis connects full propositional210



CHAPTER 7. LINEAR ML�� 209argument stack, the label contains a pointer to the current continuation frame, andthe space the current frame takes up cannot be reclaimed. However, nonlinear valuesin frames are overwritten once computed (in the lazy style of the Tim), and wholeframes can be shared, instead of being copied. The penalty for this is that sometraditional garbage collection mechanism must be used on frames.All other objects are handled with explicit sharing instructions. The objectshandled in this way include arrays, structures, and cons cells. These are separatedinto two classes: linear and nonlinear. Linear objects are not copyable, and are neverreferenced by two pointers at the same time. In our implementation all arrays (evenlinear ones) have elements which are reusable (of ! type), although the arrays can beof arbitrary dimension. A nonlinear object is essentially handled in the a traditionalway, with sharing of pointers to the same object. That is, nonlinear objects may bereferenced by any number of pointers simultaneously.7.7 Summary of ChapterWe have presented a linear calculus and three type inference systems: seq, nat, andnat2. We have shown that seq and nat equivalent, and that nat2 is closely related.We have demonstrated the existence of most general types and the subject reductiontheorem. The linear calculus and very closely related type systems have appearedelsewhere, perhaps most well known in [53, 1].Also, we have implemented a two-space abstract machine based on the threeinstruction machine which may be used to exploit the information available in lineartypes to generate more e�cient code. For example, one may perform update inplace on arrays in linear space. Although the study of opportunities for update inplace in functional languages has a long history, the linear calculus and its typesystems present a logical foundation for this kind of \resource-conscious" compileroptimization.



CHAPTER 7. LINEAR ML�� 208garbage collection by copying, a rather costly implementation technique [40]. Chiri-mar, Gunter, and Riecke have described an implementation which also focuses on theissue of garbage collection [21]. In their implementation, objects may be shared, sodynamic garbage collection is potentially required on all objects. However, the lineartypes of terms may be used to identify potential times at which objects may becomegarbage. Their implementation does not include the additives, but is extended with arecursion operator and polymorphism. Abramsky has described the implementationof a linear SECD machine further studied by Mackie [1, 65], and went on to generalizethe linear calculus to one based on classical linear logic and described an implemen-tation based on the chemical abstract machine [17]. Wadler [93] has also describedseveral implementation issues regarding the linear calculus. He points out the impor-tance of !(!A) being isomorphic to !A (which is true in our operational model), andsuggests several extensions, including, for example, arrays, let! with read-only access,the removal of syntax for weakening and contraction, etc. Wadler also discusses theseparation of types into linear and nonlinear, giving the types di�erent syntax, verysimilar to our two memory spaces. We have considered only the extension of the linearcalculus to include recursion and arrays, essentially as mentioned by Wadler [92].Our LTim implementation does not count the references of integers, continuationframes, nor code. In linear logic terms, it is assumed that code, continuations, andand base integer values are of ! type. That is, they are reusable. However, arrays,structures, and cons cells are not treated in this manner. Since integer values areassumed one word long, it is more e�cient to copy them, rather than sharing. Codeis always assumed to be nonlinear, and is shared. Code is traditionally assumed tobe static and reusable, and it is di�cult to imagine an implementation taking muchadvantage of code-space freed up when some code is executed for the last time. Con-tinuations are assumed to be nonlinear, and are shared. This (mis)management ofthe storage for continuation frames could be a serious de�ciency of this implementa-tion. Continuation frames contain a sequence of pairs of pointers into code space anddata. A continuation frame is created upon entry into every combinator, and must bepreserved whenever a combinator suspends computation while control is transferredto some other combinator. That is, whenever a combinator pushes a label on the



CHAPTER 7. LINEAR ML�� 207with four special combinators: delay, force, copy, and discard, and modi�essome of the internal data structures of Tim to also support eager evaluation and ex-plicit storage management. The LTim implementation was pursued for two reasons.First, it provides further evidence that the linear calculus may be executed e�ciently.Second, it embodies a natural dual space memory model well suited to the executionof linear calculus terms.The key point of departure of our implementation from the previous implementa-tions of the linear calculus is the memory model. The LTim implements two spaces,one linear, and one nonlinear. The idea is that objects in the linear space are purelylinear, and thus have a reference count of exactly one at all times. Objects in thenonlinear space represent \stored" or reusable entities. Little or no static informationis available about reference counts of objects in this space. The execution model wehave in mind is that a ! or store instruction (corresponding to the !SR rule of linearlogic) ensures that objects reside in nonlinear space. Once an object is stored, it maybe discarded or copied, a discard operation removes a pointer to a stored object,and a copy operation simply copies a pointer to an object in nonlinear space, thusimplementing sharing, or call-by-need. However, in this nonlinear space, objects canbe referenced any number of times (including 0), requiring some form of dynamicgarbage collection. In the linear space, objects are never shared; there is always ex-actly one reference to all objects. Thus garbage collection is not needed, since objectsin that space become garbage the �rst time they are used, and linear objects mayalways be updated in place. In other words, in our execution model dynamic garbagecollection is never applied to objects in linear space, but may occasionally be appliedto objects in nonlinear space. Update in place is always applicable to linear objects,but is never applied to nonlinear objects.Other implementations of the linear calculus have e�ectively assumed a singlememory space. A potential disadvantage of the single memory space is that it ob-fuscates the distinction between shared and unshared objects. Lafont built an im-plementation of the linear calculus with the fantastic property that dynamic garbagecollection is never used: all terms e�ectively have exactly one reference to them, andthus become garbage the �rst (only) time they are referenced. However, Lafont avoids



CHAPTER 7. LINEAR ML�� 206The above judgement is provable in seq, nat, and nat2, but after one step ofreduction, the judgement becomes x :!A ` 1 which is not provable in any type systemdiscussed in this chapter. Chirimar, Gunter, and Riecke have also noticed this failureof subject reduction for open terms [21].On the other hand, we do have this more general form of subject reduction of thereexive transitive closure of !0. That is, we may reduce using !0 anywhere in aterm and still preserve the types.With a slight modi�cation of the systems we are working with, an intermediateform of these subject reduction theorems is possible. If � and � are multisets, thenwe write � � � to mean that � may by obtained from � by removing elements oradding duplicates. The following theorem holds in a version of these type systemswhere the restriction that every variable occur exactly once in binding and once inuse is relaxed to the restriction that every variable occur as many times in bindingas it occurs in use, and all occurrences of a variable have the same type.Theorem 7.5.92 (Generalized Subject Reduction) If there is a proof of !� `t :A in nat or seq, and t!! s, then there is a proof of !� ` s :A in nat and seq,where !� �!�.Also, a weaker form of subject reduction theorem holds for nat2. The restrictionson reduction order are su�cient to guarantee that whenever (�x:t)u is reduced, underthe conditions given in the theorem below, t[u=x] has the same type.Theorem 7.5.93 If there is a proof of ` t :A in nat2, and t !! s, then there is aproof of ` s0 :A in nat2, for some term s0 related to s.7.6 Implementation of LCWe now give an overview of a compiled implementation of the linear calculus basedon insights provided by these studies of type systems. This implementation is basedon a modi�ed version (LTim) of the Three Instruction Machine (Tim).The Tim is an extremely simple abstract machine designed to facilitate lazy reduc-tion of super combinator expressions [27, 96, 45, 46]. The LTim extendeds the Tim



CHAPTER 7. LINEAR ML�� 205for seq as a corollary. The main reason that the proof is simpler for nat can be seenby comparing the ��L rule of seq with the A (application) rule of nat. When anapplication (�x:t)u is �-reduced, the structure of the nat rules guarantee that thiswas typed by the A rule and t was typed subject to some hypothesis about the type ofvariable x. The same type may be given to t[u=x] using a substitution instance of thisproof. In seq, we would need a series of detailed lemmas giving us some informationabout the possible structure of the typing proof for (�x:t)u. In particular, since thesequent rule ��L allows arbitrary substitution, the structure of the typing proof isnot determined by the form of an application.The following lemma is the key step in the inductive proof of Theorem ??. Itcovers the case of the very general !SR rule, essentially stating that for one-steplinear reduction, terms of ! type do not interact with any other terms. Note that thereduction relation !C0 does not include any of the ! reductions.Lemma 7.5.89 If t = r[s1=x1; � � � ; sn=xn], and t!C0 u and for 1 � i � n : �i ` si :!Bithen (u=r0[s1=x1; � � � ; sn=xn] and r!C0 r0) or(9j : u=r[s1=x1; � � � ; s0j=xj ; � � � ; sn=xn] and sj !C0 s0j).Theorem 7.5.90 (nat Subject Reduction) If there is a proof of ` t :A in nat,and t!! s, then there is a proof of ` s :A in nat.Proof. Induction on the derivation t!! s.Corollary 7.5.91 If there is a proof of ` t :A in seq, and t !! s, then there is aproof of ` s :A in seq.The stronger property that if there is any typing proof of � ` t :A for term t withfree variables, and t!! s, then there is a typing proof of � ` s :A does not hold. Aswe have seen, control over evaluation order is of critical importance in maintaininglinear type soundness, as the following example demonstrates.x :!A ` discard x in 1
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nat(Context, discard(U, T), B) :-nat(Delta, U, ofcourse(A)),nat(Sigma, T, B),append(Delta, Sigma, Context).nat(Context, copy(var(X), var(Y), U, T), B) :-nat(Delta, U, ofcourse(A)),nat(S1, T, B),remove(type(var(X), ofcourse(A)), S1, S2),remove(type(var(Y), ofcourse(A)), S2, S3),append(Delta, S3, Context).nat(Context, read(store(var(X)), U, T), B) :-nat(Delta, U, ofcourse(A)),nat(Sigma1, T, B),remove(type(var(X), A), Sigma1, Sigma2),append(Delta, Sigma2, Context).nat(Sigma, store(T), ofcourse(A)) :-nat(Sigma, T, A),bangify(Sigma).nat(Context, let(U, 1, T), A) :-nat(Delta, U, 1),nat(Sigma, T, A),append(Delta, Sigma, Context).bangify([]).bangify([ type(var(X), ofcourse(A)) | Rest]) :-bangify(Rest).Figure 7.3: Prolog Implementation of the ! fragment of nat2
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nat([ type(var(X), A) ], var(X), A).nat(Context, apply(U, T), B) :-nat(Delta, U, la(A, B)),nat(Sigma, T, A),append(Delta, Sigma, Context).nat(Sigma, lambda(var(X), T), la(A, B)) :-nat(Sigma1, T, B),remove(type(var(X), A), Sigma1, Sigma),notmember(type(var(X),Any), Sigma).nat(Context, let(U, times(var(X), var(Y)), T), C) :-nat(Delta, U, tensor(A, B)),nat(Sigma1, T, C),remove(type(var(X), A), Sigma1, Sigma2),remove(type(var(Y), B), Sigma2, Sigma3),append(Delta, Sigma3, Context).nat(Context, times(U, T), tensor(A, B)) :-nat(Sigma, U, A),nat(Gamma, T, B),append(Sigma, Gamma, Context).nat(Context, let(U, var(X), T), B) :-nat(Delta, U, A),nat(Sigma1, T, B),remove(type(var(X), A), Sigma1, Sigma2),append(Delta, Sigma2, Context).Figure 7.2: Prolog Implementation of the 
;�� fragment of nat2



CHAPTER 7. LINEAR ML�� 202It is well known that one may view a (traditional, well-typed) functional programas a proof notation [36] for intuitionistic logic. In this light, the type of a programis the conclusion of the proof which it represents. In our present context, we view alinear program as proof notation for intuitionistic linear logic. Thus one could viewthis procedure as an intuitionistic linear logic proof checker, which also computes themost general conclusion which may be drawn from the given proof.Noting that the type rules for nat2 may be written as horn clauses, we haveimplemented nat2 in Prolog. The side conditions on the rules may easily be encodedin Prolog. For example the !SR rule requires a procedure which ensures that elementof the type context has ! type (bangify). The type system implemented in thismanner has the wonderful property that given a linear term, no search is required todiscover it's proof, if one exists, and the entire type checking may be performed inlow order polynomial time.In the Prolog implementation of nat2 most of which is shown in Figures ??and ??, there is exactly one clause for each inference rule of nat2. There are alsopredicates de�ning append, remove, notmember, and bangify, although only bangifyis given in the �gure. We give the code implementing nat2 for the 
;��; ! fragmentof the logic. For this implementation to be sound, the Prolog implementation wouldhave to provide a sound uni�cation procedure (with occurs-check).7.5 Type SoundnessIn this section we prove a technical property commonly called \subject reduction" forboth nat and seq. This property is that if linear term t has type A, and t reducesto t0, then t0 also has type A. The term t0 may also have other types; rewriting aterm may allow us to deduce more typing properties. However, if the typing rulesallows us to derive some property of a term, this property remains as we reduce, orevaluate, the term. Without the subject reduction property, it might be possible fora typed term to become untypable during execution. In this case, we would considerthe type system \unsound" as a method for determining the absence of type errors.We prove subject reduction by considering nat �rst and then deriving the result



CHAPTER 7. LINEAR ML�� 201The common feature of these judgements is that they both allow us to apply ! to theexpression, in the �rst case because all of the types of free variables begin with ! andin the second case because the type of the expression begins with !. In nat, the twotypings of the expression with storeare derived using two di�erent substitutions inthe !SR, rule. In seq, the two typings are derived using Cut to substitute into astore expression in two di�erent ways.Accounting for the possibility of several di�erent substitutions in the !SR rules(some of which are provably unnecessary), all of the nat rules are straightforwardsyntax-directed rules that may be translated into Prolog Horn clauses without com-plication. This gives us an algorithm that �nds a �nite set of most general types foreach linearly typable term or (since the search is bounded) terminates with failure onuntypable terms.Theorem 7.4.87 (MGT) Every nat typable term has a �nite set of most generaltypes. There is a uni�cation-based algorithm that, given any term, either computes aset of most general types or halts with failure if the term is not typable.7.4.2 Most General Types in nat2In the simpli�ed nat2 system, !SR is replaced by a simple syntax-directed rule withno possibility of substitution. Consequently, the most general type of any typablelinear term may be computed by a uni�cation-based algorithm or simple Prolog pro-gram. The following most general typing theorem is due independently to Mackie[65].Theorem 7.4.88 (MGT) There is a uni�cation-based algorithm that computes amost general linear type for any nat2 typable term t and terminates in failure on anyuntypable term.Proof Sketch. If t is nat2 typable, then it has a type judgement in nat2 ending in asequent ` t :A for some type A. This type judgement is unique up to the instantiationof types at the axioms. The most general type will be found by uni�cation, wherefresh type variables are initially used at each application of identity.



CHAPTER 7. LINEAR ML�� 200speci�cally, a linear formula, A, is more general than another, B, if there exists asubstitution � mapping linear propositions to linear formulas such that (A)� = B.A set, S, of formulas is more general than another, T , if every element of T is asubstitution instance of some element of S. Given a term t, the typing algorithmeither returns a �nite set of formulas more general than all types of t, or terminateswith failure if t has no linear type. The number of formulas in the set of most generaltypes is bounded by an exponential function of the number of uses of store in theterm. Without store, every typable term has a single most general type.Up to !SR, the rules of nat that are used in a typing derivation, and the order ofapplication, are totally determined by the syntactic structure of the linear term. Forexample, if the term is a variable then the only possible proof in nat is one use ofidentity. If the term is �x:t, then the only possible rule is �� R. The only freedom,except for !SR, is in the choice of linear types for variables and the division of atype multiset among hypotheses (in the rules with multiple hypotheses). However,type judgements contain exactly the set of free variables of a term in the type con-text. This property determines the division of a multiset among hypotheses of therule. Thus, for nat without !SR, we may compute the most general typing by asimple Prolog program, obtained by translating the typing rules into Horn clauses ina straightforward manner.An example that shows the complications associated with terms of the formstore t is �a:�b: store (( read store c as a in c) b)which has the two incomparable nat and seq types!(!B��C)��!B��!C!(B��!C)��B��!!CThe basic idea is very similar to the example in Section 7.2 that involves implicitstore. If a :!A, then the expression (read store c as a in c) has type A. Thisgives us the two typing judgementsa :!(!B��C); b :!B ` (read store c as a in c) b : Ca :!(B��!C); b : B ` (read store c as a in c) b : !C



CHAPTER 7. LINEAR ML�� 199A term t0 is related to a term t if t can be obtained from t0 by replacing occurrencesletcutx be t in v with v[t=x].Theorem 7.3.84 (seq equiv nat2) A type sequent � ` t :A is provable in seq ifand only � ` t0 :A is provable in nat2 for some t0 related to t.This theorem may be proven in the same manner as the above, although in somecases the extra syntax of letcut is used in the nat2 term t0. The reason for letcut isthat Subst is not a derived rule of nat2.We now turn our attention to the main technical di�erences between the threesets of typing rules. If we imagine searching for a cut-free proof of a typing derivation,beginning with a prospective conclusion and progressing toward appropriate instancesof the axioms, our search will be driven by the form of the term in nat2 and theform of the type in seq. To state this precisely, we begin by reviewing the routinede�nitions of type subformula and term subformula.A type A is a type subformula of a type B if A syntacticly occurs in B. Similarly,a term t is a term subformula of a term s if t syntacticly occurs in s.Lemma 7.3.85 (nat2 Term Subformula Property) In any proof of ` u :B innat2, every term t that appears anywhere in the proof is a subformula of u.Note that the system nat fails to have this property because of the form of the!SR rule.Lemma 7.3.86 (seq Type Subformula Property) For any cut-free proof of `t :B in seq, any type A that appears anywhere in the proof is a subformula of B.Note that the cut rule violates the subformula property, and so Lemma ?? does nothold of seq proofs with cut.7.4 Most General Linear Type7.4.1 Most General Types in nat and seqIn this section, we show that every linearly typable term has a �nite set of mostgeneral types. This set may be used to decide the set of types of the term. More



CHAPTER 7. LINEAR ML�� 1987.3.5 Equivalence of seq and natIn the last two subsections, we presented two systems intended for the automaticinference of linear type information for linear terms. In the following Theorem ??,we prove that the two systems are equivalent, that is, that any linear type judgementachievable in one system is also achievable in the other, up to reductions of letcut,which marks occurrences of the unrestricted cut rule in nat.We should emphasize that although nat and seq are equivalent (up to letcutreduction) in the sense that any typing judgement provable in seq is provable innat and vice-versa, they are not equivalent with respect to operations on proofs.In particular, cut-elimination is of hyperexponential complexity in seq, and subst-elimination is of polynomial complexity in nat. This is explained by the fact thatall the left rules of nat have an \implicit cut" incorporated into them. As a result,cut-elimination in seq does not correspond to subst-elimination in nat, nor is therea direct connection between subst-elimination in nat and reduction in the linearcalculus. Instead, in nat one focuses on the elimination of introduction/eliminationpairs as the model of computation.Theorem 7.3.83 (seq equiv nat) A type sequent � ` t :A is provable in seq ifand only � ` t :A is provable in nat.Proof. One can show that each rule in seq is derivable in nat, and vice versa, usinglocal transformations. All the right rules, identity, are the same in both systems, andCut and Subst take the same form. For most left rules, one may simulate the natversion of the rule in seq with one application of the rule of similar name and oneapplication of Cut. One may simulate the seq version of most left rules in nat byusing the rule of the same name and identity. The multi-hypothesis !SR rule of natis derivable in seq with the use of !SR and multiple instances of Cut.One may transform instances of the Cut rule in seq as applications of Subst,which is a derivable rule in nat. Upon removal of Subst, one may see that Cut inseq corresponds to introduction-elimination pairs of rules in nat.There is a somewhat looser correspondence between nat2 and seq, than that justclaimed between nat and seq.



CHAPTER 7. LINEAR ML�� 197By induction, we can produce proofs of � ` u :B and �; x :B ` v :A of degreeless than d. By a single application of Lemma ?? to the resulting proof constructedfrom the modi�ed hypotheses, we obtain a proof of � ` t :A of degree less than d.Theorem 7.3.82 (nat Subst-Elimination) If a sequent is provable in nat, thenit is provable in nat without using the Subst rule.Proof. By induction on the degree of the assumed proof. We may applyLemma ?? at each inductive step, and at the base case the degree of the proof iszero, so therefore by de�nition of proof degree there are no substs, and we have ourdesired subst-free proof.



CHAPTER 7. LINEAR ML�� 1960L subst formula on the left...� ` t :C ...� ` v :0x :C;�;� ` let v be 0 in u :A0LSubst�;�;� ` ( let v be 0 in u)[t=x] :A+...� ` v :0�;�;� ` ( let v be 0 in u)[t=x] :A0LThis exhausts all the cases.Thus, we have a procedure which given a proof which ends in Subst of degree d,and which has no applications of Subst in the proof of either hypothesis of degreegreater than or equal to d, produces a proof of degree less than d.Lemma 7.3.81 (Lower-Degree-Substs) If a sequent is provable in nat with aproof of degree d > 0, then it is provable in nat with a proof of degree less than d.Proof. By induction on the height of the derivation tree of the conclusion. Weshow that given any proof of degree d of � ` t :A in nat, we may �nd a (possiblymuch larger) proof of � ` t :A in nat of degree less than d.We examine the proof of � ` t :A. Since the degree of this proof is greater thanzero, there must be some Subst in the proof. If the last rule is not Subst, then byinduction we may form proofs of its hypotheses of degree less than d. Applying thesame rule to the resulting reduced degree hypotheses produces the desired proof ofdegree less than d.In the case that the last rule is Subst, we have the following situation for some� and � which together (in multiset union) make up �:...� ` u :B ...�; x :B ` v :A Subst� ` v[u=x] :A where � [� = � and v[u=x] = t



CHAPTER 7. LINEAR ML�� 1951L, formula descends from the right...� ` t :C ...� ` w :1 ...x :C;� ` u :D 1Lx :C;�;� ` let w be 1 in u :D Subst�;�;� ` (let w be 1 in u)[t=x] :D+...� ` w :1 ...� ` t :C ...x :C;� ` u :D Subst�;� ` u[t=x] :D 1L�;�;� ` let w be 1 in (u[t=x]) :D1L, formula descends from the left...� ` t :C ...x :C;� ` w :1 ...� ` u :D 1Lx :C;�;� ` let w be 1 in u :D Subst�;�;� ` (let w be 1 in u)[t=x] :D+...� ` t :C ...x :C;� ` w :1 Subst�;� ` w[t=x] :1 ...� ` u :D 1L�;�;� ` let w[t=x] be 1 in u :D>R ...� ` t :C x :C;� ` > :>>RSubst�;� ` >[t=x] :>+�;� ` > :>>R



CHAPTER 7. LINEAR ML�� 194!DL, formula descends from the right...� ` t :C ...� ` w :!B ...x :C;�; y :B ` u :D !DLx :C;�;� ` read storey as w in u :D Subst�;�;� ` ( read storey as w in u)[t=x] :D+...� ` w :!B ...� ` t :C ...x :C;�; y :B ` u :D Subst�;�; y :B ` u[t=x] :D !DL�;�;� ` read store y as w in (u[t=x]) :D!DL, formula descends from the left...� ` t :C ...x :C;� ` w :!B ...�; y :B ` u :D !DLx :C;�;� ` read store y as w in u :D Subst�;�;� ` ( read storey as w in u)[t=x] :D+...� ` t :C ...x :C;� ` w :!B Subst�;� ` w[t=x] :!B ...�; y :B ` u :D !DL�;�;� ` read store y as w[t=x] in u :D



CHAPTER 7. LINEAR ML�� 193!CL, formula descends from the right...� ` t :C ...� ` w :!B ...s :C;�; x :!B; y :!B ` u :D !CLs :C;�;� ` copy x@y as w in u :D Subst�;�;� ` ( copy x@y as w in u)[t=s] :D+...� ` w :!B ...� ` t :C ...s :C;�; x :!B; y :!B ` u :D Subst�;�; x :!B; y :!B ` u[t=s] :D !CL�;�;� ` copy x@y as w in (u[t=s] :D!CL, formula descends from the left...� ` t :C ...s :C;� ` w :!B ...�; x :!B; y :!B ` u :D !CLs :C;�;� ` copy x@y as w in u :D Subst�;�;� ` ( let x@y as w in u)[t=s] :D+...� ` t :C ...s :C;� ` w :!B Subst�;� ` w[t=s] :!B ...�; x :!B; y :!B ` u :D !CL�;�;� ` copy x@y as (w[t=s]) in u :D



CHAPTER 7. LINEAR ML�� 192!WL, formula descends from the right...� ` t :C ...� ` w :!B ...x :C;� ` u :D !WLx :C;�;� ` discard w in u :D Subst�;�;� ` ( discard w in u)[t=x] :D+...� ` w :!B ...� ` t :C ...x :C;� ` u :D Subst�;� ` u[t=x] :D !WL�;�;� ` discard w in (u[t=x]) :D!WL, formula descends from the left...� ` t :C ...x :C;� ` w :!B ...� ` u :D !WLx :C;�;� ` discard w in u :D Subst�;�;� ` ( discard w in u)[t=x] :D+...� ` t :C ...x :C;� ` w :!B Subst�;� ` w[t=x] :!B ...� ` u :D !WL�;�;� ` discard w in u :D



CHAPTER 7. LINEAR ML�� 191&L2, formula descends from the right...� ` t :C ...� ` w :(A�B) ...x :C;�; y :B ` u :D &L2x :C;�;� ` let h ; yi be w in u :D Subst�;�;� ` ( let h ; yi be w in u)[t=x] :D+...� ` w :(A�B) ...� ` t :C ...x :C;�; y :B ` u :D Subst�;�; y :B ` u[t=x] :D &L2�;�;� ` let h ; yi be w in (u[t=x]) :D&L2, formula descends from the left...� ` t :C ...x :C;� ` w :(A�B) ...�; y :B ` u :D &L2x :C;�;� ` let h ; yi be w in u :D Subst�;�;� ` ( let h ; yi be w in u)[t=x] :D+...� ` t :C ...x :C;� ` w :(A�B) Subst�;� ` w[t=x] :(A�B) ...�; y :B ` u :D &L2�;�;� ` let h ; yi be w[t=x] in u :D



CHAPTER 7. LINEAR ML�� 190&L1, formula descends from the right...� ` t :C ...� ` w :(A�B) ...x :C;�; y :A ` u :D &L1x :C;�;� ` let hy; i be w in u :D Subst�;�;� ` ( let hy; i be w in u)[t=x] :D+...� ` w :(A�B) ...� ` t :C ...x :C;�; y :A ` u :D Subst�;�; y :A ` u[t=x] :D &L1�;�;� ` let hy; i be w in (u[t=x]) :D&L1, formula descends from the left...� ` t :C ...x :C;� ` w :(A�B) ...�; y :A ` u :D &L1x :C;�;� ` let hy; i be w in u :D Subst�;�;� ` ( let hy; i be w in u)[t=x] :D+...� ` t :C ...x :C;� ` w :(A�B) Subst�;� ` w[t=x] :(A�B) ...�; y :A ` u :D &L1�;�;� ` let hy; i be w[t=x] in u :D



CHAPTER 7. LINEAR ML�� 189�L,formula descends from the left...� ` t :C ...x :C;� ` w :(A�B) ...�; y :A ` u :D ...�; j :B ` v :D �Lx :C;�;� ` case w of inl(y)) u; inr(j)) v :D Subst�;�;� ` ( case w of inl(y)) u; inr(j)) v)[t=x] :D+...� ` t :C ...x :C;� ` w :(A�B) Subst�;� ` w[t=x] :(A�B) ...�; y :A ` u :D A�L�;�;� ` case w[t=x] of inl(y)) u; inr(j)) v :DWhere for space reasons, the A stands for the proof:...�; j :B ` v :D&R ...� ` t :C ...x :C;� ` u :A ...x :C;� ` v :B &Rx :C;� ` hu; vi :(A&B) Subst�;� ` hu; vi[t=x] :(A�B)+...� ` t :C ...x :C;� ` u :A Subst�;� ` u[t=x] :A ...� ` t :C ...x :C;� ` v :B Subst�;� ` v[t=x] :B &R�;� ` hu[t=x]; v[t=x]i :(A&B)



CHAPTER 7. LINEAR ML�� 188�R2 ...� ` t :C ...x :C;� ` u :Bx :C;� ` inr(u) :(A�B)�RSubst�;� ` inr(u)[t=x] :(A�B)+...� ` t :C ...x :C;� ` u :B Subst�;� ` u[t=x] :B�;� ` inr(u[t=x]) :(A�B)�R�L, formula descends from the right...� ` t :C ...� ` w :(A�B) ...x :C;�; y :A ` u :D ...x :C;�; j :B ` v :D �Lx :C;�;� ` case w of inl(y)) u; inr(j)) v :D Subst�;�;� ` ( case w of inl(y)) u; inr(j)) v)[t=x] :D+...� ` w :(A�B) ...� ` t :C ...x :C;�; y :A ` u :D Subst�;�; y :A ` u[t=x] :D A�L�;�;� ` case w of inl(y)) u[t=x]; inr(j)) v[t=x] :DWhere for space reasons A stands for the proof:...� ` t :C ...x :C;�; j :B ` v :D Subst�;�; j :B ` v[t=x] :D



CHAPTER 7. LINEAR ML�� 187A, formula descends from left...� ` v :C ...x :C;� ` t :(A��B) ...� ` u :A Ax :C;�;� ` (tu) :B Subst�;�;� ` (tu)[v=x] :B+...� ` v :C ...x :C;� ` t :(A��B) Subst�;� ` t[v=x] :(A��B) ...� ` u :A A�;�;� ` ((t[v=x])u) :B�R1 ...� ` t :C ...x :C;� ` u :Ax :C;� ` inl(u) :(A�B)�RSubst�;� ` inl(u)[t=x] :(A�B)+...� ` t :C ...x :C;� ` u :A Subst�;� ` u[t=x] :A�;� ` inl(u[t=x]) :(A�B)�R



CHAPTER 7. LINEAR ML�� 186��R ...� ` t :C ...�; s :C; x :A ` u :B�; s :C ` �x:u :(A��B)��RSubst�;� ` (�x:u)[t=s] :(A��B)+...� ` t :C ...�; s :C; x :A ` u :B Subst�;�; x :A ` u[t=s] :B�;� ` �x:(u[t=s]) :(A��B)��RThe formula �x:(u[t=s]) is identical to the formula (�x:u)[t=s] since x may notoccur in t.A, formula descends from right...� ` v :C ...� ` t :(A��B) ...x :C;� ` u :A Ax :C;�;� ` (tu) :B Subst�;�;� ` (tu)[v=x] :B+...� ` t :(A��B) ...� ` v :C ...x :C;� ` u :A Subst�;� ` u[v=x] :A A�;�;� ` (t(u[v=x])) :B
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L, formula descends from the right...� ` t :C ...� ` r :(A
B) ...�; x :A; y :B; s :C ` u :D 
L�;�; s :C ` let (x� y) be r in u :D Subst�;�;� ` ( let (x� y) be r in u)[t=s] :D+...� ` r :(A
B) ...� ` t :C ...�; x :A; y :B; s :C ` u :D Subst�; x :A; y :B;� ` u[t=s] : 
L�;�;� ` let (x� y) be r in (u[t=s]) :D
L, formula descends from the left...� ` t :C ...�; s :C ` r :(A
B) ...�; x :A; y :B ` u :D 
L�;�; s :C ` let (x� y) be r in u :D Subst�;�;� ` ( let (x� y) be r in u)[t=s] :D+...� ` t :C ...�; s :C ` r :(A
B) Subst�;� ` r[t=s] :(A
B) ...�; x :A; y :B ` u :D 
L�;�;� ` let (x� y) be (r[t=s]) in u :D
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R, formula descends from right...� ` t :C ...x :C;� ` u :A ...� ` v :B 
Rx :C;�;� ` (u� v) :(A
B) Subst�;�;� ` (u� v)[t=x] :(A
B)+...� ` t :C ...x :C;� ` u :A Subst�;� ` u[t=x] :A ...� ` v :B 
R�;�;� ` (u[t=x]� v) :(A
B)The formula (u[t=x]� v) is identical to the formula (u� v)[t=x] since x may notoccur in v.
R, formula descends from left...� ` t :C ...� ` u :A ...x :C;� ` v :B 
R�; x :C;� ` (u� v) :(A
B) Subst�;�;� ` (u� v)[t=x] :(A
B)+...� ` u :A ...� ` t :C ...x :C;� ` v :B Subst�;� ` v[t=x] :A 
R�;�;� ` (u� v[t=x]) :(A
B)The formula (u� v[t=x]) is identical to the formula (u� v)[t=x] since x may notoccur in u.



CHAPTER 7. LINEAR ML�� 183Subst, formula descends from right...� ` t :C ...x :C;� ` u :A ...y :A;� ` v :D Substx :C;�;� ` v[u=y] :D Subst�;�;� ` (v[u=y])[t=x] :D+...� ` t :C ...x :C;� ` u :A Subst�;� ` u[t=x] :A ...y :A;� ` v :D Subst�;�;� ` v[(u[t=x])=y] :DThe terms (v[u=y])[t=x] : and v[(u[t=x])=y] : are the same since x doesn't occur inv.Subst, formula descends from left...� ` t :C ...� ` u :A ...x :A; y :C;� ` v :D Subst�; y :C;� ` v[u=x] :D Subst�;�;� ` (v[u=x])[t=y] :D+...� ` u :A ...� ` t :C ...x :A; y :C;� ` v :D Substx :A;�;� ` v[t=y] :D Subst�;�;� ` (v[t=y])[u=x] :DThe terms (v[u=x])[t=y] : and (v[t=y])[u=x] : are the same since x isn't in t, and yisn't in u.



CHAPTER 7. LINEAR ML�� 182Lemma 7.3.80 (Reduce-One-Subst) Given a proof of the sequent � ` A in natwhich ends in an application of Subst of degree d, and where the degree of the proofsof both hypothesis is less than d, we may construct a proof of � ` A in nat of degreeless than d.Proof. By induction on the size of the proof of � ` A.Given a derivation which ends in a Subst, we perform case analysis on the rulewhich is applied immediately above the Subst on the right hand branch.In each case we will provide a reduction, which may eliminate the subst entirely,or replace it with one or two smaller substs. Since this is a proof by induction on thesize of a derivation, one may view this proof as a procedure which pushes Substs oflarge degree up a derivation. Informally, this procedure pushes Substs up through aderivation until the critical point is reached where the right branch of the proof abovethe subst is simply identity or some constant rule.We now give the reductions for every proof rule on the right branch.I ...� ` t :A x :A ` x :AISubst� ` x[t=x] :A+...� ` t :AThe formula t is identical to the formula x[t=x] by the de�nition of substitution.



CHAPTER 7. LINEAR ML�� 1817.3.4 nat Subst EliminationThe subst elimination theorem states that whatever can be proven in nat can alsobe proven without the use of the Subst rule.The following detailed demonstration of the subst elimination theorem consists ofa proof normalization procedure which slowly eliminates subst from any nat proof.The procedure may increase the size of the proof, although of course it will still be aproof of the same sequent.We will call a formula which appears in a hypothesis of an application of Substbut which does not occur in the conclusion a subst formula. In the list of nat rulesin appendix E the subst formula in the Subst rule is the formula named A.We also de�ne the degree of a Subst to be the number of symbols in its substformulas. For concreteness, we de�ne here what is meant by number of symbols. Wewill consider each propositional symbol pi to be a single symbol. We also consider thenegation of each propositional symbol pi? to be a single symbol. Finally, we counteach connective and constant, 
;��;�;&; ?; !; 1;?; 0;>, as a single symbol, but donot count parentheses. It is important to note that negation is de�ned, and thereforeis not a connective. We also de�ne the degree of a proof to be the maximum degreeof any subst in the proof, or zero if there are no substs.Operationally, the subst elimination procedure de�ned below �rst �nds one of the\highest" substs of maximal degree in the proof. That is, an application of Subst forwhich all applications of Subst in the derivation of both hypotheses are of smallerdegree. Then a reduction is applied to that occurrence of Subst, which simpli�es oreliminates it, although it may replicate some other portions of the original proof. Weiterate this procedure to remove all substs of some degree, and then iterate the entireprocedure to eliminate all substs. In this way, any nat proof may be normalized intoone without any uses of the Subst rule, at the possible expense of an exponentialblowup in the size of the resulting proof tree.Technically, we begin with a lemma which constitutes the heart of the proof ofsubst-elimination. Although the proof of this lemma is rather lengthy, the reasoningis straightforward, and the remainder of the proof of subst-elimination is quite simple.



CHAPTER 7. LINEAR ML�� 180nat2, and for Theorem ?? we need some cut-like rule. These di�erences lead tosubtlely di�erent properties of nat and nat2 systems. For example, since Subst issyntaxless in nat, one can show that that one need not consider Subst in searchingfor type derivations. On the other hand, nat2 is entirely driven by term syntax,leading to a unique principle type theorem.



CHAPTER 7. LINEAR ML�� 179intuitionistic sequent calculus and natural deduction [82, Appendix A]. The main ideais to interpret sequent proof rules as instructions for constructing natural deductionproofs. The sequent rules acting on the left determine constructions on the top(hypotheses) of a natural deduction proof, while sequent rules acting on the rightextend the natural deduction proof from the bottom (conclusion). The Cut rule isinterpreted by substituting a proof for a hypothesis. In order for this to work, thenatural deduction proof system must have the substitution property formalized bythe derived Subst rule in Appendix E.A simple example that illustrates the general pattern is the tensor rule actingon the left, 
L. In the conclusion of the sequent rule, there is a new term variablez :(A 
 B). However, we want natural deduction proofs to be closed under theoperation of substituting terms for variables (hypotheses). If we use Cut in a sequentproof to replace z :(A
B), we end up with a sequence of proof steps whose hypothesesand conclusion are identical to the antecedent and consequent of the natural deduction
L rule in Appendix E.The most unusual rule of the nat system is the !SR rule. This may be understoodby considering the !SR rule of seq and remembering that when we substitute proofsfor hypotheses in nat, we must still have a well-formed natural deduction proof.If we follow seq !SR with Cut, we may use � ` t :!B and x :!B; !� ` u :A toprove �; !� ` store u[t=x] :!A. Generalizing to any number of Cut's, so thatnatural deduction proofs will be closed under substitution, we obtain the !SR rule inAppendix E. This rule may without loss of generality be restricted to the case whereall the �i contain some non-! type.The third and �nal system we consider is called nat2. The nat2 rules are gen-erated from the nat rules by removing the rules of Subst and !SR from nat andreplacing them with:� ` t :A x :A;� ` u :B�;� ` letcut x be t in u :B letcut!� ` t :A!� ` store t :!A !SRThe reason for the explicit syntax of letcut is that Subst is not a derived rule of



CHAPTER 7. LINEAR ML�� 178at the bottom, and the leaves at the top. Each branch of a deduction is a sequence ofapplications of the proof rules, some of which, such as 
R in seq, represent branchingpoints in the deduction tree, some, such as ��R, which extend the length of a branch,and some, such as identity, which terminate a branch. Any branch not terminatedby identity or 1 R is called an assumption. The leaves therefore embody the typeassumptions and the root the conclusion. Such a structure is said to be a deductionof the conclusion from the assumptions. A proof is a typing deduction with noassumptions. That is, all the branches terminate with an application or identity or 1R. A closed linear term t is said to be linearly typable if there exists some proof withconclusion ` t :A for some linear formula A.7.3.3 The typing rulesThe �rst system we will study is called seq, the rules for which are given in Ap-pendix D. This formulation is due mainly to Abramsky [1]. We have modi�edthe syntax used in the original presentation slightly, but the idea is the same: takethe rules for (intuitionistic) propositional linear logic and decorate them with lin-ear terms. In the system seq, cut-free derivations produce linear terms in normalform. Some derivations with cut correspond to linear terms in non-normal form, andcut-elimination steps transform the term, essentially performing beta-reduction andother linear reduction steps. Performing cut-elimination on an seq proof is analogousto reduction in the linear calculus, although the exact correspondence is somewhatcomplicated.The typing rules for the second system, called nat, are given in Appendix E. Themain di�erence between the two systems is that nat is more \term-driven", whileseq is more \type-driven". In Section ??, we show that nat is equivalent to seq forproving typing judgements. This is not surprising since nat is based on a Gentzen-style sequent calculus presentation of natural deduction for intuitionistic linear logic,while seq is based on a sequent calculus presentation of the same logic. The term\decorations" have been chosen in nat so that the provable sequents in these systemsare the same.In devising the nat rules from seq, we were guided by the correspondence between



CHAPTER 7. LINEAR ML�� 177All the let A be B in C constructs bind variables in A by pattern-matching Aagainst the result of evaluating B, and then evaluate C. For example, consider theterm let x� y be (1� ((�x:x)1)) in (x� y). First the subject term is evaluated(to 1 � 1), then x and y are bound (both to 1), and �nally (x � y) is evaluated (inthe extended context) producing a �nal result of (1� 1).The term store u is a reusable, or delayed version of u. The copy operationinserts multiple copies of a term store u, while discard completely eliminates astore u term. These copy and discard operations may be implemented by pointermanipulations (implementing sharing) or by explicit copying. The read constructforces evaluation of a store d term. The interaction between read and storeis the critical point where the linear calculus determines reduction order. In otherterminology, store is a wrapper or box which is only opened when the term mustbe read.The reduction rules for linear lambda calculus are given in Appendix C. A linearterm t reduces to a linear term s if t !! s can be inferred from the linear calculusevaluation rules. Abramsky has demonstrated determinacy for a more restrictedform of reduction relation in [1]. The reduction relation given in Appendix C onlyallows \nonlinear" reductions (involving the !WL, !DL, and !CL reduction rules) toapply at the \top level" of a term, in the empty context. However, the remaining\linear" reduction steps may be applied anywhere in a term. Thus reduction isneither a congruence with respect to all term formation rules, nor is it deterministic.With Mitschke's �-reduction theorem [12] this reduction system can be shown tobe conuent on untyped terms, even though not all untyped terms have a normalform. For typed terms, the usual cut-elimination procedure provides a proof of weaknormalization for this reduction system.7.3.2 Typing preliminariesWe review some standard de�nitions. A type multiset or type environment is a multisetof pairs xi :Ai of variables xi and linear logic formulasAi. A typing judgement is a typemultiset �, a single linear term t, and a single linear logic formulaA, separated by a `,constructed as follows: � ` t :A. A typing deduction is a tree, presented with the root



CHAPTER 7. LINEAR ML�� 176term ::= x variablej letcut x be t in u bind x to result of t in uj let x� y be t in u bind x to car, y to cdr of t in uj (t� u) eager pair (like cons in ML)j (t u) applicationj (�x:t) abstractionj inr(t) determines right branch of casej inl(t) determines left branch of casej case t of inl(x)) u; inr(y)) v evaluate t then branchj ht; ui lazy pairj let h ; xi be t in u bind x to cdr of lazy pairj let hx; i be t in u bind x to car of lazy pairj let 1 be t in u evaluate t to 1, then become uj store u store or delay uj discard t in u throw away tj read store x as t in u evaluate t, bind xj copy x@y as t in u binds x and y to tFigure 7.1: Grammar of the Linear Lambda Calculus7.3.1 Linear terms and reductionThe linear calculus may be considered a functional programming language with �ne-grained control over the use of data objects. To a �rst approximation, no functionmay refer to an argument twice without explicitly copying, nor ignore an argumentwithout explicitly discarding it. The reason we say, \to a �rst approximation" is thatthe notion of referring to an argument twice is somewhat subtle, especially in thepresence of additive type connectives. For example, a variable should appear \once"in both branches of a case statement, which is an additive operator. A more preciseunderstanding of the restrictions on use and discard may be gained from readingthe typing rules. In our presentation of the linear calculus, we have not restrictedreduction order completely (in contrast to [1], for example.) However, as pointed outin Section 7.2, the order of certain reductions must be determinate.Using x; y; z for term variables, and t; u; v for terms, the syntax of linear lambdaterms are summarized by the grammar given in Figure 7.1.



CHAPTER 7. LINEAR ML�� 175after a function application.7.3 The Linear CalculusWe describe the terms of linear lambda calculus in Section 7.3.1 and give three setsof typing rules. The �rst, seq, given in Appendix D, is the standard set of rulesgiven by applying the Curry-Howard isomorphism to Girard's sequent calculus proofsystem, restricted to intuitionistic linear logic. The second system, nat, given inAppendix E, is based on a Gentzen-style sequent calculus presentation of naturaldeduction for intuitionistic linear logic. The third system, nat2, is closely relatedto nat, di�ering only in the !SR and Subst rules. The di�erence between nat andnat2 lies in the point of view taken on whether the !SR rule is a \left" rule or\right" rule of the sequent calculus: it introduces a type constructor on the right, soit appears to be a \right" rule, while it depends on the form of the context, or leftside of a sequent, so it may also be a \left" rule. Traditionally, right rules of sequentcalculus and introduction rules of natural deduction systems are analogous, whileleft rules of sequent calculus correspond to a combination of elimination rules andsubstitution. Consequently, the translation of left rules into natural deduction shouldbe closed under substitution while the translation of right rules should be direct.Other researchers have independently formulated similar typing rules, althoughnone we know of incorporate a rule of the form of the !SR rule of nat. Lafont,Girard, Abramsky, and others have studied systems very similar to seq [35, 1]. Inrecent unpublished notes [2, 93] and an MS thesis [65], systems close to nat2 havebeen studied. Walder also discusses alternative rules for !SR and the implicationsof syntaxless Subst rule in the context of a nat-like system. We take this paralleldevelopment of ideas as evidence that these are natural formulations of type systemsbased on linear logic. We show that nat and seq give the same set of types toeach linear term in Section ??, while nat2 provides equivalence only up to a point.Technical theorems showing the \term-driven" nature of nat and nat2 and the\type-driven" nature of seq are proved in Section ??.



CHAPTER 7. LINEAR ML�� 174the outer term. In the �rst case neither r nor s are used at all. In the second casethey are both used, but the result is not.The �rst general conclusion that follows from this example is that not all termshave a most general type with respect to substitution. This is evident since we havetwo types for the example term such that neither is a substitution instance of theother, and it can be checked that no shorter type is derivable for this term. Moreover,the two types are disjoint in this system: we can �nd terms of each type that do nothave the other type.A second conclusion follows from comparing the informal operational readingsof each typing with the reduction rules of lambda calculus. In particular, considerthe type A��(C��!B)��C��A. We may understand the correctness of this type bysaying that we apply the second argument to the third and then discard the resultingdiscardable value. However, this informal reading assumes a particular reductionorder. By the usual reduction rules of lambda calculus, we may obtain a term� q: � r: � s: qin which the second and third arguments do not occur. Since this term does not havethe linear typeA��(C��!B)��C��A, the subject reduction property fails for this simpli�ed system.This is a serious problem, since we always expect types to be preserved by reduction.If types are not preserved by reduction, then reduction of well-typed terms may leadto terms that are not well-typed. Essentially, this means that static typing does notprevent run-time type errors.Intuitively, the failure of subject reduction seems to result from the contrast be-tween a careful accounting of resources in linear logic and the inherent ambiguity inreduction order in the � calculus. This implies that reduction order must be restrictedin some way. The most natural approach seems to be to introduce additional con-stants that indicate where the operations associated with ! types are performed. Thisrestricts the set of types in a way that makes type inference possible and also providesa convenient framework for restricting evaluation order. In particular, using explicitdiscard, we may say explicitly, inside a term, whether a discard happens before or



CHAPTER 7. LINEAR ML�� 173function of type A��B must use its argument of type A \exactly once" in producinga result of type B. However, if A is of the form !C, then the copy and discard rulesassociated with ! types allow us to de�ne functions that use their argument zero ormore times.All of the intuitive points we will consider may be illustrated using the the � term� q: � r: � s: (�x:q)(r s)The subterm (�x:q) must have a linear type of the form(�x:q) : (!B��A);since only arguments of ! type need not appear in the body of a function. Conse-quently, the application (r s) must have type !B. There are two possible types of rand s. One is that r is a non-discardable function that produces discardable output.That is, r : (C��!B), s : C. The other possibility is more subtle and requires moredetailed understanding of the type system. If r and s are both discardable resources,such as r :!(!C��B) and s :!C, then by the usual application rule we have rs : B.However, whenever we have an expression of type B such that all variables appearingin the term have a type beginning with !, the !SR rule allows use to conclude thatthe term has type !B. Using our concepts of linear and nonlinear memory, the !SRrule may be explained by saying that if we de�ne a value of type B by referring onlyto values in non-linear memory, the value we de�ne may reside in non-linear memory,and have type !B.From the discussion above, we can see that there are two types for the example�-term: A��!(!C��B)��!C��AA��(C��!B)��C��AAssociated with these types are two di�erent orders of evaluation. The �rst is thetype of the function that reduces the outermost application �rst; the application (r s)is thrown away before it is ever evaluated. The second type is the type of the functionthat �rst reduces the inner term (r s), to obtain a discardable value, and then reduces



CHAPTER 7. LINEAR ML�� 172syntax of linear lambda calculus and the typing rules. seq and nat are provedequivalent in Section 7.3, where we also prove complementary term subformula andtype subformula properties for the two proof systems. A type inference algorithmand proof of most general typing are given in Section ??, with the subject reductionproperty proved in Section ??. The remaining sections of this chapter discuss ourexecution model and tim-based implementation.7.2 Why explicit storage operations?In the pure lambda calculus (typed or untyped), there are no explicit store, read,copy, or discard primitives. The usual implementations of languages based onlambda calculus perform these operations as needed, according to one of several pos-sible strategies. In other words, these operations are implicit in the language butexplicit in the implementation. Since store, read, copy, and discard are explicitin the proof system of linear logic, we might attempt to insert these operations intolambda terms as part of inferring linear logic types. This was part of the program westarted to follow in collaboration with Scedrov in 1989, before discovering that thisseemed to require algorithms for deciding provability properties of propositional linearlogic; this led to the study of decision problems reported in [60]. In the remainder ofthis motivational section, we sketch two particular problems that arise, namely, thelack of a natural form of principal type and the failure of subject reduction theorem.The �rst, along with the undecidability results of [60], suggests that the process ofinferring types will be algorithmically tractable only if additional operations or typingconstraints are added to lambda calculus. The failure of subject reduction reinforcesthis conclusion by showing that additional operations are needed in the language todetermine the order of function application and discarding of data.In this section, we consider a type system derived from the nat rules, in AppendixE, by modifying each rule whose name begins with ! so that the term in the consequentis the same as the term in the antecedent. This has the e�ect of assigning ��; ! typesto pure lambda terms in a way that allows ! operations to be done implicitly atany point in the evaluation of terms. The main properties of this system are that a



CHAPTER 7. LINEAR ML�� 171system very close to nat with additional syntax embedded in the !SR rule. Theirsystem exhibbits a unique most general type property, and may have additional de-sirable properties [16]. Walder also discusses alternative rules for !SR. Since thesesystems are not equivalent to seq and nat, it seems an important research problemto evaluate the trade-o�s between the systems.In the �nal part of this chapter, we explore implementations of the linear lambdacalculus. One problem with Lafont's method of eliminating garbage collection is thatit requires a tremendous amount of duplication. Essentially, in comparison with astandard reference counting scheme, garbage collection is eliminated by making everydatum have reference count one. This is achieved by copying the datum wheneverwe would otherwise increment the reference count. A consequence is that there isa signi�cant increase in the amount of storage space required. We believe that inpractice, it is useful to consider the trade-o�s between copying and garbage collection.In particular, if a datum is large, then copying it even a small number of times may beprohibitive, and may outweigh the bene�t of suspending garbage collection. In orderto explore such trade-o�'s in a general setting, we have developed an implementationwith two forms of memory, called \linear" and \non-linear" memory. Within thisframework, we eliminate garbage collection in linear memory but retain traditionalgarbage collection techniques in non-linear memory. Similarly, we may perform arrayupdate in place on arrays in linear memory. Our implementation is based on anextension of the \three instruction machine" (tim) [27] with additional operationsof delay, force, copy, and discard to provide explicit control over evaluationorder and storage management, and arrays that are updated in linear memory. Theimplementation of our abstract machine is written in Common Lisp, with garbagecollection in non-linear memory handled by the Lisp garbage collector. This workis similar to that of Wakeling and Runciman [95], who study linear modi�cations tothe G-Machine [46], and suggest studying the spineless G-Machine, which is closelyrelated to the tim.In the following section, we describe the problems that arise in using linear logicformulas as types for pure lambda terms. This motivates the use of linear lambdacalculus with explicit copy and discard primitives. In Section 7.3, we present the



CHAPTER 7. LINEAR ML�� 170on to generalize this system into one incorporating quanti�ers and full linear logic,a move which enabled him to interpret linear types in terms of concurrent computa-tions. Recently Chirimar, Gunter, and Riecke [21] have implemented a version of thelinear calculus. In this chapter we restrict our attention to intuitionistic linear logic.One important property of type systems is subject reduction, which states that if aterm t has type A, then any term produced by any number of reduction (evaluation)steps still has type A. This is crucial if we wish to use types to statically determineexecution properties of terms. While it may be possible to prove subject reductionfor a type system based on sequent calculus rules, there is a signi�cant technicalobstacle. If we wish to reason about the e�ect of reduction, we need to understandthe connection between the syntactic form of a term and the set of possible types.However, with sequent calculus rules such as seq, a single term may have typingproofs of many di�erent forms. (This is because uses of Cut, which are essential fortyping terms not in normal form, are not reected in the syntax of terms.) To avoidthis problem, we formulate an equivalent set of natural deduction style typing rules,called nat. This system has the property that for each form of linear term, there isexactly one typing rule that may be used to give a type. Using the natural deductiontyping rules, subject reduction may be proved by traditional means. In addition, withsyntax-directed typing rules, it is possible to formulate a uni�cation-based algorithmthat determines the most general types of any linear lambda term.An interesting property of nat is that one essential rule, !SR, based on the modaloperator ! of linear logic, involves substitution into terms. Since a term may be writ-ten as the result of substitution in many di�erent ways, this rule gives us a system inwhich a term may have several di�erent principal linear types. Of course, since natis equivalent to seq, this is not an idiosyncrasy of our presentation, but a propertyshared by Abramsky's system seq that seems inherent to linear logic. If we sim-plify the !SR typing rule of nat, we obtain an inequivalent system, which we callnat2. If we restrict reduction to closed terms, then subject reduction holds for thissystem. However, the provable typing judgements are not closed under substitution.Essentially this system has been studied by [65], who proves the existence of uniquemost-general types. Benton, Bierman, de Paiva, and Hyland have recently studied a



Chapter 7Linear ML��In this chapter a declarative language is presented which is based on linear logicthrough a Curry-Howard style correspondence. Very similar languages have beenstudied in the past, but in this chapter we present a type-soundness (subject-reduction) theorem, and most general type theorem. Further, we present a novelimplementation technique based on a two-space memorymodel: in the \linear" spacethere is no need for garbage collection, and destructive update in place may occur,while in the \nonlinear" space, some form of dynamic memorymanagement is needed,and update in place is not always applicable. Finally, an implementation of linearml�� is presented which is based on the Three Instruction Machine (TIM).7.1 IntroductionHistorically, intuitionistic logic has been the basis for type systems, via the Curry-Howard isomorphism, or \formulas-as-types" principle [43]. Through this isomor-phism, intuitionistic proofs of propositions may be viewed as functional programs,and logical propositions may viewed as types. A similar use of linear logic has beeninitiated by Girard and Lafont, and Abramsky [35, 1]. In [35], a linear calculus wasdeveloped which e�ectively determines reduction order, while explicitly marking thepoints where contraction and weakening are used. Abramsky further de�ned a typeinference system, here called seq, which is discussed in Section 7.3.3. Abramsky went169



CHAPTER 6. LINEARIZING INTUITIONISTIC IMPLICATION 1686.8 Summary of ChapterIn this chapter the pspace-completeness of mall is exploited in order to achieve alogical embedding of propositional intuitionistic implication into imall. Essentially,the linear restriction of imall is satis�ed by translation through iil*, a logic withoutcontraction. Weakening can be encoded in imall with additive connectives andconstants, but contraction would pose a problem if not for this intermediate logic.Hudelmaier has recently made use of a very similar logic to demonstrate new boundson cut-elimination procedures for intuitionistic logic, Martini and Masini have recentlyinvestigated the translation of classical logic into linear logic using similar techniques,and there may be more interest in logics related to iil* [44, 68].



CHAPTER 6. LINEARIZING INTUITIONISTIC IMPLICATION 167Assuming that there was a proof of � ` F+[A], one simply cuts this against theproof of (A � x); F+[A] ` F+[x] guaranteed by Lemma 6.6.76, and thus obtains aproof of �; (A � x) ` F+[x].Assuming that there was a proof of � ` F�[A], one simply cuts this against theproof of (x � A); F�[A] ` F�[x] guaranteed by Lemma 6.6.77, and thus obtains aproof of �; (x � A) ` F�[x].For completeness, we state:Lemma 6.6.79 For any intuitionistic sequent � , �(�) is computable in polynomialtime and its size is linear in �.6.7 DiscussionThis embedding of the implicational fragment of propositional intuitionistic logicin the imall fragment of linear logic provides an alternative proof for the pspace-hardness of imall. More importantly, it provides insight into the use and eliminationof the structural rules from iil through the embedding of iil into iil*. The systemiil* is an interesting optimization of intuitionistic logic that could be useful in theoremproving and logic programming applications [72].A number of related questions remain open. An extension of our techniquesto all intuitionistic propositional connectives should be investigated. On the otherhand, it would be interesting to know whether there is an embedding of intuitionisticimplication in imall that preserves the structure of all cut-free proofs. It would alsobe interesting to investigate the connections between iil*, imall, and Hudelmaier'ssystems [44]. It is worth examining what transformations such as depth reductionmean at the level of proof terms given by the Curry-Howard isomorphism (discussedin Chapter 7, and whether there are some useful optimizations in the evaluation ofproof terms arising from such a study.



CHAPTER 6. LINEARIZING INTUITIONISTIC IMPLICATION 166Lemma 6.6.75 For any iil formula A, if a sequent involving a proposition pi isprovable in iil, then that sequent with pi replaced with A is also provable in iil.The main lemma regarding the soundness of depth reduction relies on the followingtwo lemmas, which are easily shown by simultaneous induction on the structure of F :Lemma 6.6.76 For all iil formulas A and B, all sequence �, and positive contextsF+[ ], the sequent �; A � B;F+[A] ` F+[B] is provable in iil.Lemma 6.6.77 For all iil formulas A and B, all sequence �, and negative contextsF�[ ], the sequent �; B � A;F�[A] ` F�[B] is provable in iil.The soundness of depth reduction follows:Lemma 6.6.78 A sequent � ` A is provable in iil if and only if �(� ` A) is provablein iil.Proof. The argument is by induction on the steps of transformation � applied to� ` A. Each of the individual transformations may be written in one of four forms:�; F�[A] ` B ) �; (A � x); F�[x] ` B�; F+[A] ` B ) �; (x � A); F+[x] ` B� ` F+[A] ) �; (A � x) ` F+[x]� ` F�[A] ) �; (x � A) ` F�[x]In the if direction, assuming we have a proof of the transformed sequent, we simplyapply lemma 6.6.75, and we have a proof of the desired sequent with the unpleasantaddition of the formula (A � A) in the context. Since ` (A � A) is provable we maycut against this to achieve the desired proof.In the only if direction, there are four cases, although they are all very similar.Assuming that there was a proof of �; F�[A] ` B, one simply cuts this againstthe proof of (A � x); F�[x] ` F�[A] guaranteed by Lemma 6.6.77, and thus obtainsa proof of �; (A � x); F�[x] ` B.Assuming that there was a proof of �; F+[A] ` B, one simply cuts this againstthe proof of (x � A); F+[x] ` F+[A] guaranteed by Lemma 6.6.76, and thus obtainsa proof of �; (x � A); F+[x] ` B.



CHAPTER 6. LINEARIZING INTUITIONISTIC IMPLICATION 165�; (A � B) � (C � D) ` Z ) x � (C � D);�; (A � B) � x ` Z�; pi � ((A � B) � C) ` Z ) (A � B) � x;�; pi � (x � C) ` Z�; pi � (A � (B � C)) ` Z ) x � (B � C);�; pi � (A � x) ` Z�; ((A � B) � C) � pi ` Z ) x � (A � B);�; (x � C) � pi ` Z�; (A � (B � C)) � pi ` Z ) (B � C) � x;�; (A � x) � pi ` Z� ` (A � B) � (C � D) ) (C � D) � x;� ` (A � B) � x� ` pi � (A � (B � C)) ) (B � C) � x;� ` pi � (A � x)� ` pi � ((A � B) � C)) ) x � (A � B);� ` pi � (x � C)� ` (A � (B � C)) � pi ) x � (B � C);� ` (A � x) � pi� ` ((A � B) � C)) � pi ) (A � B) � x;� ` (x � C) � piFigure 6.19: De�nition of �6.6.1 Depth Reduction in IILAn iil formula of depth one is either an atom p or has the form (pi � pj). A formulaof depth two is one of the form (pi � (pj � pk)), or the form ((pi � pj) � pk). Givena sequent � ` D, we de�ne �(� ` D) to be the result of repeatedly applying any ofthe the set of transformations given in Figure 6.19 until none of them apply.These transformations each reduce the depth of implications, at the expense ofbuilding a new implication (which is also shallower than the original). Thus thissequence of reductions always terminates. Notice that the only kinds of formulas leftafter the � transformation are of the form: pi; pi � pj ; pi � (pj � pk); or (pi � pj) �pk, where pi; pj ; and pk are atomic propositions. Although all the formulas appearingare very small, there may be many more of them. This technique goes back to [94],see also [76].We de�ne a positive contextual formula, written F+[C], to be a formula with aspeci�c occurrence of a subformula C identi�ed, which has positive polarity in theformula F . Similarly, a negative contextual formula, written F�[C], is one where thespeci�c occurrence of a subformula C has negative polarity in the formula F . Notethat the occurrence speci�ed is unique. That is, even if the formula C occurs multipletimes as a subformula of F , the occurrence indicated by F+[C] or F�[C] is unique.Proposition 6.2.56 readily yields:



CHAPTER 6. LINEARIZING INTUITIONISTIC IMPLICATION 164reasoning applies six times, leaving one with the proof displayed below:...[�1]�; [(B�C)]�; k ` [(A�B)]+[�1]�; [(B�C)]� ` k��[(A�B)]+��R[�1]� ` ([(B�C)]���(k��[(A�B)]+))��R ...[�2]�; k; b ` [D]+[�2]�; k
 b ` [D]+
L��L[�]�; ([(B�C)]���(k��[(A�B)]+))��(k 
 b) ` [D]+ ...[�]�; k; [C]�` [D]+[�]�; k
 [C]�` [D]+
L�L[�]�; (([(B�C)]���(k��[(A�B)]+))��(k 
 b))� (k 
 [C]�) ` [D]+Where [�1]� S[�2]� = [�]�. From this proof, by induction, we can generate a iil*proof of [�1]�; [(B � C)]�; k ` [(A � B)]+ By Proposition 6.3.65 we can generatea iil* proof of [�]�; [(B � C)]�; k ` [(A � B)]+. Then, using Left � 2 with thisproof and the translation (by induction) of the rightmost branch from the above proof�gure, we can construct an iil* proof of � ` C. The middle un�nished branch of theabove �gure is irrelevant to the translation, but happens to always be provable byLemma 6.4.69.6.6 E�ciency of TransformationFor any iil sequent � we have provided an equiprovable imall sequent �(�). Thisencoding into imall could be exponential in the size of �, but if � is of depth two orless, then �(�) is linear in the size of �. Below we give a depth-reduction procedurethat takes polynomial time and that produces a sequent �(�) of depth at most two,which is only linearly larger than �. The transformation �(�(�)) therefore provides anargument for the pspace-hardness of the decision problem for imall. The argumentfor membership of this problem in pspace is immediate and appears in [59].The transformation from iil* to imall is e�cient in another stronger manner. Itpreserves the structure of iil* proofs. The imall translation of an iil* proof is linearin the size of the given iil* proof. Note that our transformation from iil to iil* doesnot necessarily preserve the structure of cut-free proofs in iil due to the permutationsthat are needed to make copying redundant. Neither of our transformations preservesthe structure of proofs with cut.



CHAPTER 6. LINEARIZING INTUITIONISTIC IMPLICATION 163completed by one application of >R. Whatever its form, one may mimick this entireproof in iil* by an application of identity.This completes the analysis in the case that the last proof rule applied is righttensor. In the case that the last rule applied is left implication, there are two possibleforms this formula can take in any �-translation: k��(((k��[pi]+)��(k 
 b)) � (k 
[A]�)) and k��((([(B � C)]���(k��[(A � B)]+))��(k 
 b))� (k 
 [C]�)).The �rst possibility would imply that the assumed imall proof has the form givenin Figure 6.17. The imall proof must take this almost form, because if any partof [�]� were to be included in the left premise, identity would not apply, and in factthere could be no proof of that branch, as stated in Proposition 6.5.72. Also, becausethere is no k at top level in the right premise of the ��L rule, Proposition 6.5.73implies that reducing any formulas in [�]� could not lead to a proof. This reasoningapplies four times, leaving one with the proof displayed below:k ` kI ...[�1]�; k ` [pi]+[�1]� ` k��[pi]+��R ...[�2]�; b ` [C]+[�2]�; k 
 b ` [C]+
L��L[�]�; (k��[pi]+)��(k 
 b) ` [C]+ ...[�]�; k; [A]� ` [C]+[�]�; k 
 [A]� ` [C]+
L�L[�]�; ((k��[pi]+)��(k 
 b))� (k 
 [A]�) ` [C]+ ��L[�]�; k; k��(((k��[pi]+)��(k 
 b))� (k 
 [A]�)) ` [C]+Where [�1]�S[�2]� = [�]�. From this proof, by induction, we can generate a iil*proof of �1 ` pi. By Proposition 6.3.65 we can generate a iil* proof of � ` pi. Then,using Left � 1 with the proof of � ` pi and the translation (by induction) of therightmost branch from the above proof �gure, we can construct an iil* proof of � ` C.The middle un�nished branch of the above �gure is irrelevant to the translation, buthappens to always be provable by Lemma 6.4.69.The second possibility would imply that the assumed imall proof has almost thesame form as that in Figure 6.18. The imall proof must take this form, becauseif any part of [�]� were to be included in the left premise, identity would not apply,and in fact there could be no proof of that branch, as stated in Proposition 6.5.72.Also, because there is no k at top level in the right premise of the ��L rule, Proposi-tion 6.5.73 implies that reducing any formulas in [�]� could not lead to a proof. This



CHAPTER 6. LINEARIZING INTUITIONISTIC IMPLICATION 162that the last proof rule applied must be either ��L, 
R, or identity. However, evenidentity cannot apply, because k always appears on the left in any �-translation, andk never appears at top level on the right in such a translation. Thus there are onlytwo cases to consider, left implication, and right tensor.First, let us consider the case when
R is the last rule applied in a proof. There aretwo possible forms this formula can take in any �-tranlsation: k
([A]���(k��[B]+)),or k 
 ((pi � b)
>).The �rst possibility would imply that the assumed imall proof has the form givenin Figure 6.16. The imall proof must take this form, because if any part of [�]� wereto be included in the left premise, identity would not apply, and in fact there couldbe no proof of that branch, as stated in Proposition 6.5.72. Also, because there isno k at top level in the right premise of the 
R rule, Proposition 6.5.73 implies thatreducing any formulas in [�]� could not lead to a proof. This reasoning applies twice,leaving one with the proof displayed in Figure 6.16. This proof may be mimickedin iil*as simply the application of Right �, and the hypothesis, which is itself atranslation, may be mimicked by induction.The second possibility would imply that the assumed imall proof has the form:k ` kI ...[�]� ` pi � b ...[�]� ` > 
R[�]� ` (pi � b)
> 
R[�]�; k ` k 
 ((pi � b)
>)The imall proof must take this form, because if any part of [�]� were to be includedin the left premise, identity would not apply, and in fact there could be no proof ofthat branch, as stated in Proposition 6.5.72. Also, because there is no k at top levelin the right premise of the 
R rule, Proposition 6.5.73 implies that reducing anyformulas in [�]� could not lead to a proof. Thus for some � and � which togethermake up �, one has the above proof. Investigating the left un�nished branch, onesees by Proposition 6.5.73 that pi � b must be reduced. Furthermore, it can be seenthat this pi � b must be reduced to pi . Proposition 6.5.72 implies that [�]� � pi ,and thus [�]� � [�]�; [pi]�. On the other hand, the right un�nished branch could be



CHAPTER 6. LINEARIZING INTUITIONISTIC IMPLICATION 161A � p, or A��p for some formula A. If they are identically p, then the conclusioncontains the formula A � p or p � A for some A, and the result follows. Otherwise,because all subformulas present in the premises of �L are also subformulas of theconclusion, the result follows.If &L is the last rule applied, the induction hypothesis implies that the context ofthe premise is identically p, or contains a subformula of the form p&A, A&p, p �A,A�p, or A��p for some formula A. If it is identically p, then the conclusion containsthe formula A&p or p&A for some A, and the result follows. Otherwise, because allsubformulas present in the premise of &L are also subformulas of the conclusion, theresult follows.Proposition 6.5.73 If formula F is a proper subformula of an encoding [ ]� or [ ]+ ,respectively, and is not identically k, then F must be reduced below any other formulain any imall proof of [�]�; F ` [C]+ or [�]� ` F , respectively.Proof. The proof of this property is almost immediate from property 6.5.72, sinceour encoding functions [ ]� and [ ]+ have the requisite properties.Lemma 6.5.74 If there is a proof of �(� ` C) in imall, then there is a proof of� ` C in iil*.Proof. In order to prove Lemma 6.5.74, we perform cut-elimination on the givenimall proof, and then observe that the resulting proof must be of a very special form.In fact, an iil* proof can be directly read from any such proof. The action of the\locks and keys" encoded by the positive and negative occurrences of k in the imalltranslations forces any cut-free imall proof of a sequent to have a very speci�c form.Proposition 6.5.73 states this formally. It is exactly this sort of control over the shapeof a proof which one can encode in linear logic sequents, but which is impossibleto encode in intuitionistic and classical logic. The proof of this lemma proceeds byinduction on the size of cut-free imall proof.Given a cut-free imall proof of a sequent �(� ` C), one considers which imallproof rule was applied last. Because the proof is cut-free, the last rule cannot be cut.Investigating the forms of imall formulas that can appear in a �-translation, one sees



CHAPTER 6. LINEARIZING INTUITIONISTIC IMPLICATION 160...�; (B � C) ` (A � B) ...�; C ` D L � 2�; ((A � B) � C) ` D+k ` kI ...[�]�; [(B�C)]�; k ` [(A�B)]+[�]�; [(B�C)]� ` k��[(A�B)]+��R[�]�` ([(B�C)]���(k��[(A�B)]+))��R ...k; b ` [D]+k 
 b ` [D]+
L��L[�]�; ([(B � C)]���(k��[(A � B)]+))��(k 
 b) ` [D]+ ...[�]�; k; [C]�` [D]+[�]�; k 
 [C]�` [D]+
L�L[�]�; (([(B�C)]���(k��[(A�B)]+))��(k 
 b))� (k 
 [C]�) ` [D]+ ��L[�]�; k; k��((([(B � C)]���(k��[(A � B)]+))��(k 
 b))� (k 
 [C]�)) ` [D]+Figure 6.18: Case Left � 2.If identity is the last rule applied, then � � p.
R, ��R, �R, and &R do not apply because the right hand side is an atomicpropositional literal.The ?R,?L, and >R rules do not apply because the right hand side of the sequentis an atomic propositional literal.The 1L and 1R rules do not apply since � does not contain 1 as a subformula.If 
L is the last rule applied, � cannot be p, so the induction hypothesis impliesthat the premise contains a subformula of the form p&A, A&p, p�A, A�p, or A��pfor some formula A. Because all subformulas present in the premise of 
L are alsosubformulas of the conclusion, the result follows.If ��L is the last rule applied, the induction hypothesis implies that the contextof the right hand premise is identically p, or contains a subformula of the form p&A,A&p, p � A, A � p, or A��p for some formula A. If it is identically p, then theconclusion contains the formula A��p for some A, and the result follows. Otherwise,because all subformulas present in the premises of ��L are also subformulas of theconclusion, the result follows.If �L is the last rule applied, the induction hypothesis implies that the contexts ofboth premises are identically p, or contain a subformula of the form p&A, A&p, p�A,



CHAPTER 6. LINEARIZING INTUITIONISTIC IMPLICATION 159...� ` pi ...�; A ` C L � 1�; (pi � A) ` C+k ` kI ...[�]�; k ` [pi]+[�]� ` k��[pi]+��R ...k; b ` [C]+k 
 b ` [C]+
L��L[�]�; (k��[pi]+)��(k 
 b) ` [C]+ ...[�]�; k; [A]� ` [C]+[�]�; k 
 [A]� ` [C]+
L�L[�]�; ((k��[pi]+)��(k 
 b))� (k 
 [A]�) ` [C]+ ��L[�]�; k; k��(((k��[pi]+)��(k 
 b))� (k 
 [A]�)) ` [C]+Figure 6.17: Case Left � 1.implies that k; b ` [D]+ is provable, and by induction hypothesis there exists imallproofs of the other two branches.We now introduce two propositions that simplify the other direction of Theo-rem 6.1.55. These propositions are mild alterations of lemmas used to establish thepspace-completeness of imall [59]. The �rst proposition is only used to prove thesecond, and the second proposition formally states that in a cut-free imall proof, nolock can be opened before there is a key available at the top level.Proposition 6.5.72 For any atomic proposition p, and multiset � not containingthe constant 1 or the constant 0, if the sequent � ` p is provable in imall, then � isidentically p, or contains a positive subformula of the form p&A, A&p, p�A, A� p,or A��p for some formula A.Note that the clause about the constant 0 is not actually needed in our formulationof imall. However, this property could be of interest outside the scope of this paper,and thus we state it exactly for full intuitionistic two-sided multiplicative additivelinear logic.Proof. The argument is by induction on the size of the cut-free imall proof.For each inductive step, one considers case analysis on the rules of imall.



CHAPTER 6. LINEARIZING INTUITIONISTIC IMPLICATION 158...�; A ` B� ` (A � B)R �) k ` kI ...[�]�; [A]�; k ` [B]+[�]�; [A]� ` k��[B]+��R[�]� ` [A]���(k��[B]+)��R
R[�]�; k ` k 
 ([A]���(k��[B]+))Figure 6.16: Case Right �.6.5 Completeness of TranslationIn order to prove Theorem 6.1.55, we have to show that the translation is correct andfaithful, i.e., there exists a cut-free proof of � ` C in iil* if and only if there is acut-free proof of �(� ` C) in imall. This will be established in two lemmas below.Lemma 6.5.71 If there is a cut-free proof of � ` C in iil*, then there is a cut-freeproof of �(� ` C) in imall.Proof. One proceeds by induction on the depth of proof in iil*.In the case that the proof of � ` C is simply one application of identity, C isactually a proposition pi (identity is only applicable to atomic propositions in iil*),and therefore � must contain pi as an element. Thus one can use Lemma 6.4.70.In the case that the proof of � ` C ends in an application of the Right � ruleof iil*, then one may simply unlock the conclusion formula and then apply ��Rto the imall translation. Note that by de�nition, the translation of [A � B]+ isk 
 ([A]��� (k��[B]+)). This case is given in Figure 6.16, where the required imallproof of [�]�; [A]�; k ` [B]+ is given by the induction hypothesis.Suppose that the iil* proof of � ` C ends in an application of Left � 1. Then� = �; (pi � A). Consider the proof given in Figure 6.17. Lemma 6.4.69 implies thatk; b ` [C]+ is provable, and by induction hypothesis there exists imall proofs of theother two branches.In the �nal case, suppose that the proof of � ` C ends in an application of Left� 2. Consider the proof given in Figure 6.18. As in the previous case, Lemma 6.4.69



CHAPTER 6. LINEARIZING INTUITIONISTIC IMPLICATION 157k ` kI b ` bIb ` pi � b�R [�]� ` >>R
R[�]�; b ` (pi � b)
> 
R[�]�; k; b ` k 
 ((pi � b)
>)Figure 6.13: Case 1 of Lemma 6.4.69.k ` kI ...[�]�; [A]�; k; b ` [B]+[�]�; [A]�; b ` k��[B]+��R[�]�; b ` [A]���(k��[B]+)��R
R[�]�; k; b ` k 
 ([A]���(k��[B]+))Figure 6.14: Case 2 of Lemma 6.4.69.In the case that C = (A � B) is an implication, we know that B is of smallerdepth than C, and we can construct the proof as in Figure 6.14.Lemma 6.4.70 For any iil* multiset � and proposition pi, the sequent[�]�; [pi]�; k ` [pi]+ is provable in imall.Proof. The proof follows from expanding the de�nition of [pi]+, as seen in Fig-ure 6.15. k ` kI pi ` piIpi ` pi � b�R [�]� ` >>R
R[�]�; pi ` (pi � b)
> 
R[�]�; pi; k ` k 
 ((pi � b)
>)Figure 6.15: Proof of Lemma 6.4.70.



CHAPTER 6. LINEARIZING INTUITIONISTIC IMPLICATION 156...�0; (q � l) ` (p � q) ...�0; l ` r L � 2�0; ((p � q) � l) ` r+k ` kI ...[�0]�; [(q� l)]�; k ` [(p�q)]+[�0]�; [(q� l)]� ` k��[(p�q)]+��R[�0]� ` ([(q� l)]���(k��[(p�q)]+))��R ...k; b ` [r]+k 
 b ` [r]+
L��L[�0]�; ([(q � l)]���(k��[(p � q)]+))��(k 
 b) ` [r]+ ...[�0]�; k; [l]� ` [r]+[�0]�; k 
 [l]� ` [r]+
L�L[�0]�; (([(q � l)]���(k��[(p � q)]+))��(k 
 b))� (k
 [l]�) ` [r]+ ��L[�0]�; k; k��((([(q � l)]���(k��[(p � q)]+))��(k 
 b))� (k 
 [l]�)) ` [r]+Figure 6.12: iil* and imall proofs of example.is a choice to be made in the way we split the context �0 among the branches ofthe proof. However, because of the form of our translation, we can without loss ofgenerality choose to keep the entire context on the left branch. Lemma 6.4.69 impliesthat k; b ` [r]+, the upper right branch, is provable. Notice how [r]+ has been devisedto ensure this. And �nally, we see that after two applications of R � we are left withthe translation of the right hand branch of the iil* proof.In fact, the encoding is such that there are essentially no choices to be made in theproof of the imall translation that cannot be made in the proof of an iil* formula.For example, once a formula is unlocked with the \key" k, no other formula may beunlocked until the unlocked formula is reduced completely, at which point it providesanother key k. This method of \locks and keys" was introduced in [59]. In the nextsection we show that an iil* formula is provable in iil* if and only if its translationis provable in imall.Lemma 6.4.69 For any iil* multiset � and formula C, the sequent [�]�; k; b ` [C]+is provable in imall.Proof. The proof is by induction on the right-hand depth of C. If C = pi is aproposition, we can construct an imall proof as in Figure 6.13.



CHAPTER 6. LINEARIZING INTUITIONISTIC IMPLICATION 155[A � B]+ �= k 
 ([A]���(k��[B]+))[pi]+ �= k 
 ((pi � b)
>)[pi]� �= pi[pi � A]� �= k��(((k��[pi]+)��(k 
 b))� (k 
 [A]�))[(A � B) � C]� �= k��((([(B�C)]���(k��[(A�B)]+))��(k 
 b))� (k 
 [C]�))Figure 6.11: De�nition of translationde�nitions of [ ]+ and [ ]� given in Figure 6.11 can be seen to be well de�ned byinduction on the size of the formulas.For any iil* sequent � ` C we de�ne�(� ` C) �= [�]�; k ` [C]+Here [�]� stands for the result of the application of [ ]� to each element of �.Note that the \key" k is present in the context of the encoding of a sequent. Wehave chosen the notations [ ]+ and [ ]� to suggest the interpretation of positive andnegative polarity of occurrences.Let us �rst demonstrate how parts of the example iil* proof given in Figure 6.3 aretranslated into imall. Consider the sequent �0; (p � q) � l ` r, where �0 abbreviatesl � r; (q � r) � q. This sequent has the �-translation [�0]�; [(p � q) � l]�; k ` [r]+.By the above de�nition, [(p � q) � l]� = k��((([(q � l)]���(k��[(p � q)]+))��(k 
b)) � (k 
 [l]�)). In the example iil* proof given in Figure 6.3, the proof of thissequent ends in an application of the L � 2 rule.The intuitive structure of the proof in Figure 6.12 is as follows. The leftmostapplication of I and the bottommost application of ��L correspond to \unlocking"the formula of interest. The unlocked formula corresponding to (p � q) � l has � asits main connective. The proof tree therefore forks, and after a simple application of
L, the rightmost branch can be seen to be the translation of the rightmost branchof the iil* proof.The left main branch of the proof progresses by applying the ��L rule. Here there
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L �; A;B ` ��; (A
B) ` � � ` A � ` B�;� ` (A
B) 
R��L � ` A �; B ` ��;�; (A��B) ` � �; A ` B� ` (A��B) ��R�L �; A ` � �; B ` ��; (A�B) ` � � ` A � ` B� ` (A&B) &R&L1 �; A ` ��; (A&B) ` � � ` A� ` (A�B) �R1&L2 �; B ` ��; (A&B) ` � � ` B� ` (A�B) �R2?L ? ` � `� ` ? ?R1L � ` ��; 1 ` � ` 1 1R� ` > >RFigure 6.10: Rules for imall6.4 iil* to imallAn intuitionistic linear logic sequent is composed of two multisets of linear logicformulas separated by a ` , where there is no more than one formula in the consequent(i.e., right-hand side) multiset. We assume a set of propositional atoms pi to be given.Figure 6.10 gives the inference rules for the intuitionistic linear sequent calculus, withthe slight restriction that the 0 rule is omitted.2 This omission does not pose problemsfor cut elimination.We now de�ne a pair of mutually recursive translation functions that transformany iil* formula into an imall formula. k and b are fresh propositional letters. The2Our arguments also apply to the sequent calculus given on p. 53 of [35] without the 0 rule.



CHAPTER 6. LINEARIZING INTUITIONISTIC IMPLICATION 153weight (�; (D � E) � F ` C)� weight (�; E � F;D ` E)= m((D � E) � F; 1) +m(C; 1)�m(E � F; 1)�m(D; 1) �m(E; 1)= m(D; 3) + 2m(E; 2) + 2 +m(F; 1) + 1 +m(C; 1)�m(E; 2)�m(F; 1)� 1 �m(D; 1) �m(E; 1)> 0 Figure 6.9: Example calculation of weightis then �; p � B;B ` C. By Proposition 6.2.63, the sequent �; B ` C must alsohave an iil proof and since it is of smaller weight than �; p � B ` C, the inductionhypothesis can be applied to it yielding an iil* proof of �; B ` C. The required iil*proof of �; p � B ` C can be constructed using the L � 1 rule with the premises�; B ` C and � ` p.If the �nal inference in the given iil proof is L � applied to a principal formulaof the form (D � E) � F , then � has the form �; (D � E) � F , and we have iilproofs for the two premises �; (D � E) � F ` D � E and �; (D � E) � F;F ` C.Proposition 6.2.63 applied to the second premise yields an iil proof of �; F ` C towhich the induction hypothesis can be applied yielding an iil* proof of �; F ` C.Since in iil we can prove D; (E � F ) ` (D � E) � F and D; (D � E) ` E, wecan use the cut rule twice with the sequent �; (D � E) � F ` D � E to get an iilproof of �; E � F;D ` E. The di�erence in weight between this last sequent and theoriginal conclusion sequent �; (D � E) � F ` C is given in Figure 6.9.So the induction hypothesis yields an iil* proof of �; E � F;D ` E which byR � yields an iil* proof of �; E � F ` D � E. This last sequent with �; F ` Cyield an iil* proof of �; (D � E) � F ` C by the L � 2 rule of iil*.The lack of contraction in iil* makes this formulation of the sequent rules forimplicational intuitionistic propositional logic amenable to encoding into imall.



CHAPTER 6. LINEARIZING INTUITIONISTIC IMPLICATION 152weight(A1; : : : ; An ` C) = m(A1; 1) + : : :+m(An; 1) +m(C; 1)m(A � B; d) = m(A; d+ 1) + d � (m(B; d) + 1)m(p; d) = dFigure 6.8: De�nition of weightthe same size as �2. The backward inference with the subproofs �12 and �02 issmaller than � and we can therefore employ the induction hypothesis to eliminatethe backward inference from it. The resulting proof is therefore free of backwardinferences and has size no larger than �.The other possibility is that the principal formula is of the form q � B where qoccurs in �. In this case the inferences permute similarly, and the resulting proof maybe seen to be forward by induction, and the fact that q occurs in �.Lemma 6.3.68 Given a proof of � ` C in iil, a proof of � ` C can be constructedin iil*.Proof. By Lemma 6.3.67, we can restrict our attention to forward proofs. Weproceed by induction, not on the size of the given proof, but on weight(�) for asequent �, as de�ned in Figure 6.8. There are four cases according to the �nalinference in the given proof.It is easy to show by induction on the structure of A that if 0 < c < d, then0 < m(A; c) < m(A; d).If the given iil proof of � ` C is an axiom, then the proof is also an iil* proof.If the �nal inference in the given forward iil proof is R � applied to a conclusionof the form � ` A � B to generate the premise �; A ` B, then this premise is ofsmaller weight. We can therefore apply the induction hypothesis to the premise to getan iil* proof of �; A ` B from which the iil* proof of � ` A � B can be completedby the R � rule of iil*.If the �nal inference in the given forward iil rule is L � applied to a principalformula of the form p � B, then � has the form �; p � B and p must occur in �.Since p occurs in �, the sequent � ` p is an iil* axiom. The nontrivial premise



CHAPTER 6. LINEARIZING INTUITIONISTIC IMPLICATION 151�11 �12... ...�; p � A ` D � E �; p � A;F ` p L ��; p � A ` p �2...�; p � A;A ` C L ��; p � A ` Cbecomes�11...�; p � A ` D � E �12...�; p � A;F ` p �02...�; p � A;F;A ` C L ��; p � A;F ` C L ��; p � A ` CFigure 6.7: Permuting backward inferencesIf the �nal inference in � is not a backward inference, then we have the resultimmediately by induction.If the �nal step is a backward inference in �, then we use the induction hypothesisto eliminate the backward inferences in the subproofs of the premises. This transformsthe proof � to the form below, where the only backward inference is the �nal one.�1 �2... ...�; p � A ` p �; p � A;A ` C L ��; p � A ` CThe premise �; p � A ` p cannot be an axiom since p does not occur in �. The�nal inference in the proof �1 of �; p � A ` p must therefore be an L � inferencewhose principal formula is either of the form (D � E) � F or of the form q � Bwhere q occurs in �. In either case, these inferences can be permuted below the �nalinference in �, as in Figure 6.7.In Figure 6.7, the proof �02 is obtained from �2 by Proposition 6.2.62 but has



CHAPTER 6. LINEARIZING INTUITIONISTIC IMPLICATION 150�; pi ` piI�; A ` B� ` (A � B)R �� ` pi �; B ` CL � 1�; (pi � B) ` C�; (B � C) ` (A � B) �; C ` DL � 2�; ((A � B) � C) ` DFigure 6.6: Rules for iil*Lemma 6.3.66 Given a proof of � ` A in iil*, a proof of � ` A can be constructedin iil.Proof. By induction on iil* proofs using Propositions 6.3.65 and 6.2.64.The other direction of the equivalence of iil and iil* is somewhat more complicated.Our original argument involved depth reduction (see Section 6.6.1). Here we adaptan argument due to Dyckho� [26] by introducing Lemma 6.3.67 and modifying thede�nition of the weight of a sequent used to justify the induction in Lemma 6.3.68.Consider an L � inference in an iil proof with a principal antecedent formulaof the form p � A. Let � ` C be the conclusion sequent of the inference. Theinference is said to be backward if p does not occur in �. A forward proof is one withno backward inferences. These names are chosen to be reminiscent of forward andbackward chaining.Lemma 6.3.67 Any cut-free, contraction-free iil proof � of size n can be trans-formed to a cut-free, contraction-free forward proof � of size no more than n with thesame conclusion as �.Proof. The proof is by induction on the size of the cut-free, contraction-free proof�.



CHAPTER 6. LINEARIZING INTUITIONISTIC IMPLICATION 149Now applying Proposition 6.2.58 to the proof of the right hand hypothesis, weare able to obtain a proof of �; A � B;B ` C which is smaller than the originalproof, and thus by induction we may assume that A � B may be eliminated fromthe context, and we have a proof of �; B ` C of size no more than n.Proposition 6.2.64 For all iil formulas A;B;C the sequent (A � B) � C ` B � Cis provable in iil.Proof. By the following iil proof:(A � B) � C;B;A ` BI(A � B) � C;B ` (A � B)R � (A � B) � C;B;C ` CI L �(A � B) � C;B ` C(A � B) � C ` B � CR �6.3 iil and iil*We now introduce an interesting optimization of iil called iil*, and prove that cut-free, contraction-free iil proofs are easily transformed to proofs in iil*. The proofrules for iil* are given in Figure 6.6. Similar optimizations have been studied byothers [90, 79, 44, 26].Note that the identity rule is only applicable to atomic propositions, and thatweakening is only allowed at the leaves of a proof, i.e., at an application of identity.Most important, however, is the property that the principal formula is not duplicatedin the premises of any of the rules in iil*.Proposition 6.3.65 Given a proof of � ` B of size n in iil*, we can produce a proofof �; A ` B of size n in iil*.Proof. We simply add the iil* formula A to each sequent in the entire iil*derivation. That is, by case analysis on the rules in iil*, we see that adding aformula A to the context (left hand side) of the hypotheses and conclusions of all therules of iil* leaves us with a correctly formed iil* proof of �; A ` B.



CHAPTER 6. LINEARIZING INTUITIONISTIC IMPLICATION 148Proof. The argument here is a straightforward adaptation of the cut-eliminationproof for G3 that appears in [51].Proposition 6.2.61 Any proof of � ` A in iil can be transformed into a proof of� ` A in iil that does not employ the contraction or cut rules.Proof. By application of Proposition 6.2.60 and then Proposition 6.2.59. Notethat the latter lemma will never introduce cuts into a proof, and thus preserves thecut-free nature of proofs.Proposition 6.2.62 Given a proof of � ` B of size n in iil, we can produce a proofof �; A ` B of size n in iil.Proof. We simply add the iil formula A to each sequent in the entire iil derivation.That is, by case analysis on the rules in iil, we see that adding a formula A to thecontext (left hand side) of the hypotheses and conclusions of all the rules of iil leavesus with a correctly formed iil proof of �; A ` B. Note that the formula A that hasbeen weakened in, never occurs as the principal formula of any rule in the resultingproof.Proposition 6.2.63 Given a proof of �; A � B;B ` C of size n in iil, we can �nda proof of �; B ` C of size less than or equal to n in iil.Proof. We prove this property by induction on the size of iil proof. At each stepwe perform case analysis on the last rule applied.If the last rule is identity, which is restricted to atomic propositions, we may safelyremove the formula A � B from the context.If the last rule applied is R �, Cut, or Contraction, then by induction we haveour result.In the �nal case of L �, if some other implication in the context is analyzed, thenby induction we have our result. If A � B is the formula analyzed, then we know thederivation is of the form: ...�; A � B;B ` A ...�; A � B;B;B ` C L ��; A � B;B ` C



CHAPTER 6. LINEARIZING INTUITIONISTIC IMPLICATION 147then we may construct the following deduction:...�; (A1 � A2); A1 ` A1 ...�; (A1 � A2); A1; A2 ` A2 L ��; (A1 � A2); A1 ` A2�; (A1 � A2) ` (A1 � A2)R �The two remaining sequents in the above deduction are provable by induction.Proposition 6.2.57 For any sequent � ` A appearing in any iil proof of � ` B,the multiset � is a sub-multiset of �.Proof. By induction on the size of proofs followed by a straightforward case analysison the iil rules.This conservation of antecedent formulas in iil proofs provides the key to theelimination of contraction as shown by Propositions 6.2.58 and 6.2.59. The size of aproof is taken to be the number of inferences in it.Proposition 6.2.58 Given a proof of �; A;A ` B of size n in iil, we can produce aproof of �; A ` B of size n in iil.Proof. From Proposition 6.2.57, we know that �; A;A appears as a sub-multisetof each sequent in the given proof tree. By case analysis on the rules in iil, we seethat by replacing �; A;A with �; A everywhere in the derivation, we are left with acorrectly formed iil proof of �; A ` B.Proposition 6.2.59 Given a proof of � ` A of size n in iil, we can construct aproof of � ` A in iil of size no greater than n that does not employ the contractionrule.Proof. By induction on proof size. If the last rule in a derivation is contraction,then we simply apply proposition 6.2.58 to its premise to achieve a smaller proof ofthe desired sequent. In other cases we appeal to the induction hypothesis.Proposition 6.2.60 If there is a proof of � ` A in iil then there is a proof of � ` Ain iil that does not employ the cut rule.



CHAPTER 6. LINEARIZING INTUITIONISTIC IMPLICATION 146�; pi ` piI�; A ` B� ` (A � B)R ��; (A � B) ` A �; (A � B); B ` CL ��; (A � B) ` C�; A;A ` BContraction�; A ` B� ` C �; C ` BCut� ` BFigure 6.5: Rules for iilFrom the logic programming perspective given in [73], the main result of this paperaddresses the issue of replacing copying and reuse in intuitionistic proofs by sharing.We believe that our results, together with [41, 7], contribute to the understandingof the role of linear logic as an expressive and natural framework for describing thecontrol structure of logic programs.6.2 Properties of iilIn this section, we present a series of lemmas about iil that eventually establish theeliminability of cut and contraction, the admissibility of weakening, and the redun-dancy of copying in iil proofs.Proposition 6.2.56 shows that the rule of identity on atomic formulas can beextended to all formulas.Proposition 6.2.56 For all iil formulas A and iil sequents �, there exists a proofof �; A ` A in iil.Proof. We build the proof by induction on the structure of A. If A is an atomicproposition, the result is immediate. If A is an implication, that is A = A1 � A2,



CHAPTER 6. LINEARIZING INTUITIONISTIC IMPLICATION 145...�0; (q � l) ` (p � q) ...�0; l ` r L � 2�0; ((p � q) � l) ` r+...[�0]�; [(q � l)]� ` [(p � q)]+[�0]� ` [(q � l)]���[(p � q)]+��R ...b ` [r]+ ��L[�0]�; ([(q � l)]���[(p � q)]+)��b ` [r]+ ...[�0]�; [l]� ` [r]+ �L[�0]�; (([(q � l)]���[(p � q)]+)��b)� [l]� ` [r]+Figure 6.4: Toward imall translation of example.iil* along with the restriction on weakening make it possible to embed iil* in imall.This translation is asymmetric, i.e., positive occurrences of formulas in sequents aretreated di�erently from negative occurrences. The basic idea is that a left implicationrule of iil* is translated by a block in imall consisting of a ��L rule (which accountsfor the principal formula) followed by a �L rule (which accounts for the context).For instance, the translation [(p � q) � l]� will be basically (([(q � l)]���[(p �q)]+)��b)� [l]�. If �0 abbreviates l � r; (q � r) � q, the last step in the iil* proofdisplayed in Figure 6.3 will be translated basically as in Figure 6.4, where the middlebranch will be provable.The actual translation is more complicated; it also involves the \locks-and-keys"technique from [59] in order to ensure faithfulness. We defer the discussion of detailsuntil Section 6.4.In summary, we provide a transformation from iil sequents to imall sequents bytransforming iil proofs. Our main result is:Theorem 6.1.55 iil can be embedded into imall. The embedding preserves thestructure of cut-free proofs in iil*.iil proofs are transformed by eliminating any use of the cut and contraction rules,permuting the order of the inferences, and modifying the L � rule so as to eliminatethe need for copying. The resulting iil* proofs can then be embedded in imall.



CHAPTER 6. LINEARIZING INTUITIONISTIC IMPLICATION 144�; p; q; p ` qI�; p; q ` p � qR � �; p; q; l ` lI �; p; q; l; r ` rIL ��; p; q; l ` r L ��; p; q ` r�; p ` q � rR � �; p; q ` qI L ��; p ` q� ` p � qR � �; l ` lI �; l; r ` rI�; l ` r L �� ` rFigure 6.2: Modi�ed ProofA;B; p; q ` qI B; p; q; l ` lI B; p; q; l; r ` rIL � 1A;B; p; q; l ` r L � 1A;D;B; p; q ` rA;D;B; p ` q � rR � A;D; p; q ` qI L � 2A;D; (q � r) � q; p ` qA;D; (q � r) � q ` p � qR � C; l ` lI C; l; r ` rIL�1A;C; l ` r L�2� ` rFigure 6.3: \Linearized" Proof in iil* where A is l � r, B is r � q, C is (q � r) � q,D is q � l.The advantage of iil* is that there is no copying of principal formulas.1 An antecedentprincipal formula of the form (A � B) � C is replaced by the simpler formulaB � C in one of the premises of the L � 2 rule. Let A;B;C; and D label theformulas l � r, r � q, (q � r) � q, and q � l, respectively. With these new rules,the above proof can be transformed to an iil* proof as in Figure 6.3.The absence of contraction and the absence of copying of principal formulas in1Grigori Mints directed our attention to iil*. Observe that after depth-reduction (see Section 6)iil* provides a direct proof-theoretic explanation for the membership in pspace of the decisionproblem for propositional intuitionistic logic. Cut-free proofs in iil* have a height that is linear inthe number of connectives in the conclusion sequent. An alternating Turing machine can thereforegenerate and check the proof of a given sequent in a nondeterministic manner within polynomialtime.



CHAPTER 6. LINEARIZING INTUITIONISTIC IMPLICATION 143�; p; q; p ` qI�; p; q ` p � qR � �; p; q; l ` lIL ��; p; q ` l �; p; q; r ` rIL ��; p; q ` r�; p ` q � rR �...�; p ` q � r �; p; q ` qI L ��; p ` q� ` p � qR � �; l ` lI L �� ` l �; r ` rI L �� ` rFigure 6.1: Proof of � ` r in iil where � is l � r; (p � q) � l; (q � r) � qOne clear di�culty in translating that proof into imall is that the multiset �appears in every sequent in the proof. In imall, a formula can appear as the principalformula of at most one inference along any branch of the proof. In the above proof,the copying of the principal formula of an inference into the premises seems essential.The formulas (p � q) � l and l � r appear twice as principal formulas, and in bothcases, these duplicate occurrences are along the same branch of the proof. We candeal with the duplicate use of l � r by rearranging the above proof as in Figure 6.2.The next step is to deal with the copying of the formula (p � q) � l. For thispurpose, we modify the L � rule of iil to the following two rules:� ` p �; B ` CL � 1�; (p � B) ` C�; (B � C) ` (A � B) �; C ` DL � 2�; ((A � B) � C) ` DWe also discard the cut and contraction rules and call the resulting system iil*.



CHAPTER 6. LINEARIZING INTUITIONISTIC IMPLICATION 142A reduction is the process of applying a rule to a sequent matching the conclusion ofthe rule in order to generate the corresponding premises. The principal formula ofthe rule is then said to be reduced by the reduction. The occurrence of an instanceof a rule in a proof is said to be an inference. The proper subformulas of a principalformula of a rule that appear in the premises of the rule are called the side formulas.A proof is represented as a tree rooted at its conclusion sequent at the bottom andwith the leaves at the top. Given this orientation, the notion of a rule occuring aboveor below another rule should be clear.The main result of this paper is an e�cient embedding of the implicationalfragment of propositional intuitionistic logic (iil) in the intuitionistic fragment ofmultiplicative-additive linear logic (imall). We provide a transformation of an iilsequent � to an imall sequent � so that imall proves � exactly when iil proves �.The sequents � and � are then said to be equiprovable. The system iil is given by afairly standard sequent formulation of the intuitionistic implicational logic shown inFigure 6.5 in Section 2. These rules are similar to those of Kleene's G3 [51]. The targetsystem, imall, is shown in Figure 6.10 in Section 4. Note that the rules for negation,par, and the constant 0 are absent. Because the presentation is in terms of two sidedsequents, cut-elimination for imall holds despite these omissions. Cut-elimination isof course a crucial tool in many of our proofs.The main distinction between iil and imall is in their treatment of the structuralrules. iil has an explicit rule of contraction and the rule of weakening is implicitlybuilt into the I rule. Furthermore, the principal formula of an L � rule is copiedinto the premise sequents of each iil rule. imall, on the other hand, has neithercontraction nor weakening, and expressly forbids the copying of the principal formulaof any rule into a premise. What imall does allow is the sharing of the non-principalformulas between the two premises of an additive inference rule. The cut rule andthe contraction rule of iil can be shown to be eliminable. In order to further bridgethe gap between these two systems, it is important to establish control over the useof structural rules in iil proofs so that any copying of the principal formulas into thepremises is made inessential. Consider the iil proof of the sequent � ` r in Figure 6.1,where � denotes l � r; (p � q) � l; (q � r) � q.



CHAPTER 6. LINEARIZING INTUITIONISTIC IMPLICATION 141[41, 7]. Furthermore, our result addresses the issue of replacing copying and reuse bysharing as discussed below.A �rst indication that copying and reuse of hypotheses in intuitionistic logic mightbe replaceable by sharing is the contraction-free formulation of intuitionistic logic,given by the system G3 in Section 80 of [51] (see also the formulation of a purelyimplicational fragment considered in Section E6, Chapter 5 of [23]). A similar for-mulation is given in Section 2 below. We concentrate on the purely implicationalfragment, which su�ces because of the reduction discussed in [86]. However, a cen-tral role in our approach is played by a further reformulation of intuitionistic logicsuggested by the methods used in [90] and [79]. The corresponding calculus, pre-sented in Section 3 below, is the actual source calculus for our translation of cut-freeproofs into the \intuitionistic" version of multiplicative additive linear logic. Ourtranslation is exponential in the implication depth, but polynomial on formulas ofbounded implication depth. (In fact, it su�ces to consider only implications of depthat most 2, see, e.g., [76]. This depth reduction dates back to [94].) A preliminaryversion of this work was reported in [62].6.1 OverviewWe only consider propositional systems of intuitionistic and linear logic. We use thefollowing notations that are common to both the intuitionistic and linear formalisms:li; pi; qi; ri Propositional literalsA;B;C Arbitrary formulas�;� Arbitrary multisets of formulas� ` � Sequent with antecedent �and consequent �We entirely omit the linear negation operation of mall. Note that a sequent isrepresented in terms of two multisets, not sets, of formulas. For the intuitionisticsequent calculi, the consequent multiset is either a singleton or is empty. When wespeak of a formula in a sequent, we are really referring to an occurrence of the formula.



CHAPTER 6. LINEARIZING INTUITIONISTIC IMPLICATION 140corollary of the negative interpretation of classical logic in intuitionistic logic and theundecidability of classical �rst-order logic, both of which may be found,e.g., in [51]).Therefore it is impossible to have a desired embedding for �rst-order quanti�ers.Another, more subtle obstruction to obtaining a very \logical" embedding is thediscrepancy in complexity on the level of cut-elimination (proof normalization). Al-ready for the purely implicational fragment of propositional intuitionistic logic, cut-elimination is hyperexponential (the equivalent fact about normalization in the simpletyped lambda calculus is usually one of the �rst exercises in a graduate course in thesubject). In contrast, cut-elimination for mall is known to be much lower, at mostexponential. In fact, this is true not just in the propositional case, but also for�rst-order and for second-order mall. The required bounds are given by the SmallNormalization Theorem in [30]. Hence a translation that preserves normalization ofproofs with cut would have to be hyperexponential. (However, it may be possibleto use an optimized presentation of intuitionistic logic such as [44] to give a tripleexponential translation that preserves normalization of optimized proofs with cut.)These results do leave open the possibility of an e�cient syntactic translation ofpropositional intuitionistic logic into mall so that such a translation does preservecut-free proofs of a certain optimized form. In this chapter we construct such atranslation. Our translation is an instance of what Girard terms an \asymmetricalinterpretation," that is, positive occurrences of formulas are translated di�erentlyfrom negative occurrences [36]. It can therefore only be viewed as a translation oncut-free proofs, unlike Girard's symmetric translation of intuitionistic logic into linearlogic.In precise technical terms, the target of our translation is an \intuitionistic" ver-sion of mall, presented by two-sided sequents with at most one consequent formula.Similar \intuitionistic" versions of various fragment of linear logic are considered inrelationship to computer science, e.g., in [35, 53, 9, 28, 37, 1, 58].Apart from the foundational interest, we believe that the result of this chapter,which is theoretical in nature, contributes to the understanding of the role of linearlogic as an expressive and natural framework for describing control structure of logicprograms. This logic programming perspective is based on [73]; related work is in



Chapter 6Linearizing IntuitionisticImplicationIn this chapter we revisit the encoding of intuitionistic implication into linear logicpioneered by Girard [30]. In his original translation, which partially motivated thedevelopment of linear logic, Girard used the following:A) B ! !(A)��BThis encoding is quite beautiful, showing that intuitionistic implication is not nec-essarily an atomic primitive operation. Girard's embedding works at many levels ofproof theory: formulas, proofs, and cut-elimination steps. Furthermore, this embed-ding extends naturally to �rst-order and second-order logic [30].However, the complexity results of Chapter 5 raise the possibility of an improvedtranslation. Statman [86] has shown that propositional intuitionistic logic, as wellas its purely implicational fragment, is pspace-complete. Hence a natural questionarises whether (beyond an immediate Turing reduction) there exists a \logical" em-bedding of intuitionistic logic into linear logic that does not rely on the modalities.Let us be realistic. One cannot hope to have such an embedding which would betoo \logical", because on the one hand, �rst-order multiplicative additive linear logicis decidable (basically because of a linear bound on the depth of cut-free proofs). Onthe other hand, �rst-order intuitionistic logic is undecidable (this is an immediate139



CHAPTER 5. DECIDABLE FRAGMENTS OF LINEAR LOGIC 138the np-completeness of multiplicative linear logic, but sharpens the result to fragmentswithout propositions. The hardness proof relies on subtle aspects of 3-Partition, annp-complete problem. The other main result presented earlier in this chapter is thatmall is pspace complete, a point which is exploited in the following chapter.



CHAPTER 5. DECIDABLE FRAGMENTS OF LINEAR LOGIC 137Another type of simpli�cation can be achieved with other encodings of a 3-Partition problem. Consider the earlier encoding of 3-Partition in full multiplicativelinear logic: [(k��cS(A1))
 � � � 
 (k��cS(A3M ))
 (cB��j)M ]��(k3��j)MConstant-only encodings can be generated by replacing c by bottom, and k by khCifor some integer C. A value of C that is particularly interesting is C = Pa2A s(a).Although they are still polynomial, such encodings tend to be larger than the oneadvocated above, and result in somewhat less complicated proofs of soundness. Thecase of C = 1 is an incorrect encoding, and one may consider the \bottom only"encoding proved sound and complete above to be generated from the case C = 0.5.2.4 Constant-Only Multiplicative Linear Logic is NP-CompleteFrom the preceding, we immediately achieve our stated result.Theorem 5.2.53 (COMLL NP-COMPLETE) The decision problem forconstant-only multiplicative linear logic is np-complete.Also, with an easy conservativity result, we �nd that this np-Hardness proofsu�ces for multiplicative linear logic as well.Theorem 5.2.54 (Conservativity) Multiplicative linear logic is conservative overconstant-only multiplicative linear logic.Proof. By induction on cut-free mll proofs.5.3 Summary of ChapterIn this chapter we have considered decision problems for several fragments of linearlogic. Perhaps the highlight of this chapter is the np-completeness of the constant-onlyfragment of multiplicative linear logic. This result follows Kanovich's results [49] on



CHAPTER 5. DECIDABLE FRAGMENTS OF LINEAR LOGIC 136problem instances satisfying B=4 < s(a) < B=2. For B = 5, all elements must beequal to 2, and thus there are no possible solutions. For B = 8, all elements mustbe equal to 3, and thus there are also no possible solutions in this case. For B = 3,all allowable problem instances have all elements equal to 1, and thus this case issolvable in polynomial (constant) time (report \YES"). For B = 6, similarly, allelements have size 2, and the answer is trivially \YES". For B = 7, all elements havesize 2 or 3, and thus all partitions must be made up of two elements of size 2 and oneelement of size 3. The obvious counting algorithm thus solves this case in polynomialtime. Thus for all cases where B is less than or equal to 8 the 3-Partition problemis solvable in polynomial time, and thus 3-Partition remains np-complete with thefurther constraint that B > 8.One may also consider the following looser speci�cation of 3-Partition, which wewill call 3-Partition'.Instance: Set A0 of 3m elements, a bound B 0 2 Z+, and asize s(a0) 2 Z+ for each a0 2 A0Question: Can A0 be partitioned into m disjoint setsA01; A02; � � � ; A0m such that, for 1 � i � m,Pa02A0i s(a0) = B 0 such that each set contains ex-actly 3 elements from A0?3-Partition' does not have a priori restrictions on the sizes of elements, but insteadhas an explicit speci�cation that only partitions of three elements are allowed. Onecan immediately restrict s(a0) for all a0 2 A0 to be � B 0, for otherwise there is nosolution, since all sizes are nonnegative.From an instance of 3-Partition', one may generate an instance of 3-Partitionby adding B 0 + 1 to the size of each element of A0. The instance of 3-Partitionthen is asked with B = 4B 0 + 3, and the size of each element satis�es the conditionB=4 � s(a) � B=2, since B = 4B 0 + 3, s(a0) < B 0, and s(a) = s(a0) + B 0 + 1.By adding more than B 0 + 1 to the size each element, one can create instances of3-Partition where elements are as close to B=3 as desired. Thus one could avoid thecomplications involved in \reshu�ing" the groups of four and two elements above byrestricting the 3-Partition problem accordingly.



CHAPTER 5. DECIDABLE FRAGMENTS OF LINEAR LOGIC 135In the case that n = 3, we have P1�i�3 Si = B, and thus this sequent identi�es apartition of the original problem meeting the requirement that the sum equal B.Note that since there are exactly 3M elements, and Pa2A Sa = mB, there areexactly the same number of groups with four elements as there are groups with twoelements. Also note that if n = 2, we have by the above constraint that S1 + S2 =B � 1, and if n = 4, then S1 + S2 + S3 + S4 = B + 1.Further, we may analyze by cases to show that if there are any groups of four, thenB = 4C+3 for some integer C. If there are any groups of four, and B = 4C for someC, then the smallest allowable element is C + 1, since the size of each element muststrictly dominate B=4. However, taking four elements of size C + 1, the constraintS1 + S2 + S3 + S4 = B + 1 is violated. Similarly for B = 4C + 1 and B = 4C + 2.Thus if there is a group of four elements, then B = 4C + 3 for some C, and bysimple algebra, the elements of any group of four elements all have size C + 1, andthe elements of any group of two elements both have size 2C + 1. Noting that thereare exactly as many groups of two as groups of four, we may rearrange the elementsinto groups of three by taking two elements from the group of four and one elementfrom the group of two. Both resulting groups of three have total size 4C + 3, whichhappily is equal to B.Thus, given any proof of �(hA;M;B; Si), we �rst see that one may identifyM branches, each of which is of the form ` (1hS1i 
 ?); (1hS2i 
 ?); � � � ; (1hSni 
?); (?B P 1h3i). From these M branches, we may identify M partitions of three ele-ments of the associate 3-Partition problem, some partitions directly from branches ofthe proof, and some partitions from a simple \reshu�ing" of groups of four and twoelements. In other words, from any proof of the given sequent, one may construct asolution to the 3-partition problem.Additional Constraints On 3-PartitionThere are simplifying assumptions one can make about a 3-Partition problem whichwill alleviate the above minor di�culties mentioned above.One may consider only those instances of 3-Partition where B > 8. One mayshow this by cases. If B = 0, or B = 1, B = 2, or B = 4 there are no possible



CHAPTER 5. DECIDABLE FRAGMENTS OF LINEAR LOGIC 134�S�S(1hSii 
?) being equal to the conclusion:...` �;? ...` �; 1hSii` (1hS1i 
?); (1hS2i 
?); � � � ; (1hS3Mi 
?); (?BP 1h3i)M
RBut 1hSii which occurs in one hypothesis has measure> 2. Therefore, the formula withnegative measure, (?BP 1h3i)M , must occur in �. Now consider the other hypothesis,which must contain ?, and other formulas � from the conclusion sequent. If anyformulas of the form (1hSji 
?) are included in �, the measure of that hypothesis isgreater than 1. If no such formulas are included, then the sequent has measure 0. Ineither case, by Girard's condition that sequent is not provable. Thus the assumptionthat one of the (1hSji 
?) formulas is principal must be in error, and (?B P 1h3i)Mmust be principal.Thus if M > 1, the only possible next proof step is 
, with principal formula(?BP 1h3i)M . We may then focus on the case when M = 1. We claim that eachremaining branch in such a proof corresponds (more or less) to one solution partitionof the original partition problem. That is, we claim that when M = 1, we must beleft with a sequent of the form:` (1hS1i 
?); (1hS2i 
?); � � � ; (1hSni 
?); (?BP 1h3i)There are exactly n + B � 1 occurrences of 
 in this sequent, and P1�i�n Si + 3ones in this sequent. By Girard's condition, (P1�i�n Si + 3) � (n + B � 1) = 1, orequivalently P1�i�n Si = n+B � 3.If n = 0, we have 0 = B � 3, which is false by our assumption that B > 8.If n = 1, we have S1 = B � 2, but the sizes are bounded by B=2, and with theassumption that B > 8, there is a contradiction. Also, considering cases of n > 4, wehave P1�i�n Si = n+B � 3, and the assumptions that B > 8 and Si > B=4, thus wehave n(B=4) > n+B � 3, which implies that fracn � 3(n=4) � 1 > B and from thisand B > 8, we have n < 5. This leaves the n = 2, n = 3, and n = 4 cases.Thus we have a proof withM branches, each of which represents either two, three,or four elements.



CHAPTER 5. DECIDABLE FRAGMENTS OF LINEAR LOGIC 133CompletenessLemma 5.2.52 (Completeness) For A, M , B, and S satisfying the constraintsof 3-Partition, if there is a proof of the comll formula �(hA;M;B; Si), then the3-Partition problem hA;M;B; Si is solvable.Proof.To simplify this direction of the proof, we use the extra assumption that the \binsize" B is greater than 8. For a justi�cation of this assumption, see Section 5.2.3.The following makes heavy use of Girard's condition on comll.Assuming we have a proof of` (1hS1i 
?)P (1hS2i 
?)P � � � P (1hS3Mi 
?)P (?B P 1h3i)Mwe show that the corresponding 3-Partition problem is solvable.If there is a proof of this sequent, then there is a cut-free proof, by the cutelimination theorem (Theorem 2.3.4). By repeated applications of Property 2.6.7,if there is a proof of this sequent, then there is a proof of ` (1hS1i 
 ?); (1hS2i 
?); � � � ; (1hS3Mi 
?); (?B P 1h3i)MWe then perform complete induction on M .If M > 1, the proof of this sequent must end in 
, since all formulas have mainconnective 
. We next show that the principal formula of that rule application mustbe (?B P 1h3i)M .First, we note that each formula (1hSji 
 ?) has measure Sj � 1. Since we areassuming B > 8, the initial conditions of the 3-Partition problem ensure that for allj, Sj > 2, and therefore Sj � 1 > 1. There is only one formula, (?BP 1h3i)M , withnegative measure.If we assume that one of the (1hSii 
?) formulas is principal in an application of
, by Girard's condition, each hypothesis sequent must have measure one. In thiscase we have the following supposed proof for some � and � with the multiset union



CHAPTER 5. DECIDABLE FRAGMENTS OF LINEAR LOGIC 132We will use the last form of this formula, since it contains no implicit negations(linear implication). One may see this formula satis�es Girard's measure condition ifthere are 3 �M elements, and the sum of the sizes equals M �B, side conditions onthe statement of 3-Partition (Garey+Johnson).The claim is that these formulas are provable in the multiplicative fragment oflinear logic if and only if the 3-Partition problem is solvable.SoundnessLemma 5.2.51 (Soundness) If a 3-Partition problem hA;M;B; Si is solvable, thenwe are able to �nd a proof of the comll formula �(hA;M;B; Si).Proof.The proof is straightforward. For each group of three elements in the assumedsolution to the 3-Partition problem, one forms the following subproof, assuming theelements of the group are numbered x, y, and z....` 1hSxi; 1hSyi; 1hSzi;?B ` 11` 1;?? 
` (1hSxi 
?); 1hSyi; 1hSzi; 1;?B ` 11` 1;?? 
` (1hSxi 
?); (1hSyi 
?); 1hSzi; 1; 1;?B ` 11` 1;?? 
` (1hSxi 
?); (1hSyi 
?); (1hSzi 
?); 1; 1; 1;?B P` (1hSxi 
?); (1hSyi 
?); (1hSzi 
?); 1h2i; 1;?B P` (1hSxi 
?); (1hSyi 
?); (1hSzi 
?); 1h3i;?B` (1hSxi 
?); (1hSyi 
?); (1hSzi 
?); (1h3iP?B)PThe elided proof of ` 1hSxi; 1hSyi; 1hSzi;?B is guaranteed to exist by the conditionson the solution to 3-Partition. That is, since x, y, and z are from the same partition,the sum of Sx, Sy, and Sz must be equal to B.Given the M proofs constructed as above from each of the M groups of elements,one combines them with 
 into a proof of` (1hS1i 
?); � � � ; (1hS3Mi 
?); (13P?B)MThe proof can then be completed with 3M applications of P .



CHAPTER 5. DECIDABLE FRAGMENTS OF LINEAR LOGIC 131however, since the complexity of most larger linear logics have already been completelycharacterized [60].EncodingWe recall the de�nition of 3-Partition:(as stated in Garey+Johnson page 224)Instance: Set A of 3m elements, a bound B 2 Z+, and asize s(a) 2 Z+ for each a 2 A such that B=4 <s(a) < B=2 and such that Pa2A s(a) = mBQuestion: Can A be partitioned into m disjoint setsA1; A2; � � � ; Am such that, for 1 � i � m,Pa2Ai s(a) = B (note that each Ai must there-fore contain exactly 3 elements from A)?Reference: [Garey+Johnson, 1975].Comment: NP-complete in the strong sense.We will write S1 for S(a1) to improve readability of the following discussion.Given an instance of 3-Partition equipped with a set A = fa1; � � � ; a3Mg, an integerB, and a unary function S, presented as a tuple hA;M;B; Si, we de�ne the encodingfunction � as �(hA;M;B; Si) =[(?��?S1)
 � � � 
 (?��?S3M )]��(?3��?B)MNotation: xY = Y copiesz }| {x
 x
 � � � 
 x
 x xhY i = Y copiesz }| {xPxP � � � PxPxUsing the contrapositive (A��B � B?��A?), we can develop a \1 only"encoding: [(1hS1i��1) 
 (1hS2i��1)
 � � � 
 (1hS3Mi��1)]��(1hBi��1h3i)MEliminating the linear implication in favor of P these formulas become:(1hS1i 
?)P (1hS2i 
?)P � � � P (1hS3Mi 
?)P (?B P 1h3i)M



CHAPTER 5. DECIDABLE FRAGMENTS OF LINEAR LOGIC 1305.2.3 Constant-Only CaseSome time ago, Girard developed a necessary condition for the provability of constantmultiplicative linear expressions:M(1) = 1M(?) = 0M(A P B) = M(A) +M(B)M(A 
 B) = M(A) +M(B)� 1If a formula A is provable in multiplicative linear logic and contains no propositions,then M(A) = 1. In other words, the number of tensors is one less than the number ofones in any provable constant only MLL (comll) formula. Avron (and others) havestudied generalizations of this \semantic" measure to include propositions (where aproposition p is given value 1, and p? is given value 0) yielding a necessary conditionfor mll provability. One may go even further, achieving a necessary condition formall provability, using min for & and max for �, and plus and minus in�nity forthe additive constants. For the latter case, the condition becomes if a formula Ais provable in mall, then M(A) � 1. Also, one may generalize these conditionssomewhat, replacing all instances of 1 with any arbitrary constant c, and allowingpropositions to have di�erent (although �xed) values, where p has value vp, and p?has value c� vp [11].Although the above condition is necessary, there has been a question as to whethersome form of simple \truth table" or numerical evaluation function like the abovecould yield a necessary and su�cient condition for provability of constant multi-plicative (comll) expressions. The main result of this paper shows that even thismultiplicative constant evaluation or circuit evaluation problem is np-complete.We will encode an np-complete problem, 3-Partition, in mll, and show that ourencoding is sound and complete. The main idea is that the small-proof property ofmll allows us to encode \resource distribution" problems naturally. Since linear logictreats propositions as resources natively, it has been called \resource-consciousness"[13]. Note that since full linear logic is conservative over mll, our encoding remainssound and complete even in larger fragments. This does not lead to new results,



CHAPTER 5. DECIDABLE FRAGMENTS OF LINEAR LOGIC 129balancing argument on c's, the sum Sx + Sy + Sz = B, as required by 3-Partition.Thus we have shown that each branch of the proof where M = 1 corresponds exactlyto one partition containing three elements whose sum of weights is B.Thus by complete induction on M , one can show that from any proof of the givensequent, one can construct a solution to the 3-Partition problem.SoundnessIf the given 3-Partition problem hA;M;B; Si is solvable, then we are able to �nd aproof of the mll formula [hA;M;B; Si].The proof is straightforward. For each group of three elements in the assumedsolution to the 3-Partition problem, one forms the following subproof, assuming theelements of the group are numbered x, y, and z....cSx; cSy; cSz ` cB k ` kI��L(k��cSx); cSy; cSz; k ` cB k ` kI��L(k��cSx); (k��cSy); cSz; k; k ` cB k ` kI��L(k��cSx); (k��cSy); (k��cSz); k; k; k ` cB
L(k��cSx); (k��cSy); (k��cSz); k2; k ` cB
L(k��cSx); (k��cSy); (k��cSz); k3 ` cB(k��cSx); (k��cSy); (k��cSz) ` (k3��cB)��RThe elided proof of cSx; cSy; cSz ` cB is guaranteed to exist by the conditions on thesolution to 3-Partition, and consists entirely of 
R and I rules.Given the M proofs constructed as above from each of the M groups of elements,one combines them with 
R into a proof of(k��cS1); � � � ; (k��cS3M ) ` (k3��cB)MThe proof can then be completed with 3M �1 applications of 
L, and ends with oneapplication of ��R.



CHAPTER 5. DECIDABLE FRAGMENTS OF LINEAR LOGIC 128Informally, every 
R proof step applied to a formula (k3��cB)M corresponds todividing a group of elements.Formally, we now consider in detail the part of the above proof:...(k��cS1); � � � ; (k��cS3M ) ` (k3��cB)MWe now perform complete induction on M .We show that if M 6= 1, the only possible next proof step is 
R. If any otherproof rule is applied to this sequent, one or both of the hypotheses will be unbalanced,and therefore unprovable. We show this by cases. The only formulas which may beprincipal in a rule other than 
R are of the form k��cSi. If the ��L rule is applied,we have the following supposed proof for some � and � with the multiset union�S�S(k��cSi) being equal to the left hand side of the conclusion:...� ` k ...�; cSi ` (k3��cB)M(k��cS1); � � � ; (k��cS3M ) ` (k3��cB)M��LHowever, given that � is made up of formulas from the conclusion, � ` k cannot bebalanced. The formula k has positive polarity, and the only formulas which containk with negative polarity occur in (k3��cB)M . Thus if M 6= 1, the only possible nextproof step is 
R.We may then focus on the case when M = 1. We claim that each remainingbranch in such a proof corresponds exactly to one solution partition of the originalpartition problem. That is, we claim that when M = 1, we must be left with asequent of the form: (k��cSx); (k��cSy); (k��cSz) ` (k3��cB)Where Sx + Sy + Sz = B. That is, exactly three formulas of the form k��cSx inthe antecedent, consequent k3��cB, and the sum of the weights is equal to B, asrequired by 3-Partition. To show this, note that we know the consequent is k3��cB.By counting k's, there must be exactly three formulas of the form k��cSx. By another



CHAPTER 5. DECIDABLE FRAGMENTS OF LINEAR LOGIC 127We will write S1 for S(a1) to improve readability of the following discussion.EncodingGiven an instance of 3-Partition equipped with a set A = fa1; � � � ; a3Mg, an integerB, and a unary function S, presented as a tuple hA;M;B; Si, we de�ne the encodingfunction � as �(hA;M;B; Si) =[(k��cS1)
 � � � 
 (k��cS3M )]��(k3��cB)MReminder of notation: k, c propositions, xY = Y copiesz }| {x
 x
 � � � 
 x
 xThe claim is that this formula is provable in the multiplicative fragment of linearlogic if and only if the 3-Partition problem is solvable.CompletenessThis is the more di�cult direction of the proof, and requires that we show that if thereis a proof of the linear logic formula �(hA;M;B; Si), then the 3-Partition problemhA;M;B; Si has a solution. We make critical use of the proofs-are-balanced propertyof mll, and use two simple permutability properties of linear logic:� 
L permutes down (except if principle)� ��R permutes down (except if principle)If there is a proof of �(hA;M;B; Si), then there is a cut-free proof, by the cut-elimination theorem 2.3.4. Given a cut-free proof, we �rst permute all applicationsof 
L and ��R down as far as they will go. We are then left with some proof of theform: ...(k��cS1); � � � ; (k��cS3m) ` (k3��cB)M
L...(k��cS1)
 � � � 
 (k��cS3M ) ` (k3��cB)M
L` (k��cS1) 
 � � � 
 (k��cS3m)��(k3��cB)M��R



CHAPTER 5. DECIDABLE FRAGMENTS OF LINEAR LOGIC 126Proof. We proceed by induction on the depth of assumed proof. In the basecase, all axioms are balanced, as are the axioms for the multiplicative constants.Inductively, by case analysis, we �nd that if all hypotheses of an imll or cmllinference rule are balanced, then the conclusion must also be balanced.Note that this property fails for other fragments of linear logic such as imallwhich include the additive connectives and constants: & , �, >, and 0, and also failsto hold in the presence of exponential connectives ! and ?.Also note that this property follows immediately from Girard's proof net condi-tions on mll formulas. Axiom links in a proof net must connect each propositionwith exactly one proposition of opposite polarity, and thus all provable conclusionsmust be balanced.We will encode an np-complete problem, 3-Partition, in mll, and show that ourencoding is sound and complete. The main idea is that the small-proof property ofmll allows us to encode \resource distribution" problems naturally. Since linear logictreats propositions as resources natively, it has been called \resource-consciousness"[13]. Note that since full linear logic is conservative over mll, our encoding remainssound and complete even in larger fragments. This does not lead to new results,however, since the complexity of most larger linear logics have already been completelycharacterized [60].3-PartitionWe use the np-completeness of 3-Partition:(as stated in Garey+Johnson page 224)Instance: Set A of 3m elements, a bound B 2 Z+, and a size s(a) 2 Z+ for eacha 2 A such that B=4 < s(a) < B=2 and such that Pa2A s(a) = mBQuestion: Can A be partitioned into m disjoint sets A1; A2; � � � ; Am such that, for1 � i � m, Pa2Ai s(a) = B (note that each Ai must therefore containexactly 3 elements from A)?Reference: [Garey+Johnson, 1975].Comment: NP-complete in the strong sense.



CHAPTER 5. DECIDABLE FRAGMENTS OF LINEAR LOGIC 1255.2.2 imll is np-HardIn this section we analyze the inherent di�culty of deciding imll sequents. We showthat one can encode a 3-Partition problem in imll using unary notation. Since 3-Partition is np-complete in the strong sense, we thus have the result that imll isnp-hard. We show that our encoding is correct by relying on a property of imll(which also holds of cmll) which greatly restricts the space of possible imll prooftrees. This \balanced" property is related to the tremendously useful \lock and key"mechanism used in [60, 62] for mall and imall.We begin with a few de�nitions. We recall the de�nition of polarity of a formulafrom Section 2.5 [A��B]+ = [A]���[B]+[A
B]+ = [A]+ 
 [B]+[�; A]+ = [�]+; [A]+[A?]+ = ([A]�)?[A��B]� = [A]+��[B]�[A
B]� = [A]� 
 [B]�[�; A]� = [�]�; [A]�[A?]� = ([A]+)?The polarity of an instance of a formula A in a sequent � ` � is given by the sign ofthe superscript on A in [�]� or [�]+. That is, if an instance of formula A ends up as[A]+, then it is of positive polarity. If an instance of formula A ends up as [A]�, thenit is of negative polarity.We de�ne a sequent to be balanced if the number of occurrences of pi with positivepolarity and negative polarity are equal. Otherwise, we say a sequent is unbalanced.We show that all provable imll and cmll sequents are balanced, and therefore allunbalanced sequents are not provable. This property was previously discussed in [47,11], and many other places.Proposition 5.2.50 (proofs are balanced) An imll or cmll sequent is provableonly if it is balanced.



CHAPTER 5. DECIDABLE FRAGMENTS OF LINEAR LOGIC 1245.2 Multiplicative Linear Logic is NP-CompleteIn this section it is shown that the decision problem for propositional multiplicativelinear logic is np-complete. An argument for the np-hardness of this fragment was�rst sketched by Max Kanovich in electronic mail [48]. Together with the earlierresult [60] that the multiplicatives are in np, Kanovich's result showed that thisdecision problem is np-complete. Kanovich later updated his argument to show thatthe \Horn fragment" of the multiplicatives is also np-complete [47, 49], using a novelcomputational interpretation of this fragment of linear logic. This section continuesthis trend by providing a proof that evaluating expressions in and, or, true, andfalse in multiplicative linear logic is np-complete. That is, even without propositions,multiplicative linear logic is np-complete.This section begins with a proof that intuitionistic and classical Multiplicative Lin-ear Logic are in np. Then it is shown that imll is np-hard. Then it is demonstratedthat the multiplicative circuit evaluation problem is np-complete.5.2.1 imll and cmll Are In npInformally, the argument showing membership in np is simply that every connectivein a multiplicative linear logic formula is analyzed exactly once in any cut-free proof.Thus an entire proof, if one exists, can be guessed and checked in nondeterministicpolynomial time.Theorem 5.2.49 (Small-Proofs) Every connective is analyzed exactly once in anycut-free cmll or imll proof.From Theorem 2.3.4 and Theorem 5.2.49, we know that given a cmll or imllsequent of size n, if there is any proof of this sequent, then there is a proof withexactly n total applications of inference rules. Since each application of an inferencerule may be represented in space linear in n, we may simply guess and check an entiren2 representation of a proof tree in nondeterministic polynomial time.



CHAPTER 5. DECIDABLE FRAGMENTS OF LINEAR LOGIC 1235.1.7 imall is pspace-CompleteWith two-sided sequents, the intuitionistic fragment of mall constrains the right-hand side of the sequent to contain at most one formula. A two-sided reformulationof the above proof could be carried out entirely within the intuitionistic fragment ofmall, showing that intuitionistic mall is also pspace-complete.Corollary 5.1.48 imall provability is pspace-complete.



CHAPTER 5. DECIDABLE FRAGMENTS OF LINEAR LOGIC 122...` hIi; xm; qm�1; [[Qm�1Xm�1 : : : Q0X0 : M ]]g; g` hIi; (xmP qm�1); [[Qm�1Xm�1 : : : Q0X0 : M ]]g; gP` hIi; ((xmP qm�1)� (x?mP qm�1)); [[Qm�1Xm�1 : : :Q0X0 :M ]]g; g�Then by the induction hypothesis applied to the proof of the sequent` hIi; xm; qm�1; [[Qm�1Xm�1 : : : Q0X0 : M ]]g; gwe get I;:Xm j= Qm�1Xm�1 : : :Q0X0 :M , and hence I j= 9XmQm�1Xm�1 : : :Q0X0 :M .The argument is similar when the right � reduction is applied in the given cut-freeproof.The proof when Qm � 8 is also similar.When m = n in Lemma 5.1.46, it follows that a closed QBF G is valid i� �(G)is provable in mall. Since � is a log-space encoding of a given QBF, the �nal resultbelow follows immediately from Theorems 5.1.46 and 5.1.37.Theorem 5.1.47 mall provability is pspace-complete.



CHAPTER 5. DECIDABLE FRAGMENTS OF LINEAR LOGIC 121compound formulas in the conclusion sequent ` qm; hIi; [[QmXm : : :Q1X1 : M ]]g; g.From the mall rules, it is clear that the only applicable reduction in a cut-free proofsearch would be an application of the 
-rule. Hence for some k, we can partitionthe formulas other than q?k 
 Ak in the conclusion sequent into � and � to get adeduction of the conclusion sequent of the following form....` �; q?k ...` Ak;� 
` �; (q?k 
Ak);�Suppose for the sake of deriving a contradiction that k < m. Recall that thereare no constants in the encoding. The formula q?k+1
Ak+1 must either occur in � or�, and de�nitely not in both. Since the only occurrences of qk are within Ak+1, byLemma 5.1.45, if q?k+1
Ak+1 occurs in �, then we cannot complete the proof ` qk;�.Thus we assume q?k+1 
Ak+1 occurs in �. It is easy to see by inspection of the formof Ak+1 that the only occurrences of qk in Ak+1 have the form qk � B or the formB � qk, where � is either �, &, or 
. Therefore, again by Lemma 5.1.45, ` q?k ;� isnot provable.Thus it follows that k 6< m.When k = m, we can apply Lemma 5.1.45 to infer that � � qm, since otherwise,� would not contain any occurrences of qm as immediate arguments to 
, & or �. IfQm � 9, this yields the deduction` qm; q?mI ...` hIi; ((xmP qm�1)� (x?mP qm�1)); [[Qm�1Xm�1 : : :Q0X0 :M ]]g; g 
` hIi; qm; (q?m 
 ((xmP qm�1)� (x?mP qm�1)); [[Qm�1Xm�1 : : : Q0X0 : M ]]g; gFor the same reason as before, the remaining subgoal cannot be reduced by applyingthe 
-rule to a formula q?i 
Ai since all of the occurrences of qi remain as immediatearguments to P . The only possible reduction then is to \unwind" the quanti�erencoding for QmXm as in the (() direction of the proof until qm�1 is introduced asa sequent formula. If the left � reduction is applied in the given cut-free proof, wehave



CHAPTER 5. DECIDABLE FRAGMENTS OF LINEAR LOGIC 120` qm; q?mI ...` hIi; x?m; qm�1; [[G]]g; g` hIi; ((xmP qm�1) � (x?mP qm�1)); [[G]]g; g�
` hIi; qm; (q?m 
 ((xmP qm�1)� (x?mP qm�1))); [[G]]g; gSince hI;Xmi = hIi; x?m, the induction hypothesis can be applied to show that theremaining subgoal of the above deduction is provable.When I;:Xm j= G, the proof construction only di�ers from the above one on the� rule corresponding to the quanti�er encoding.If Qm � 8, then[[8Xm : G]]g = (q?m 
 ((xmP qm�1)&(x?mP qm�1))); [[G]]gSince I j= 8Xm : G, it follows that I;X j= G and I;:X j= G. The following deductioncan be constructed.` qm; q?mI ...` hIi; xm; qm�1; [[G]]g; g ...` hIi; x?m; qm�1; [[G]]g; g &` hIi; ((xmP qm�1)&(x?mP qm�1)); [[G]]g; g 
` hIi; qm; (q?m 
 ((xmP qm�1)&(x?mP qm�1)); [[G]]g; gSince hI;Xmi is hIi; x?m and hI;:Xmi is hIi; xm, the two remaining subgoals in thededuction are provable by the induction hypotheses.Induction step(: This is the critical step in the proof. We are given that m > 0and that the conclusion sequent ` qm; hIi; [[QmXm : : : Q1X1 :M ]]g; g is provable. The-orem 5.1.36 can be applied to construct a cut-free proof of ` qm; hIi; [[QmXm : : :Q1X1 :M ]]g; g. We show that this cut-free proof respects the quanti�er ordering, i.e., the re-duction of the encoding of QmXm occurs below any other step in the proof.It is easy to see that every formula in the multiset [[QmXm : : : Q1X1 :M ]]g is of theform q?i 
Ai, for 0 � i � m, with A0 � [M ]g, and Aj+1 � ((xj+1P qj) � (x?j+1P qj)).The connective written as � can be either & or �. The formulas q?i 
Ai are the only



CHAPTER 5. DECIDABLE FRAGMENTS OF LINEAR LOGIC 119The following lemma demonstrates the correctness of the mall encoding ofBoolean quanti�ers. Each Qi in the statement below is either 8 or 9.Lemma 5.1.46 (Main Induction) Let M be a Boolean formula in the variablesX1; : : : ;Xn, then for any m, 0 � m � n, and assignment I for Xm+1; : : : ;Xn, therelation I j= QmXm : : : Q1X1 : M holds i� the sequent ` qm; hIi; [[QmXm : : : Q1X1 :M ]]g; g is provable in mall.Proof. The proof is by induction on m between 0 and n. Note that I is universallyquanti�ed in the induction hypothesis.Base case ): Here m = 0. Then [[M ]]g � q?0 
 [M ]g, and we can easily constructthe following deduction of the required conclusion ` q0; hI0i; [[M ]]g; g.` q0; q?0 I ...` hIi; [M ]g; g 
` hIi; q0; q?0 
 [M ]g; gThe proof of the remaining subgoal ` hIi; [G]g; g, follows from Lemma 5.1.40.Base case (: The deduction shown above is the only possible one in a cut-freeproof of ` hIi; q0; q?0 
 [M ]g; g since q?0 
 [G] is the only compound formula in theconclusion. So if ` hIi; q0; q?0 
 [M ]g; g is provable, by Theorem 5.1.36, it must have acut-free proof containing a proof of ` hIi; [M ]g; g. By Lemma 5.1.43, we get I j=M .Induction step ): Assume 0 < m � n. Let G abbreviate Qm�1Xm�1 : : :Q1X1 :M . We must prove the lemma for QmXmG. If Qm � 9, then[[QmXm : G]]g = (q?m 
 ((xmP qm�1)� (x?mP qm�1))); [[G]]gIf I j= 9Xm : G, then either I;Xm j= G or I;:Xm j= G. In the former case, thefollowing deduction of the required conclusion can be constructed.



CHAPTER 5. DECIDABLE FRAGMENTS OF LINEAR LOGIC 118quanti�er encoding in any cut-free proof. To achieve this, we need to argue that thekey qi needed to unlock the ith quanti�er encoding is only made available when the(i+1)st quanti�er encoding has been reduced. In order for the ith quanti�er encoding,which has the form q?i 
 Ui, to be reduced before the (i+ 1)st quanti�er encoding, asubgoal of the form ` q?i ;� would have to be provable. The only occurrences of qiare in the subformula Ui+1 given by (qiPxi+1) � (qiPx?i+1), where � may be either� or &. If Ui+1 occurs in �, then the only occurrences of qi in � are as immediatearguments to a P . By exploiting the absence of an unrestricted weakening rule inmall, it can be shown that in the absence of constants, ` q?i ;� is not provable whenall of the occurrences of qi in � appear as immediate arguments to P . Therefore,regardless of whether Ui+1 occurs in �, the sequent ` q?i ;� would not be provable,thus making it impossible to reduce the ith quanti�er encoding below the (i + 1)stquanti�er encoding in a cut-free proof.Lemma 5.1.45 If q is a positive or negative literal and the sequent ` q;� containsno constants, then ` q;� is provable only if either � � q? or � contains at least oneoccurrence of a subformula either of the form q? � A, or the form A � q?, where �may be either �, &, or 
.Proof. We �x � to be either �, &, or 
 for this proof. The proof is by inductionon cut-free mall proofs of ` q;�. In the base case, for a cut-free proof of depth 0,the sequent ` q;� must be a mall axiom, and � � q? holds.In the induction step, when in the given cut-free proof of ` q;�, the conclusionsequent is derived by an application of either a 
, & or a � rule, then at least onepremise must be of the form ` q;�. We know by the induction hypothesis for theproof of ` q;�, either � = q? or � either contains a subformula of the form q? �A,or the form A � q?. In either case, � contains one of the forms, q? �A or A � q?.If in the cut-free proof of ` q;�, the conclusion sequent is derived by an applicationof the P rule, the premise sequent must be of the form ` q;�, where � is not a singleformula, Then by the induction hypothesis on the proof of ` q;�, the sequence �must contain one of the forms, q? � A or A � q?. Since every subformula of � is asubformula of � as well, � must also contain one of the forms q? �A or A � q?.



CHAPTER 5. DECIDABLE FRAGMENTS OF LINEAR LOGIC 117that K agrees with K1 on [N ]a and with K2 on [P ]b. Each disjunct in and(a; b; g)expanded as (a
 b
 g?) �(a? 
 b? 
 g) �(a
 b? 
 g) �(a? 
 b
 g)is falsi�ed by K. As already observed, the copy formulas are all classically false,and thus K falsi�es hIi; [M ]g. Since in this case, I 6j= N ^ P , the second part of theconclusion is also satis�ed.The remaining cases are similar.Lemma 5.1.43 If I is an assignment for the variables in a given Boolean formulaM , then1. if ` hIi; [M ]g; g is provable, I j=M2. if ` hIi; [M ]g; g? is provable, I 6j= M .Proof. By Lemma 5.1.41, we know that if ` hIi; [M ]g; g is provable, then no assign-ment can simultaneously falsify hIi, [M ]g, and g under the classical interpretation.By Lemma 5.1.42, we can �nd an assignment K which falsi�es hIi and [M ]g such thatK(g) = T i� I j=M . Since K cannot also falsify g, K(g) = T and hence I j=M .Similarly, when ` hIi; [M ]g; g? is provable, we can, by Lemmas 5.1.42 and 5.1.41,�nd an assignment K such that K(g) = F and as a consequence, I 6j= M .Lemma 5.1.44 ` hIi; [M ]g; g is provable i� I j=M .Proof. Follows immediately from Lemmas 5.1.40 and 5.1.43.So far, we have demonstrated the correctness of the encoding of the Booleanmatrix of a given quanti�ed Boolean formula. The remainder of the proof deals withthe encoding of Boolean quanti�ers. The next lemma states the crucial reason whythe mall encoding of quanti�ers is faithful to the quanti�er orderings. As observedin Subsection 5.1.4, the goal is to ensure that in any successful proof search, theith quanti�er encoding is reduced after, i.e, above, the reduction of the (i + 1)st



CHAPTER 5. DECIDABLE FRAGMENTS OF LINEAR LOGIC 116Proof. The proof is by induction on the construction of [M ]g. Note that theinduction is parametric in I and g (I and g are universally quanti�ed in the inductionhypothesis), so that when M � (N ^ P ), the induction hypothesis on N has I=Nreplacing I and a replacing g, where a labels the output of N .Base case: M � X. Then [M ]g = (x? 
 g)� (x 
 g?). If I j= X, then I(X) = Tand hIi = x?, and hIi is falsi�ed if K assigns T to x. [M ]g is falsi�ed if K assignsT to g, and the second part of the conclusion, K(g) = T also follows. If I 6j= X,then I(X) = F . Let K assign F to x and F to g to falsify both hIi and [M ]g. ThenK(g) = F as required.Induction step: Observe �rst that the formula copy(x) de�ned as (x 
(x?Px?))� (x? 
 (xPx)) is classically false.WhenM � :N , the encoding [M ]g is not(a; g); [N ]a. By the induction hypoth-esis, we have an assignment K1 falsifying hIi; [N ]a such that K1(a) = T i� I j= N .Suppose K1(a) = T , and hence I j= N . The formula not(a; g) is (a
 g)� (a?
 g?).Let K be K1fg  Fg. Since g does not occur in hIi or [N ]a, K agrees with K1 onhIi; [N ]a. The assignment K also falsi�es not(a; g), thus falsifying hIi; [M ]g. Notethat K(g) = F as required, since I 6j= M .If K1(a) = F , then I 6j= N . Letting K be K1fg  Tg falsi�es hIi; [M ]g.When M � (N ^ P ), then by the induction hypotheses for N and P , there exists1. K1 falsifying hI=Ni; [N ]a such that K1(a) = T i� I=N j= N , and2. K2 falsifying hI=P i; [P ]b such that K2(a) = T i� I=P j= PThe encoding hIi is a sequence of literals such that no two distinct literals in hIishare a common atom. Since hI=Ni and hI=P i are subsets of hIi, there is no literal xsuch that x is in hI=Ni and x? is in hI=P i. Formulas [N ]a and [P ]b have no atoms incommon outside of those in hIi. Then the union of the assignments K1 [K2, is stillan assignment, i.e., it assigns a unique truth value to each atom in hIi; [N ]a; [P ]b.Suppose that K1(a) = T , and hence I=N j= N , and K2(b) = F , so that I=P 6j= P .Let K be (K1 [ K2)fg  Fg. Note that g does not occur in hIi, [N ]a or [P ]b so



CHAPTER 5. DECIDABLE FRAGMENTS OF LINEAR LOGIC 115APB and A � B are read as classical disjunction. A sequent is interpreted as theclassical disjunction of the formulas contained in it.Lemma 5.1.41 If `� is a provable mall sequent, then for any assignment of truthvalues to the atoms in �, there exists a formula A in the sequence � such that A istrue under the classical interpretation.Proof. The proof is by a straightforward induction on cut-freemall proofs. Clearly,for axioms ` x; x?, one of x or x? must evaluate to T in a given truth assignment.In the induction case, suppose that the last step in the proof of � is a 
-rule of theform ...` B;�1 ...` C;�2 
` (B 
 C);�1;�2By the induction hypothesis, the sequence B;�1 contains a formula A1, and the se-quence C;�2 contains a formula A2, and both A1 and A2 are true. If A1 is di�erentfrom B, then A1 occurs in the conclusion sequent yielding the required A, and simi-larly, when A2 is di�erent from C. Otherwise, the formula (B 
C) is (A1
A2) andis hence true under the classical interpretation of 
 as conjunction. The inductionarguments corresponding to the other connectives are similar.The main intuition behind Lemma 5.1.42 is that by appropriately assigning truthvalues to the literals in hIi and [M ]g, it is possible to mimic the evaluation of theBoolean formula M under I. Due to our use of one-sided sequents and the formof our encoding, there is exactly one truth value falsifying each formula in hIi and[M ]g. This assignment turns out be the appropriate one, i.e., the value of g underthis assignment is T exactly when I j= M . For example, if I is fX  Fg and M is:X, then hIi is x? and [M ]g is (x
 g) � (x? 
 g?). The only falsifying assignmenthere is fx F; g  Tg.Lemma 5.1.42 LetM be a Boolean formula and I be an assignment for the variablesin M . There exists an assignment K of truth values to the atoms in hIi and [M ]gsuch that for every formula A in the sequence hIi; [M ]g, assignment K falsi�es Aunder the classical interpretation, and K(g) = T i� I j=M .



CHAPTER 5. DECIDABLE FRAGMENTS OF LINEAR LOGIC 114Base case: M � X. Suppose I(X) = T , then I j=M and hIi = x?. The followingproof can then be constructed, expanding the de�nition of [M ]g` x?; xI ` g?; gI
` x?; (x
 g?); g` x?; (x? 
 g)� (x
 g?); g�The case when I(X) = F is similarly straightforward.Induction step: There are a number of cases here corresponding to the de�nitionof [M ]g. We consider a typical case and leave the remaining ones to the reader.Let M � N ^ P , and suppose that V ar(N) \ V ar(P ) 6= ;. Consider the casewhen I=N j= N and I=P 6j= P , so that I 6j= N ^ P . Expanding [M ]g, and(a; b; g),and using Lemma 5.1.39, the following deduction can be constructed.` g; g?I ...` hI=Ni; [N ]a; a ...` hI=P i; [P ]b; b? 
` hI=Ni; hI=P i; (a 
 b?); [N ]a; [P ]b 
` hI=Ni; hI=P i; (a 
 b? 
 g); [N ]a; [P ]b; g?�` hI=Ni; hI=P i;and(a; b; g); [N ]a; [P ]b; g?...` hIi;and(a; b; g);copyall(V ar(N) \ V ar(P )); [N ]a; [P ]b; g?` hIi;and(a; b; g)Pcopyall(V ar(N) \ V ar(P ))P [N ]aP [P ]b; g?PApplying the induction hypothesis to I=N , N , and a, and to I=P , P , and b, wecan establish that the remaining subgoals of the deduction are provable.The remaining subcases in the evaluation of N^P are similar, as are the remainingcases in the induction argument.The next step is to establish the converse of Lemma 5.1.40. The classical inter-pretation of the mall connectives may be used to give a relatively easy proof. In theclassical interpretation, truth values, T and F , are assigned to the mall atoms, A?is read as classical negation, A 
B and A&B are read as classical conjunction, and



CHAPTER 5. DECIDABLE FRAGMENTS OF LINEAR LOGIC 113Each pass would use only log-space, and the remainder of the algorithm may beperformed in log-space.5.1.6 Proof of PSPACE-hardness of MALLThe main theorem is that for any closed QBF G, G is valid if and only if �(G) is aprovable mall sequent. The �rst set of lemmas demonstrates that the encoding ofBoolean formulas works correctly. The second set of lemmas demonstrates that theBoolean quanti�ers have been correctly encoded.If I is a truth value assignment for the Boolean variables X1; : : : ;Xn, then I isencoded as hIi, where hIi = hX1iI ; : : : ; hXniIhXiiI = 8<: x?i if I(Xi) = Txi; otherwiseIf I is an assignment for a set of variables Y , and X � Y , then I=X is theassignment I restricted to the subset X, and by abuse of notation I=M is I=V ar(M).The following lemma is stated without proof.Lemma 5.1.39 Given sets of variables X and Y , and an assignment I for X [ Y ,there is a deduction of the sequent ` hIi;copyall(X \ Y );� from the sequent `hI=Xi; hI=Y i;�.Lemma 5.1.40 Let M be a Boolean formula and I an assignment for the variablesin M , then1. if I j=M then ` hIi; [M ]g; g2. if I 6j=M then ` hIi; [M ]g; g?Proof. By induction on the structure of M , as follows. The cases in the proofcorrespond closely to those in the de�nition of [M ]g.



CHAPTER 5. DECIDABLE FRAGMENTS OF LINEAR LOGIC 112De�nition 5.1.38�(G) = ` qn; [[G]]g; g qn; g new[[(8Xi+1 : G)]]g = (q?i+1 
 ((xi+1P qi)&(x?i+1P qi))); [[G]]g qi+1 new[[(9Xi+1 : G)]]g = (q?i+1 
 ((xi+1P qi)� (x?i+1P qi))); [[G]]g qi+1 new[[M ]]g = (q?0 
 [M ]g) q0 new[X]g = (x? 
 g)� (x
 g?)[:N ]g = not(a; g)P [N ]a a new[N ^ P ]g = 8>>>>>><>>>>>>: and(a; b; g) Pcopyall(V ar(N) \ V ar(P )) P[N ]a P[P ]b a; b new[N ^ P ]g = and(a; b; g)P [N ]aP [P ]b a; b newcopyall(X) = PXi2Xcopy(xi)The lower (simpler) de�nition of [N ^ P ]g is only applicable in the case thatV ar(N)\V ar(P ) = ;. In the other case, where V ar(N)\V ar(P ) 6= ;, the copyallde�nition must be used.Note that the sequent �(G) contains no mall constants. The complexity ofcomputing �(G) is at most quadratic in the size of G since the encoding function isde�ned inductively over the structure of the formula, and the intersection operationcan be performed in linear time with a bit-vector representation of sets, where thelength of each bit-vector is the number of distinct Boolean variables occurring in G.The cost of constructing the copy formulas at each step in the recursion is also linearin the size of G. The cost of each not and and formula is �xed with respect to therepresentation of the literals, and the literals can be represented with a cost that islogarithmic in the size of G.The encoding may be computed in log-space, although the algorithm describedabove uses more than log-space, because of the work space required to save the set ofvariables that must be copied when encoding a conjunction. The encoding algorithmcould be modi�ed to make a number of passes over the input to determine the numberof occurrences of each variable and generate the required number of copy formulas.



CHAPTER 5. DECIDABLE FRAGMENTS OF LINEAR LOGIC 111matrix. V ar(M) is the set of variables occurring in the Boolean formulaM . Overlinedsyntactic variables such as X and Y range over sets of Boolean variables.The mall sequent encoding a QBFG is represented by �(G). We need to be carefulabout keeping literals distinct. The annotation \a new" in the de�nition indicatesthat the literal a is a freshly chosen one that has not been used elsewhere in theencoding.The sequent �(G) consists of the encoding of the QBF [[G]]g, where g labels theoutput signal, the key qn, and the output value g. The de�nition of [[G]]g constructs thequanti�er encodings by induction on the length of the quanti�er pre�x. The de�nitionof [M ]g is by induction on the structure of M , so that [N ^ P ]g is constructed by� choosing the fresh labels a and b for the outputs of subformulas N and P ,respectively� de�ning the relation between a, b, and g by and(a; b; g)� if needed, providing a copying formula for each Boolean variable common toboth N and P� and recursively constructing [N ]a and [P ]bTo be precise, we provide the following de�nition of the encoding.



CHAPTER 5. DECIDABLE FRAGMENTS OF LINEAR LOGIC 110The idea here is that the quanti�er encoding for 9X1 hides the \key" q1 that is neededto unlock the quanti�er encoding for 8X2. If we now attempt to violate the quanti�erdependencies, the following would be one possible deduction.` q2; q?2 I ?` q?1 ; q1; x1` q?1 ; q1Px1P` q?1 ; ((q1Px1)� (q1Px?1 ))�
` q2; q?1 ; q?2 
 ((q1Px1)� (q1Px?1 )) ...` (q0Px2)&(q0Px?2 ); q?0 
 [M ]g; g 
` q2; q?2 
 ((q1Px1)� (q1Px?1 )); q?1 
 ((q0Px2)&(q0Px?2 )); q?0 
 [M ]g; gIn the above deduction, we are left with a subgoal of the form ` q?1 ; q1; x1, andsince x1 is not a constant, we cannot reduce this sequent to a mall axiom. (Recallthat mall lacks an unrestricted weakening rule.) Other deductions attempting toviolate the quanti�er ordering also fail. On the other hand, the deduction which doesrespect the order of the quanti�er encodings can be performed as shown below. Thequanti�er encoding for 9X1 provides the key q1 for unlocking the quanti�er encodingof 8X2.` q2; q?2 I ...` q1; x1; q?1 
 ((q0Px2)&(q0Px?2 )); q?0 
 [M ]g; g` q1Px1; q?1 
 ((q0Px2)&(q0Px?2 )); q?0 
 [M ]g; gP` ((q1Px1)� (q1Px?1 )); q?1 
 ((q0Px2)&(q0Px?2 )); q?0 
 [M ]g; g�
` q2; q?2 
 ((q1Px1)� (q1Px?1 )); q?1 
 ((q0Px2)&(q0Px?2 )); q?0 
 [M ]g; gThe formal de�nition of the polynomial time encoding of QBF validity in termsof mall provability is given in Section 5.1.5. In Section 5.1.6, we demonstrate thecorrectness of the encoding.5.1.5 Formal De�nition of the EncodingFor our purpose, a Boolean formula is constructed from Boolean variables using theBoolean connectives : and ^. All quanti�ed variables are assumed to occur in the



CHAPTER 5. DECIDABLE FRAGMENTS OF LINEAR LOGIC 109according to the assignment (T or F , respectively) to X1 which makes 9X1 :M valid.Similarly, the rule for reducing (x2&x?2 ) in a proof behaves like universal quanti�cationrequiring proofs of both ` x?2 ;� and ` x2;�....` x?2 ;� ...` x2;� &` (x2&x?2 );�However, with this mapping of quanti�ers, the mall encoding of G and H would beidentical and provable, but H is not a valid QBF.A correct encoding of 9X18X2 : M should ensure that if the encoding is provable inmall, then there is a proof in which the choice of a truth value for X1 is independentof whether X2 is T or F . The order of reductions below show how the choice of atruth value for 9X1 in a proof of the mall encoding can depend on the quanti�er8X2. ...` x1; x2;�` (x1 � x?1 ); x2;�� ...` x?1 ; x?2 ;�` (x1 � x?1 ); x?2 ;��&` (x1 � x?1 ); (x2&x?2 );�In this ordering of the reductions, (x1 � x?1 ) is reduced di�erently on the x2 andx?2 branches of the proof leading to distinct witnesses for X1 according to whether X2is T or F . The solution to this quanti�er order problem is to encode the quanti�erdependencies in the mall formula so that if there is any proof, then there is someproof of the encoding in which (x1 � x?1 ) is reduced below (x2&x?2 ), thus ensuringthat the truth value of X1 has been chosen independently of the truth value for X2.For this purpose, we introduce new mall atoms q0; q1; q2, and encode 9X18X2 : Mas ` q2;q?2 
 ((q1Px1)� (q1Px?1 ));q?1 
 ((q0Px2)&(q0Px?2 ));q?0 
 [M ]g; g



CHAPTER 5. DECIDABLE FRAGMENTS OF LINEAR LOGIC 108be constructed.` x1; x?1 I ` x2; x?2 I ` g; g?I ...` x?1 ; x?2 ;�1; c ...` x?1 ; x?2 ;�2; f 
` x?1 ; x?1 ; x?2 ; x?2 ; (c
 f);�1;�2 
` x?1 ; x?1 ; x?2 ; x?2 ; (c
 f 
 g?);�1;�2; g 
` x?1 ; x?1 ; x?2 ;and(c; f; g); x2 
 (x?2 Px?2 );�1;�2; g 
` x?1 ; x?2 ;and(c; f; g); x1
 (x?1 Px?1 );copy(x2);�1;�2; g�` x?1 ; x?2 ;and(c; f; g);copy(x1);copy(x2);�1;�2; g` x?1 ; x?2 ;and(c; f; g)Pcopy(x1)Pcopy(x2)P�1P�2; gPIn summary, we have informally described the encoding in mall of the evaluationof Boolean formulas under an assignment. The connectives P ;
; and � were usedto represent the truth tables of : and ^, and mall literals were used to representthe \signals" in the Boolean formula. The duplication of input signals forms a crucialpart of the encoding since mall lacks a rule of contraction.5.1.4 Encoding Boolean Quanti�cationRecall that G is the formula 8X29X1 : M , and H is the formula 9X18X2 : M , whereM is :(:X1 ^X2) ^ :(:X2 ^ X1). Intuitively, it is useful to separate the encodingof the Boolean quanti�er pre�x as separately encoding the individual quanti�ers andthe dependencies between quanti�ers. Given the above encoding for assignments andBoolean formulas, an almost correct way to encode Boolean quanti�ers would be toencode 9X1 as the formula (x1�x?1 ), and 8X2 as (x2&x?2 ). The encoding of G wouldthen be given by the sequent̀ (x2&x?2 ); (x1 � x?1 ); [M ]g; g:The formula (x1 � x?1 ) behaves like existential quanti�cation in proof search since anondeterministic choice can be made between...` x?1 ;�` (x1 � x?1 );�� and ...` x1;�` (x1 � x?1 );��



CHAPTER 5. DECIDABLE FRAGMENTS OF LINEAR LOGIC 107the formulaand(c; f; g)P implies(x1; x2; a; b; c)P implies(x2; x1; d; e; f):The validity of M under the assignment fX1  T;X2  Tg would then berepresented by` x?1 ; x?2 ;and(c; f; g)P implies(x1; x2; a; b; c)P implies(x2; x1; d; e; f); g: (5:7)The following deduction represents one attempt to prove sequent (5.7).` g?; gI ...` x?1 ; x?2 ; implies(x1; x2; a; b; c); c ...` implies(x2; x1; d; e; f); f 
` x?1 ; x?2 ; (c
 f); implies(x1; x2; a; b; c); implies(x2; x1; d; e; f) 
` x?1 ; x?2 ; (c
 f 
 g?); implies(x1; x2; a; b; c); implies(x2; x1; d; e; f); g�` x?1 ; x?2 ;and(c; f; g); implies(x1; x2; a; b; c); implies(x2; x1; d; e; f); g` x?1 ; x?2 ;and(c; f; g)P implies(x1; x2; a; b; c)P implies(x2; x1; d; e; f); gPSince mall lacks a rule of contraction, each of the assignment literals, x?1 andx?2 , can appear in only one premise of a 
 rule. As a result, one of the remainingsubgoals in the above deduction lacks the required input literals. We therefore needto be able to explicitly duplicate the assignment literals in the sequent (5.7) to matchthe number of duplicate occurrences of X1 and X2 in M . The formula copy(x1)de�ned as (x1 
 (x?1 Px?1 ))� (x?1 
 (x1Px1))serves to duplicate an instance of x1 or x?1 . If M is now encoded asand(c; f; g)Pcopy(x1)Pcopy(x2)P�1P�2where �1 abbreviates implies(x1; x2; a; b; c),and �2 abbreviates implies(x2; x1; d; e; f), the desired deduction of (5.7) can then



CHAPTER 5. DECIDABLE FRAGMENTS OF LINEAR LOGIC 106and(x; y; b) = 26666664 (x
 y 
 b?) �(x? 
 y? 
 b) �(x
 y? 
 b) �(x? 
 y 
 b) 37777775 (5:5)Sequent (5.6) represents X;Y j= (X ^ Y ):` x?; y?;and(x; y; b); b: (5:6)Sequent (5.6) has the proof̀ x?; xI ` y?; yI ` b?; bI
` y?; (y 
 b?); b 
` x?; y?; (x
 y 
 b?); b�` x?; y?;and(x; y; b); bAs with sequent (5.4), the mall sequent representing the false assertion :X;Y j=(X ^ Y ) is given by ` x; y?;and(x; y; b); band is not provable since it can be falsi�ed by the classical interpretation assigningF to x and b, and T to y.The next step is to construct the encoding of the Boolean formula M given atthe beginning of this section, from the encodings of the Boolean connectives. Theformula M is thought of as a Boolean circuit with the distinctly labeled signals.The encoding [(:X1 ^ X2)]b is given by the formula and(a; x2; b)Pnot(x1; a). Letimplies(x; y; u; v; w) represent the formulanot(v;w)Pand(u; y; v)Pnot(x; u);then implies(x1; x2; a; b; c) is the encoding [:(:X1 ^ X2)]c. The literals a, b and care the distinct literals labeling the output signals of the Boolean gates.We now consider the problem that the input signals in M have a fanout greaterthan one. An almost correct encoding in mall of the Boolean formulaM is given by



CHAPTER 5. DECIDABLE FRAGMENTS OF LINEAR LOGIC 105For literals x and y, the de�nition of not(x; y) is just the representation of the truthtable for negation within mall, as shown below:not(x; y) = (x
 y)� (x? 
 y?): (5:1)not(x1; a) is simply the linear negation of the formula(x1��a?)&(x?1��a)which is more perspicuous in describing a as the Boolean negation of x1. The sequent` x1;not(x1; a); a (5:2)encodes the situation where the input X1 is F , and asserts (correctly) that the output:X1 is T .The sequent (5.2) is easily seen to have the mallproof` x1; x?1 I ` a?; aI
` x1; (x?1 
 a?); a` x1; (x1 
 a)� (x?1 
 a?); a�Similarly, the sequent (5.3) representing fX1  Tg 6j= :X1 is also provable.` x?1 ;not(x1; a); a?: (5:3)On the other hand, the sequent̀x?1 ;not(x1; a); a (5:4)asserts (falsely) that fX1  Tg j= :X1. To see why sequent (5.4) is not provable, weobserve that mall is a re�nement of classical logic in which no classically falsi�ablesequents are provable. The sequent ` x?1 ;not(x1; a); a is falsi�ed by assigning T tox1 and F to a, while interpreting 
 and & as classical conjunction and � and Pas classical disjunction. A sequent is interpreted classically as the disjunction of thesequence of formulas that it contains.The encoding for conjunction, [X ^ Y ]b is given by and(x; y; b) as de�ned below.



CHAPTER 5. DECIDABLE FRAGMENTS OF LINEAR LOGIC 104B1; : : : ; Bn has the one-sided form ` A?1 ; : : : ; A?m; B1; : : : ; Bn. Thus, a formula A��Bon the left of a two-sided sequent becomes A
B? in a one-sided sequent. Similarly,the provable two-sided sequent A;A��B ` B becomes ` A?; A
B?; B. While one-sided sequents simplify the technical arguments considerably, the reader might gainfurther insight by rewriting parts of our encoding in a two-sided form.5.1.3 Encoding Boolean EvaluationThe encoding of the Boolean connectives and quanti�ers in mall is described hereby means of an example. The full de�nition of the encoding appears in Section 5.1.5.The encoding from QBF validity to mall provability makes no use of the mallconstants. Consider the valid QBF G given by8X29X1 : :(:X1 ^X2) ^ :(:X2 ^X1):The matrix M of G is essentially a restatement of (X1 () X2). Let H be thefalsi�able formula 9X18X2 :M that is obtained from G by reversing the order of thequanti�ers. It is crucial that the encodings of G and H in mall respect the orderingof quanti�ers so that the encoding of G is provable but the encoding of H is not.The encoding of the Boolean matrix describes the formula as a circuit with signalslabeled by mall literals. Let the assignment I be encoded by a sequence of mallformulas hIi, and [M ]a be the mall formula encoding M with output labeled by theliteral a. Then I j=M is encoded by the sequent` hIi; [M ]a; awhereas I 6j=M is encoded by ` hIi; [M ]a; a?:Since we are using one-sided sequents, we encode the assignment X1;:X2 byx?1 ; x2. The mall literals encoding the assignment are to be seen as the input signalsto the encoding of the Boolean formula.We �rst consider the Boolean connectives: and ^, then construct the full encodingof M . The encoding [:X1]a of :X1 with output labeled a is the formula not(x1; a).



CHAPTER 5. DECIDABLE FRAGMENTS OF LINEAR LOGIC 103variables and negated Boolean variables. For example, the assignment X1;:X2;X3maps X1 to T , X2 to F , and X3 to T . The assignment I;X assigns T to X, butbehaves like I, otherwise. If I is an assignment for the free variables in G, we use thestandard notation I j= G to indicate that G is valid under I, and write I 6j= G if Ifalsi�es G. Note thatI j= 8X : G i� I;X j= G and I;:X j= GI j= 9X : G i� I;X j= G or I;:X j= GIf G is a QBF and I is an assignment for the free variables in G, we say G is validunder I exactly if I j= G. If G is a closed QBF, then G is said to be valid if it is validunder the empty assignment. The validity of a closed QBF G is represented as j= G.The QBF validity problem is: Given a closed QBF G, is G valid?We demonstrate the pspace-hardness of mall provability by de�ning a succinctencoding of a QBF as a mall sequent that is provable exactly when the given QBFis valid.The transformation of the QBF validity problem to mall provability takes placein two steps:� Given a quanti�er-free Boolean formula M and an assignment I for the freevariables inM , we show that there is a mall sequent encoding M and I whichis provable exactly whenM is valid under I. This essentially demonstrates thatthe process of evaluating Boolean functions can be represented by the processof cut-free proof search in the mall sequent calculus.� Given a QBF G and an assignment I for the free variables in G, there existsa mall sequent encoding the quanti�er pre�x and the Boolean matrix of Gso that the mall sequent is provable exactly when G is valid under I. Theidea here is to simulate the Boolean quanti�ers 9 and 8 by using the additiveconnectives � and &.Two-sided vs. one-sided sequents. We use a formulation of mall with one-sided sequents to simplify the proofs. In linear logic, a two-sided sequentA1; : : : ; Am `



CHAPTER 5. DECIDABLE FRAGMENTS OF LINEAR LOGIC 102mall proof tree is at most linear in the length of the �nal sequent of the proof.An alternating Turing machine [19] may guess and check a cut-free proof in lineartime, using OR-branching to nondeterministically guess a reduction in the cut-freeproof, and AND-branching to generate and check the proofs of both premises of atwo premise rule in parallel.Membership in pspace can also be proved without reference to alternation. Anondeterministic Turing machine can be de�ned to generate and check a cut-freesequent proof in a depth-�rst manner. Given the linear bound on the depth of anycut-free proof with respect to the size of the conclusion sequent, the search stack needcontain no more than a linear number of sequents. Since each sequent in a cut-freeproof is no larger than the conclusion sequent, we get a quadratic bound on the stacksize.5.1.2 Informal Outline of PSPACE-hardness of MALLSince there are a number of technical details to the proof of pspace-hardness, wewill illustrate the key intuitions by means of an example; the details of the proof aregiven in Subsection 5.1.6.The pspace-hardness of mall provability is demonstrated by a transforma-tion from the validity problem for quanti�ed Boolean formulas (QBF). A quanti�edBoolean formula has the (prenex) form QmXm : : : Q1X1 :M , where1. each Qi is either 8 or 9,2. M is a quanti�er-free Boolean matrix containing only the connectives : and ^,and Boolean variables.A closed QBF contains no free variables. Our conventions in this section are thatG and H range over quanti�ed Boolean formulas;M and N range over quanti�er-freeBoolean formulas; U; V;X; Y; Z range over Boolean variables; and I ranges over truthvalue assignments. For expository convenience, we refer to quanti�er-free Booleanformulas simply as Boolean formulas.An assignment I for a set of Boolean variables fX1; : : : ;Xng maps each Xi toa truth value from fT;Fg. An assignment is represented by a sequence of Boolean



CHAPTER 5. DECIDABLE FRAGMENTS OF LINEAR LOGIC 101Cut ` �; A ` �; A?` �;�An important property of the sequent calculus formulation of mall is cut-elimination. This property follows from Theorem 2.3.4, but since we are restrictingour attention to the one sided case, we restate the theorem explicitly.Theorem 5.1.36 Any sequent provable in mall is provable without the cut rule.Proof. Since mall is a fragment of linear logic, we may use the cut-eliminationprocedure from Theorem 2.3.4 to convert a mall proof to a cut-free proof in linearlogic. By the subformula property (Theorem 2.4.5), such a cut-free proof of a mallsequent contains only mall formulas. Since all the rules which apply to mall for-mulas are already in mall, any cut-free proof of a mall sequent must already be amall proof.Membership in pspace is straightforward, given cut elimination, but we includea short sketch to illustrate the importance of Theorem 5.1.36. The proof of pspace-hardness is more technical. Proof search in the cut-free sequent calculus is crucialto the proof. The primitive step in proof search is a �reduction, namely the appli-cation of an inference rule to transform a sequent matching the conclusion of therule to the collection of sequents given by the corresponding premises of the rule.A reduction is the inverse of an inference rule, and drives conclusions to premises.Proof search is the process of constructing a cut-free proof in a bottom-up mannerby nondeterministically applying reductions starting from the conclusion sequent.5.1.1 Membership in PSPACETheorem 5.1.37 The provability in mall of a given sequent can be decided by apolynomial-space bounded Turing machine.Proof. By Theorem 5.1.36, a provable mall sequent has a cut-free mall proof.In a cut-free mall proof, there are at most two premises to each rule, and eachpremise is strictly smaller than the consequent. Therefore, the depth of a cut-free



Chapter 5Decidable Fragments of LinearLogicThis chapter briey covers decidable fragments of linear logic for which complexityresults are known. The main results are that without exponentials or non-logicaltheory axioms, linear logic is pspace-complete, and the multiplicative fragment oflinear logic is np-complete.5.1 mall is PSPACE-completeIn this section, we analyze the complexity of the fragment of propositional linear logicwithout the modal storage operator ! and its dual ?, but including all the remainingconnectives and constants of linear logic. Earlier it was shown that with the additionof nonlogical theories to mall the decision problem is recursively unsolvable. Herewe study the complexity of the decision problem in the absence of theory axioms.In this section we restrict our attention to the right hand side of the sequent arrow`. The results of this section immediately carry over to the two sided version of thecalculus at the expense of greater case analysis at many steps in the following proofs.Technically, we must restate the Cut rule as follows, essentially incorporating thenegation rule into the Cut rule. 100



CHAPTER 4. NONCOMMUTATIVE PROPOSITIONAL LINEAR LOGIC 99replaced by Cut2. Somewhat more concretely, the following shows a deduction of asequent which is not derivable in CL:` p1; p?1 I ` p2; p?2 I
` p1; (p?1 
 p?2 ); p2 ` p1; p?1 ICut2` (p?1 
 p?2 ); p1; p2Notice in the �nal conclusion that p1 and p2 have changed places, in a way impossiblewithout the use of theCut2 rule in CL. Thus using Cut2 we could prove any sequentwhich is provable in the commutative fragment of linear logic corresponding to CL.However, it would be impossible to prove some such sequents in CL without Cut2,and thus cut-elimination fails in this logic.However, since there is a proof of a sequent in this logic if and only if there is aproof of that sequent in (commutative) linear logic, we may as well use linear logic,which does have a cut-elimination theorem.4.7 Summary of ChapterIn this chapter the undecidability of a small fragment of propositional noncommuta-tive linear logic was demonstrated. This logic contains fewer connectives than thoserequired for the proof of undecidability of (commutative) linear logic. The proof usessemi-Thue systems, although perhaps a more intuitive proof could use standard Tur-ing machines, viewing the left of the turnstile as a direct representation of the Turingtape. The instructions must be reusable, and so are marked by !, and here we assumethat all three structural rules (exchange, contraction, and weakening) are allowed for! formulas.The interest in this logic stems from work by Lambek [55] predating the intro-duction of linear logic. Lambek's work considered one of the possible variants ofnoncommutative linear logic (and did not contain exponentials, and so is decidable).The later sections of this chapter consider some other alternative formulations ofnoncommutative linear logic. Although these proof-theoretic investigations are sug-gestive, perhaps the best source of insight into the correct axiomatization would besemantic considerations and applications such as Lambek's.



CHAPTER 4. NONCOMMUTATIVE PROPOSITIONAL LINEAR LOGIC 98full linear logic su�ces to eliminate cuts from CL with unrestricted exchange. Cut-elimination for CL with 
 replaced by 
3 is possible to prove directly, although theprincipal 
3 versus P case is quite di�cult. Cut-elimination in this case may beaccomplished with the addition of an \intermingling cut" rule which along with thenonintermingling cut rule may be eliminated from any proof. The key reason thislemma holds is that 
 and P are the only binary connectives of CL and allowing(A
B) to be equivalent to (B 
A) in this context causes (APB) to be equivalentto (BPA).Corollary 4.6.35 A sequent ` � is provable in the system obtained by replacing
 by 
3 in CL augmented with additives and constants if and only if that sequentis provable in the system obtained by adding the unrestricted exchange rule to CLaugmented with additives and constants.This corollary follows from the fact that the constants and additive connectivesare inherently commutative, and may be proven by induction on the length of proofs.4.6.2 Intermingling CutA problem similar to that which occurs with 
3 arises if we allow the Cut rule tointerleave its conclusion. De�ne Cut2:Cut2 ` �; A ` �; A?` � where � is some interleaving of � and �As for the previous alteration, the system CL with Cut replaced by Cut2 would becommutative. We can achieve the e�ect of the unrestricted exchange rule using theCut2 rule: ...` �;�; A ...` A;A? Cut2` �; A;�Note that for any formula A, there is always a proof of ` A;A? in noncommuta-tive (as well as commutative) linear logic. The above partial deduction shows thatunrestricted exchange may be simulated in noncommutative linear logic with Cut



CHAPTER 4. NONCOMMUTATIVE PROPOSITIONAL LINEAR LOGIC 974.5.5 Mix and MatchThe above modi�cations of CL do not interfere with cut-elimination, nor with thebasic undecidability result for CL. It is also the case that even in combination theabove three modi�cations, (R versus embedding, ?E versus ?C2, and 
 versus 
2)do not interact. That is, any combination of these modi�cations retains the characterof CL, including the properties of being undecidable, and having a cut-eliminationtheorem.4.6 Degenerate Noncommutative Linear LogicsSome variations on the CL system are not as benign as the above. In fact, it is mucheasier to create nonsense than a coherent logic by altering proof rules haphazardly.The main focus of this section is to consider plausible but degenerate variants ofthe rules based on interleaving the circular orders of hypotheses.4.6.1 Intermingling 
At �rst glance, it might seem interesting to study the systems obtained when binaryrules in CL are replaced with rules which allow intermingling of the hypotheses in theconclusion. For example,
3 ` �; A ` B;�` �; (A
B) where � is some interleaving of � and �Somewhat surprisingly, the system obtained by replacing 
 with 
3 in CL is equiv-alent to a commutative version of CL.Lemma 4.6.34 A sequent ` � is provable in the system obtained by replacing 
 by
3 in CL if and only if that sequent is provable in the system obtained by adding theunrestricted exchange rule to CL.This lemma follows by induction on the length of cut-free proofs. Formally, weneed a cut-elimination procedure for both logics. The cut-elimination procedure for



CHAPTER 4. NONCOMMUTATIVE PROPOSITIONAL LINEAR LOGIC 96Corollary 4.5.30 The provability problem for CL without the ?E rule, and with the?C rule replaced by ?C2 rule is recursively unsolvable.4.5.4 Alternate 
There are two quite reasonable versions of the 
 rule in noncommutative linear logic,one as used above in CL, and the other using a di�erent sequent order in the conclu-sion: 
 ` �; A ` B;�` �; (A
B);� ` �; A ` �; B` �;�; (A
B) 
2The two formulations are equivalent in the presence of unrestricted exchange (com-mutative linear logic), but are subtlely di�erent in the context of noncommutativelinear logic. In a noncommutative linear logic with 
 replaced by 
2, the de�nitionof negation must change. In particular, the negation of the multiplicative connectiveswould be de�ned as follows:(A
B)? �= A?PB? (APB)? �= A? 
B?We de�ne the translation �(�) of a sequent � to be the sequent � with all occur-rences of formulas of the form A
B replaced by B 
A.Lemma 4.5.31 A sequent ` � is provable in CL if and only if �(�) is provable inCL with the 
 rule replaced by the 
2 ruleLemma 4.5.32 A sequent ` �(�) is provable in CL if and only if � is provable inCL with the 
 rule replaced by the 
2 ruleThis lemma follows by induction on the height of proofs.Lemma 4.5.33 The provability problem for CL with the 
 rule replaced by the 
2rule and alternate de�nition of negation is recursively unsolvable.This lemma follows from the above two, which simply state that by reversing theorder of all tensor (
) formulas, we pass from CL to this new logic, and back again.Thus a decision procedure for one implies a decision procedure for the other, and byLemma 4.4.24, we know there is no decision procedure for CL.



CHAPTER 4. NONCOMMUTATIVE PROPOSITIONAL LINEAR LOGIC 95the system derived from CL by removing the R rule, and replacing all other rules bytheir embedded equivalents, and adding a symmetric identity rule.Lemma 4.5.27 A sequent ` � is provable in CL if and only if it is provable in ECL.This lemma follows by induction on the length of proofs, and from this lemma weobtain undecidability for this system.Corollary 4.5.28 The provability problem for CL without the R rule, and with everyother rule replaced by its embedded equivalent is recursively unsolvable.4.5.3 CL without ?EThe earlier proof of undecidability fails in CL without the ?E rule, since some of therequisite lemmas about theories fail. However, we may omit this rule, and replace?C with the following ?C2 rule to restore our results, and many other properties ofnoncommutative linear logic.?C ` �; ?A; ?A` �; ?A ` �; ?A;�; ?A` �;�; ?A ?C2This contraction rule essentially states that what may be proven from two not nec-essarily contiguous assumptions of a reusable formula, may be proven from one as-sumption of that reusable formula. It is the case that the ?C2 rule is derivable fromthe ?E and ?C rules in CL.Lemma 4.5.29 A sequent ` � is provable in CL if and only if it is provable in CLwithout the ?E rule, and with the ?C rule replaced by ?C2.This lemma may be proven by induction on the length of proofs. Essentially, inCL one may contract and then exchange the reusable formula to any desired position,while in the other system one may contract the formula directly into position. On theother hand, to permute a reusable formula in CL, one simply applies exchange, whilein the other system one must contract the formula into position, and then weakenaway the formula in its previous position. Using this lemma, we may obtain thefollowing undecidability result.



CHAPTER 4. NONCOMMUTATIVE PROPOSITIONAL LINEAR LOGIC 94These rules contain the two novel rules of rotation (R) and restricted exchange(!E). This system is very close to that studied by Yetter [97], although Yetter's extramodalities k and K have been omitted.The one-sided calculus CL is a conservative extension over the two-sided intu-itionistic calculus FICL. In order to make this precise, we require some de�nitions.The notation [�]? stands for the negation of a sequence of formulas, which is de�nedto the sequence of negations of formulas in �, in reverse order.Lemma 4.5.26 Any well-formed FICL sequent � ` C, is provable in FICL if andonly if ` [�]?; C is provable in CL.A broader class of conservativity results are available, going beyond the smallfragment FICL, but the logic CL is not conservative over the whole two-sided intu-itionistic logic ICL.In all formulations of noncommutative linear logic the key rule is 
. In a sensewhich we make more precise later, the constants and additive connectives of linearlogic are inherently commutative. Also, the P rule follows the 
 rule in its commu-tativity. Thus noncommutative linear logic is quite sensitive to the exact formulationof 
. However, there are some minor variations on the syntactic presentation of theother proof rules which �rst bear some notice.4.5.2 Rotate Rule versus EmbeddingWithout the R rule we would have to modify the formulation of other rules, suchas the P rule, to allow its application within a sequent, instead of requiring itsapplication at one end of a sequent. To see this, compare the original version of Pon the left with the modi�ed version on the right below:P ` �; A;B` �; (APB) ` �; A;B;�` �; (APB);� P2We will call the P2 rule the embedded equivalent of the P rule. The use of P2in noncommutative linear logic without the R rule directly corresponds to the use ofP in CL with R rule considered part of the system. We will use eCL to stand for



CHAPTER 4. NONCOMMUTATIVE PROPOSITIONAL LINEAR LOGIC 93I ` pi; pi?Cut ` �; A ` �; A?` �;�
 ` �; A ` B;�` �; (A
B);�P ` �; A;B` �; (APB)� ` �; A ` �; B` �; (A�B) ` �; (A�B)& ` �; A ` �; B` �; (A&B)?W ` �` �; ?A?C ` �; ?A; ?A` �; ?A?D ` �; A` �; ?A!S `?�; A`?�; !A? ` �` �;?1 ` 1> ` �;>R ` �; A` A;�!E ` �; ?A;�` �;�; ?A



CHAPTER 4. NONCOMMUTATIVE PROPOSITIONAL LINEAR LOGIC 92Theorem 4.4.24 The provability problem for FICL is recursively unsolvable.Corollary 4.4.25 The provability problem for ICL is recursively unsolvable.This corollary follows from Theorem 4.4.24 by a conservativity result which iseasily derived from the cut-elimination and subformula properties of FICL.4.5 Other Noncommutative LogicsAs mentioned previously, there is a family of logics which share a strong resemblanceto FICL. All of the ones we can sensibly imagine have undecidable decision problems.The �rst generalization that one might make is to loosen the intuitionistic re-striction of FICL, allowing multiple formulas to appear on the right hand side of asequent.We will now consider various possibilities of formalizations of such a system, whereall formulas appear on the right of the `. When speci�c rules are mentioned, it istheir use on the right that is meant. For example, in the remainder of this chapter,the 
 R rule will be referred to as the 
 rule.4.5.1 One-sided Noncommutative Linear Logic: CLThe one-sided rules of noncommutative linear logic (CL are given below.



CHAPTER 4. NONCOMMUTATIVE PROPOSITIONAL LINEAR LOGIC 91Thus, by induction, given a sequence of reductions which solves a word problem,we may simulate the solution in FICL.The following concrete example illustrates the intended simulation. Assume thatthe �rst rule applied in the sequence of reductions is hcd! xyi. Then g in the aboveschema is cd, and g0 is xy. Also, [g] is pc; pd, [g0] is px; py, [g0]2 is (px
 py), and ([g0])is (px 
 py). Also assume that r is papb, s is pepf , and [V ] is pn.pc; pd ` (py 
 px)T ...pa; pb; px; py; pe; pf ` pnpa; pb; (px 
 py); pe; pf ` pn
LCutpa; pb; pc; pd; pe; pf ` pnLemma 4.4.23 The word problem P is solvable with productions T if � (P ) is prov-able in the theory derived from T .Proof. We prove this lemma by induction on the size of the normalized directedproof of � (P ).Inspecting the rules of FICL, we see that most rules are inapplicable, since theconclusion sequent, which is a translation � (P ) of a word problem, contains onlyoccurrences propositions.In the case that � ` C is equal to [V ] ` [V ], for some V , (Recall that the targetword V of the word problem is a singleton | this proof may be a single application ofthe identity rule) then the solution to the word problem is trivial, i.e., no productionsare required, since U � V .In the induction case where � ` C is not proven by identity, the only remainingcase is Cut. By cut-standardization, we know that one hypothesis is an axiom, andthe cut-formula in that axiom is not a negative literal. Inspecting the axioms in thetheory corresponding to the productions of a semi-Thue system, we see that the cut-formula must always be a formula [g0]2. This formula is built up from positive literalsconnected by 
. By the normalization property, we know that we may now apply 
L until we are left again with the inductive case of some � (P 0).Thus the semi-Thue systemmaymimic the FICL proof by applying the productioncorresponding to the theory axiom applied, and we have our result by induction.



CHAPTER 4. NONCOMMUTATIVE PROPOSITIONAL LINEAR LOGIC 90this problem into a FICL sequent as: [U ] ` [V ]2Now, we show that the word problem P is solvable within system T if and onlyif the translation � (P ) is provable in the theory derived from T . We state the twoparts of the equivalence as Lemmas 4.4.22 and 4.4.23.Lemma 4.4.22 The word problem P is solvable in the semi-Thue system T only if� (P ) is provable in the theory derived from T .Proof. We proceed by induction on the length of the derivation of U=)�V . Ifthe derivation is trivial, that is U � V , then we must show that the sequent` [V ]; [V ]?is provable. Since we assume the word problem has the restricted form with Va singleton, this sequent actually has the form ` [n]; [n]?, which by de�nition ofnotation is ` p?n ; pn. This is provable by identity.Suppose the derivation of U=)�V is a nonempty sequence:U=)U1=)U2=)� � �=)Un=)V:Since U=)U1, there is some rule hg ! g0i in T , and possibly null words r and ssuch that [U ] = [rgs] and [U1] = [rg0s]. By induction we assume that we have a proofof [U1] ` [V ], and construct from this a proof of the following form:[g] ` [g0]T ...[r]; [g0]; [s] ` [V ][r]; ([g0]); [s] ` [V ]
L
L...[r]; [g0]2; [s] ` [V ]P Cut[r]; [g]; [s] ` [V ]In this partial deduction there are as many applications of the 
 L rule as there areseparate formulas in [g0].



CHAPTER 4. NONCOMMUTATIVE PROPOSITIONAL LINEAR LOGIC 89is known to be undecidable [80]. The problem remains undecidable if we add thecondition that V be a singleton (word of length one) n such that n does not occur inU or in the right hand side of any production, and only appears as a singleton on theleft hand side of productions. This restriction is analogous to requiring that a Turingmachine have a unique �nal state without any outgoing transitions.To show that the above restrictions preserve undecidability it su�ces to give atransformation from a general word problem to a word problem of the restricted class.Speci�cally, given a word problem from U to V , with set of productions T , we mayadd the production V ! n where n is a new symbol which is added to the alphabet�. We then ask the new word problem from U to n (with the new and the originalproductions), in the alphabet � [ fng. This problem is solvable if and only if theoriginal problem is. However the new problem is of the restricted class de�ned above.4.4 From Semi-Thue Systems to Noncommuta-tive Linear LogicWe overload the de�nition of translation [ ] to include the case of words | thetranslation of a word [ab � � � z] is the list of FICL formulas pa; pb; � � � ; pz. We alsode�ne [ab � � � z]2 to be the FICL formula pa 
 pb; � � � 
 pz. Finally, as a notationalconvenience, we let (�) designate ambiguously any formula which could be derivedfrom � by applications of the 
 L rule. In other words, (�) is the result of replacingsome number of commas separating formulas in � by 
.Given a Semi-Thue system T = fha1 ! b1i; ha2 ! b2i � � � hak ! bkig, we de�nethe FICL theory derived from T as the following set of sequents:[a1] ` [b1]2[a2] ` [b2]2...[ak] ` [bk]2For a word problem P consisting of the pair U , V we de�ne the translation � (P ) of



CHAPTER 4. NONCOMMUTATIVE PROPOSITIONAL LINEAR LOGIC 88For each axiom ti � A1; A2; � � � ; An ` B, we may prove` [ti] �`!((A1
A2 
 � � � 
An)��B) by several applications of 
 L, one applicationof �� R, and one application of !S, as follows.A1; A2; � � � ; An ` B
LT...A1 
A2 
 � � � 
An ` B
L` (A1 
A2 
 � � � 
An)��B��R`!((A1 
A2 
 � � � 
An)��B)!SBy cutting this proof against the given proof of �; [T ] ` C, we obtain a proof of�; [T � ftig] ` C, where T � ftig is the multiset di�erence of T and ftig. Thus byinduction on the number of axioms, cutting each one out in turn, we can derive � ` Cin theory T .4.3.2 Semi-Thue SystemsA semi-Thue system T over alphabet � is a set of pairs hx! yi, where x and y arestrings over �. Each pair in T is called a production, and we use them as rewriterules. We call x the left hand side and y the right hand side of a production hx! yi.U rewrites to V in system T with a production hg ! g0i if U and V are wordsover alphabet �, and there exist possibly null words r and s such that U = rgs andV = rg0s. We write U=)Vif U rewrites to V using some production. We use the notationU=)�Vif there exists a (possibly empty) sequence of words U1; � � � ; Un such thatU=)U1=)U2=)� � �=)Un=)VThe word problem for a semi-Thue system T the problem of determining, for agiven pair of words U and V , whether or not U=)�V in system T . This problem



CHAPTER 4. NONCOMMUTATIVE PROPOSITIONAL LINEAR LOGIC 87all the [ti] formulas: pi ` piI =) pi ` piIpi; [t1] ` pi!Wpi; [t1]; [t2] ` pi!W!W...pi; [t1]; [t2]; � � � ; [tk�1] ` pi!W!Wpi; [T ] ` piWe then continue by adding [T ] to every sequent in the entire proof tree. At everyapplication of 
R, ��L, and Cut, we extend the proof tree with an extra copy of theconclusion sequent of the binary rule, to which we add an extra copy of [T ]. Thenwe extend the proof further, adding one contraction step for each [ti] between thatsequent and the original conclusion of that binary rule....� ` A ...� ` B 
�;� ` (A
B) =) ...�; [T ] ` A ...�; [T ] ` B 
�; [T ];�; [T ] ` (A
B)!C...�;�; [T ] ` (A
B)!CThus we have given a construction which builds a proof of �; [T ] ` � without anynonlogical axioms from a given proof of � ` � using axioms from T .The following theorem closely corresponds to Theorem 2.7.9.Theorem 4.3.21 (Theory () For any �nite set of axioms T , � ` C is provablein theory T if �; [T ] ` C is provable without nonlogical axioms.Proof. Assuming we have a proof of �; [T ] ` C, we immediately have a proof of�; [T ] ` C in theory T , since any proof in pure linear logic is also a proof in the logicextended with axioms. We can also build proofs of ` [ti] in the theory T for eachaxiom ti. By cutting these proofs against the given proof of �[T ] ` C, we obtain aproof of � ` C in theory T .



CHAPTER 4. NONCOMMUTATIVE PROPOSITIONAL LINEAR LOGIC 86Theorem 4.3.20 (Theory )) For any �nite set of FICL axioms T , � ` C isprovable in theory T only if �; [T ] ` C is provable in FICL without nonlogicalaxioms.Proof. Given some proof of � ` C in theory T , we have a linear logic proof tree withaxioms of T at some leaves. For each leaf of the proof tree of the form � ` D, where� ` D is some axiom ti, we replace that leaf with a small proof of �; [T ] ` D whichdoes not use theory axioms (see below). For each leaf sequent which was originallyan application of identity we extend the proof by adding weakenings for all the ![ti]formulas. We then add [T ] to every sequent in the body of the entire proof tree. Atevery application of 
R, ��L, and Cut, we extend the proof tree with contractionson each formula in [T ].The �rst mentioned proof tree, of �; [T ] ` D, will be constructed from the prooftree for �; [ti] ` D. Since each formula in [T ] begins with !, we may weaken in theremainder of [T ], and thus with some number of weakening steps we have �; [T ] ` D.For example, if there are k axioms, and � ` D is the axiom t1 = q1 ` (q2 
 a), thenwe know [t1] =!(q1��(q2 
 a)). We then perform the following transformation:q1 ` (q2 
 a)T =) q1 ` q1I q2 ` q2I a ` aI
Rq2; a ` (q2 
 a)(q2 
 a) ` (q2 
 a)
L��Lq1; (q1��(q2 
 a)) ` (q2 
 a)!Dq1; [t1] ` (q2 
 a)q1; [t1]; [t2] ` (q2 
 a)!W!W...q1; [t1]; [t2]; � � � ; [tk�1] ` (q2 
 a)!W!Wq1; [T ] ` (q2 
 a)For each leaf sequent which was originally an application of identity we weaken in



CHAPTER 4. NONCOMMUTATIVE PROPOSITIONAL LINEAR LOGIC 85premise of a directed cut where the cut-formula in that axiom is not a negative literala principal axiom of that directed cut. By de�nition, all directed cuts have at leastone principal axiom. A cut between two axioms is always directed, and if the cut-formula of such a cut is non-atomic, that cut has two principal axioms. A directed orstandardized proof is a proof with all cuts directed.Lemma 4.3.18 (FICL Cut Standardization) If there is a proof of � ` C intheory T in FICL, then there is a directed proof of � ` C in theory T in FICL.This lemma may be proven in nearly the same way as cut-standardization in fulllinear logic (Lemma 2.7.10). In fact there are fewer cases here since the constantsand additive connectives are not present in FICL.An 
 L normalized directed proof is a directed proof where each application of
 L has been permuted as far down the proof tree as possible.Lemma 4.3.19 (
 Normalization) If there is a proof of � ` C in theory Tin FICL, then there is a 
 L normalized directed proof of � ` C in theory T inFICL.This lemma may be proven by appealing to Lemma 4.3.18 and a permutabilitylemma, which is not proven here, but which is directly analogous to the permutabilityof 
 L (or P R) down in a sequent proof (see Section 2.6).4.3.1 Theories into FICLIt happens that the translation of the theories into pure (commutative) linear logicmay also be employed to encode FICL theories in pure FICL. We recall the de�nitionof the translation [T ] of a theory T with k axioms into a multiset of formulas by[ft1; t2; � � � ; tkg] = [t1]; [t2]; � � � ; [tk]where [ti] is de�ned for each axiom ti as follows:[G1; G2; � � � ; Gn ` F1; F2; � � � ; Fm ] �= !((G1 
G2 
 � � � 
Gn)��(F1PF2P � � � PFm))The following theorem is directly analogous to Theorem 2.7.8, but is restated andproved here for the FICL case.



CHAPTER 4. NONCOMMUTATIVE PROPOSITIONAL LINEAR LOGIC 84sort of and-branching. This situation is analogous to that for commutative versusnoncommutative semi-Thue systems, where the noncommutative version allows theencoding of a zero test leading to undecidability, whereas the commutative versionis unable to simulate zero test and has been shown to be decidable [52]. In fact,since FICL closely resembles semi-Thue systems, we will demonstrate undecidabilityof FICL by a reduction from semi-Thue systems.Although the reduction is intuitively simple, the proof of its correctness requiressome elaborate machinery. In particular, a cut-elimination theorem is required.Lemma 4.2.16 (Cut Elimination Revisited) If there is a proof of sequent � `C in FICL, then there is a cut-free proof of � ` C in FICL.This lemma may be proven in the same manner as in the full logic 2.3.4.Corollary 4.2.17 (Subformula Property Revisited) Any formula in any cut-free FICL proof of � ` C is a subformula of � or of C.4.3 FICL TheoriesWe will de�ne theories as for the commutative case (see Section 2.7), and show thatcut-standardization (see Lemma 2.7.10) again holds in this logic.Formally, a FICL axiom may be any FICL sequent of the form pi1 ; pi2; � � � pin `C, where C is any FICL formula not including modal operators (? or !), and theremainder of the sequent is made up of negative literals. Any �nite set of FICLaxioms is a FICL theory. For any theory T , we say that a sequent � ` C is provablein T exactly when we are able to derive � ` C using the standard set of FICL proofrules and FICL axioms from T . Thus each axiom of T is treated as a reusable sequentwhich may occur as a leaf of a proof tree. As before we will write � ` CT for a leafsequent which is a member of the theory T .We recall the de�nition of a directed cut:A directed cut is one where at least one premise is an axiom in T , and the cut-formula in the axiom is not an atomic literal of negative polarity. We call any axiom



CHAPTER 4. NONCOMMUTATIVE PROPOSITIONAL LINEAR LOGIC 83The 8 Right and 9 Left rules only apply if y is not free in �, and any nonlogi-cal theory axioms.Although ICL is undecidable, a more intriguing result is that a small fragment ofICL is also undecidable. We call this multiplicative-exponential fragment FICL.Identity A ` A �1 ` A �2; A;�3 ` C�2;�1;�3 ` C Cut
 Left �1; A;B;�2 ` C�; (A
B);�2 ` C �1 ` A �2 ` B�1;�2 ` (A
B) 
 Right�� Left �1 ` A B;�2 ` C�1; (A��B);�2 ` C �; A ` B� ` (A��B) �� Right! W �1;�2 ` C�1; !A;�2 ` C �1; !A; !A;�2 ` C�1; !A;�2 ` C ! C! D �1; A;�2 ` C�1; !A;�2 ` C !� ` A!� `!A ! S! E1 �1; A; !B;�2 ` C�1; !B;A;�2 ` C �1; !B;A;�2 ` C�1; A; !B;�2 ` C ! E2However, one may simplify this system further, by considering the logic withnonlogical theories, but without the explicit modal operators ! and ?. One mayencode such a logic in FICL using the ! and ?.4.2 FICL is UndecidableWe will show the word problem for semi-Thue systems has a straightforward encodingin FICL. Since we have already shown that full linear logic is undecidable, thefact that full noncommutative linear logic is undecidable is not too surprising. Butsince FICL is a fragment of noncommutative linear logic which does not contain theadditive connectives, the earlier construction of and-branching two-counter machinesin full linear logic would fail in FICL. However, the and-branching used in thatconstruction was required in order to encode zero-test in a commutative setting. Ina noncommutative setting a zero test operation may be encoded easily without any



CHAPTER 4. NONCOMMUTATIVE PROPOSITIONAL LINEAR LOGIC 82Identity A ` A �1 ` A �2; A;�3 ` C�2;�1;�3 ` C Cut
 Left �1; A;B;�2 ` C�; (A
B);�2 ` C �1 ` A �2 ` B�1;�2 ` (A
B) 
 Right�� Left �1 ` A B;�2 ` C�1; (A��B);�2 ` C �; A ` B� ` (A��B) �� Right�� Left �2 ` B �1; A ` C�1; (A��B);�2 ` C �; A ` B� ` (B��A) �� Right� Left �; A ` � �; B ` ��; (A�B) ` � � ` A;� � ` B;�� ` (A&B);� & Right& Left1 �; A ` ��; (A&B) ` � � ` A;�� ` (A�B);� � Right1& Left2 �; B ` ��; (A&B) ` � � ` B;�� ` (A�B);� � Right2! W �1;�2 ` C�1; !A;�2 ` C �1; !A; !A;�2 ` C�1; !A;�2 ` C ! C! D �1; A;�2 ` C�1; !A;�2 ` C !� ` A!� `!A ! S? D � ` A� `?A !�; A `?C!�; ?A `?C ? S? W � `� `?A! E1 �1; A; !B;�2 ` C�1; !B;A;�2 ` C �1; !B;A;�2 ` C�1; A; !B;�2 ` C ! E20 Left �; 0 ` C � ` > > Right1 Left � ` C�; 1 ` C ` 1 1 Right



CHAPTER 4. NONCOMMUTATIVE PROPOSITIONAL LINEAR LOGIC 814.1 Non-commutative RulesThe logic we work with in this chapter is intuitionistic noncommutativelinear logic, where the modal ! is assumed to be allowed to commute.



CHAPTER 4. NONCOMMUTATIVE PROPOSITIONAL LINEAR LOGIC 80and thus should be permitted the freedom of exchange, even in the noncommutativeversions of linear logic. In this formulation reusable formulas are therefore allowed topermute.There are a whole family of logics which could result from various additions ofrestricted exchange to noncommutative linear logic. The main point of di�erencewithin this family is the exact formulation of the rules of inference. However, mostmembers of this family of logics have an undecidable validity problem.In fact, the multiplicative and reuse operators are su�cient to encode undecid-able problems in most of these logics. In other words, the constants and additiveconnectives are not necessary in order to simulate a Turing machine in noncommu-tative linear logic, although they appear to be necessary in commutative linear logic.Below we present the detailed proof of undecidability for a particular logic we willcall FICL, which is the multiplicative and exponential fragment of ICL, a member ofthe noncommutative linear logic family.David Yetter [97] has also studied a variant of noncommutative linear logic. In hiswork, he considered a system with two new modalities, k and K, which are relatedto ? and !. The k modality essentially marks those formulas which are free to bepermuted both left and right through a sequent, despite the noncommutativity ofthe logic in general. The reusable formulas (marked with ! on the left, or ? on theright) are allowed to permute, but are also allowed the freedom of contraction andweakening, while the k and K formulas are not. The undecidability result of thischapter therefore holds for Yetter's formulation of noncommutative linear logic aswell.We now focus on FICL, a fragment of ICL su�cient to encode Turing machines.This logic includes only the multiplicative and exponential connectives of linear logic,excluding the additives and constants, but including restricted versions of the ex-change rule which only applies to ! formulas.



Chapter 4Noncommutative PropositionalLinear LogicThe following is called the unrestricted exchange rule:Exch. R � ` �; A;B�� ` �; B;A;�Since this rule is present in full linear logic, sequents are often treated as multi-sets of formulas, and the exchange rules are often considered implicit in the displayof sequent proofs. This structural rule allows sequents to be permuted arbitrarily,making linear logic a commutative logic. More speci�cally, ` (A 
 B)��(B 
 A) isderivable in linear logic using exchange, as are the analogous sequents for all the otherbinary connectives of linear logic (P , �, & ). However, the absence of the E rule(treating sequents as sequences of formulas, without any rule of exchange) drasticlyalters the set of provable sequents in linear logic. In fact, without the exchange rule,` (A
B)��(B 
A) is not derivable.Noncommutative propositional linear logic is linear logic where the unrestrictedexchange rule is omitted, or equivalently, where sequents are treated as being listsinstead of multisets. This family of logics is somewhat speculative, though all arevery closely related to work by Lambek [55],Yetter [97], and others. However, the im-mediate resulting system is unsatisfying in that the reusable formulas (those markedby ?) are exactly the ones which can be contracted and weakened in linear logic,79



CHAPTER 3. PROPOSITIONAL LINEAR LOGIC IS UNDECIDABLE 783.4 Summary of ChapterIn this section it was shown that propositional linear logic is undecidable. This factfollows from a computational reading of some linear logic proofs as (acm) compu-tations. The reduction from the halting problem for acms to a decision problemin linear logic is factored through decision problems in linear logic augmented withnonlogical theory axioms.This undecidability result is perhaps somewhat surprising, but should not beviewed as a negative result: linear logic is an extremely expressive logic, and �nd-ing that the full (propositional) logic is undecidable merely implies that linear logicembodies notions closer to computing machinery than previously envisioned.



CHAPTER 3. PROPOSITIONAL LINEAR LOGIC IS UNDECIDABLE 77zB; a ` zB�04 zB ` (qF � qF )�05 qF ` qF I qF ` qF I�L(qF � qF ) ` qF CutzB ` qF CutzB; a ` qFFigure 3.1: Zero-test proofqI ` (q2 
 a)�01 q2 ` (zB � q3)�03 ...zB; a ` qF q3; a ` qF �02 qF ` qF ICutq3; a ` qF �L(zB � q3); a ` qF Cutq2; a ` qF(q2 
 a) ` qF
L CutqI ` qFFigure 3.2: Proof corresponding to computationThe proof shown in Figure 3.2 of qI ` qF in the same theory demonstrates theremainder of the acm machinery. The lowermost introduction of a theory axiom,Cut, and 
 L together correspond to the application of the increment instruction �01.That is, the qI has been \traded in" for q2 along with a. The application of a directedcut and � L correspond to the fork instruction, �03 which requires that both branchesof the proof be successful in the same way that and-branching machines require allbranches to reach an accepting con�guration. The elided proof of zB; a ` qF appearsin Figure 3.1, and corresponds to the veri�cation that the B counter is zero. Theapplication of Cut, theory axiom, and identity correspond to the �nal decrementinstruction of the computation, and complete the proof.



CHAPTER 3. PROPOSITIONAL LINEAR LOGIC IS UNDECIDABLE 76encoded as three acm transitions | �03, �04, and �05. The transition �03 is a fork toa special state ZB, and one other state, Q3. The two extra transitions, �04 and �05,force the computation branch starting in state ZB to verify that counter B is zero.Given the above transitions, the and-branching machine without zero-test may thenperform these moves:fhQI ; 0; 0ig �01�!fhQ2; 1; 0ig �03�!fhZB; 1; 0i; hQ3; 1; 0ig �04�!fhZB; 0; 0i; hQ3; 1; 0ig�05�!fhQF ; 0; 0i; hQF ; 0; 0i; hQ3; 1; 0ig �02�!fhQF ; 0; 0i; hQF ; 0; 0i; hQF ; 0; 0igNote that an instantaneous description of this and-branching machine is a list oftriples, and the machine accepts if and only if it is able to reach hQF ; 0; 0i in allbranches of its computation. This particular computation starts in state QI, incre-ments the A counter and steps to state Q2. Then it forks into two separate computa-tions; one which veri�es that the B counter is zero, and the other which proceeds tostate Q3. The B counter is zero, so the proof of that branch proceeds by decrementingthe A counter to zero, and jumping to the �nal state QF . The other branch fromstate Q3 simply decrements A and moves to QF . Thus all branches of the computa-tion terminate in the �nal state with both counters at zero, resulting in an acceptingcomputation.The linear logic proof corresponding to this computation is displayed in Figures 3.1and 3.2, and is explained in the following paragraphs. In these proofs, each applicationof a theory axiom corresponds to one step of acm computation. We represent thevalues of the acm counters in unary by copies of the formulas a and b. In this examplethe B counter is always zero, so there are no occurrences of b.The proof shown in Figure 3.1 of zB; a ` qF in the above linear logic theory cor-responds to the acm verifying that the B counter is zero. Reading the proof bottomup, it begins with a directed cut. The sequent zB ` qF is left as an intermediate step.The next step is to use another directed cut, and after application of the & rule, wehave two sequents left to prove: qF ` qF and qF ` qF . Both of these correspond to theacm triple hQF ; 0; 0i which is the accepting triple, and are provable by the identityrule. If we had attempted to prove this sequent with some occurrences of b, we wouldbe unable to complete the proof.



CHAPTER 3. PROPOSITIONAL LINEAR LOGIC IS UNDECIDABLE 75a simple computation of an ordinary two counter machine with zero-test instruction,a corresponding acm computation, and a corresponding linear logic proof.Repeating from the introduction, a key insight is that searching for a directedproof of a linear logic sequent in a theory is analogous to searching for an acceptingacm computation. The product of a successful search is an accepting computation.Suppose the transition relation � of a standard two counter machine with zero-testconsists of the following: �1 ::= QI Increment A Q2�2 ::= Q3 Decrement A QF�3 ::= Q2 Zero-Test B Q3The machine may perform the following transitions, where an instantaneous descrip-tion of a two counter machine is given by the triple consisting of Qj, the current state,and the values of counters A and B.hQI ; 0; 0i �1�!hQ2; 1; 0i �3�!hQ3; 1; 0i �2�!hQF ; 0; 0iThis computation starts in state QI , increments the A counter and steps to state Q2.Then it tests the B counter for zero, and moves to Q3, where it then decrements theA counter, moves to QF , and accepts.The transition relation � may be transformed into a transition relation �0 foran equivalent and-branching two counter machine without zero-test. The modi�edrelation �0 (shown on the left below), may then be encoded as a linear logic theory(shown on the right): Transitions�01 ::= QI Increment A Q2�02 ::= Q3 Decrement A QF�03 ::= Q2 Fork ZB; Q3�04 ::= ZB Decrement A ZB�05 ::= ZB Fork QF ; QF Theory AxiomsqI ` (q2 
 a)q3 ` a; qFq2 ` (zB � q3)zB ` a; zBzB ` (qF � qF )Notice how the �rst two transitions (�1 and �2) of the standard two counter machineare preserved in the translation from � to �0. Also, the Zero-Test instruction �3 is



CHAPTER 3. PROPOSITIONAL LINEAR LOGIC IS UNDECIDABLE 74Therefore the machineM may emulate this proof by performing the acm instruc-tion corresponding to the axiom used (in this case a Fork instruction), and thencontinuing as dictated by the two inductive cases.From Lemmas 3.1.11, 2.7.8, 2.7.9, 3.2.12, and 3.2.13 of this section, we easilyobtain our main result:Theorem 3.2.14 The provability problem for propositional linear logic is recursivelyunsolvable.As mentioned earlier, linear logic, like classical logic, has an intuitionistic fragment.Briey, the intuitionistic fragment is restricted so that there is only one positiveformula in any sequent. In fact, the entire construction above was carried out inintuitionistic linear logic, and thus the undecidability result also holds for this logic.In any theory derived from an acm M , there is only one positive formula in anytheory axiom. Also, throughout a directed proof of �(s) in such a theory, the onlypositive atom which appears outside a theory axiom is qF . Thus any directed proofof �(s) in a theory derived from M is in the intuitionistic fragment of linear logic,and along with a conservativity result not proven here, we have the following:Corollary 3.2.15 The provability problem for propositional intuitionistic linear logicis recursively unsolvable.In the proof of this corollary we make use of the conservativity property of fulllinear logic over the intuitionistic fragment for any sequents occurring in a directedproof of a translation of an acm machine con�guration. This conservativity is aweaker property than full conservativity since sequents in such a directed proof havea special form. In particular, they have no constants, and the right hand side isalways a single formula.3.3 Example ComputationThis section is intended to give an overview of the mechanisms we have de�nedabove, and lend some insight into our undecidability result, stated above. We present



CHAPTER 3. PROPOSITIONAL LINEAR LOGIC IS UNDECIDABLE 73Therefore the machineM may emulate this proof by performing the acm instruc-tion corresponding to the axiom used (in this case a Decrement A instruction), andthen continuing as dictated by the inductive case.qi ` a; qj: Analogous arguments apply.qi ` (qj � qk): If the last axiom applied is qi ` (qj � qk), which corresponds to aFork instruction, then by standardization, we know the cut-formula must be (qj�qk)in the axiom, and that the proof must look likeqi ` (qj � qk)T ...(qj � qk); ax; by ` qF Cutqi; ax; by ` qFSince each other linear logic rule besides � L, cut, identity, or axiom introducessome symbol which does not occur in (qj � qk); ax; by ` qF , the derivation of thissequent must end in one of these rules. Furthermore, there are two formulas in thesequent which are not negative literals, so this sequent is not derivable using onlyan axiom. Identity could not lead to this sequent, since the sequent contains a non-atomic formula. By our standardization procedure, we know that each cut mustinvolve an axiom from the theory, and the cut-formula in the axiom is not a negativeliteral. Inspecting the various types of axioms in the theory derived from M , we seethat all axioms contain one top level negative atomic formula qi for some i. Since qicannot be the cut-formula in a principal axiom of a directed cut, it must appear inthe conclusion of that application of cut. However, there is no such top level qi in thesequent in question. Thus this sequent may only be derived by the application of the� L rule. Thus we know the derivation to be of the form:qi ` (qj � qk)T ...qj; ax; by ` qF ...qk; ax; by ` qF �L(qj � qk); ax; by ` qF Cutqi; ax; by ` qFThe proofs of qj; ax; by ` qF and qk; ax; by ` qF can be simulated on the machine byinduction, since one is a sequent which corresponds to the triple hQj; x; yi, the othercorresponds to hQk; x; yi, and each has a proof in linear logic of smaller size.



CHAPTER 3. PROPOSITIONAL LINEAR LOGIC IS UNDECIDABLE 72are not negative literals, so this sequent is not derivable using only an axiom. Identitycould not lead to this sequent, since the sequent contains a non-atomic formula. Byour standardization procedure, we know that each cut must involve an axiom fromthe theory, and the cut-formula in the axiom is not a negative literal. Inspecting thevarious types of axioms in the theory derived fromM , we see that all axioms containone top level negative atomic formula qi for some i. Since qi cannot be a directedcut-formula in a principal axiom, it must appear in the conclusion of that applicationof cut. However, there is no such top level qi in the sequent in question. Thus thissequent may only be derived by the application of the 
 L rule. Therefore, we knowthe derivation must have the form:qi ` (qj 
 a)T ...qj; ax+1; by ` qF(qj 
 a); ax; by ` qF
LCutqi; ax; by ` qFWe know that the proof of qj; ax+1; by ` qF may be simulated by the acm by induction,since it is the sequent �(hQj; x+1; yi), which corresponds to the triple hQj; x+1; yi,and has a proof in linear logic of smaller size.Therefore the machineM may emulate this proof by performing the acm instruc-tion corresponding to the axiom used (in this case an Increment A instruction), andthen continuing as dictated by the inductive case.qi ` (qj 
 a): Analogous arguments apply.qi; a ` qj: If the last axiom applied is qi; a ` qj, which corresponds to a Decre-ment A instruction, then by standardization, we know the cut-formula must be qj inthe axiom, and that the proof must be of the formqi; a ` qjT ...qj; ax; by ` qF Cutqi; ax+1; by ` qFBy induction, the proof of qj; ax; by ` qF can be simulated, since it is the sequent�(hQj; x; yi), which corresponds to the triple hQj ; x; yi, and has a shorter proof inlinear logic.



CHAPTER 3. PROPOSITIONAL LINEAR LOGIC IS UNDECIDABLE 71We assume that we are given a proof of each element of the set �(s), and we analyzeone of the proofs, all of which end in a conclusion corresponding to a machine triplehQi; x; yi. ...qi; ax; by ` qFSince this sequent is simply a list of atomic propositions, the only linear logic ruleswhich can apply to any such sequent are identity, some axiom, and cut.Identity is only applicable when both x and y are zero, and qi = qF . In this case,qF ` qF already corresponds to the accepting triple hQF ; 0; 0i.The only axioms which are identical to a sequent in �(s) are those which corre-spond to some � which is a decrement instruction that ends in qF . In this case, sinceeach decrement axiom in [�] contains exactly one occurrence of a or b, x = 1 andy = 0, or x = 0 and y = 1. In either case, the acm machineM need only perform thedecrement instruction �, and this branch of computation reaches an accepting triple.The �nal possibility is cut, and by our standardization procedure, we know thatone hypothesis of that cut is an axiom from the theory derived fromM , and further-more that the cut-formula in that axiom is not a negative literal.Since there are only �ve types of instructions in an acm; Increment A or B,Decrement A or B, and Fork, there are only �ve di�erent types of axioms in atheory derived from any acmM . We now perform case analysis on the type of axiomthat was last applied in a proof.qi ` (qj 
 a): If the last axiom applied is of the form qi ` (qj 
 a), then itcorresponds to an Increment A instruction, and by standardization, we know thecut-formula must be (qj 
 a) in the axiom, and that the proof must look likeqi ` (qj 
 a)T ...(qj 
 a); ax; by ` qF Cutqi; ax; by ` qFSince each other linear logic rule besides 
 L, cut, identity, or axiom introduces somesymbol which does not occur in (qj
a); ax; by ` qF , the derivation of this sequent mustend in one of these rules. Furthermore, there are two formulas in this sequent which



CHAPTER 3. PROPOSITIONAL LINEAR LOGIC IS UNDECIDABLE 70Qi Fork Qj; Qk: Here, the halting computation begins with the stepf� � � hQi; A;Bi � � �g ! f� � � hQj; A;Bi; hQk; A;Bi � � �gWe assume by induction that we have a proof of qj; aA; bB ` qF ,and of qk; aA; bB ` qF , and we extend those proofs into a proof of qi; aA; bB ` qF .qi ` (qj � qk)T ...qj; aA; bB ` qF ...qk; aA; bB ` qF �L(qj � qk); aA; bB ` qF Cutqi; aA; bB ` qFHere qi ` (qj � qk) is the axiom which corresponds to the fork instruction.Lemma 3.2.13 (Machine () An and-branching counter machine M accepts fromID s if every sequent in the set �(s) is provable in the theory derived from M .Proof.Given a set of proofs of the elements of �(s) in the theory derived from M , weclaim that a halting computation of the acm M from state s can be extracted fromthose proofs. We achieve this with the aid of the cut standardization Lemma 2.7.10,which in this case leaves cuts in the proof only where they correspond to applicationsof acm instructions. We may thus simply read the description of the computationfrom the standardized proof.By Lemma 2.7.10, it su�ces to consider standardized proofs. We show that aset of standardized proofs of �(s) may be mimicked by the acm M to produce anaccepting computation from state s.This proof is by induction on the sum of the sizes (number of proof rules applied)of standardized proofs. Since an acm state is given by a �nite set of triples, andall proofs are �nite, we know that this measure is well founded. We assume thatany smaller set of proofs which all end in conclusions which correspond to a triplehQi; A;Bi can be simulated by machineM .We consider the proof of a single element of �(s) at a time.If s = f� � � hQi; x; yi � � �g, then �(s) = f� � � qi; ax; by ` qF � � �g.



CHAPTER 3. PROPOSITIONAL LINEAR LOGIC IS UNDECIDABLE 69Qi Increment A Qj: In this case, the �rst step in the halting computation hasthe form f� � � hQi; A;Bi � � �g ! f� � � hQj; A+ 1; Bi � � �gWe assume by induction that we have a proof of �(hQj ; A+1; Bi) = qj; aA+1; bB ` qF .We extend this proof into a proof of �(hQi; A;Bi) = qi; aA; bB ` qF by adding a cutwith an axiom, as follows.qi ` (qj 
 a)T ...qj; aA+1; bB ` qF(qj 
 a); aA; bB ` qF
LCutqi; aA; bB ` qFNote that the axiom qi ` (qj 
 a) is precisely the translation of the transition takenby the machine, and therefore is an axiom of the theory.Qi Increment B Qj: Analogous to above.Qi Decrement A Qj: Since the A counter of the machine must be positive for thisinstruction to apply, we know that the halting computation begins with the transitionf� � � hQi; A+ 1; Bi � � �g ! f� � � hQj; A;Bi � � �gWe assume by induction that we have a proof of qj; aA; bB ` qF . As in the IncrementA case, we extend this to a proof of qi; aA+1; bB ` qF by adding a cut with the axiomcorresponding to the transition taken by the machine.qi; a ` qjT ...qj; aA; bB ` qF Cutqi; aA+1; bB ` qFQi Decrement B Qj: Analogous to above.



CHAPTER 3. PROPOSITIONAL LINEAR LOGIC IS UNDECIDABLE 68The translation of an acm ID is simply the set of translations of the elements ofthe ID: �(fE1; E2; � � � ; Emg) = f�(E1); �(E2); � � � ; �(Em)gWe claim that an acm M accepts from ID s if and only if every element of �(s) isprovable in the theory corresponding to the transition function of the machine. Weprove each half of this equivalence in separate lemmas.Lemma 3.2.12 (Machine )) An and-branching counter machine M accepts fromID s only if every sequent in �(s) is provable in the theory derived from M .Proof. Given a halting computation of an acm machineM from s we claim we canbuild a proof of every sequent in �(s) in the theory derived from M .M accepts from s only if there is some �nite sequence of transitions from thisID to an accepting ID. We proceed by induction on the length of that sequence oftransitions.If there are no transitions in the sequence, then by the de�nition of accepting ID,s consists entirely of hQF ; 0; 0i. We must show that the sequentqF ; a0; b0;` qFis provable in linear logic. This is immediate: we have 0 A's and 0 B's, that is, noneat all. Thus by one application of identity (per sequent) qF ` qF , we have our (setof) proof.If there is at least one transition in the sequence, we have to show that �(s) isprovable. Since M accepts from ID f� � � hQi; A;Bi � � �g, and there is at least onetransition in the sequence, we know that there is some transition in M such thatID ! ID0, and M accepts from ID0. We assume by induction that there is a linearlogic proof which corresponds to the accepting computation for ID0.We now perform case analysis on the type of transition. There are �ve di�erenttypes of instructions: Increment A or B, Decrement A or B, and Fork. Since thetwo increment and two decrement instructions are nearly identical, we will concentrateonly on the cases concerning the counter A.



CHAPTER 3. PROPOSITIONAL LINEAR LOGIC IS UNDECIDABLE 673.2 From Machines to LogicWe give a translation from acms to linear logic with theories and show that oursequent translation of a machine in a particular state is provable in linear logic ifand only if the acm halts from that state. In fact, our translation uses only mallformulas and theories, thus with the use of our earlier encoding, Lemma 2.7.8 andLemma 2.7.9, we will have our result for propositional linear logic without nonlogicalaxioms. Since an instantaneous description of an acm is given by a list of triples, itis somewhat delicate to state the induction we will use to prove soundness.The main idea of this encoding is to use the linear connective & to simulate and-branching behavior, along with previously described techniques for encoding petri-net like tokens using the multiplicative connectives. These machine parts may becombined to build an acm.Given an acm M = hQ; �;QI ; QF i we �rst de�ne a set of propositions:fqijQi 2 Qg [ fa; ; bgWe then de�ne the linear logic theory corresponding to the transition relation � asthe set of axioms determined as follows:Qi Increment A Qj 7! qi ` (qj 
 a)Qi Increment B Qj 7! qi ` (qj 
 b)Qi Decrement A Qj 7! qi; a ` qjQi Decrement B Qj 7! qi; b ` qjQi Fork Qj; Qk 7! qi ` (qj � qk)Given a triple hQi; x; yi of an acm, we de�ne the translation �(hQi; x; yi) by:�(hQi; x; yi) �= qi; ax; by;` qFThus all sequents which correspond to acm triples have exactly one positive literal,qF , some number of as, and bs, the multiplicity of which correspond to the valuesof the two counters of the acm in unary, and exactly one other negative literal, qi,which corresponds to the state of the acm.



CHAPTER 3. PROPOSITIONAL LINEAR LOGIC IS UNDECIDABLE 66Decrement B transition from ZA to itself allows M 00 to loop and decrement thecounter B arbitrarily. In particular it is possible for B to be decremented to thevalue 0. Since QF has no outgoing transitions, the Fork instruction which movesfrom ZA to QF and QF allows this branch of computation to terminate correctlyif and only if both counters are zero when it is executed. Since we are consideringnondeterministic acms, it is possible for a branch of computation which reaches ZAto terminate if and only if the A counter is zero when it reaches ZA. Similarly, anybranch of computation reaching ZB reaches an accepting ID if and only if the Bcounter is zero.We claim that there is a halting computation for the given two counter machineM 0 if and only if there is one for the constructed acm M 00. This is proven by twosimulations.The and-branching machine M 00 may mimic the original two counter machine inthe performance of any instruction, by following any Increment of M 0 with thecorresponding Increment instruction, and a Decrement with the correspondingDecrement. When M 0 executes a Zero-Test A instruction, M 00 forks o� an andbranch which veri�es that the counter A is in fact zero, and the other branch continuesto follow the computation of M 0.For the converse simulation, there is always at most one and-branch of any M 00computation which corresponds to a non�nal, non-zero-testing state in the originalmachine. There may be many and branches of the computation which are in states ZA,ZB, and QF , but at most one and branch is in any other state. Thus, M 0 may mimicM 00 by following the branch of acm computation which does not enter ZA, ZB, or QFuntil the �nal step of computation, when it enters QF . For every Increment andDecrement instruction in the accepting computation of M 00, M 0 may performs thecorresponding instruction. Every Fork instruction executed by M 00 from a non�nal,non-zero-testing state corresponds to a Zero-Test instruction inM 0, and by the aboveobservation, if M 00 forks into state ZA, then M 00 accepts only if the counter A is zero(and similarly for ZB and the counter B). Since we are assuming an accepting M 00computation, we know thatM 0 may execute the corresponding Zero-Test instructionsuccessfully.



CHAPTER 3. PROPOSITIONAL LINEAR LOGIC IS UNDECIDABLE 65We claim without proof that M and M 0 accept the same set of input values, andare therefore equivalent machines.From a nondeterministic two counter machineM 0 with unique �nal state withoutoutgoing transitions, we construct an acm M 00 as follows. The acm M 00 will have thesame set of states, and same initial and �nal states as M 0. The transition function ofM 00 is built by �rst taking all the Increment and Decrement instructions from thetransition function of M 0. We then add two new states to M 00, ZA and ZB, which areused to test for zero in each of the two counters. For ZA, we add two instructions,(ZA Decrement B ZA), and (ZA Fork QF , QF ), to the transition function of M 00.Similarly for ZB, we add (ZB Decrement A ZB), and (ZB Fork QF , QF ). Then foreach Zero-Test instruction of M 0 of the form(Qi Zero-Test A Qj)we add one instruction to M 00: (Qi Fork Qj; ZA):An important feature of M 00 is that once a zero testing or �nal state is entered,no con�guration of that branch of computation may ever leave that set of states.More speci�cally, where M 0 would test for zero, M 00 will fork into two \parallel"computations. One continues in the \same" state as M 0 would have if the Zero-Testhad succeeded, and the other branch \veri�es" that the counter is indeed zero. Whilethe second branch may change the value of one of the counters (the counter which isnot being tested), this cannot a�ect the values of the counters in the \main" branchof computation. Further, the zero-testing branch of computation never enters anystates other than zero-test states or the �nal state. This holds because there are nooutgoing transitions from the �nal state whatsoever, and the only transitions fromthe two zero testing states either loop back to that state or move directly to the�nal state. Also note that any branch of an acm M 00 computation which arrives atthe state ZA may be part of a terminating computation if and only if the counterA is zero when the machine reaches that state. This can be seen by observing thatonce arriving in ZA, there is no possibility of modi�cations to the counter A. The



CHAPTER 3. PROPOSITIONAL LINEAR LOGIC IS UNDECIDABLE 64A two counter machine accepts if it is able to reach any one of the �nal states inthe set F with both counters at zero. It is important that these machines have aZero-Test instruction since the halting problem becomes decidable otherwise, byobvious reduction to the word problem in commutative semi-Thue systems, which isdecidable [69]. Since Zero-Test is the most di�cult to encode in linear logic, weconcentrate on a machine with and-branching, which provides a basic mechanismpowerful enough to simulate Zero-Test, but which is more easily simulated in linearlogic.Using two counter machines, we show that acm's have an undecidable haltingproblem.Lemma 3.1.11 It is undecidable whether an and-branching two counter machinewithout zero-test accepts from ID fhQI ; 0; 0ig. This remains so if the transition re-lation of the machine is restricted so that there are no outgoing transitions from the�nal state.Proof. Since acm's may simulate zero-test with and-branching, acm's aresu�ciently powerful to simulate two counter machines, for which the halting problemis known to be recursively unsolvable [75, 56]. We will give a construction fromstandard two counter machines to acms, and argue that the construction is soundand faithful. This construction and the proof of its soundness is routine, and its stepsshould be familiar to anyone versed in automata theory. In our simulation of the testfor zero instruction of two counter machines, we make essential use of the fact thatall branches of computation terminate with both counters set to zero.Given a nondeterministic two counter machineM we �rst construct an equivalenttwo counter machineM 0 with a unique �nal state QF which has no outgoing transi-tions. One simply adds two new states, QD and QF to M 0, and for each Qf 2 F ofM , one adds the instructions (Qf Increment A QD) and (QD Decrement A QF ).Note that one may simply look at these new transitions as a single nondeterministicstep from each old �nal state to the new (unique) �nal state, which has no outgoingtransitions. However, since there is no general \silent" move, we make the transitionin two steps.



CHAPTER 3. PROPOSITIONAL LINEAR LOGIC IS UNDECIDABLE 63The set � may contain transitions of the following form:(Qi Increment A Qj) takinghQi; A;Bi to hQj; A+ 1; Bi(Qi Increment B Qj) takinghQi; A;Bi to hQj; A;B + 1i(Qi Decrement A Qj) takinghQi; A+ 1; Bi to hQj; A;Bi(Qi Decrement B Qj) takinghQi; A;B + 1i to hQj; A;Bi(Qi Fork Qj; Qk) takinghQi; A;Bi to (hQj; A;Bi, hQk; A;Bi)where Qi; Qj; and Qk are states in Q. The Decrement instructions only apply ifthe appropriate counter is not zero, while the Increment and Fork instructions arealways enabled from the proper state.For example, the single transition Qi Increment A Qj takes an acm from ID:f� � � ; hQi; A;Bi; � � �g to ID: f� � � ; hQj; A+ 1; Bi; � � �g3.1.1 Two Counter MachinesStandard two counter machines have a �nite set of states, Q, a �nite set of transitions,�, a distinguished initial state QI , and a set of �nal states F [75, 42]. An instantaneousdescription of the state of a two counter machine is given by a triple hQi; A;Bi, whichconsists of the current state, and the values of two counters, A and B. The transitionsin � are of four kinds:(Qi Increment A Qj) taking hQi; A;Bi to hQj ; A+ 1; Bi(Qi Increment B Qj) taking hQi; A;Bi to hQj ; A;B + 1i(Qi Decrement A Qj) taking hQi; A+ 1; Bi to hQj; A+ 1; Bi(Qi Decrement B Qj) taking hQi; A;B + 1i to hQj; A;B + 1i(Qi Zero-Test A Qj) taking hQi; 0; Bi to hQj ; 0; Bi(Qi Zero-Test B Qj) taking hQi; A; 0i to hQj ; A; 0i



CHAPTER 3. PROPOSITIONAL LINEAR LOGIC IS UNDECIDABLE 62for the lack of an explicit zero test transition, and the addition of \fork" transitions.Intuitively, Qi Fork Qj; Qk is an instruction which allows a machine in state Qi tocontinue computation from both states Qj and Qk, each computation continuingwith the current counter values. For brevity in the following proofs, we emphasizetwo counter machines. However, there is no intrinsic reason to restrict the machinesto two counters. All of our arguments and results generalize easily to N counters,for N � 2. Formally, an And-Branching Two Counter Machine Without Zero-Test,or acm for short, is given by a �nite set Q of states, a �nite set � of transitions, anddistinguished initial and �nal states, QI and QF , as described below.An instantaneous description, or ID, of an acmM is a �nite list of ordered tripleshQi; A;Bi, where Qi 2 Q, and A and B are natural numbers, each correspondingto a counter of the machine. Intuitively, a list of triples represents a set of machinecon�gurations. One may think of an acm state as some sort of parallel computa-tion which terminates successfully only if all its concurrent computation fragmentsterminate successfully.We de�ne the accepting triple as hQF ; 0; 0i. We also de�ne an accepting ID as anyID where every element of the ID is the accepting triple. That is, every and-branchof the computation has reached an accepting triple. We say that an acm M acceptsfrom an ID s if and only if there is some computation from s to an accepting ID. Itis essential for our encoding in linear logic that both counters be zero in all elementsof an accepting ID.



CHAPTER 3. PROPOSITIONAL LINEAR LOGIC IS UNDECIDABLE 61step used in this section relies heavily on the cut-elimination procedure for linear logicwithout nonlogical axioms, �rst sketched by Girard in [30]. A very explicit proof ofcut-elimination for full propositional linear logic also appears in Chapter 2 whichsome readers may �nd helpful to skim before continuing.It should be noted that linear logic is not the only known undecidable propo-sitional logic | propositional relevance logic is also undecidable [88]. However, theundecidability of these logics appear to arise in very di�erent ways; linear logic fails tohave a critical distributivity property used in the proof of undecidability of relevancelogic, and relevance logic fails to have one of the key connectives used in the proof ofundecidability of linear logic.The encoding of an undecidable problem in linear logic hinges on the combi-nation of three powerful mechanisms: resource accumulation, arbitrary reuse, andand-branching. In linear logic, A;A is very di�erent from A, and this allows us torepresent counters in unary. Inde�nitely reusable formulas such as !(B��C), (or ax-ioms of the form B ` C) may be used to implement machine instructions. Theadditive connectives & and � may be used to test a conjunction of properties of thesimulated machine, such as whether a counter is zero, and if the rest of the computa-tion can continue normally. Together this machinery is enough to encode recursivelyunsolvable problems in linear sequents.3.1 And-Branching Two Counter Machines WithoutZero-TestIn this section we describe nondeterministic two counter machines with and-branchingbut without a zero-test instruction. We show that these machines have a recursivelyunsolvable halting problem, and then we will show how the halting problem for thesemachines may be encoded as a decision problem in mall, with nonlogical axiomscorresponding to the machine instructions.The machines described here are similar to standard two counter machines except



Chapter 3Propositional Linear Logic isUndecidableIn this chapter we show that unlike most propositional logics, the decision problem forpropositional linear logic is not recursively solvable. We study this problem throughthe use of nonlogical axioms in the fragment of linear logic without modal operators(mall). Since this class of axioms may be encoded in full propositional linear logic,as shown in Chapter 2, undecidability of mall with nonlogical axioms implies theundecidability of full propositional linear logic.The proof of undecidability of mall with nonlogical axioms consists of a reductionfrom the halting problem for a form of counter machine to a decision problem in linearlogic. In more detail, we begin by extending propositional linear logic with theorieswhose (nonlogical) axioms may be used any number of times in a proof. We thendescribe a form of and-branching two-counter machine with an undecidable haltingproblem and show how to encode these machines in propositional linear logic withtheories. Since the axioms of our theories must have a special form, we are able toshow the faithfulness of this encoding using a natural form of cut-elimination in thepresence of nonlogical axioms. To illustrate the encoding of two-counter machines, wepresent an example simulation of a simple computation in Section 3.3. On �rst read-ing, the reader may wish to jump ahead to that section since it demonstrates the ba-sic mechanism used in the undecidability proof. Also, the crucial cut-standardization60



CHAPTER 2. LINEAR PROOF THEORY 592.8 Summary of ChapterIn this chapter, we have presented several proof theoretic results. These results arerelatively minor extensions of theorems already in the literature of linear logic. How-ever, the exact form of some of these theorems, such as cut-elimination, are usedto develop richer proof theoretic tools, such as cut standardization (Lemma 2.7.10)in the presence of theory axioms. These results will be used as the basis for latertheorems, such as the undecidability of full propositional linear logic.



CHAPTER 2. LINEAR PROOF THEORY 58This completes the discussion of the modi�cations to Lemma 2.3.2 necessary tohandle nonlogical axioms. Fortunately, Lemma 2.3.3 and Theorem 2.3.4 then followwithout modi�cation (although the de�nition of degree has changed somewhat).Therefore, given any proof of a sequent � ` � in theory T , we can construct adirected proof of � ` � in theory T .The cut-elimination procedure in Section 2.3 introduces new rules of inferencecalled Cut! and Cut?. If we generalized axioms to allow ? and ! formulas in axioms,we would have to generalize the notion of directed proof to include cases involvingCut! andCut?, and a post processing step would be required to transform all directedCut! and Cut?s into a sequence of contractions followed by a single directed Cut, orperhaps simply into a sequence of Cuts. In any event, our axioms are restricted tomall formulas so that any cut involving an axiom is always an application of Cut,never of Cut! nor of Cut?.



CHAPTER 2. LINEAR PROOF THEORY 57in the right hypothesis is an axiom, we apply the following transformation:...�1 ` �; C ...�2 ` B;�; pi 
�1;�2 ` �; (C 
B);�; pi �3 ` �; p?i TCut�1;�2;�3 ` �; (C 
B);�;�+...�1 ` �; C ...�2 ` B;�; pi �3 ` �; p?i TCut�2;�3 ` B;�;� 
�1;�2;�3 ` �; (C 
B);�;�This is simply a special case of the reduction given in case 2.3.1 in Section 2.3.Also, as a second example, the reduction given for Identity is applicable even tothe axiom case: pi ` piI �; pi ` �TCut�; pi ` � =) �; pi ` �TAgain, this is simply a special case of the reduction given in Section 2.3.As a third and �nal example of specializations of reductions given in the appendix,the > R rule also applies to axioms:�1 ` >;�; pi> �2; pi ` �TCut�1;�2 ` >;�;� =) �1;�2 ` >;�;�>This is also simply a special case of the reduction given in the appendix.Now, some simple analysis is required to show that there are no new cases ofprincipal cuts involving axioms. If the cut in question is already directed, the cuthas degree zero, by our modi�ed de�nition, and thus we are done. Otherwise, byde�nition of axiom we know that the cut-formula is a negative atomic literal. Thereare only three rules where an atomic literal may be principal: Identity, 0 L, and >R. However, all of these cases are handled by existent reductions (two of which arerestated above). One should also note that since any cut involving two axioms mustbe directed, we needn't provide a reduction for that case.



CHAPTER 2. LINEAR PROOF THEORY 56By case analysis, it may be seen that there is no proof of this conclusion sequentthat doesn't contain cut. However, we do obtain the following result:Lemma 2.7.10 (Cut Standardization) If there is a proof of � ` � in theoryT , then there is a directed proof of � ` � in theory T .Proof. We modify the cut-elimination procedure de�ned in Section 2.3 in two ways.First we alter the de�nition of degree to ignore the measure of directed cuts. Formally,we say that if a cut is directed, its degree is zero. Second, we modify the proceduregiven in Lemma 2.3.2 to handle the extra cases brought about by the presence ofaxioms. We must allow all the reductions as stated in Appendix 2.3 to apply to thecase when one of the premises is an axiom, but we need not introduce any truly novelreductions.We will follow the notation used in Section 2.3, whereCut� is used to ambiguouslyrefer to the Cut rule or the extra rule of inference introduced in the appendix calledCut!. Also, we will de�ne all the formulas which appear in an axiom to be principalin that application of the axiom.In Section 2.3 most of the reductions are given for some speci�c derivation versusany possible derivation. For example, all the non-principal cases are stated for anyderivation of the \other" hypothesis of Cut�. Similarly, the Identity and > R rulesare stated for any derivation of the \other" hypothesis. We simply now state thateven if the other derivation involves an axiom, the reduction still applies.For example, if the last rule applied in the left hypothesis is 
, and the last rule



CHAPTER 2. LINEAR PROOF THEORY 55induction on the number of axioms, cutting each one out in turn, we can derive � ` �in theory T .Despite the fact that one can encode arbitrary theories in linear logic, as demon-strated above, the remainder of this thesis will focus on a speci�c subclass of proposi-tional, nonmodal theories. The theories we will de�ne below are su�cient to encoderecursively unsolvable problems, but yet allow a great deal of control over the shapeof proofs.2.7.2 Cut StandardizationWe now focus on a special class of linear theories, where every theory axiom containsat most one formula at top level which is not a negative literal. Recall that a positiveliteral is one of the given propositional symbols pi or p?i which occurs with positivepolarity, and a negative literal is one of these which occurs with negative polarity.Thus the class of theories of interest here contains linear logic sequents of the formq1; q2; � � � qn ` C; p?1 ; p?2 ; � � � ; p?n or of the form q1; q2; � � � qn; C ` p?1 ; p?2 ; � � � ; p?n . Forexample, the sequents q; r ` s; p?, q; p ` (p
 q); p?, (p
 p); q ` p?, and ` p?; q? areall axioms in this class. However, ` p1; p1 and (p1 
 p2); p?3 ` are not.A directed cut is one where at least one premise is an axiom in T , and the cut-formula in the axiom is not an atomic literal of negative polarity. We call any axiompremise of a directed cut where the cut-formula in that axiom is not a negative literala principal axiom of that directed cut. By de�nition, all directed cuts have at leastone principal axiom. A cut between two axioms is always directed, and if the cut-formula of such a cut is non-atomic, that cut has two principal axioms. A directed orstandardized proof is a proof with all cuts directed.When theories are added to linear logic the cut-elimination Theorem 2.3.4 nolonger holds, due to the added axioms which may participate directly in cuts. Suchcuts may never be removed: consider the nonlogical mall theory consisting of twoaxioms: p1 ` p2 and p2 ` p3: p1 ` p2T p2 ` p3TCutp1 ` p3



CHAPTER 2. LINEAR PROOF THEORY 54of the conclusion sequent of the binary rule, to which we add an extra copy of [T ].Then we extend the proof further, adding one contraction step for each [ti] betweenthat sequent and the original conclusion of that binary rule....� ` A;� ...� ` B;� 
�;� ` �; (A
B);� =) ...�; [T ] ` A;� ...�; [T ] ` B;� 
�; [T ];�; [T ] ` (A
B);�;�!C...�; [T ];� ` (A
B);�;�!CThus we have given a construction which builds a proof of �; [T ] ` � without anynonlogical axioms from a given proof of � ` � using axioms from T .Theorem 2.7.9 (Theory () For any �nite set of axioms T , � ` � is provablein theory T if �; [T ] ` � is provable without nonlogical axioms.Proof. Assuming we have a proof of �; [T ] ` �, we immediately have a proof of�; [T ] ` � in theory T , since any proof in pure linear logic is also a proof in the logicextended with axioms. We can also build proofs of ` [ti] in the theory T for eachaxiom ti. By cutting these proofs against the given proof of �; [T ] ` �, we obtain aproof of � ` � in theory T .For each axiom ti � A1; A2; � � � ; An ` B1; B2; � � � ; Bm, we may prove ` [ti] �`!((A1
A2
 � � � 
An)��(B1PB2P � � � PBm)) by several applications of 
 L, P R,one application of �� R, and one application of !S, as follows.A1; A2; � � � ; An ` B1; B2; � � � ; Bm
LT...A1 
A2 
 � � � 
An ` B1; B2; � � � ; BmPR
L...A1 
A2 
 � � � 
An ` B1PB2P � � � PBm PR` (A1 
A2 
 � � � 
An)��(B1PB2P � � � PBm)��R`!((A1 
A2 
 � � � 
An)��(B1PB2P � � � PBm))!SBy cutting this proof against the given proof of �; [T ] ` �, we obtain a proof of�; [T � ftig] ` �, where T � ftig is the multiset di�erence of T and ftig. Thus by



CHAPTER 2. LINEAR PROOF THEORY 53does not use theory axioms (see below). For each leaf sequent which was originallyan application of identity or 1 R, or ?L, we extend the proof by adding weakeningsfor all the ![ti] formulas. For each leaf sequent which consists of an application of >R, or 0 L, we simply add the [T ] formulas to the sequent. We then add [T ] to everysequent in the body of the entire proof tree. At every application of 
R, PL, ��L,and Cut, we extend the proof tree with contractions on each formula in [T ].The �rst mentioned proof tree, of �; [T ] ` �, will be constructed from the prooftree for �; [ti] ` �. Since each formula in [T ] begins with !, we may weaken in theremainder of [T ], and thus with some number of weakening steps we have �; [T ] ` �.For example, if there are k axioms, and � ` � is the axiom t1 = q1 ` (q2 
 a), thenwe know [t1] =!(q1��(q2 
 a)). We then perform the following transformation:q1 ` (q2 
 a)T =) q1 ` q1I q2 ` q2I a ` aI
Rq2; a ` (q2 
 a)(q2 
 a) ` (q2 
 a)
L��Lq1; (q1��(q2 
 a)) ` (q2 
 a)!Dq1; [t1] ` (q2 
 a)[t1]; [t2]; q1 ` (q2 
 a)!W!W...[t1]; [t2]; � � � ; [tk�1]; q1 ` (q2 
 a)!W!W[T ]; q1 ` (q2 
 a)For each leaf sequent which was originally an application of identity or 1 R, or?L, we weaken in all the [ti] formulas:pi ` piI =) pi ` piI[t1]; pi ` pi!W[t1]; [t2]; pi ` pi!W!W...[t1]; [t2]; � � � ; [tk�1]; pi ` pi!W!W[T ]; pi ` piWe then continue by adding [T ] to every sequent in the entire proof tree. At everyapplication of 
R, PL, ��L, and Cut, we extend the proof tree with an extra copy



CHAPTER 2. LINEAR PROOF THEORY 522.7 Linear Logic Augmented With TheoriesEssentially, a theory is a set of nonlogical axioms (sequents) that may occur as leavesof a proof tree. The use of theories described here is an extension of earlier work onmultiplicative theories [39, 67].The point of the extension of linear logic to encompass nonlogical theories is tohighlight the di�erence between linear (non-! or mall) formulas and resusable (!, ortheory axiom) formulas. Later we will see that theory axioms capture the behaviorof machine instructions such as a Turing machine's �nite control, the transitionsof a Petri net, or the transitions of a counter machine. The linear mall formulasappearing in a sequent represents the current state of a machine.This section shows that nonlogical mall theories may be e�ciently encoded infull propositional linear logic using the modal !. Thus one may study the computa-tional signi�cance of propositional linear logic by considering mall augmented withnonlogical theories, knowing that any result for this system will carry over to fullpropositional linear logic in the end.2.7.1 Encoding mall TheoriesWe de�ne the translation [T ] of a theory T with k axioms into a multiset of purelinear logic formulas by [ft1; t2; � � � ; tkg] = [t1]; [t2]; � � � ; [tk]where [ti] is de�ned for each axiom ti as follows:[G1; � � � ; Gn ` F1; F2; � � � ; Fm ] �= !((G1 
 � � � 
Gn)��(F1PF2P � � � PFm))Theorem 2.7.8 (Theory )) For any �nite set of axioms T , � ` � is provablein theory T only if �; [T ] ` � is provable without nonlogical axioms.Proof. Given some proof of � ` � in theory T , we have a linear logic proof tree withaxioms of T at some leaves. For each leaf of the proof tree of the form � ` �, where� ` � is some axiom ti, we replace that leaf with a small proof of �; [T ] ` � which



CHAPTER 2. LINEAR PROOF THEORY 510 various examples1 ` (APB); (A? 
B?)2 ` (A&B); (?
>); A?; B?3 ` (A&B); (A? �B?)4 ` (1&A); ?A?5 ` ((!A)&A); ?A?6 ` (A(t)?&A(u)?);9x:A(x)7 `?A; (A? 
A?)8 `!(A? �B); ?A9 ` 8y:(A(y)�B);9x:A(x)?Note that cases 4 and 5 are special: if we change the de�nition of permutable to\... if for any proof with C reduced immediately above C' IN ALL HYPOTHESES,then there is a proof with C reduced immediately below C", then 4 and 5 becomepermutable. Also, the impermutabilities involving Cut (labeled �) are sensitive tothe exact de�nitions used: here the cut formula must be the same in the permutedproof, etc. With these de�nitions Cut versus & is special in the same sense as cases4 and 5.As a speci�c application of the above table of permutabilities, consider the follow-ing \invertability" property of the P (right) rule.Proposition 2.6.7 If a sequent � ` �; (APB) is provable in linear logic, then so is� ` �; A;B.The proof of this property is immediate from emptyness of the P column in the arrayof permutabilities.



CHAPTER 2. LINEAR PROOF THEORY 508 must be instantiated lower in the proof tree than the 9 in sequent 9 in classical aswell as linear logic. However, classical logic enjoys all other possible permutabilities,while intuitionistic and linear logic have many impermutabilities.Note that I, 1, and > are trivial cases, since they have no hypotheses. Also, !Sis only rarely permutable, since it requires all other formulas to be pre�xed with ?,(although here only the !'d formula is considered principal in an application of !S).In all permutable cases for !S, except versus ?W and ?C, the permutability is trivial.(There are no proofs with 
 immediately above !S where the principal formulas arenot subformula of one another.)
 P & � ?W ?C ?D !S ? 8 9 Cut
 0P 1 0 �& 2 3 4 5 0 6 �� 0?W?C 7 �?D!S 8 �? 08 0 99 0Cut �



CHAPTER 2. LINEAR PROOF THEORY 492.6 Permutabilities of Linear LogicIn the previous section, the cut-elimination theorem was proved for linear logic. Onemay view a cut-free proof as the normal form of an in�nite class of proofs with cut ofthe same formula. Thus the process of cut-elimination is often referred to as \proofnormalization". In this section we turn our attention to a set of more speci�c normalform theorems for linear logic proofs. Speci�cly, we present a set of permutabilitytheorems which may be used to convert proofs into various normal forms. This workbuilds on that of Mints [77] and Andreoli and Pareschi [7].This class of results may be proved by applying Girard's sequentialization theoremfrom proof nets to the sequent calculus backward and forward [30], or by direct prooftheoretic argument in the sequent calculus. The proofs in each case (using eithermethod) are quite straightforward, and are omitted here.Formally, the following is a list of some permutabilities and impermutabilities oflinear logic. The table lists only the permutabilities for connectives as they appearon the right hand side of a sequent. From this one may easily extrapolate all possiblepermutabilities of two-sided linear logic, using the de�nition of negation to considerthe behavior of the dual operator as it appears on the right.A rule R for the main connective of a formula C is permutable below anotherrule R' for the main connective of formula C' (C not a subformula of C') if for anyproof with C analyzed immediately above C', then there is a proof with C reducedimmediately below C'. Using other terminology (see Bellin, for example), an infer-ence R permutes below an inference R' if and only if for any proof where R occursimmediately above R', and the principal formula of R is not active in R', there is aproof where R occurs immediately below R'. It is easiest to consider cut-free proofs,although one may also study permutabilities involving cut if one is careful with thede�nitions.Any numeral in the following table should be read as \the connective of thiscolumn cannot always permute below the connective of this row". For example,number 9 shows that 9 cannot always permute below 8. Example 9 is essentially thesame example that shows quanti�er impermutability in classical logic. That is, the



CHAPTER 2. LINEAR PROOF THEORY 48It is easy to see that the subformula property is not true of proofs with cut: theformula A in the hypotheses of Cut might not appear in the conclusion. The mainhistorical interest in the subformula property is that it implies consistency of thelogic.2.5 PolarityAnother useful property of cut-free proofs is stated using polarity. We de�ne the po-larity of a formula to be the number of (implicit) negations that surround it. Formally,we de�ne the polarity of a formula based on the following sets of transformations,beginning with [�]� ` [�]+. [A��B]+ = [A]���[B]+[A
B]+ = [A]+ 
 [B]+[�; A]+ = [�]+; [A]+[A?]+ = ([A]�)?[A��B]� = [A]+��[B]�[A
B]� = [A]� 
 [B]�[�; A]� = [�]�; [A]�[A?]� = ([A]+)?The polarity of an instance of a formula A in a sequent � ` � is given by the sign ofthe superscript on A in [�]� or [�]+. That is, if an instance of formula A ends up as[A]+, then it is of positive polarity. If an instance of formula A ends up as [A]�, thenit is of negative polarity.Polarity is preserved throughout cut-free proofs, as stated formally below.Lemma 2.5.6 If a formula A has polarity p in an occurrence in a sequent in a cut-free proof of � ` �, then A has polarity p in � ` �.



CHAPTER 2. LINEAR PROOF THEORY 47By induction, we can produce proofs of �1 ` �1; A and �2; A ` �2 of degree lessthan d. By a single application of Lemma 2.3.2 to the resulting proof constructedfrom the modi�ed hypotheses, we obtain a proof of � ` � of degree less than d.Theorem 2.3.4 (Cut-Elimination) If a sequent is provable in linear logic, then itis provable in linear logic without using the Cut rule.Proof. By induction on the degree of the assumed proof. We may applyLemma 2.3.3 at each inductive step, and at the base case the degree of the proof iszero, so therefore by de�nition of proof degree there are no cuts, and we have ourdesired cut-free proof.Note that the proof can explode hyperexponentially in size during the cut-elimination process.2.4 Subformula PropertyWe have demonstrated that all cuts may be eliminated from a proof, at the possibleexpense of increasing the size of the proof hyperexponentially. This normalization isworthwhile, however, since cut-free proofs have useful properties. One such propertyis the subformula property.Corollary 2.4.5 (Subformula Property) Any formula of any sequent in any cut-free proof of � ` � is a subformula of � or �.Proof. Each rule of linear logic except Cut has the property that every subformulaof the hypotheses is also a subformula of the conclusion. For example, in the 
 Rrule, any subformula of either hypothesis is either a subformula of �1;�2;�1;�2; A,or B. However, any such subformula is also a subformula of the conclusion. In fact,we may have \added" a subformula: (A
B) is a subformula of the conclusion, butmight not be a subformula of the hypotheses.Therefore, by induction on the size of proofs, we have that any subformula of anystep of a cut-free proof of a sequent is a subformula of the original sequent.



CHAPTER 2. LINEAR PROOF THEORY 461 R versus 1 L ` 11R ...� ` ��; 1 ` �1LCut� ` � =) ...� ` �Again, we know that the Cut� involved here is Cut, since the formula 1 was justintroduced, and does not begin with ! or ?.This exhausts all the cases.Thus, we have a procedure which given a proof which ends in Cut� of degree d,and which has no applications of Cut� in the proof of either hypothesis of degreegreater than or equal to d, produces a proof of degree less than d.Lemma 2.3.3 (Lower-Degree-Cuts) If a sequent is provable in linear logic witha proof of degree d > 0, then it is provable in linear logic with a proof of degree lessthan d.Proof. By induction on the height of the derivation tree of the conclusion, weshow that given any proof of degree d of � ` � in propositional linear logic, we may�nd a (possibly much larger) proof of � ` � in linear logic of degree less than d.We examine the proof of � ` �. Since the degree of this proof is greater thanzero, there must be some Cut� in the proof. If the last rule is not Cut�, then byinduction we may form proofs of its hypotheses of degree less than d. Applying thesame rule to the resulting reduced degree hypotheses produces the desired proof ofdegree less than d.In the case that the last rule is Cut�, we have the following situation for some �1and �2 which together (in multiset union) make up �, and similarly for �1, �2 whichmake up �: (where at most one of n;m is greater than one:...�1 ` �1; An ...�2; Am ` �2 Cut�� ` �



CHAPTER 2. LINEAR PROOF THEORY 45then we apply the same reduction as in the non-principal 
 case (Section 2.3.1):...�1 ` �; A ...�2; !Cn ` B;� 
R�1;�2; !Cn ` �; (A
B);� ...!�3 `?�; C!�3 `?�; !C !SCut��1;�2; !�3 ` �; (A
B);�; ?�+...�1 ` �; A ...�2; !Cn ` B;� ...!�3 `?�; C!�3 `?�; !C !SCut��2; !�3 ` B;�; ?� 
R�1;�2; !�3 ` �; (A
B);�; ?�In the more complex case, when the cut-formulas descend from both hypotheses of
, we use the following reduction to push the cut above the 
 rule....�1; !Cm ` �; A ...�2; !Cn ` B;� 
R�1;�2; !Cn+m ` �; (A
B);� ...!�3 `?�; C!�3 `?�; !C !SCut!�1;�2; !�3 ` �; (A
B);�; ?�+...�1; !Cm ` �; A ...!�3 `?�; C!�3 `?�; !C !SCut!�1; !�3 ` �; ?�; A ...�2; !Cn ` B;� ...!�3 `?�; C!�3 `?�; !C !SCut!�2; !�3 ` B;�; ?� 
R�1; !�3;�2; !�3 ` �; ?�; (A
B);�; ?�!C...�1;�2; !�3 ` �; (A
B);�; ?�?C



CHAPTER 2. LINEAR PROOF THEORY 44the upper Cut�,we use the following reduction:...�1; !Cm ` �; A ...�2; !Cn; A ` � Cut��1;�2; !Cn+m ` �;� ...!�3 `?�; C!�3 `?�; !C !SCut!�1;�2; !�3 ` �;�; ?�+...�1; !Cm ` �; A ...!�3 `?�; C!�3 `?�; !C !SCut!�1; !�3 ` �; ?�; A ...�2; !Cn ` �; A ...!�3 `?�; C!�3 `?�; !C !SCut!�2; !�3 ` �; ?�; A Cut��1; !�3;�2; !�3 ` �; ?�;�; ?�;!C...�1;�2; !�3 ` �;�; ?�;?C
 R versus !SThere are two possibilities here, which correspond to whether it is necessary to splita package into two pieces. The case where the package needs to be split is again oneof the most tricky aspects of the entire cut-elimination procedure.If Cut� is applied to formulas which may all be found in one hypothesis of 
,



CHAPTER 2. LINEAR PROOF THEORY 43Cut� versus !SThere are two possibilities here, which correspond to whether it is necessary to splita package into two pieces. The case where the package needs to be split is one of themost tricky aspects of the entire cut-elimination procedure.If the lower application of Cut� is applied to formulas which may all be found inone hypothesis of the upper application of Cut�, then we apply the same reductionas in the non-principal Cut case (Section 2.3.1):...�1 ` �; A ...�2; A; !Cn ` � Cut��1;�2; !Cn ` �;� ...!�3 `?�; C!�3 `?�; !C !SCut��1;�2; !�3 ` �;�; ?�+...�1 ` �; A ...�2; A; !Cn ` � ...!�3 `?�; C!�3 `?�; !C !SCut��2; !�3; A ` �; ?� Cut��1;�2; !�3 ` �;�; ?�In the more complex case, when the cut-formulas descend from both hypotheses of



CHAPTER 2. LINEAR PROOF THEORY 42following reduction: ...�1; !An�1; A ` �!D�1; !An ` � ...!�2 `?�; A!�2 `?�; !A!SCut!�1; !�2 ` �; ?�+...�1; !An�1; A ` � ...!�2 `?�; A!�2 `?�; !A!SCut!�1; !�2; A ` �; ?� ...!�2 `?�; A Cut�1; !�2; !�2 ` �; ?�; ?�!C...�1; !�2 ` �; ?�?CNote that the second case requires the duplication of the proof above the applicationof !S. Since A has fewer symbols than !A, the lower Cut in the second case is ofdegree smaller than d. By induction, we may assume that the upper application ofCut! is reducible in degree.!S versus !S...!�1; !A `?�; B!�1; !A `?�; !B !S ...!�2 `?�; A!�2 `?�; !A!SCut�!�1; !�2 `?�; ?�; !B =) ...!�1; A `?�; B ...!�2 `?�; A!�2 `?�; !A!SCut�!�1; !�2 `?�; ?�; B!�1; !�2 `?�; ?�; !B !SHere we appeal to the induction hypothesis to produce a proof degree less than dof !�1; !�2 `?�; ?�; B, and then construct the desired proof from that.



CHAPTER 2. LINEAR PROOF THEORY 41!D versus !SAs for the previous !W versus !S case, here we have two cases, depending on whetherthe Cut� in question eliminates more than one occurrence of the cut-formula fromthe derelicted (!D) sequent. Again, informally, the two cases turn on the size of thepackage. If there is only one thing in the package, we simple make use of it, andthrow away the wrapping. If there are more thing in the package, we take one out,and move the smaller package along its way.In the �rst case, the cut eliminates the one occurrence of the cut-formula intro-duced by the !D rule, and thus the following reduction applies:...�1; A ` ��1; !A ` �!D ...!�2 `?�; A!�2 `?�; !A!SCut��1; !�2 ` �; ?�+...�1; A ` � ...!�2 `?�; A Cut�1; !�2 ` �; ?�However, in the second case, where the cut is actually a Cut! and eliminates morethan one occurrence of the cut-formula from the derelicted sequent, we perform the



CHAPTER 2. LINEAR PROOF THEORY 40introduced by the !W rule, and thus this application of cut may be eliminated entirely:...�1 ` ��1; !A ` �!W ...!�2 `?�; A?!�2 `?�; !A!SCut��1; !�2 ` �; ?� =) ...�1 ` �!W...�1; !�2 ` �; ?�?WHowever, the second possibility, where the Cut� is actually a Cut! and eliminatesmore than one occurrence of the cut-formula from the weakened sequent, we performthe following reduction:...�1(!A)n�1 ` �!W�1(!A)n ` � ...!�2 `?�; A!�2 `?�; !A!SCut!�1; !�2 ` �; ?� =) ...�1; (!A)n�1 ` � ...!�2 `?�; A!�2 `?�; !A!SCut!�1; !�2 ` �; ?�In the �rst possibility we have our result immediately, since the Cut� has beeneliminated. In the second possibility, we appeal to the induction hypothesis.The ?W versus ?S case is similar.!C versus !SIn this case we make critical use of the Cut! rule. Without this extra rule of inferencethis reduction is especially di�cult to formulate correctly, and the induction requiredis complicated....�1; !A; !A ` �!C�1; !A ` � ...!�2 `?�; A!�2 `?�; !A!SCut��1; !�2 ` �; ?� =) ...�1; !A; !A ` � ...!�2 `?�; A!�2 `?�; !A!SCut!�1; !�2 ` �; ?�Here we know that the cut-formula begins with a !, and thus Cut! may apply to it.We thus produce a Cut! regardless of whether the original Cut� was a Cut or aCut!.The ?C versus ?S case is similar.



CHAPTER 2. LINEAR PROOF THEORY 39& R versus & L ...�1 ` �; A ...�1 ` �; B &R�1 ` �; (A&B) ...�2; A ` ��2; (A&B) ` �&LCut�1;�2 ` �;�+...�1 ` �; A ...�2; A ` � Cut�1;�2 ` �;�The symmetric case of & L is similar, as are the two cases of � R versus � L, allof which are omitted. We need not appeal to the induction hypothesis, and the cut-formula does not begin with ?, and thus we know that Cut? does not apply, andsimilarly for ! and the Cut! rule.!W versus !SFor this and subsequent cases involving !S and ?S, `packaging' is a useful analogy.We build packages containing a number of contractions and a single Cut! when wereduce principal cases involving !C versus !S. We shrink the package in cases of !Wversus !S, and we actually use the contents of the package as cases of !D versus !S.We let packages pass by each other at cases of !S versus !S, and at cases of Cut!versus !S and of 
 versus !S we break one package into two. This same intuitionapplies to the dual case involving ?.For this case, !W versus !S, there are two possibilities, depending on whetherthe cut in question eliminates more than one occurrence of the cut-formula from theweakened sequent. Informally, the possibilities turn on whether there is only onething in the package. If so, we don't need the package. If there are more things inthe package, we shrink the package.In the �rst possibility, the cut eliminates the one occurrence of the cut-formula



CHAPTER 2. LINEAR PROOF THEORY 38I versus anyIf the last rule applied in either hypothesis is I (identity), then regardless of therule applied in the other hypothesis we may remove the cut, and the application ofidentity: pi ` piI ...�; pi ` � Cut�; pi ` � =) ...�; pi ` �The symmetric case (where pi appears on the right in the non-axiom branch of theproof) is similar. Note that the identity axiom only applies to atomic propositions,and thus we know that Cut! and Cut? are inapplicable.
 R versus 
 L ...�1 ` �; A ...�2 ` B;� 
R�1;�2 ` �; (A
B);� ...�3; A;B ` ��3; (A
B) ` �
LCut�1;�2;�3 ` �;�;�+...�1 ` �; A ...�2 ` B;� ...�3; A;B ` � Cut�2;�3; B ` �;� Cut�1;�2;�3 ` �;�;�In this case, as in most of the principal formula cut-elimination steps, we need notappeal to the induction hypothesis of this lemma. We have eliminated the Cut ofdegree d, and replaced it with two applications of Cut of degree smaller than d.The case of P R versus P L is similar to this one, and is omitted.



CHAPTER 2. LINEAR PROOF THEORY 37Section 2.3.2. Otherwise, we know the formula does not begin with ? on the right or! on the left, and thus the lower Cut� must actually be Cut....�1 ` �; A;C ...�2; C ` � Cut��1;�2 ` �; A;� ...�3 ` �; A? Cut�1;�2;�3 ` �;�;�+...�1 ` �; A;C ...�3 ` �; A? Cut�1;�3 ` �;�; C ...�2; C ` � Cut��1;�2;�3 ` �;�;�Here we know that the number of symbols in the formula A is d, and the numberof symbols in the formula C is less than d. Thus by induction we know that we canconstruct a proof of degree less than d of ` �;�; C, and from that we can constructour desired proof of �1;�2;�3 ` �;�;�.2.3.2 Cut of principal formulasIf the proof of each hypothesis ends in a rule with the cut formula as its principalformula, then the two last rules above the cut must be one of these combinations: Iversus any, 
 R versus 
 L, P R versus P L, & R versus & L, � R versus � L,?W versus !S, ?C versus !S, ?D versus !S, !S versus !S, Cut� versus !S, 
 versus !S,or ? versus 1. Since all formulas in the conclusion of !S are considered principal, theanalysis of !S at this stage of the proof is rather complex.In many of these cases, we know that the Cut! and Cut? rules are inapplicable,since the cut-formula has just been introduced, and it does not begin with a ! or ?.When we know this, we will disambiguate the reduction, and show the applicationsof Cut, Cut? and Cut! separately.



CHAPTER 2. LINEAR PROOF THEORY 36?C or !C ...�1 ` �; A; ?B; ?B?C�1 ` �; A; ?B ...�2 ` �; A? Cut��1;�2 ` �;�; ?B =) ...�1 ` �; A; ?B; ?B ...�2 ` �; A? Cut��1;�2 ` �;�; ?B; ?B?C�1;�2 ` �;�; ?B?D or !D ...�1 ` �; A;B�1 ` �; A; ?B?D ...�2 ` �; A? Cut��1;�2 ` �;�; ?B =) ...�1 ` �; A;B ...�2 ` �; A? Cut��1;�2 ` �;�; B�1;�2 ` �;�; ?B?D? R or 1 L ...�1 ` �; A�1 ` �; A;??R ...�2 ` �; A? Cut��1;�2 ` �;�;? =) ...�1 ` �; A ...�2 ` �; A? Cut��1;�2 ` �;��1;�2 ` �;�;??R> R or 0 L �1 ` �; A;>>R ...�2 ` �; A? Cut��1;�2 ` �;�;> =) �1;�2 ` �;�;>>RCutIf the proof of one hypothesis ends in Cut�, then we know that it has degree lessthan d, by the hypothesis of this lemma. If the cut-formula of the lower degree dapplication of Cut� begins with ? on the right or ! on the left, then it is consideredprincipal (by de�nition) in the upper application of Cut�, and will be handled in



CHAPTER 2. LINEAR PROOF THEORY 35& R or � LIt is the elimination of this type of cut (among others) which may lead to an expo-nential blowup in the size of cut-free proofs....�1 ` �; A;C ...�1 ` �; B;C &R�1 ` �; (A&B); C ...�2; C ` � Cut��1;�2 ` �; (A&B);�+...�1 ` �; A;C ...�2; C ` � Cut��1;�2 ` �; A;� ...�1 ` �; B;C ...�2; C ` � Cut��1;�2 ` �; B;� &R�1;�2 ` �; (A&B);�The increase in proof size comes from replicating the entire proof tree above�2; C ` �. Note that even though there are now two cuts instead of one, we mayassume that both may be reduced in degree to less than d by induction on the sizeof the derivations. That is, there are fewer proof rules applied above each Cut� thanthere were above the single application of Cut� originally.?W or !WFor this and the remaining cases, we omit discussion and simply indicate the reduc-tion: ...�1 ` �; A�1 ` �; A; ?B?W ...�2 ` �; A? Cut��1;�2 ` �;�; ?B =) ...�1 ` �; A ...�2 ` �; A? Cut��1;�2 ` �;��1;�2 ` �;�; ?B?W



CHAPTER 2. LINEAR PROOF THEORY 34P R or 
 LIf the last rule applied in one hypothesis is P R, and the cut-formula is not the mainformula introduced by that application of P R, then we may propagate the Cut�upward, through the application of P R:...�1 ` �; A;B;C�1 ` �; (APB); C PR ...�2; C ` � Cut��1;�2 ` �; (APB);� =) ...�1 ` �; A;B;C ...�2; C ` � Cut��1;�2 ` �; A;B;��1;�2 ` �; (APB);�PRAgain, the proof above the Cut� is smaller after this transformation, and thus byinduction we have our result.� R or & LApplications of Cut� involving the two symmetric � R rules (where the cut-formulais not principle, that is, not introduced by this application of � R) may be eliminatedin similar ways:...�1 ` �; A;C�1 ` �; (A�B); C�R ...�2; C ` � Cut��1;�2 ` �; (A�B);� =) ...�1 ` �; A;C ...�2; C ` � Cut��1;�2 ` �; A;��1;�2 ` �; (A�B);��RThe second case of this rule is the same except the conclusion would contain theformula (B �A), instead of the formula (A�B) seen above.



CHAPTER 2. LINEAR PROOF THEORY 33with ?, then we may propagate the Cut� upward, through the application of 
:...�1 ` �; A ...�2 ` B;�; C 
R�1;�2 ` �; (A
B);�; C ...�3; C ` � Cut�1;�2;�3 ` �; (A
B);�;�+...�1 ` �; A ...�2 ` B;�; C ...�3; C ` � Cut�2;�3 ` B;�;� 
R�1;�2;�3 ` �; (A
B);�;�For the rules such as 
 R with two hypotheses, we give the reduction for the casewhere the non-principal cut-formula appears in the right hand hypothesis of the
 rule, and appears in one speci�c position in that sequent. The symmetric caseof the cut-formula appearing in the left hypothesis is very similar, and is alwaysomitted. Since exchange is considered built-in to the system, sequents are consideredmultisets. Thus the exact position of formulas in sequents is unimportant. (Note thatin noncommutative linear logic the relative position becomes vitally important.)The proof ending in Cut after this transformation is smaller than the originalproof, since the entire proof of �1 ` �; A, and the last application of 
 R are nolonger above the Cut. Thus by induction on the size of proofs, we can construct thedesired proof of degree less than d.Note that the Cut! and Cut? rule only applies to formulas which begin with ! or?, and thus this reduction, which is only used if the cut-formula does not begin with? or !, applies only to Cut and not to Cut! or Cut?. Thus, we have disambiguatedthis case, and write only Cut. Tranformations are later presented in terms of Cut�,in order to cover all three possibilities simultaneously. The reductions given later (inSection 2.3.2) handle the case of Cut! and Cut?.



CHAPTER 2. LINEAR PROOF THEORY 321. The cut-formula is not principal in one or both hypotheses.2. The cut-formula is principal in both hypotheses.In each case we will provide a reduction, which may eliminate the cut entirely, orreplace it with one or two smaller cuts. Since this is a proof by induction on the sizeof a derivation, one may view this proof as a procedure which pushes applications ofCut� of large degree up a derivation. Informally, this procedure pushes applicationsof Cut� up through proof rules where the cut-formula is non-principal, until thecritical point is reached where the cut-formula is principal in both hypotheses. InGirard's proof of cut-elimination for linear logic using proof nets, the non-principalcases are circumvented by following proof links. In both approaches, however, theprincipal cases require signi�cant detailed analysis.2.3.1 Cut of non-principal formulasIf the derivation of a hypothesis ends in a rule yielding a non-principal cut-formula,then the rule must be one of the following: 
 R, 
 L, P R, P L, � R, � L, & R, &L, ?W, ?C, ?D, !W, !C, !D, ? R, 1 L, > R, 0 L, or Cut�. The rules I, !S, ?S, ? L,and 1 R are absent from this list since those rules have no non-principal formulas intheir conclusions. The later analysis of principal formula cuts considers these threecases. Also, most of the following cases come in two directly analogous cases, such as
 R vs P L. We will only present one of each such pair of cases.
 R, or P LIf the last rule applied in one hypothesis is 
 R, the cut-formula is not the mainformula introduced by that application of 
 R, and the cut-formula does not begin



CHAPTER 2. LINEAR PROOF THEORY 31Recall that the principal formula of an application of an inference rule is de�nedto be any formula which is introduced by that rule. For convenience, we extendthe notion of principal formula in the following nonstandard ways. We will considerany formula beginning with ? appearing on the right side, and any formulas pre�xedwith ! on the left of the conclusion of the !S, 
 R, P L, �� L, or Cut� rules to beprincipal. By this de�nition all formulas in the conclusion of !S are principal, andthe only rule in which a formula beginning with ! may be principal on the right handside is !S. This de�nition of principal formula simpli�es the structure of the followingproof somewhat.Operationally, the cut-elimination procedure de�ned below �rst �nds one of the\highest" cuts of maximal degree in the proof. That is, an application of Cut� forwhich all applications of Cut� in the derivation of either hypothesis is of smallerdegree. Then a reduction is applied to that occurrence of Cut�, which simpli�es oreliminates it, although it may replicate some other portions of the original proof. Weiterate this procedure to remove all cuts of some degree, and then iterate the entireprocedure to eliminate all cuts. In this way, any linear logic proof may be normalizedinto one without any uses of the Cut, Cut? or Cut! rules, at the possible expense ofan (worse than) exponential blowup in the size of the resulting proof tree.Technically, we begin with a lemma which constitutes the heart of the proof ofcut-elimination. Although the proof of this lemma is rather lengthy, the reasoning isstraightforward, and the remainder of the proof of cut-elimination is quite simple.Lemma 2.3.2 (Reduce One Cut) Given a proof of the sequent � ` � in linearlogic which ends in an application of Cut� of degree d > 0, and where the degree ofthe proofs of both hypothesis is less than d, we may construct a proof of � ` � inlinear logic of degree less than d.Proof. By induction on the number of proof rules applied in the derivation of� ` �.Given a derivation which ends in a Cut�, we perform case analysis on the ruleswhich were applied immediately above the Cut�. One of the following cases mustapply to any such derivation:



CHAPTER 2. LINEAR PROOF THEORY 30Cut? � ` �; (?A)n �; ?A ` ��;� ` �;� n � 1As mentioned in the last section, (?A)n denotes a multiset of formulas. For example,(?A)3 =?A; ?A; ?A. As stated in the side condition, the Cut! and Cut? rules are onlyapplicable when n is at least 1.We will use the symbol \Cut�" as a general term for the original Cut rule or thenew Cut! and Cut? rules ambiguously. These new rules of inference are derivable;they may be simulated by several applications of contraction (!C or ?C) and oneapplication of the standard Cut rule. The original Cut rule coincides with Cut! (orCut?) when n = 1. Adding these extra derived rules of inference simpli�es the ter-mination argument substantially by packaging together some number of contractionswith the cut that eliminates the contracted formula. This package is only openedwhen the contracted formulas are actually used with the application of the !D or ?Drules, thrown away by the !W or ?W rules, or split into two packages by the 
 R,P L, �� L, Cut� rules.We will call a formula which appears in a hypothesis of an application of Cut�,but which does not occur in the conclusion a cut-formula. In the list of linear logicrules in Appendix A the cut-formula in the Cut rule is the formula named A, and inthe Cut! and Cut? rules above, the cut-formulas are !A and ?A.We also de�ne the degree of a Cut� to be the number of symbols in its cut-formula. For concreteness, we de�ne here what is meant by number of symbols. Wewill consider each propositional symbol pi to be a single symbol. We also consider thenegation of each propositional symbol pi? to be a single symbol. Finally, we counteach connective and constant, 
; P ;�;&; ?; !; 1;?; 0;>, as a single symbol, but donot count parentheses. It is important to note that negation is de�ned, and thereforeis not a connective. This method of accounting has the pleasant property that anylinear logic formula A and its negation A? have exactly the same number of symbols.(One may prove this by induction on the structure of the formula A). Thus it doesnot matter which cut-formula we count when determining the degree of a cut. Wealso de�ne the degree of a proof to be the maximum degree of any cut in the proof,or zero if there are no cuts.



CHAPTER 2. LINEAR PROOF THEORY 292.3 Cut EliminationThe cut-elimination theorem, in general, states that whatever can be proven in thefull version of a logic may also be proven without the use of the cut rule. Thistheorem is fundamental to linear logic, and was proven by Girard shortly after theintroduction of the logic by presenting a cut-elimination procedure for proof nets [30].Since Girard demonstrated the correspondence between proof nets and the sequentcalculus presentation of linear logic, we could have relied on Girard's proof of cut-elimination. However, in later proofs, we make use of the syntax and exact formof a cut-elimination procedure for the sequent calculus formulation of linear logic.Girard's use of proof nets, and his reliance on the one-sided version of linear logiccomplicates the construction of our later theorems. Thus a full cut-elimination proofis given here.The following demonstration of the cut-elimination theorem consists of a linearlogic proof normalization procedure which slowly eliminates cuts from any linear logicproof. The procedure may greatly increase the size of the proof, although of course itwill still be a proof of the same sequent. For technical reasons, we add derived rulesof inference,Cut! and Cut?, which simplify the proof of termination. We then give aset of reductions which apply to proofs which end in Cut, Cut!, or Cut?, and usingthese we eliminate all uses of Cut, Cut!, and Cut? from a proof.The proof structure is very close to the well known proofs of cut-eliminationin classical logic [36], but is complicated by the extra information which must bepreserved in a linear proof. The Cut! and Cut? rules de�ned below are reminiscentof Gentzen's MIX rule [29], and serve the same purpose, which is to package togethercertain inference rules. As in Gentzen's work, we add these extra rules, and thenshow that they (along with Cut) may be eliminated entirely from any proof. Thuswe show that these new rules and Cut are redundant in linear logic.Let us begin with some de�nitions. First, we de�ne the following new rules ofinference, Cut! � ` �; !A �; (!A)n ` ��;� ` �;� n � 1



CHAPTER 2. LINEAR PROOF THEORY 28For a time it was conjectured that classical linear logic is conservative overill for formulas without the ? constant, but the following counterexample, dueto Harold Schellinx, shows there to be other cases of non-conservativity as well:((A��B)��0)��(A
>).However, conservativity does hold for fragments of ill which do not include eitherfalse constant (? or 0), and conservativity also holds for fragments of ill without ��.Theorem 2.2.1 (Conservativity) cll is conservative over ill for sequents notcontaining ? or 0. cll is also conservative over ill for sequents not containing ��.This theorem may be proven by induction on the assumed cut-free cll proofs.Essentially, one can show that any cut-free cll proof of a sequent meeting the aboverestrictions satis�es the intuitionistic restriction to at most one formula on the rightthroughout. The only interesting inductive steps are for the false constants and ��L. In the �rst statement of the proof, if a proof ends in �� L, then either the cllapplication of �� L matches the intuitionistic rule for �� L, in which case we canimmediately appeal to the induction hypothesis, or one of the hypotheses has anempty consequent, or right hand side of the `. In the later case, one appeals to theproperty that for sequents satisfying the above syntactic constraints, no sequent � `is provable in cll.The bottom line here is that classical linear logic cll is conservative over intu-itionistic linear logic ill only if one completely eliminates negation. Negation is �rstpresent in the rules for ? which allow formulas to move from one side of a sequent toanother. For example, the formula (A?��B?)��(B��A) is provable in cll (utilizing?) but not in ill. Negation may also be implicitly recovered with the use of �� andeither 0 or ? (the two avors of false). Conservativity holds if none of these kinds ofnegation arise, which may be ensured by eliminating ? and ��, or ? and 0 and ?.



CHAPTER 2. LINEAR PROOF THEORY 27I A ` A � ` A A;� ` B�;� ` B CutE Left �1; A;B;�2 ` C�1; B;A;�2 ` C
L �; A;B ` C�; (A
B) ` C � ` A � ` B�;� ` (A
B) 
R��L � ` A �; B ` C�;�; (A��B) ` C �; A ` B� ` (A��B) ��R�L �; A ` C �; B ` C�; (A�B) ` C � ` A � ` B� ` (A&B) &R&L1 �; A ` C�; (A&B) ` C � ` A� ` (A�B) �R1&L2 �; B ` C�; (A&B) ` C � ` B� ` (A�B) �R2!WL � ` A�; !B ` A!DL �; A ` B�; !A ` B � ` A� `?A ?DR!CL �; !A; !A ` B�; !A ` B?SL !�; A `?B!�; ?A `?B !� ` A!� `!A !SR1L � ` A�; 1 ` A ` 1 1R0L �; 0 ` A � ` > >RFigure 2.1: Sequent Calculus Rules for Intuitionistic Linear Logic (ill)



CHAPTER 2. LINEAR PROOF THEORY 26in Figure 1.1, as classical linear logic, or cll, to emphasize the distinction betweenintuitionistic and classical versions of linear logic.The Gentzen-style inference rules for intuitionistic linear logic (ill) given belowin �gure 2.1 are reproduced in Appendix B for convenience [4].Note that the rule for ? R, among others, is severely restricted in the intuitionisticcalculus.A somewhat unexpected result is that cll is not conservative over ill, even forconclusion sequents which satisfy the intuitionistic restriction of one formula on theright hand side. For example, consider the formula (((A��(B��?))��?)��(A
B)).In considering a cut-free proof of this formula, we have no choice but to construct thefollowing partial proof: ...((A��(B��?))��?) ` A
B` (((A��(B��?))��?)��(A
B))��RIn cll, one can complete the proof as follows:A ` AI B ` BI
RA;B ` A
BA;B ` ?; A
B?RA ` (B��?); A
B��R` (A��(B��?)); A
B��R ? ` ��L((A��(B��?))��?) ` A
B` (((A��(B��?))��?)��(A
B))��RHowever, in ill the critical �� L inference is not available, and it can be shown thatthis sequent is not provable in ill. The same problem arises with the simpler example(((A��?)��?)��A): A ` AIA ` ?; A?R` (A��?); A��R ? ` ��L((A��?)��?) ` A` (((A��?)��?)��A)��R



CHAPTER 2. LINEAR PROOF THEORY 25to be constructed out of multisets of formulas on each side of the `. This alterationto the sequent calculus is similar to the standard use of sets on both sides of a ` inclassical and intuitionistic logic, but in linear logic the multiplicity of formulas is ofcrucial importance, while it is completely unimportant in classical logic. Assumingthat sequents are built from multisets rather than sequences of formulas, one simplyignores all applications of the exchange rule. For the majority of this thesis we willmake this assumption, although when noncommutative linear logic is considered agreat deal more care will be taken with such matters.As is relatively standard, Cn will be used to indicate a sequence of n C's, separatedby commas, as follows: Cn �= nz }| {C;C; � � � ; CSince p? is an atomic symbol, the notation p?3 will be used for (p?)3, which is simplyp?; p?; p?.We de�ne a positive literal to be one of the given propositional symbols pi or p?iwhich occurs with positive polarity. A negative literal is one of these symbols whichoccurs with negative polarity.The class of subformulas of a given formula or sequent is de�ned by the following:A is a subformula of A. If A is a subformula of B, then A is also a subformula of thefollowing formulas: ?B, !B, B
C, C
B, BPC, C PB, B��C, and C��B. Also,Aft=xg for any t is a subformula of 8xA and 9xA. If A is a subformula of B, then Ais also a subformula of the sequents � ` �1; B;�2 and �1; B;�2 ` �.2.2 Intuitionistic Linear LogicThe intuitionistic version of linear logic (ill) is generated by restricting sequents toinclude at most formula on the right hand side of the `, and removing the rules for? which allow formulas to move from one side of a sequent to another. Standardintuitionistic logic may also be developed from classical logic in a similar way. Inlinear logic, however, there are some interesting twists which must be considered. Tobe clear, for the remainder of this section we will refer to linear logic, as de�ned above



Chapter 2Linear Proof TheoryBelow is a brief presentation of the more foundational concepts of linear logic andproof theory necessary for the remainder of this thesis. The reader wishing moredetailed discussion of this introductory material is referred to [29, 51, 30].2.1 Basic Properties of Linear LogicAs mentioned earlier, because linear logic has an involutive negation, (A?)? = A, onemay formulate linear logic as a one-sided system. Informally, one may consider the?R and ?L rules to be \built in" to the system as if these were structural rules. In thiscase, many rules are identi�ed: 
R and PL become identical rules. One translatesthe sequent � ` � into an equivalent sequent ` (�)?;�, where the negation of asequence of formulas is the sequence of their negations (in reverse order, if order isimportant).One may then work in a one-sided system where all formulas appear on the rightof the `, and there are no sequent rules for connectives on the left of the `. Some ofthe proofs by case analysis of the sequent calculus rules are greatly simpli�ed by this,although there is some price for this convenience in the di�culty of comprehendingcomplicated sequent proofs in the one sided system. This thesis will use both onesided and two sided sequents, as is convenient for the topic under consideration.Also, because linear logic contains the exchange rule, one may consider sequents24



CHAPTER 1. INTRODUCTION 23to the development of this vision.Two results of this thesis contribute to this propositions-as-types approach tostudying linear logic. First, there is a language based on linear logic which enforcesa certain economy of variable uses: each variable must appear exactly twice | oncein de�nition, and once in use. Second, there is a two-space memory model whichallows a compiler to generate e�cient code in some cases for the linear language. Onespace contains linear objects, with exactly one pointer to them, and the other spacecontains all other objects. There are relatively straightforward modi�cations to theTim, or three instruction machine which allow it to implement the linear languagewith this two-space memory model. Together these advances in the developmentof the propositions-as-types computational interpretation of linear logic add moreevidence that certain resource issues in programming languages can be understoodfrom a linear perspective. However, these results are merely stepping stones to a largerunderstanding of the logical basis of practically important implementation techniques.



CHAPTER 1. INTRODUCTION 22system from a sequent system are due to Prawitz [82].Showing that the two systems are equivalent, we immediately get a cross-fertilization of theorems between the two systems. Perhaps the most important suchtheorem is type soundness, or the subject-reduction theorem. This theorem statesthat if a term has a derivable typing, then the result of reducing the term still hasthe same type. If this theorem failed, there would be little reason to call a logicalframework a \type system", since terms might have a certain type, but after reduc-tion the terms would not have this type. Another important theorem proved in thisthesis is the existence of a (unique) most general type for any linear term.Looking at the systems informally, they are di�erent proof systems for the samelogic. The sequent system is conservative with respect to types: any type appearinganywhere in a cut-free proof appears as a subformula of the type of the conclusion.On the other hand, the natural deduction system is conservative with respect toterms: any term appearing anywhere in a cut-free proof appears as a subformula ofthe term in the conclusion. Both of these properties follow immediately from thecut-elimination theorems.ImplementationThe vision here is of a language of the style of ML [74], but with a more detailedtype system. Most current compilers for ML perform type checking, and then dis-card all the type information before actually compiling the program. Type checkingallows the ML compiler to dispense with the run-time checks common to other func-tional language implementations, such as verifying that the arguments to a call tothe function + are in fact numbers.The guiding vision of this research program has been the development of a typesystem based on linear logic which would lend practical, useful advice to an ML-stylecompiler. The main idea of studying such an application of linear logic dates back tothe introduction of linear logic and very early work [30, 53]. Others have also studiedthe further application of linear type information in the study of garbage collectionand array update-in-place [21, 95]. In our investigations, we were led into consideringdecision problems and their complexity, but eventually these investigations led back



CHAPTER 1. INTRODUCTION 21style, by assigning program constructors to inference rules. Thus an ml�� programcan be seen as a notation for a linear logic proof, and the type of the program canbe seen as the most general conclusion which can be inferred from the proof. Alter-natively, one may view linear logic as a type system for ml��, where linear formulascorrespond to types.Sequent versus Natural DeductionThe Curry-Howard correspondence holds between the lambda calculus and a naturaldeduction system for intuitionistic logic. However, the closest analog of natural de-duction for linear logic are proof nets. There have been some attempts to use proofnets as a basis for forming proof terms, but proof nets su�er from some di�culties inrepresenting full propositional linear logic including additives, constants, and modals.Attempts to use the \raw" sequent calculus for intuitionistic linear logic, for exampleby Abramsky [1], have shown some promise.In this thesis, a new track is followed which shares properties of both of theabove approaches: a sequent calculus presentation of a natural deduction system forintuitionistic linear logic is used as the basis for the proof terms. The presentation ofnatural deduction for intuitionistic logic in the sequent calculus dates back to someof Gentzen's original work on the sequent calculus. The proof system here is a resultof straightforward application of those same ideas to intuitionistic linear logic.The main idea is that a natural deduction-style introduction rule is representedby sequent calculus rule which introduces the formula on the right of the turnstile.All of the \right" rules of the sequent calculus are preserved unchanged in the naturaldeduction style sequent system. The \left" rules, however, are changed dramatically,becoming \elimination" rules in the modi�ed system. These elimination rules aree�ectively simulatable in the sequent calculus with one application of the left rule,and one application of cut on the introduced formula. The \left" rules of the sequentcalculus can be derived in the natural deduction system with one application of theelimination rule, one application of identity, and one application of cut. Thereforethe same sequents (terms with typings) are provable in both systems, perhaps up tosome applications of cut. Many of these ideas for creating a natural deduction style



CHAPTER 1. INTRODUCTION 20power of linear logic. We are able to encode such thorny concepts as mutual exclu-sion very naturally in linear logic. This gives the strong impression that linear logicis certainly more basic and more expressive than intuitionistic logic.The results of the previous sections immediately bring several \encoding" ques-tions to mind: is it possible to encode other more standard logics in linear logic? InGirard's �rst paper on the subject, he gives encodings of intuitionistic and classicallogic into full linear logic (using the modal operator !). However, full propositional lin-ear logic is undecidable, while propositional intuitionistic logic is pspace-complete, asshown by Statman [86]. In fact, Statman shows that even the implicational fragmentof intuitionistic logic is pspace-complete. Recalling the early results we see that thefragment of linear logic without the modals is exactly pspace-complete. This raisesthe question: is there a \logical" embedding of propositional intuitionistic logic intolinear logic that does not make use of the modals?The translation a�rmatively answering this question given in Chapter 6 is an\asymmetrical interpretation." That is, occurrences of formulas of positive polarityare translated di�erently from negative occurrences [36]. The translation goes throughan intermediate logic that is very similar to one employed by Hudelmaier [44] in thestudy of cut elimination in intuitionistic logic.The translation itself makes use of various proof theoretic tricks which were devel-oped in the previous sections. Essentially, intuitionistic implication is encoded as twoconnectives: linear implication and additive conjunction. An encoding based only onthis is straightforward but unsound: a linear translation of an intuitionistic formulamay be erroneously provable by violating the atomicity of (translated) intuitionisticimplications. Such a proof would not be possible in intuitionistic logic, where e�ec-tively each pair must be acted on as one. A \lock and key" mechanism is thereforeused to ensure mutual exclusion among translations of intuitionistic implications.1.4.4 Linear ML��Chapter 7 concerns a functional language ml�� that is related to languages in-vestigated by Lafont [53], Abramsky [1], Wadler [91, 93], Chirimar, Gunter, andRiecke [21], and others. The basic idea is to view linear logic in a Curry-Howard



CHAPTER 1. INTRODUCTION 19that every formula that occurs in the conclusion is analyzed exactly once in theentirety of any cut-free proof. This gives an immediate linear bound on the numberof inferences in any cut-free proof, showing that this logic is in np, as one may simplyguess and check an entire proof in linear space and time. Of course, this brings up thequestion of whether there is a polynomial decision algorithm for the multiplicatives, orif they are np-hard. Previously, multiplicative a�ne (or direct) logic was shown to benp-complete [59], but this proof relied on the use of weakening, a rule present in a�nelogic, but not in linear logic. Max Kanovich recently settled this problem by showingthat the multiplicatives are np-hard [47]. Chapter 5 presents an alternate proof ofthe np-completeness. This proof is presented in order to facilitate the proof of thestronger result that even without propositions the multiplicatives are np-complete.That is, constant-only multiplicative linear logic where formulas are built from only(multiplicative) and, or, true, and false (
; P ; 1;?) is np-complete.The key to the proof of np-hardness of the multiplicatives is the existence of np-complete problems that have the property that each entity in the problem mustbe used. In many problems such as sat, if one proposition in a clause is true,the rest of the propositions do not matter, and may be either true or false. This\sloppy" behavior is very di�cult to encode using only the multiplicatives. However,for certain np-complete problems, such as 3-partition, the combinatorial explosionarises from a partitioning of elements that must all be used in the end. Because of thisproperty, 3-partition can easily be encoded using just the multiplicative constants,thus demonstrating the np-hardness of the linear (multiplicative) circuit evaluationproblem.1.4.3 Linearizing Intuitionistic ImplicationThere are two motivational points to be made about Chapter 6. First, Girard's orig-inal study of linear logic began with the decomposition of intuitionistic implicationinto a modal reuse operator and a linear implication. We analyze intuitionistic im-plication along a di�erent cleavage plane, where it is broken down into its additiveand multiplicative characters. Second, we provide another example of the expressive



CHAPTER 1. INTRODUCTION 18some limited form of exchange the above encoding fails. Since there are many rea-sonable assumptions one could make about the exact form of noncommutative linearlogic, we assume commuting exponentials, as have previous authors, including [97].Again in the noncommutative case, the �rst order version is conservative overthe propositional fragment, and thus �rst order noncommutative linear logic is alsoundecidable.pspace-Completeness of Propositional Linear Logic Without ModalsWithout the modal operators ? and ! there is an immediate proof search procedure forlinear logic that is complete and always terminates. Therefore, linear logic withoutthe modals is decidable. As mentioned earlier, this logic has the property that everyformula which occurs in the conclusion is analyzed at most once along any branchof any cut-free proof. This gives an immediate linear bound on the depth of anycut-free proof. Thus an obvious decision procedure takes only polynomial space.This raises the question of whether the decision problem is pspace-hard. We showthat one may encode quanti�ed boolean formulas in propositional nonmodal linearlogic, and one can also encode (normal) intuitionistic implication in nonmodal linearlogic. Both of these logics are known to be pspace-hard. Thus the decision problemfor propositional linear logic without modals is pspace-hard, and therefore pspace-complete.As we will see, the encoding of these pspace-hard problems is not straightfor-ward. In the naive encoding of quanti�ed boolean, discussed in detail later, formulasencoding 8X;9Y; F and 9Y;8X;F would be the same. This lack of attention toquanti�er order can be corrected with the use of \lock and keys", a kind of multi-plicative guard used to enforce an ordering on quanti�ers in the encoding of quanti�edBoolean formulas, and also used to provide a kind of mutual exclusion in the encodingof intuitionistic implication.np-Completeness of Multiplicative FragmentWithout the modals and without additive operators, linear logic is reduced to its corefragment, the so-called multiplicatives. Multiplicative linear logic has the property



CHAPTER 1. INTRODUCTION 17the alternation can be encoded using the additives. However, this approach will notbe explored in this thesis. Previously, Urquhart has demonstrated the undecidabilityof relevant implication [88]. However, that result does not bear on linear logic due tothe requirement of a distributivity axiom that is not present in linear logic [89].Non-Commutative UndecidabilityThe non-commutative variant of propositional linear logic is undecidable, even withoutthe additive connectives that are used in the commutative case to encode zero-test.The intuition behind this result is that one can test natively in non-commutative logicfor zero occurrences of a certain proposition in a certain position without resortingto an and-branching (or alternating) encoding. The proof of undecidability is byreduction from the (undecidable) word problem for non-commutative semigroups.Although the proof of undecidability of non-commutative propositional linear logicstated later in this thesis is formulated in terms of Semi-Thue systems, it is perhapseasier to see this result informally in terms of standard Turing machines. One canencode a Turing machine tape as a sequence of propositions, one proposition for eachtape symbol. The current position of the read/write head of the Turing machine,and its current state can be encoded as a single occurrence of a proposition at theappropriate location in the sequence of propositions corresponding to the Turing tape.For example, B;A;Qi; B ` is a sequent which might encode a Turing machinewith a tape with three non-blank symbols, currently in state Qi, where the read/writehead is currently over the symbol A. Transitions of the machine (the Turing machineprogram) can be encoded either as nonlogical theory axioms, or as modal implications.The formula !((A
 Qi)��(Qj 
B)) may be read as: in state Qi, if the head is overthe symbol A, then erase the A, write a B, move the head to the right, and changeto state Qj.It should be noted that in order for these results to hold, one must assume thateither the modals of linear logic (for which contraction and weakening are applicable)commute with respect to any other formula, or that there is a new modal representingcommutativity. In either case, there is an encoding of Turing machines, but without



CHAPTER 1. INTRODUCTION 16intuitionistic logic into full �rst order linear logic [30]. However, most of the resultsdescribed in this thesis involve the propositional fragment of linear logic. The �rstnew result involves full propositional linear logic.UndecidabilitySince most propositional logics are decidable, it is reasonable, a priori, to expect thatpropositional linear logic would be decidable also. Further evidence for decidability isthe cut-elimination theorem for linear logic. However, we prove that propositional lin-ear logic is undecidable. That is, the set of valid (provable) sequents in propositionallinear logic is not recursive.The most obvious line of proof is to encode counter machines in the manner of [69].However, the obvious encoding runs into a di�culty. While it is easy to encode theincrement and decrement instructions in linear logic using the multiplicatives, thecritical zero-test instruction of counter machines has no natural analog in linear logic.That is, there is no connective that would allow a proof to proceed when there are nooccurrences of a certain proposition (i.e., zero-test succeeds), but perhaps any numberof other propositions. However, linear logic does have the expressive power to encodesuch a zero-test by other means.The linear logic feature used to encode zero test is the additive conjunction. Thisconnective allows one to encode a certain type of and-branching (in the terminology ofalternation [19]). Viewing the proof computationally, two branches are �red o�, eachof which must be provable in the same context. This sharing of contexts providedby the additive conjunction enables one to encode zero-test by enforcing that onebranch veri�es that the counter is zero and then terminates, while the other branchcontinues assuming that the counter was in fact zero. If the counter in question isnot zero, the �rst \zero-checking" branch will not terminate successfully, preventingsuccessful termination of the entire computation. This kind of \zero-checking" canbe accomplished natively in the logic.Another approach to describing this result is that the reachability problem foralternating (in the sense of [20]) Petri nets is undecidable. One can directly encodenormal Petri net transitions using the multiplicatives and exponentials [8, 67], and



CHAPTER 1. INTRODUCTION 151.4 Overview of Thesis ResultsThis overview lists the most important results of this thesis and gives a glimpse ofthe proofs of the key theorems.1.4.1 Basic TheoremsThe most basic theorem of proof theory is the cut-elimination theorem. Most systemspresented here enjoy a cut-elimination theorem, which simply states that any formulaprovable in a logic is also probable in that logic without the cut rule. Most proofsof cut-elimination in this thesis follow Gentzen's proof of the \Hauptsatz" [29]. Themain idea is to �rst add a derived rule of inference that encapsulates the applicationof several inference rules. Then one eliminates all applications of cut and the derivedrule together. The derived rules act as a bookkeeping trick that simpli�es the proofof termination of cut-elimination. This theorem was proved for linear logic by Girardin [30] using an elegant proof notation called proof-nets, which are not used in thisthesis. In Chapter 2 a full proof of cut-elimination in the sequent calculus is given inorder to facilitate later proofs that depend on this form of proof of cut-elimination.Some formal systems in this thesis do not have a cut elimination theorem, for examplethose systems with nonlogical theories. Nevertheless, in these cases one may still �ndprecise normal forms for proofs, even though all uses of cut cannot be eliminated.Several results follow immediately from the cut elimination theorem. For instance,the subformula property states that any formula appearing anywhere in a cut-freeproof of a sequent also appears in the conclusion sequent. Also, consistency of alogic follows from cut-elimination and the subformula property. Linear logic has thesubformula property and is consistent.1.4.2 Complexity ResultsThe complexity of the decision problem for various fragments of linear logic are sum-marized here. The full logic with �rst order quanti�ers was known from the outsetto be undecidable, as an immediate corollary of Girard's embedding of �rst order



CHAPTER 1. INTRODUCTION 14I A ` A �1 ` A;�1 �2; A ` �2�1;�2 ` �1;�2 CutE Left �1; A;B;�2 ` ��1; B;A;�2 ` � � ` �1; A;B;�2� ` �1; B;A;�2 E Right
 Left �; A;B ` ��; (A
B) ` � �1 ` A;�1 �2 ` B;�2�1;�2 ` (A
B);�1;�2 
 RightP Left �1; A ` �1 �2; B ` �2�1;�2; (APB) ` �1;�2 � ` A;B;�� ` (APB);� P Right� Left �; A ` � �; B ` ��; (A�B) ` � � ` A;� � ` B;�� ` (A&B);� & Right& Left1 �; A ` ��; (A&B) ` � � ` A;�� ` (A�B);� � Right1& Left2 �; B ` ��; (A&B) ` � � ` B;�� ` (A�B);� � Right2! W � ` ��; !A ` � �; !A; !A ` ��; !A ` � ! C! D �; A ` ��; !A ` � !� ` A; ?�!� `!A; ?� ! S? W � ` �� `?A;� � `?A; ?A;�� `?A;� ? C? D � ` A;�� `?A;� !�; A `?�!�; ?A `?� ? S? Left � ` A;��; A? ` � �; A ` �� ` A?;� ? Right0 Left �; 0 ` � � ` >;� > Right1 Left � ` ��; 1 ` � � ` �� ` ?;� ? Right? Left ? ` ` 1 1 RightFigure 1.1: Sequent Calculus Rules for Linear Logic



CHAPTER 1. INTRODUCTION 131.3.9 The Sequent Calculus of Linear LogicThe sequent rules for linear logic assume that the commas of the sequent are multi-plicative. That is, a sequent � ` � asserts that the multiplicative conjunction of theformulas in � together imply the multiplicative disjunction of the formulas in �.The rules given in Figure 1.1 originally appeared in [30]. However, the rulespresented here are for the two-sided sequent system, with formulas appearing onboth sides of the `. It has become somewhat standard now to present linear logic ina one-sided sequent system, by negating every formula which would have appearedon the left of the `, and moving them to the right. One sided systems have theadvantage of having half the proof rules as two sided systems for the same logic, butsu�er from the disadvantage that sequents are harder for some to read.The two-sided Gentzen-style inference rules for linear logic given in Figure 1.1 arereproduced in Appendix A for convenience.It simpli�es presentation to consider negation as de�ned, rather than being aconnective. Here the symbol �= is used to denote \is de�ned as".(Pi)? �= P?i (P?i )? �= Pi(A
B)? �= A��B? (A��B)? �= A
B?(A
B)? �= A?PB? (APB)? �= A?
B?(A�B)? �= A?&B? (A&B)? �= A?�B?(!A)? �= ?A? (?A)? �= !A?(1)? �= ? (?)? �= 1(0)? �= > (>)? �= 0(8x:A)? �= 9x:(A)? (9x:A)? �= 8x:(A)?We also de�ne the linear implication connective �� with the equationA��B�=A?PBand thus we omit explicit rules for the �� connective, although many �nd the ��connective much easier to comprehend than P .



CHAPTER 1. INTRODUCTION 12Here are the precise sequent rules for linear !:! W � ` ��; !A ` � �; !A; !A ` ��; !A ` � ! C! D �; A ` ��; !A ` � !� ` A; ?�!� `!A; ?� ! SThe !W rule is the weakening rule, here restricted to formulas on the left of the turn-stile that are pre�xed with !. The !C rule is the contraction rule, similarly restricted.The !D rule connects the modal formulas to the rest of the logic. That is, one mayconsider ! to be a \wrapper", that allows arbitrary duplication and discarding, butwhich must be explicitly removed before the contents can be used. Finally, the !S ruleallows the generation of ! formulas on the right hand side of a sequent. Intuitively, ifone can prove A using resources which are all !'d, then one can produce any numberof As (that is, !A). One may view ! as a particular kind of necessitation operator,strengthening the force of an assertion, since !D and !S are the standard proof rulesfor necessitation. There is also a set of rules for the ? operator, essentially the sameas the rules for ! mirrored onto the opposite side of the `.1.3.8 Linear Logic Quanti�er RulesPredicate Linear logic has the standard quanti�er rules:9 Right � ` Aft=xg;�� ` 9x:A;� � ` Afy=xg;�� ` 8x:A;� 8 RightIn the 9R rule, substituting an arbitrary term t for the free occurrences of x in A isdenoted Aft=xg, where the bound variables in A are renamed to avoid any clashes.The 8 Right rule is only applicable if the variable y is not free in �;�, and anynonlogical theory axioms. As for the other connectives of linear logic, there are rightand left versions of the 9 and 8 rules. With these rules one may consider �rst orderand higher order systems of linear logic. However, we will focus almost exclusivelyon propositional linear logic, where quanti�ers never appear.



CHAPTER 1. INTRODUCTION 111.3.6 The Units of Linear LogicIn linear logic, the four connectives have separate units (identity elements). The unitof 
 is called 1 (one), the unit of & is > (top), the unit of P is ? (bottom), andthe unit of � is 0 (zero). The sequent rules for these constants are given below. Notethat there is no rule for 0 on the right hand side of the turnstile, nor for > on theleft. � ` >;� ` 1 ? `�; 0 ` � � ` ��; 1 ` � � ` �� ` ?;�The > rule may be thought of as stating that > is \really true", no matter what thecontext. On the other hand, 1 is true, but only in the complete absence of any otherformulas. ? is a kind of false that may be disregarded, and 0 is a kind of false thatmust be accounted for.1.3.7 Resource Control Aspects of Linear LogicAn important property of linear logic with 
 P , & , �, 1, ?, >, 0 is that everyconnective of the conclusion of a proof is analyzed at most once in any branch of theproof. This can be seen as an advantage, since it a�ords a great deal of control over theprocess of proof search, and yields an immediate polynomial space decision procedure.This can also be seen as a disadvantage, because one cannot symmetrically encodeintuitionistic logic since intuitionistic logic allows arbitrary uses of certain formulas.Therefore a pair of modal operators ! and ? are included in linear logic to retrieve thekind of expressive power introduced by arbitrary reuse.The formula !A represents unlimited use of the formula A. Thus in the sequent!A;� ` �, the connectives of Amay be analyzed any number of times, including zero.In logical terms, weakening and contraction apply to ! formulas on the left of the `.



CHAPTER 1. INTRODUCTION 101.3.4 Conjunction and DisjunctionIn sequent calculus with the structural rules of weakening, contraction, and exchangeon both sides of `, the following two rules for conjunction are equivalent. That is,the rule for ^1 may be derived from the rule for ^2, and vice versa.� ` A;� � ` B;�� ` (A ^1 B);� � ` A;� � ` B;��;� ` (A ^2 B);�;�However, if one removes the structural rules of contraction and weakening, as inlinear logic, the rules for ^1 and ^2 are not equivalent. The form of rules wherethe context (� and �) is used in both hypotheses (^1) is hereafter referred to asan \additive" rule, and the additive conjunction will be written & . The secondkind of rule, where the context is divided among the hypotheses, is referred to as\multiplicative", and will be written 
. The precise proof rules for these connectivesare repeated in Figure 1.1 and Appendix A.For similar reasons, linear logic distinguishes between two kinds of disjunctions,an additive one � (plus) and a multiplicative one (par):� ` A;�� ` (A�B);� � ` A;B;�� ` (APB);�1.3.5 The Cut RuleThe cut rule provides a kind of modes ponens for a logic:�1 ` A;�1 �2; A ` �2�1;�2 ` �1;�2 CutThis rule may be read as \if A or �1 can be derived from �1, and �2 and A togetherderive �2, then �1 and �2 together derive �1 or �2". Of course, we intend multi-plicative conjunction and disjunction in the above description. This rule perhaps iseasiest to understand if �1 is empty. In that case, this rule essentially states that �1can be plugged in for A in the derivation of �2; A ` �2.



CHAPTER 1. INTRODUCTION 9hand side of a sequent. Linear logic completely forbids the application of weakeningon either side of `.Classical and intuitionistic logics also allow the following rule of inference calledcontraction: �; A;A ` ��; A ` �Intuitively, if one can prove a formula from two assumptions of a formula A, thenone assumption of formula A su�ces. This is a mild strengthening of the conclusion.Algebraically, the rule asserts that the comma (conjunction) forming the left of asequent is idempotent.Classical logic allows contraction to be applied on both sides of a sequent (i.e.,both sides of `). Intuitionistic logic restricts contraction to apply only on the lefthand side of the `. Linear logic completely forbids the application of contraction oneither side of `.Classical, intuitionistic, and linear logic all allow the following structural rulecalled exchange: �; A;B;� ` ��; B;A;� ` �Intuitively, the rule asserts that the order of formulas is unimportant, or in otherwords, the comma (conjunction) is commutative. In Chapter 4 we consider the non-commutative variant of linear logic, with the structural rule of exchange omitted fromthe logic.As a convenience, one may simplify presentations of the sequent calculus for clas-sical or intuitionistic logic by treating sequences of formulas � as sets. A derivationin this system would no longer require that the conclusion of each rule exactly matchthe hypothesis of the next rule, but instead one simply requires a match up to appli-cations of the structural rules. One may view this as simply ignoring the applicationsof structural rules, leaving their application implicit. The analogous presentation oflinear logic treats sequences of formulas as multisets.



CHAPTER 1. INTRODUCTION 8The principal formula of an occurrence of an inference rule is the formula that appearsin the conclusion but does not appear in any hypothesis. In the case above, theformula B ^ A is the principal formula of the ^ rule. We will also say that theformula B ^A is analyzed, or broken in the last rule applied in the above proof. Thisterminology stems from usage in proof search, where one begins with a conclusion, orroot sequent, and searches for proofs. In incrementally building that deduction, theproof search procedure is said to analyze a formula.The occurrence of a rule in a proof is said to be an inference. When we speak ofa formula in a sequent, we are really referring to an occurrence of the formula.1.3.3 Structural RulesThe discussion in Section 1.3.2 applies to the sequent calculi for classical or intuition-istic logic as Gentzen originally presented them [29]. For the remainder of the thesiswe will focus on linear logic.The rules of inference for linear logic di�er from classical logic and intuitionisticlogic in many ways, but the most dramatic di�erence can be explained by the rulesof classical logic that are \missing" from linear logic: weakening and contraction.Classical and intuitionistic logics allow the following rule of inference called weak-ening or thinning: � ` ��; A ` �Intuitively, if � is the single formula X, and � is the single formula Y , and one hasa proof of X implies Y , then one can assert that (X and A) implies Y . The e�ect ofthis rule is to weaken the conclusion, but if the original sequent was true, then thenew one surely is also.Classical logic allows weakening to be applied on both sides of a sequent (i.e., bothsides of `). This is sound because the right hand side of a sequent is interpreted as thedisjunction of formulas, and thus adding formulas to the conclusion also weakens theresult. Intuitionistic logic restricts weakening to apply only on the left hand side ofthe `, since intuitionistic logic forbids multiple formulas from appearing on the right



CHAPTER 1. INTRODUCTION 7Some sequent calculus rules have one hypothesis, and some have no hypotheses. Forexample, the rule below for identity has no hypotheses:A ` AGiven a set of proof rules, a deduction is a structure where the conclusion of oneproof rule exactly matches the hypothesis of the next rule. Because each rule hasexactly one conclusion, all deductions are trees, with the root (conclusion) at thebottom, and the leaves (hypotheses) at the top. Each branch of a deduction is asequence of applications of proof rules, some, such as ^, represent branching pointsin the deduction tree, and some, such as identity, terminate a branch. A proof in thesequent calculus is a deduction with no assumptions, i.e., every leaf is either identityor a logical axiom. In other words, each branch terminates with an application of aproof rule with no hypotheses.A useful extension to the sequent calculus is the introduction of theories. A theoryis a set of sequents, each element of which is called a (non-logical) axiom. A proofin a theory is a deduction where every branch is terminated by a proof rule with nohypotheses, a logical axiom, or by a sequent that is in the theory.Sequent proofs of formulas will be displayed with the name of the inference rulenear the right hand side of the line delineating the inference. This is an aid to thereader of complicated sequent proofs, although this is not a standard proof notation.For example, here is a sequent calculus proof with two applications of the identityrule, and one application of the conjunction rule:A ` AI A ` AI ^A ` A ^AThe next is a proof in the theory with the single axiom A ` B. Note that we havewritten a line over the use of the axiom as if there were an inference rule for eachaxiom in a theory, and labeled it T.A ` BT A ` AI^A ` B ^ A



CHAPTER 1. INTRODUCTION 6The following notational conventions will be used:pi Positive propositional literalp?i Negative propositional literalA;B;C Arbitrary formulas�;�;�;� Arbitrary sequences of formulas
 Tensor, the multiplicative conjunction1 One, the unit of tensorP Par, the multiplicative disjunction? Bottom, the unit of par& With, the additive conjunction> Top, the unit of with� Plus, the additive disjunction0 Zero, the unit of plus�� Linear implication, de�nable from par and negation1.3.2 Sequent CalculusThe sequent calculus, devised by Gentzen [29], will be used throughout this thesis.A sequent is composed of two sequences of formulas separated by the turnstilesymbol, `. One may read the sequent � ` � as asserting that the conjunction of theformulas in � imply the disjunction of the formulas in �.A sequent calculus proof rule consists of a set of hypothesis sequents, displayedabove a horizontal line, and a single conclusion sequent, displayed below the line, asbelow: Hypothesis1 � � � HypothesisKConclusionFor example, this is the standard rule for conjunction:� ` A;� � ` B;�� ` A ^ B;�The two hypotheses are � ` A;� and � ` B;�, and the single conclusion is� ` A ^ B;�. As is standard, rules are implicitly universally quanti�ed schemas.



CHAPTER 1. INTRODUCTION 5procedure terminates) immediately yields a strong normalization property for simply-typed lambda terms.This thesis analyzes an analogous correspondence between a functional languageand linear logic which has been studied by Girard, Lafont, Abramsky, and others [53,1, 91, 93, 95, 21, 16]. Interesting related work along a similar vein (the geometry ofinteraction) includes [32, 31, 33, 54, 3, 38, 22]. The main novel points developed inthis thesis are the proofs of the subject-reduction and most general type theorems fora linear functional language. Also, from an implementation standpoint, a two-spacememory model is developed which allows a compiler to generate more e�cient codeby taking into account the linear type of certain terms. This memory model hasbeen used in an implementation of a linear declarative language based on the ThreeInstruction Machine (TIM) [27].1.3 Formal Overview of Linear LogicBelow is a brief presentation of the notation used in this thesis (Girard's), and some ofthe more foundational concepts of logic and proof theory necessary for the remainderof this thesis. This thesis is self-contained, but interested readers are referred to [29,51, 30, 36] for some of the proofs referred to in the text. Introductions to linear logicin general are given in [84, 57, 34, 87].1.3.1 Notation and TerminologyGirard's notation for the logical connectives of linear logic (
 P , & , �, 1, ?, >, 0)will be used throughout the thesis 1.1Recent discussions of some alternative notations have occurred on an electronic mailing listmaintained by the author. The mailing list is called \linear@cs.stanford.edu". To subscribe to thislist send electronic mail to \linear-request@cs.stanford.edu".



CHAPTER 1. INTRODUCTION 4The \Girard Correspondence" is closely related to the logic programming ap-proach. It establishes the connection between formulas and states of computation,and between proofs and computations. Girard's correspondence di�ers from the usuallogic programming approach in that it identi�es proofs with computations, whereaslogic programming identi�es proof search with computation. In this thesis we re�nethis correspondence through separating the program from the state of the machineby working in nonlogical theories that are derived from programs. The version of theGirard correspondence developed in this thesis maintains a clear distinction betweenprogram and state: a program is a non-logical theory, a machine state is a sequent,and a proof is a (successful) computation.This Girard correspondence is used to prove several new complexity results forthe decision problems for several fragments of linear logic. Natural fragments oflinear logic vary widely in complexity. One fragment has an np-complete decisionproblem, one has a pspace-complete decision problem, and full propositional logicis undecidable. Using the Girard correspondence, many models of computation canbe captured logically. For example, in noncommutative linear logic one can encodeseveral variants of Turing machines (multi-tape, multi-head, multiple points of con-trol). A second example, due to previous researchers, is that Petri net computationscan be captured quite naturally in the tensor fragment of linear logic with tensortheories [8, 67]. Also, many logical formalisms used in knowledge representation andlinguistics are characterized by fragments of linear logic.1.2.2 Linearizing Curry-HowardAnother very useful correspondence, known as the \propositions-as-types" or Curry-Howard correspondence, connects natural deduction systems for intuitionistic logicand typed lambda calculus. This connection is quite deep, as cut elimination inintuitionistic logic corresponds to reduction in the lambda calculus. Thus one mayview typed lambda terms as notations for proofs in intuitionistic logic. One may alsoview the soundness of cut-elimination for intuitionistic logic as providing a proof thatreduction preserves types in the lambda calculus. Further, the strong normalizationproperty of natural deduction systems for intuitionistic logic (i.e. the cut-elimination



CHAPTER 1. INTRODUCTION 31.2 Overview of Proof-Theoretic ResultsThis investigation into linear logic �rst builds a set of proof theoretic tools for linearlogic, including cut-elimination, non-logical theories, and permutabilities of infer-ences. None of these tools are particularly novel to this thesis, but the presentationof them in the sequent calculus and collection of them together aids further devel-opments a great deal. In particular, Girard proved cut-elimination using proof netsin [30], while cut-elimination is proved here using the sequent calculus in order tofacilitate later proofs which make use of the syntax and exact form of this proof.Non-logical theories for linear logic have been investigated in [39, 67] and are ex-tended here to include a wider range of axioms. Andreoli, in the context of proofsearch for linear logic as a programming language [6], and Bellin, in an unpublishedmanuscript [14], have also studied some permutabilities and impermutabilities in thesequent calculus for linear logic, and the proofs of soundness and completeness ofproof nets for fragments of linear logic also (implicitly) give permutability theoremsin the sequent calculus [30]. A complete list of permutabilities is given in this thesis.On this expanded proof theoretic foundation, this thesis builds in two directionscorresponding to two modes of interpreting logics computationally. One branch ofdevelopment investigates the \Girard correspondence" which connects sequents withstates, and proofs with computations. This correspondence is closely related to thelogic programming approach. The second branch of development explores a Curry-Howard-style correspondence between proofs and programs, and proof-normalizationwith execution. These two modes are summarized briey in the next subsections.1.2.1 Girard CorrespondenceThe \logic programming" approach to the computational interpretation of a logic,as exempli�ed by the programming language Prolog, is a correspondence betweenconclusions of formal proofs and programs, and also between the process of searchingfor a proof and the execution of the logic program. Andreoli and Pareschi, amongothers, have investigated this paradigm as it is applied to linear logic, and havedeveloped a very useful programming style and implementation [7].



CHAPTER 1. INTRODUCTION 2revisits the Curry-Howard correspondence between proofs and programs, originallyobserved for intuitionistic logic. Linear logic adds a greater degree of control overthe structure of programs to the Curry-Howard correspondence. The main conclu-sion drawn from the results of this thesis is that linear logic is a computational logicbehind logics. That is, linear logic is not about \Truth"; it is about computation.1.1 Brief History of Linear LogicLinear logic, although only recently formulated [30], is closely related to much olderlogics. Lambek developed a non-commutative logic intended for the analysis ofnatural language sentence structure a few decades earlier than Girard formulatedlinear logic [55, 56]. Relevance logic and Direct logic, which are also much olderthan linear logic, had already been well studied when linear logic appeared on thescene [25, 88, 50]. In an oversimpli�ed view, linear logic sits below relevance anddirect logic, and above the Lambek calculus, according to the inclusion or exclusionof certain \structural rules" called weakening, contraction, and exchange, discussedlater in this thesis [15, 78].Linear logic arose from the semantic study of intuitionistic implication. In fact,Girard gave two separate semantics in his article introducing linear logic [30]. Theexploration of alternate semantic bases for linear logic continues today [81, 66, 85,24, 10, 18]. Linear logic proof theory was also begun by Girard with the introductionof a sequent calculus for linear logic, and an alternate notation for linear logic proofscalled proof nets [30]. Study of proof net related issues is also still active [32, 31, 33,54, 3, 38, 22].This thesis addresses several issues in the proof theory of linear logic, but is notconcerned with semantics, nor does it utilize proof nets.



Chapter 1IntroductionLinear logic was introduced by Girard in 1987 [30] as a \logic behind logics", and asa \resource conscious logic". In the framework of linear logic, this thesis addressesboth complexity and programming language issues. The main theoretical concern isto strengthen the conceptual underpinnings necessary to apply proof theory to rea-son about computations. We demonstrate the undecidability of propositional linearlogic, prove that noncommutative non-additive propositional linear logic is also unde-cidable, and give tight complexity results for other natural fragments of linear logic.Then, using these results, we explore an application of proof theory to computation,describing a functional language ml�� and its (compiled) implementation. The linearanalysis of this programming language yields compile-time type information about re-source manipulation, which may be useful in the control of some aspects of programexecution such as storage allocation, garbage collection, and array update in place.The principal contribution of this thesis is the investigation of two computationalinterpretations of linear logic. The �rst set of results demonstrates the power of acorrespondence advocated by Girard between proofs and computations. This cor-respondence links formulas to states of machines, and connects inference steps in aproof to transitions in a computation. This \Girard" correspondence allows the useof proof theory to reason about computations and their properties such as correctnessand termination. Moreover, it is the natural way to study the computational com-plexity of decision problems in various logics. The second set of results in this thesis1
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COMPUTATIONAL ASPECTSOF LINEAR LOGICbyPatrick Denis Lincoln, Ph.D.Stanford University, 1992Linear logic was introduced by Girard in 1987 [30] both as a \logic behind logics",and as a \resource conscious logic". This thesis investigates computational aspects oflinear logic. The main results of this work support the proposition that linear logic isa computational logic behind logics. This thesis augments the proof theoretic frame-work of linear logic by providing theorems such as permutability, impermutability, andcut-normalization with non-logical theories. On this expanded proof theoretic base,many complexity results are proved using a correspondence between proofs and com-putations. Among these results are the undecidability of propositional linear logic, thepspace-completeness of mall, and the np-completeness of the constant-only multi-plicative fragment of linear logic. Another application of proof theory to computationis explored for a functional language ml�� and its (compiled) implementation. Theproposed linear type system for ml�� yields compile-time type information aboutresource manipulation that may be useful in the control of some aspects of programexecution such as storage allocation, garbage collection, and array update in place.Most general type and subject reduction theorems are proved, and a compiled im-plementation based on the Three Instruction Machine is described. Together, theseresults point out that linear logic is not about \Truth"; it is about computation.v
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