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ABSTRACT. This paper proposes a declarative paradigm in which paral-
lelism is implicit and machine-independent, and the programs so developed
are intrinsically parallel. This paradigm is obtained by generalizing the
notion of rewriting to make it more widely applicable and capable of ex-
pressing not only functional computations but also a wide variety of parallel
computations that are highly nonfunctional in nature. The generalization
in question is provided by rewriting logic, a logic of change in which the
states of a system are understood as algebraically axiomatized data struc-
tures, and the basic local changes that can concurrently occur in a system
are axiomatized as rewrite rules that correspond to local patterns that,
when present in the state of a system, can change into other patterns. Sim-
ple Maude, a carefully designed sublanguage of rewriting logic supporting
three types of rewriting—term, graph, and object-oriented—, is then pro-
posed as a machine-independent parallel programming language that can
be efficiently implemented in parallel on many different machines. The ad-
equacy of term, graph, and object-oriented rewriting to naturally express
many different parallel programming problems is illustrated with exam-
ples. Several program transformation techniques mapping rewriting logic
specifications into Simple Maude programs are discussed using representa-
tive examples. The incorporation of modules containing conventional code
or special subsystems or devices within Simple Maude is also discussed.
Finally, the advances made so far on general compilation techniques for
Simple Maude are summarized.
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1. Introduction

The difficulties and the limited returns often encountered when programming
parallel machines with the languages currently available are among the biggest
obstacles blocking the widespread acceptance of parallel computing. In many
cases users find that parallelizing compilers only achieve modest speedups for
running their code on parallel machines (see for example [37] for an informative
report on experience of this kind). Indeed, given the much higher cost at present
of parallel machines compared to advanced workstations, it is only through im-
pressive speedups in performance that most users will find parallel machines
attractive.

There is, of course, the alternative of programming an application using a
parallel language. However, for some machines this means programming using
low-level machine-specific instructions. Even if the programming language used
is quite portable across a given class of machines—as is the case for some of the
extensions of the C language with message-passing capabilities [35, 12] within
the class of distributed memory message-passing multicomputers—such a rela-
tively portable language may not be well suited for other architectures such as
SIMD machines.

It seems fair to say that programming parallel machines is at present con-
siderably harder than programming sequential machines, and that the resulting
programs have at best limited portability. For these reasons, a considerable gap
often exists between users with applications needing fast, efficient, solutions and
the machines that have, at least in principle, the raw power to solve them. In
some cases bridging the gap requires employing programmers who have exper-
tise programming a particular parallel machine, but who need to acquire detailed
knowledge of the user’s application area in order to correctly program a good
solution.

The complexity and relative lack of portability currently exhibited by most
parallel programming languages are both due to the ezplicit way in which paral-
lelism is programmed. Such explicit parallelism further complicates an already
complex sequential language with additional constructs, and unavoidably builds
in some architectural assumptions about the machines on which the language is
supposed to run.

1.1. A machine-independent declarative paradigm. The alternative
we have in mind to bridge the existing software gap in parallel computing is
to allow users to express their problem in a declarative way that is as close as
possible to the concepts of the application area in question. In this paradigm,
parallelism is smplicit and machine-independent, and the programs so developed
are intrinsically parallel from the start.

In this regard, rewriting, that is, the process of replacing instances of a left-
hand side pattern by corresponding instances of a righthand side pattern, has
been recognized as an intrinsically concurrent computational paradigm. The ap-
plication of a rewrite rule only depends on the local existence of a pattern so that
rules can be applied simultaneously in many places. In particular, rewrite rules
have been used for expressing the implicit parallelism of functional programs in
a declarative way. This has led to the investigation of so-called reduction archi-
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tectures that try to exploit this type of parallelism (see for example [16, 33]).

There are, however, many applications that are certainly amenable to par-
allelization but do not fit well within the functional paradigm. For example, a
discrete-event simulation in which many different objects interact with each other
may have a high degree of concurrency, which can be exploited using optimistic
parallel simulation methods such as the Time Warp [24]. However, this usually
does not have a natural formulation as a functional program. Efficiency consid-
erations may also discourage the functional formulation of problems for which
nonfunctional in-place data replacements can be considerably more efficient. In
general, there are many problems and algorithms that are state-oriented or non-
deterministic in such an intrinsic way that thinking of them as the computation
of a functional expression is both implausible and ill-advised.

In this paper we explain how, by adequately generalizing the notion of rewrit-
ing, we can arrive at a declarative and machine-independent parallel program-
ming paradigm that is indeed widely applicable, and can therefore express not
only functional computations but also a very wide variety of other parallel com-
putations that are highly nonfunctional in nature. The generalization in ques-
tion is provided by rewriting logic [28], a logic of change in which the states of
a system are understood as algebraically axiomatized data structures, and the
basic local changes that can concurrently occur in a system are axiomatized as
rewrite rules that correspond to local patterns that, when present in the state
of a system, can change into other patterns.

Formally, viewing a state as an algebraically axiomatized data structure means
that we give a set of equational axioms F that capture the structural properties
of states of this kind. Then, a given state of the system we are interested in
can be represented as an equivalence class [t] of a certain term ¢ modulo the
structural axioms E. The rewrite rules axiomatizing concurrent computation
are then expressions of the form

[t] — [t

where [t] and [t'] are equivalence classes modulo E of terms ¢t and ¢' (that can
contain variables) describing respectively the local pattern to be found and its
replacement. Concurrent computation in a system so described can be formalized
as concurrent rewriting modulo the structural axioms FE; in rewriting logic each
such computation exactly corresponds to a proof in the logic.

The case of parallel functional programming can then be recovered as that
in which the rewrite rules are confluent (also called Church-Rosser) so that
no matter how they are applied, the final result, if it exists, is always unique.
However, in many other applications the rules need not be confluent and need
not terminate; this reflects the intrinsic nondeterminism, and in some cases the
“reactive” character, of the system in question.

1.2. Maude and Simple Maude. Since in general rewriting can take place
modulo an arbitrary set of structural axioms E, which could be undecidable, some
restrictions are necessary in order to use rewriting logic for parallel programming.
We have therefore considered two subsets of rewriting logic. The first subset, in
which the structural axioms E have algorithms for finding all the matches of a
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F1GURE 1. Maude and Simple Maude as subsets of rewriting logic.

pattern modulo E, gives rise to the Maude language [31, 29], in the sense that
Maude modules are rewriting logic theories in that subset, and can be supported
by an interpreter implementation adequate for rapid prototyping, debugging, and
executable specification. The second, smaller subset gives rise to Simple Maude,
a sublanguage meant to be used as a machine-independent parallel programming
language. Program transformation techniques can then support passage from
general rewrite theories to Maude modules and from them to modules in Simple
Maude. Figure 1 summarizes the three levels involved.

In Simple Maude, three types of rewriting, all of which can be efficiently imple-
mented, are supported. Together, they cover a very wide variety of applications;
they are:

Term rewriting. In this case, the data structures being rewritten are terms,
that is, syntactic expressions that can be represented as labelled trees or acyclic
graphs. Functional programming falls within this type of rewriting, that does
also support nonconfluent term rewrite rules, and rewriting modulo confluent
and terminating structural axioms E. Symbolic computations are naturally ex-
pressible using term rewrite rules.

Graph rewriting. In this case, the data structures being rewritten are la-
belled graphs. For general graph rewrite rules, the graph can evolve by rewriting
in highly unpredictable ways. A very important subcase is that of graph rewrite
rules for which the topology of the data graph remains unchanged after rewriting.
Many highly regular computations, including many scientific computing appli-
cations, cellular automata algorithms, and systolic algorithms, fall within this
fixed-topology subclass, for which adequate placement of the data graph on a
parallel machine can lead to implementations with highly predictable and often
quite low communications costs.

Object-oriented rewriting. This case corresponds to actor-like objects
that interact with each other by asynchronous message-passing. Abstractly,
the distributed state of a concurrent object-oriented system of this kind can be
naturally regarded as a multiset data structure made up of objects and messages;
the concurrent execution of messages then corresponds to concurrently rewriting
this multiset by means of appropriate rewrite rules. In a parallel machine this
is implemented by communication on a network, on which messages travel to
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reach their destination objects. Many applications are naturally expressible as
concurrent systems of interacting objects. For example, many discrete event
simulations, and many distributed AT and database applications can be naturally
expressed and parallelized in this way.

For cases in which substantial efforts have already been spent developing
conventional sequential code for some parts of an application, or interaction
with special-purpose devices needs to be included in a parallel program, Simple
Maude provides a simple way of developing parallel applications. Simple Maude
programs can incorporate conventional or special-purpose subcomponents by
encapsulating them as foreign interface modules that act as black boxes with
which other modules can interact in a concurrent message-passing way.

The design of Simple Maude seeks to support a very wide range of parallel
programming applications in an efficient and natural manner. In this sense
Simple Maude is a multiparadigm parallel programming language that includes
a functional facet (the term rewriting case), a concurrent object-oriented facet
(the object-oriented rewriting case), and a facet supporting highly regular in-
place computations (the graph rewriting case). By supporting programming
and efficient execution of each application in the facet better suited for it, the
inadequacies—both in terms of expressiveness and efficiency—of a single-facet
language are avoided, while the benefits of each facet are preserved in their
entirety.

1.3. Transforming specifications and programs. An important advan-
tage of having Maude and Simple Maude as increasingly more restrictive subsets
of rewriting logic is that formal techniques can be applied within the logical
framework of rewriting logic to derive Maude prototypes from rewriting logic
specifications, Simple Maude programs from Maude prototypes, and more ef-
ficient Simple Maude programs from less efficient ones in a manifestly correct
fashion.

In Section 5 we illustrate three program transformation techniques with ex-
amples. One technique, due to Viry [38], transforms a rewrite theory with rules
R and structural axioms F into an equivalent theory with rules R’ and structural
axioms E’' such that rewriting modulo E’ is directly implementable in Maude. A
second technique applies to Maude object-oriented modules whose rewrite rules
may involve several objects in their lefthand side, that is, the rules require object
synchronization; such object-oriented modules can be transformed into equiva-
lent Simple Maude modules whose rules only involve asynchronous message pass-
ing. A third technique applies to graph rewrite rules that require synchronous ap-
plication everywhere—typically achieved by a globally SIMD implementation—
for their correctness; such rules can be transformed into more flexible rules that
do not require simultaneous global application and that can be implemented in
an asynchronous MIMD /SIMD regime.

1.4. Outline of this paper. The paper is organized as follows. Section 2
introduces the more familiar term rewriting case and illustrates its intrinsic par-
allelism using a symbolic computation example. Section 3 motivates the inad-
equacy of equational logic as a general framework for rewriting and introduces
rewriting logic by means of object-oriented rewriting examples as the resolution
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of this inadequacy. Section 4 illustrates graph rewriting using an image labelling
example. Section 5 presents the three program transformation techniques dis-
cussed above. Section 6 discusses how conventional programs, subsystems, and
special hardware devices can be integrated in Simple Maude by means of foreign
interface modules. Section 7 gives a taxonomy of parallel machine architectures
and summarizes the general compilation techniques that have been developed so
far. The paper ends with some concluding remarks.

2. Term rewriting

The experience of “replacing equals for equals” in elementary algebra amounts
to an early introduction to term rewriting. The intrinsic parallelism of this
process follows from the localized nature of each replacement, being independent
of any other replacement if they affect different parts of the overall expression.
We illustrate this parallelism by means of a simple example of derivatives of
polynomials. In this example, the interpretation of rewrite rules is as equations
so that indeed we are replacing “equals for equals” in a functional module. We
shall see later other examples where rewrite rules are not equalities.

Assume a set Var of variable names. A monomial is a product

X1 ~ N1 ... Xk ~ Nk
of powers of variables, i.e., the Xi are elements of Var, and the Ni are positive
integers. There is a product operation on monomials satisfying, among others,
the equation

X "N . X"~M=X" N+ M.

A polynomial is of the form (3>, A; * U;) + C, where A; and C are coefficients
in a ring of numbers, for example integers, and U; are monomials as described
above. The main operations on polynomials are product and sum. They satisfy,
among others, the following equations:

P+0=P

(A*xU) + (B *U (A +B) U

(A*xU) . (B*xV) (AB) (U .V
for a polynomial P, monomials U and V, and coefficients A and B.

Polynomial derivation takes as arguments a variable (so that one can dif-
ferentiate with respect to different variables) and a polynomial, producing a
polynomial. It can be fully defined by the seven equations given in the func-
tional module! POLY-DER below, which imports a POLYNOMIAL submodule, in the
sense that using those equations as rewrite rules from left to right plus rules
of simplification for polynomials, the result of differentiating a polynomial with
respect to a variable is obtained.
fmod POLY-DER is

protecting POLYNOMIAL .

op der : Var Poly -> Poly .

op der : Var Mon -> Poly .

!The syntax of functional modules is very similar to that of OBJ [18, 21] and for the most
part is self-explanatory. They are introduced with the keyword fmod, the type of each operator
and of each variable is declared, and then the equations are introduced with the keyword eq
(or ceq for conditional equations).
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FIGURE 2. A tree rewrite rule.

var A : Int

var N : NzNat

vars P Q : Poly .

vars X Y : Var .

vars UV : Mon .

eq der(X, P + Q) der(X, P) + der(X, Q)

eq der(X, U . V) (der(X, U) . V) + (U . der(X, V)

eq der(X, A x U) = A * der(X, U)

ceq der(X, X " N) = N (X~ (N-1)) if N> 1

eq der(X, X -~ 1) =1 .

ceq der(X, Y " N) =0 if X =/=Y .

eq der(X, A) =0
endfm

In addition, the seven equations above constitute a parallel program for poly-
nomial differentiation because equations can be applied concurrently with other
equations whenever they happen to match a subexpression, and the final result is
always the same independently of the order in which the equations are applied?.
This can be visualized by representing all expressions in tree form. For example,
the equation

der(X, P + Q) = der(X, P) + der(X, Q)
can be represented as the tree rewrite rule in Figure 2.

The concurrent rewriting computation of a polynomial differentiation example
can be expressed in graph form as in Figure 3, where the last step summarizes
several concurrent steps of polynomial simplification using rules in POLYNOMIAL
(not shown).

3. Rewriting logic and object-oriented rewriting

The type of rewriting typical of functional programming applications just
illustrated in Section 2 can be generalized in two ways. We can:
e allow rewrite rules that can be nonconfluent and/or nonterminating,
e rewrite modulo certain structural axioms satisfied by the data.
Nonconfluence can quickly lead us outside the realm of equational logic, as
illustrated by the following nonfunctional term rewriting example which adds a
nondeterministic choice operator to the natural numbers.
mod NAT-CHOICE is
extending NAT .
op _7_ : Nat Nat -> Nat

2This property follows from the above equations being confluent and terminating.
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vars N M : Nat

rl1 N?M-=>N.

rl1 N?M=>M.
endm

The intuitive operational behavior of this module is quite clear. Natural num-
ber arithmetic remains unchanged and is computed using the rules in the NAT
module (not shown). Using the two rules in the module, any occurrence of the
choice operator _7_ in an expression can be eliminated by choosing either of the
arguments. In the end, we can reduce any ground expression to a natural num-
ber. However, the rules cannot be interpreted as equalities; otherwise we would
obtain the contradiction

N = N?M = M
collapsing all natural numbers into one point. To mark this distinction, the key-
word rl (for “rule”) is used in Simple Maude for rules in nonfunctional modules.

Nonfunctional modules are theories in rewriting logic. We informally intro-
duce rewriting logic by means of a simple object-oriented example. This example,
in addition to being nonconfluent, illustrates the importance of rewriting modulo
a set F of structural axioms. A precise definition of the rules of rewriting logic
is given in Appendix A.

Rewriting logic is a logic to reason correctly about the evolution in time of a
concurrent system. The distributed state of a concurrent system is represented
as a term whose subterms represent the different components of the concurrent
state. Typically, however, the structure of the concurrent state may have a
variety of equivalent term representations because it satisfies certain structural
laws. For example, in a concurrent object-oriented system the concurrent state,
which is usually called a configuration, has typically the structure of a multiset
made up of objects and messages. Therefore, we can view configurations as
built up by a binary multiset union operator which we can represent with empty

syntax as
subsorts Object Msg < Configuration .
op __ : Configuration Configuration -> Configuration

[assoc comm id: null]
where the multiset union operator __ is declared to satisfy the structural laws
of associativity and commutativity and to have identity null. The subtype
declaration

subsorts Object Msg < Configuration .
states that objects and messages are singleton multiset configurations, so that
more complex configurations are generated out of them by multiset union.

As a consequence, we can abstractly represent the configuration of a typical
concurrent object-oriented system as an equivalence class [t] modulo the struc-
tural laws of associativity, commutativity, and identity obeyed by the multiset
union operator of a term expressing a union of objects and messages, i.e., as a
multiset of objects and messages.

An object in a given state is represented as a term

(O:Cla1:v1,...,a5:0,)
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where O is the object’s name or identifier, C' is its class, the a;’s are the names
of the object’s attribute identifiers, and the v;’s are the corresponding values.
The set of all the attribute-value pairs of an object state is formed by repeated
application of the binary union operator _, _ which also obeys structural laws of
associativity, commutativity, and identity; i.e., the order of the attribute-value
pairs of an object is immaterial.

For example, a bounded buffer whose elements are numbers can be represented
as an object with three attributes: a contents attribute that is a list of numbers
of length less than or equal to the bound, and attributes in and out that are
numbers counting how many elements have been put in the buffer or got from it
since the buffer’s creation. A typical bounded buffer state can be

< B : BdBuff | contents: 9 56 6 8, in: 7, out: 3 >

In rewriting logic, sentences are rewrite rules of the form

] — [t

7

where [t] denotes the equivalence class of ¢ modulo the structural laws satisfied
by the states of the system in question, or, more generally, conditional rewrite
rules of the form

rift] — [t'] if [w]— [vi] Ao A [ur] — [v].

Those sentences axiomatize the basic local transitions that are possible in a con-
current system. For example, in a concurrent object-oriented system including
bounded buffers that interact with other objects by put and get messages, and
with appropriate reply messages after a get, the local transitions of bounded
buffers are axiomatized by rewrite rules in the module below?.
omod BD-BUFF is
protecting NAT
protecting LIST[Nat]
class BdBuff | contents: List, in: Nat, out: Nat
initially contents: nil, in: 0, out: O
msg put_in_ : Nat 0Id -> Msg
msg getfrom_replyto_ : 0Id 0Id -> Msg
msg to_elt-in_is_ : 0Id 0Id Nat -> Msg
vars B I : 0Id
vars E N M : Nat
var Q : List
rl (put E in B) < B : BdBuff | contents: Q, in: N, out: M > =>
< B : BdBuff | contents: E Q, in: N + 1, out: M >
if (N - M) < bound

30bject-oriented modules in Simple Maude have special syntax facilitating their definition.
The existence of a configuration multiset of objects and messages is already assumed and there-
fore is left implicit. The multiset union operator is indeed used in the two rewrite rules given.
Note that the attributes of a class and their types are declared after the class itself. Although
Maude provides convenient syntax for object-oriented modules, they can be systematically
translated into rewrite theories by making explicit all the assumptions left implicit in their
syntax. A detailed account of this translation process can be found in [29].
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rl (getfrom B replyto I)
< B : BdBuff | contents: Q E, in: N, out: M > =>
< B : BdBuff | contents: Q, in: N, out: M + 1 >
(to I elt-in B is E)
endom
We assume an already defined functional module NAT for natural numbers, with
arithmetic operations and ordering predicates.

The first rule specifies the conditions under which a put message can be
accepted (namely, that N - M is smaller than bound) and the corresponding
effect. The second rule does the same for get messages; note that the requirement
that the buffer must not be empty is implicit in the pattern Q E for the contents
attribute.

The rules of deduction of rewriting logic support sound and complete reason-
ing about the concurrent transitions that are possible in a concurrent system
whose basic local transitions are axiomatized by given rewrite rules. That is,
the sentence [t] — [t'] is provable in the logic using the rewrite rules that ax-
iomatize the system as axioms if and only if the concurrent transition [t] — [¢']
is possible in the system. A precise account of the model theory of rewriting
logic fully consistent with the above system-oriented interpretation, and proving
soundness, completeness, and the existence of initial models is given in [28].

The intuitive idea behind the rules of rewriting logic in Appendix A is that
proofs in rewriting logic exactly correspond to concurrent computations in the
concurrent system being axiomatized, and that such concurrent computation
can be understood as concurrent rewriting modulo the structural laws obeyed by
the concurrent system in question. In the case of a concurrent object-oriented
system such structural laws include the associativity, commutativity, and identity
of the union operators __ and _,_, and this means that the rules can be applied
regardless of order or parentheses. For example, a configuration such as

(put 7 in B1) < B2 : BdBuff | contents: 2 3, in: 7, out: 5 >

< Bl : BdBuff | contents: nil, in: 2, out: 2 >

(getfrom B2 replyto C)

(where the buffers are assumed to have a large enough bound) can be rewritten
into the configuration

< B2 : BdBuff | contents: 2, in: 7, out: 6 >

< Bl : BdBuff | contents: 7, in: 3, out: 2 >

(to C elt-in B2 is 3)
by applying concurrently the two rewrite rules* for put and get modulo asso-
ciativity and commutativity.

Intuitively, we can think of messages as “travelling” to come into contact with
the objects to which they are sent and then causing “communication events” by
application of rewrite rules. In rewriting logic, this travelling is accounted for
in a very abstract way by the structural laws of associativity, commutativity,
and identity. The above two rules illustrate the asynchronous message passing
communication between objects supported by Simple Maude. In general, for
concurrent object-oriented modules in Simple Maude we only allow conditional

4Note that rewrite rules for natural number addition have also been applied.
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rules of the form
() (M) (O : F| atts)
— ((O : F' | atts"))
(Q1: D1 | attsy') ... (Qp: Dy | atts)))
M ... M,
if C

involving at most one object and one message in their lefthand side, where the
notation (M) means that the message M is only an optional part of the lefthand
side, that is, that we also allow autonomous objects that can act on their own
without receiving any messages. Similarly, the notation ((O : F' | atts')) means
that the object O—in a possibly different state—is only an optional part of the
righthand side, i.e., that it can be omitted in some rules so that the object is
then deleted. In addition, p new objects may be created, and ¢ new messages
may be generated for p,q > 0.

Furthermore, the lefthand sides in rules of the form (}) should fit the general
pattern

M(O) (O :C | atts)

where O could be a variable, a constant, or more generally—in case object identi-
fiers are endowed with additional structure—a term. Under such circumstances,
an efficient way of realizing rewriting modulo associativity and commutativity
by communication is available to us for rules of the form (), namely we can
associate object identifiers with specific addresses in the virtual address space
of a parallel machine and can then send messages addressed to an object to its
corresponding address.

More general rewrite rules corresponding to synchronous communication be-
tween objects that do not satisfy the (f) restriction can be transformed into sim-
pler asynchronous rules of the form (f) by program transformation techniques,
as discussed in Section 5.

Support for multiple inheritance for classes is provided by the order-sorted
type structure of rewriting logic [19]—so that if C' is a subclass of C’, then C
is a subsort of C'—and by an associated desugaring of the rules as originally
given by the user that makes them automatically applicable in subclasses. See
[29, 30] for more details on the semantics of multiple inheritance for object-
oriented modules in Maude and Simple Maude.

Our above introduction to rewriting logic has focused on the object-oriented
case where the structural axioms E are the associativity, commutativity, and
identity of a multiset union operator that builds up the configuration of objects
and messages. In general, however, the axioms E can be varied as a very flexible
parameter with which many different types of concurrent systems can be nat-
urally specified. In this way, rewriting logic can be regarded as a very general
model of concurrency from which many other models can be directly obtained by
specialization. FExamples of such special cases include: labelled transition sys-
tems; parallel functional programming, including equational programming and
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the A-calculus with explicit substitution; Post systems and related grammar for-
malisms; concurrent object-oriented programming, including the Actor model
[4]; Petri nets [34]; the Gamma language of Banatre and Le Metayer [5], and
Berry and Boudol’s chemical abstract machine [7]; CCS [32]; and Unity’s model
of computation [9]. A detailed discussion of how all these models appear as
special cases can be found in [28], and for CCS in [27].

4. Graph rewriting

Graph rewriting is an area that has received much attention and has been
used for a variety of purposes (see for example [15, 36] and references there).
A number of different axiomatizations of graph rewriting for somewhat different
variants of the general concept have been proposed in the literature, including
axiomatizations in terms of categorical pushouts [15]. For our purposes the
axiomatizations that provide a direct link with the rewriting logic approach are
those in which labelled graphs are axiomatized equationally as an algebraic data
type in such a way that graph rewriting becomes rewriting modulo the equations
axiomatizing the type. Axiomatizations in this spirit include those of Bauderon
and Courcelle [6], and of Corradini and Montanari [11].

Among other applications, graph rewriting has been extensively used in the
compilation of functional languages. However, the importance of graph rewriting
goes far beyond functional applications. For example, many highly regular com-
putations can be naturally expressed by graph rewrite rules in which the topology
of the graph does not change. This fixed-topology subcase, besides being quite
common in applications such as scientific computing, systolic algorithms, signal
processing, and cellular automata, has many advantages allowing very efficient
implementations, including the predictability at compile time of communication
requirements—which can be minimized by appropiate placement of the data
graph—and the lack of any need for garbage collection or for structure creation.

Consider for example the problem of clustering a two-dimensional image into
its set of connected components. We may assume that the image is represented
as a two-dimensional array of points, where each point has a unique identifier
different from that of any other point, say a nonzero number, if it is a point in
the image; points not in the image have the value 0. Figure 4 shows one such
image and its two connected components.

One way to compute the connected components is to assign to all points
in each component the greatest identifier present in the component. In the
above example all points in the left component will end up with value 12, and
all those in the right component with value 7. This can be accomplished by
repeated application of the single rewrite rule in Figure 5, which can be applied
concurrently to the data graph. Note that the rule is conditional on the value
Ny being different from 0. The labels a, b, ¢, d, e identify the same nodes of the
graph before and after the rewrite is performed; note that only the value in node
a may change as a result of applying this rule.

This one rewrite rule embodies an algorithm for computing connected com-
ponents with worst-case sequential complexity of O(n?), where the input image
is a square with side n and n? total pixels. This bound is achieved on the
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FIGURE 5. A graph rewrite rule.

surprisingly bad case of an image of a spiral. The parallel complexity of this al-
gorithm is O(n?), but there exist algorithms with parallel complexity O(nlogn)
that avoid slavishly following paths around complicated diagrams [13]. The
algorithm above with disappointing worst-case behavior has smaller constant
factors, and good average case performance. In any case, an algorithm with
optimal worst-case performance can be expressed in a similar way as a small set
of graph rewrite rules.

5. Transforming specifications and programs

Three program transformation techniques, namely: coherence completion, re-
duction of synchronous object communication to asynchronous message passing,
and transformation of synchronous graph rewriting into an asynchronous version,
are illustrated with examples.
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5.1. From rewriting logic to Maude through coherence completion.
As discussed in the introduction, rewriting modulo an arbitrary set of structural
axioms F may be inefficient and even undecidable in general. However, there
are cases in which FE satisfies special properties in such a way that rewriting
modulo E can be implemented by standard rewriting, or by rewriting modulo
an equational theory A for which there are suitable matching and unification
algorithms, like for example associativity and commutativity. This subject has
been studied by P. Viry in [38], whose main results are summarized here.

Viry’s results can be used to semiautomate a transformation technique in
which a rewriting logic specification given by a set of rewrite rules R modulo a
set of equations E can be transformed into either:

(i) An equivalent Simple Maude term rewriting program with rules R' U E’
(and no structural axioms) such that the rules E' are confluent and ter-
minating and are equivalent to the equations F, and such that rewriting
modulo E with the original rules R can be simulated by standard term
rewriting using the rules R’ U E' in the transformed program, or

(ii) An equivalent Maude program with rules R’ U E' and structural axioms
A (for which matching algorithms modulo A exist in the Maude imple-
mentation) such that the equations E are equivalent to E'U A, and such
that rewriting modulo £ with the original rules R can be simulated by
rewriting modulo A using the rules R' U E' in the transformed program.

We need to introduce some notation. Let us denote by —» the transitive and
reflexive closure of a relation —, and by «— the equivalence relation generated
by — (its symmetric, transitive, and reflexive closure). The composition of
relations — and ~» is written — e ~~. Then, a step of rewriting modulo E
using the rules in R on both equivalence classes ([R]g) and terms (R/E) can be
defined as

) 1 E E
[t]Eﬂ’[tl]E — tIiE;tl <~ t«—»oio«—»t’

. . RE R .. E R .
There is also a weaker relation —— which is the restriction of «—» e — obtained

by allowing the & steps to be applied only below the redex rewritten by R.
This relation can be implemented using an algorithm for matching modulo E.

Assume that the equations E are (or can be completed to be) confluent and
terminating as rewrite rules. Then, we want to implement rewriting modulo F
using R by a combination of (standard) rewriting using F and rewriting using R.
Since we are going to apply R to terms instead of equivalence classes, we must
check that the choice of a representative in a class has no effect in the result.
This is the case when R and F satisfy the following condition.

DEFINITION 5.1. We say that £, is coherent with -2 if, when t £t and
E E E E
t —» t"', then there exists s such thatt' —» s andt" —» e Be Do

The coherence condition can be represented diagrammatically as in Figure 6,
where solid arrows denote the given rewrite steps, and dotted arrows denote the
rewrite steps that have to exist. A similar condition using normal forms was
independently proposed by Meseguer in [29, p. 359].
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Viry’s main result is the following

THEOREM 5.1. Assume that —— is confluent and terminating. If B, s co-

herent with i), then the following equivalence holds:

O R R L )

Moreover he proves that coherence can be semiautomatically generated and
can be checked by means of a Knuth-Bendix style completion method using crit-
ical pairs of coherence; see [38] for details. This completion method provides the
transformation (i) from rewriting logic specifications into Simple Maude pro-
grams.

These results can be generalized to the case in which, although E is not con-
fluent and terminating, it is equivalent to E’', which is confluent and terminating
modulo a set of equations A C E. For example, A may consist of associativity
and commutativity axioms for some operators, or more generally of any axioms
for which suitable matching algorithms exist. The presentation of this case re-
quires the definition of new coherence concepts for which the reader is referred
to Viry’s paper [38]. We just repeat here his main result in this more general
setting.

E'/A . TA
THEOREM 5.2. Assume that gk is terminating, that B s Church-Rosser,
) - . RA .
and that the set of equations A is linear, reqular, and non-collapsing. If = is

. . 'A . .
coherent with <= and with E—>, then the following equivalence holds:

e Dl e 20 M ye

For axioms A having reasonable matching and unification algorithms, the pre-
vious coherence completion method can be extended to a coherence completion
method modulo A [38]. Provided that a Maude implementation supports match-
ing modulo A, this completion technique can then be employed to semiautomate
the transformation (ii) from a rewriting logic specification into a Maude exe-
cutable specification. We illustrate this second case of transformation by means
of the following example representing in rewriting logic a subset of Milner’s CCS
[32].
fth NAMES is

sort ProcessId . *** process identifiers

sort Label . *** ordinary actions
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op “_ : Label -> Label .
var N : Label .
eq "N =N .
endft
fmod PROCESS[X :: NAMES] is
sort Act
subsort Label < Act
op tau : -> Act . **%*% silent action

sort Process .
subsort ProcessId < Process .

op O : -> Process . *** inaction

op _._ : Act Process -> Process . **x prefix

op _+_ : Process Process -> Process **x*x summation
[assoc comm idem id: O]

op _|_ : Process Process -> Process *** composition

[assoc comm id: 0]

endfm
mod SUB-CCS[X :: NAMES] is

protecting PROCESS [X]

sort ActProcess .

subsort Process < ActProcess .

op {_}_ : Act ActProcess -> ActProcess .

*x*%x {A}P means that process P has performed action A

var L : Label .

var A : Act

vars P P Q Q° : Process .

rl A . P =>{A}P .

crl P + Q => {A}P° if P => {A}P°

crl P | Q => {A}(P° | Q) if P => {A}P~

crl P | Q@ => {tau}(P" | Q) if P => {L}P" and Q => {"L}Q~
endm

Therefore, making explicit the axioms declared with specific operators, the
set F of structural axioms that processes must satisfy is:

eq "N =N .

eq P +Q =
eq (P + Q)
eq P + =
eq P +

P |

(P

Q+P
+ R
P .
P
Q
|

P+ (Q+R)

o 'g o

eq = |
eq @ | R
eqP | 0=P .
and the set of rules R consists of the four rules in module SUB-CCS[X]. Except
for the two associativity and commutativity equations, the rest can be oriented
from left to right giving a set of rewrite rules which is terminating and confluent
modulo associativity and commutativity. That is, we can split F into the set A
of structural axioms
eqP+Q=0Q+P.

Pl @ IR
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eq (P+Q +R=P+ (Q +R)
eqP | Q=Q | P .
eq P 1 Q I R=P | (QIR)

and the set E’ of rules

rl "N => N .

rl1 P+0=>P.

rl1 P+P=P.

rlP | O0=>P.
Moreover, these sets satisfy all the requirements in Theorem 5.2 [38], and there-
fore, rewriting by the rules in R modulo F is equivalent to rewriting by the rules
in RU E' modulo A.

5.2. Transforming synchronous object communication into asyn-
chronous message passing. In Section 3 we have described rules for Simple
Maude object-oriented modules of the form (), involving only at most one ob-
ject and one message in the lefthand side. More generally, as mentioned there,
we can consider synchronous rules which involve several objects and messages in
the lefthand side of the form

(1) Mi...M,{O:1:F]attsy)... (O : Fy, | attsy,)
— {0y, : Fj, | atts])...(O;, : F] | atts] )
(Q1: D | attsy') ... (Qp : Dy | atts,)

M ... M,

if C
where the Ms are message expressions, i1, ... ,% are different numbers among
the original 1,... ;m, and C is the rule’s condition. Although synchronous rules

of this kind could be implemented in parallel, their direct implementation would
be very communication intensive and therefore would be inefficient. For this rea-
son, they are not allowed in Simple Maude (where only asynchronous message
passing communication between objects is directly supported), but they are per-
mitted in Maude object-oriented modules, where they can be implemented in a
sequential interpreter using an associative-commutative matching algorithm. In
what follows we illustrate with a simple example the transformation of Maude
object-oriented modules with synchronous rules () into corresponding Simple
Maude modules with asynchronous message passing rules ().

Consider the object-oriented SPREADSHEET module below which specifies the
concurrent behavior of objects in a very simple class Cell of cells in a spread-
sheet, whose unique attribute is the value stored in the cell, set initially to
zero. The cells are organized in a grid and are therefore identified by means of
pairs (N,M) giving the row and column numbers. For each row N there is a cell
(N,total) that keeps track of the corresponding total, and similarly for each
column M there is a cell (total,M). There is also a cell (total,total) provid-
ing the sum of all the values in all the cells in the spreadsheet. The spreadsheet
may receive messages add (N,M, V) and sub(N,M, V) for adding or subtracting the
amount V to the value stored in cell (N,M). We also assume a functional module
NAT for natural numbers.
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The reader can compare this Maude program with the more complex pro-
gram developed by Chandy and Taylor in [10], which stimulated our alternative
solution.
omod SPREADSHEET is

protecting NAT .

sort Name .

subsort Nat < Name .

op total : -> Name .

op (_,_) : Name Name -> 0Id .

class Cell | val : Nat

initially val : O

msgs add sub : Nat Nat Nat -> Msg .

vars M N VW XY Z : Nat .

rl add(N,M,V) < (N,M) : Cell | val: W >

< (total,total) : Cell | val: X >
< (N,total) : Cell | val: Y >
< (total,M) : Cell | val: Z >
=> < (N,M) : Cell | val: W+ V >
< (total,total) : Cell | val: X + V >
< (N,total) : Cell | val: Y + V >
< (total,M) : Cell | val: Z + V >

crl sub(N,M,V) < (N,M) : Cell | val: W >
< (total,total) : Cell | val: X >
< (N,total) : Cell | val: Y >
< (total,M) : Cell | val: Z >
=> < (N,M) : Cell | val: W - V >
< (total,total) : Cell | val: X - V >
< (N,total) : Cell | val: Y - V >
< (total,M) : Cell | val: Z - V >
if W>=V .
endom
The problem we address in this section is how to transform synchronous
object-oriented rules of the form (i), like the ones in the module above, into
asynchronous rules of the simpler form (f). The essential idea is to introduce
new messages in the righthand side of the rules, creating new states in which the
original computation is half-done, and is going to continue by further interaction
of the new messages with the objects. In the particular case of the spreadsheet
example, we have the following program in Simple Maude.
omod SPREADSHEET-ASYNCH is
protecting NAT .
sort Name .
subsort Nat < Name .
op total : -> Name .
op (_,_) : Name Name -> 0I4d .
class Cell | val: Nat
initially val: O .
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msgs add sub : Nat Nat Nat -> Msg .

msgs add-row add-col : Nat Nat -> Msg .

msgs sub-row sub-col : Nat Nat -> Msg .

msgs add-total sub-total : Nat -> Msg .

vars M N V W : Nat

rl add(N,M,V) < (N,M) : Cell | val: W >
=> < (N,M) : Cell | val: W+ V >

add-row(N,V) add-col(M,V) add-total(V)

rl add-row(N,V) < (N,total) : Cell | val: W >
=> < (N,total) : Cell | val: W + V >

rl add-col(M,V) < (total,M) : Cell | val: W >
=> < (total,M) : Cell | val: W+ V > .

rl add-total(V) < (total,total) : Cell | val: W >
=> < (total,total) : Cell | val: W+ V >

crl sub(N,M,V) < (N,M) : Cell | val: W >
=> < (N,M) : Cell | val: W - V >
sub-row(N,V) sub-col(M,V) sub-total(V)
if W>=V .
rl sub-row(N,V) < (N,total) : Cell | val: W >
=> < (N,total) : Cell | val: W - V >
rl sub-col(M,V) < (total,M) : Cell | val: W >
=> < (total,M) : Cell | val: W - V >
rl sub-total(V) < (total,total) : Cell | val: W >
=> < (total,total) : Cell | val: W - V >
endom
Because of the presence of new messages, there are new configurations in the
module SPREADSHEET-ASYNCH that do not correspond to any configuration in the
original module SPREADSHEET. However, in any computation using the new rules
that starts in a configuration from SPREADSHEET the new messages are going to
eventually disappear by application of the new rules involving those messages on
the lefthand side, reaching in this way a configuration in SPREADSHEET. Moreover,
this configuration is exactly the same achieved by the original synchronous rules.
The spreadsheet example illustrates the main idea of this transformation tech-
nique, but it is simpler than usual because the operations involved satisfy special
properties, like for example commutativity of addition, that make the order of
application of rules irrelevant with respect to the final result. In general, the
order in which rules are applied matters, and this has to be taken care of when
transforming the program. Transformation techniques covering this general case
that can automate the compilation of Maude object-oriented modules into Sim-
ple Maude have been developed by Lincoln and Meseguer in joint work with
T. Winkler. The main idea of the general-purpose transformation techniques
from Maude rules of type (1) into Simple Maude rules of type (}) is to use one of
the objects involved in the rewrite as the locus of control for each rule. The main
problematic points are deadlock and fairness. Here we give the basic outline of
the approach for Maude rules whose lefthand side contains only one message
mentioning explicitly all the objects in the lefthand side. This case seems the
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most important in practice; however, the technique can be generalized to handle
rules with more than one message in their lefthand side.

For each Maude rule, a set of Simple Maude rules is generated. First, a
pattern object is chosen from the lefthand side of the Maude rule to be the
locus of control. This object begins the process by locking itself to prevent the
application of other rewrite rules. Locking may be implemented with a rewrite
rule of type () that changes the shape of the object in such a way that it would
fail to match with any rules other than those described below®. Once locked, this
object sends messages to each other object appearing in the lefthand side of the
instance of the original rule of type (f). Simple Maude rules of type (}) are added
for receiving these messages, locking the recipients, and responding, perhaps
with some data values. Once the locus object receives positive replies from all
objects named in the original rule (}), it begins the data-matching process. The
data necessary to verify a match may be sent in the locking replies already
generated, or may be transferred through additional messages. Once a match is
found, the locus object performs the object updates by sending messages to all
altered objects, generating all new objects and new messages that the original
rule specifies, sending unlocking messages to all objects in the lefthand side of
the rule, and unlocking itself. These actions can easily be encoded as Simple
Maude rules of type (}).

The above scheme must be extended to avoid deadlock, which may occur if two
or more objects chosen as loci of control for two or more matches simultaneously
attempt to lock two target objects. In such case, one of the loci objects may
obtain a lock on one of the targets, and another locus object (perhaps executing
a different Maude rule) may obtain a lock on the other target. Deadlock occurs
since each locus object is waiting to achieve a lock on some object that is already
locked by another locus object. To eliminate such deadlocks, one can implement
by means of rules of type (f) a solution to the Drinking Philosophers Problem
of Chandy and Misra [9] using priority and backing-out schemes. In addition to
deadlock avoidance, care must be taken in the priority scheme to avoid starvation
of one rule of type (i) by other rules; for this purpose each locus object maintains
priority information for each rule that applies to it, based on the number of
successful complete locks achieved by the locus object for that rule. When the
locus object attempts locking other objects, the corresponding priority may be
communicated within the locking messages. When a locking message is received
by an object already locked by some locus object with higher priority (with
fewer successful complete locks), a lock rejected message is generated. When a
locking message is received by an object already locked by some locus object
with lower priority, a cease and desist message is sent to the lower-priority locus
object. When a lock rejected message is received, a locus object may choose to
reattempt a lock a fixed number of times or back out of the attempted rewrite
altogether. When a cease and desist message is received, a locus object that has
already obtained locks on all necessary objects may complete the rewrite, but a
locus object still waiting for some subset of locks must back out of the attempted
rewrite. Backing out of a rewrite may involve simply unlocking all locked objects,

5See the example of Lockable objects in [30, p. 232].
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FIGURE 8. Another graph rewrite rule.

or in the case of a cease and desist message, sending a message to the locked
object in question that atomically transfers the lock from the lower-priority locus
object to the higher-priority one.

5.3. Transforming synchronous graph rewrite rules into asynchro-
nous ones. Consider for example the Dirichlet problem from [10]. The problem
is to find a solution to the Laplace equation V20 = 0, where the values of © are
fixed for the boundary cells. Initially, each interior cell has value zero, and the
boundary cells have their given values v;, as in the diagram in Figure 7.

In one parallel step of computation, the value of each interior cell is replaced
by the average of the values of its four (vertical and horizontal) neighbors. This
can be represented by the graph rewrite rule in Figure 8, which should be applied
simultaneously everywhere, that is, in SIMD mode®.

The computation should be performed in lock step, enforcing that all cells
compute their new values simultaneously. In other words, only maximally-
parallel SIMD rewrites are allowed. If one wanted to compute exactly the same

6The STIMD and MIMD/SIMD modes of parallel rewriting are further explained in Section 7.
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sequence of values, but allow asynchronous computation, for example to make
possible solving the problem with a MIMD /SIMD machine whose computational
nodes are SIMD but operate asynchronously with decentralized controllers, one
can perform the following transformation. First, where before there was only a
single data value stored, we now allow three data values to be stored. Also, we
introduce a distinguished data value “x” that cannot be matched with a number
(say, by type constraints). We then produce the three rules in Figure 9, where
we take the notational convenience of omitting some attributes of nodes, which
are then assumed to be unchanged by the rewrite.

These three rules take the place of the one globally SIMD rule in Figure 8.
The intended operation is that the symbol * stands for the next value to be
computed. It is an invariant that when one of these rules applies, the value of
Py is no longer needed in the computation, and thus can be overwritten.

If one is only interested in the final result of a computation, that is, after
things become stable, then, somewhat surprisingly, the original rule can also be
used in an asynchronous MIMD/SIMD mode to produce the correct result. The
proof that the original rule, even in MIMD /SIMD mode, leads to the same final
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result as it does in SIMD mode is not difficult but beyond the capabilities of
our Simple Maude compiler to determine”, so for MIMD/SIMD machines our
compiler would produce the three rule version.

In general, using the technique just illustrated, one may transform maximally-
parallel SIMD rewriting into MIMD /SIMD rewriting by adding clock-time and
past state attributes to all cells. Rewrite rules are then made sensitive to the
clock times, enforcing that data from a consistent (artificial) clock time is used
in performing all rewrites. After rewriting, a cell must retain its past state to
allow its neighbors to compute their next state if they have not already done so.

Assuming that each rule changes the value in at most one node, and that the
control strategy of each SIMD rule is to rewrite using that rule until quiescence,
there is a useful subclass of graph rewriting for which only one past state need
be recorded in the transformation described above. In order to characterize this
subclass, we need to give first some definitions. Given a graph rewrite rule, we
say that a node in an instance of the lefthand side of the rule is written if its value
could be changed by application of the rule; for example, in the Dirichlet program
above only the central node in each rule is written. Given a graph rewrite rule
and a node A in a data graph, the read set of A is the set of all nodes in the
graph that appear in a match of the rule where A is written; for example, the
read set of a node matching node a in the Dirichlet program consists of the five
nodes matching a, b, c,d,e. Also, the write set of A is the set of all nodes that
are written in all possible matches of the rule that contain A; in the Dirichlet
example, the write set of a given node A consists of itself and its four (vertical
and horizontal) neighbors, because all those nodes are written when A matches
the nodes a, b, c,d, e in different instances of the rule. Finally, a graph rewrite
rule is symmetric in a data graph if the read set and the write set coincide for
all nodes in the data graph. We have already shown that the Dirichlet rule is
symmetric. On the other hand, a rule reading only the lefthand neighbor in a
graph forming a line (e.g., a rule for cdring down a list in a list of cons cells) is
not symmetric, since the righthand neighbor of each node is in the write set, but
not in the read set of that node. The subclass of graph rewrite rules and data
graphs for which retaining only one past state is sufficient is then defined by the
following two properties:

(i) each rule is symmetric in the data graph;
(ii) for each written node each rule matches in at most one way?®;

Some graph rewrite rules can be modified in simple ways to make them con-
form to the above constraints. For example, some graph rewrite rules that write
more than one node of a graph can be made to conform by coalescing those nodes

7See Section 7 for a discussion of compilation techniques for Simple Maude.

8For the Dirichlet example the actual rewrite rules must specify directions of the pointers;
otherwise each rule could match in degenerate ways. For example, the nodes b,¢,d, e could
all match the same one node in the data graph, resulting in incorrect results and/or nonter-
mination. Even if these overlaps were prevented, each rule could match at each written node
in 24 different permutations. However, for the Dirichlet example the result of all of the per-
muted matches is the same, since addition is commutative. In general, one must mark each
pointer leaving a node with direction. Simply keeping the pointers in specific registers named
in the rule accomplishes this directly. One could assume that this is implicit in the graphical
presentation of the rules.
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into one (for the purposes of this one graph rewrite rule). Also, asymmetric rules
can often be made symmetric by adding dummy backpointers to each node in the
write set of the written node of the rule. These backpointers essentially perform
synchronization. For example, in the cdring down a list example, the smaller
end of the list may rewrite very quickly and get ahead of the head of the list in
terms of rewrites. Thus a large set of past values must be kept at each node to
preserve correctness. By adding backpointers that prevent rewriting anywhere
more than one step ahead of the nodes in the write set, only one past value
is needed at each node. Note that by recording more than one past state, one
may allow some nodes in the write set to be more than one step behind. Since
computation of a next value depends on the values in the read set, these nodes
can never be more than one step behind. However, if additional past state values
are recorded the nodes that are in the write set but not in the read set can be
allowed to slip farther behind by suitable modifications to the rules.

6. Foreign interface modules

Simple Maude can support the integration within a parallel computing con-
text of modules written in conventional languages such as Fortran and C, as
well as the similar integration of entire subsystems and special-purpose hard-
ware devices. All such programs and subsystems can be encapsulated as foreign
interface modules. Below we briefly summarize the discussion in the paper [31]
where this aspect of the language is treated in more detail.

The notion of foreign interface module generalizes a facility already available
in Maude’s functional sublanguage (OBJ) for defining built-in sorts and built-in
rules [18, 21]. This facility has provided valuable experience with multilingual
support, in this case for OBJ and Common Lisp, and can be generalized to a
facility for defining foreign interface modules in Simple Maude. Such foreign
interface modules have abstract interfaces that allow them to be integrated with
other Simple Maude modules and to be executed concurrently with other com-
putations; however, they are treated as “black boxes.” In particular, Simple
Maude’s concurrent rewriting model of computation and its modular style pro-
vide a simple way of gluing a concurrent program together out of pieces that
can be either written in Simple Maude or can instead be conventional programs,
subsystems, or special hardware devices. Foreign interface modules may provide
either a functional data type, or an object-oriented class. In the first case, the
treatment will be similar to that provided in OBJ. In the second case, the ab-
stract interface will be provided by the specification of the messages that act
upon the new class of objects. This second case is also used to interface to ex-
isting systems or applications and to special-purpose hardware devices; they are
treated as, possibly quite complex, black boxes.

Related efforts in multilingual support for parallel programming include: the
Linda language developed by D. Gelernter and his collaborators at Yale [8], the
Strand language designed by I. Foster and S. Taylor [17], the Program Composi-
tion Notation (PCN) designed by K. M. Chandy and S. Taylor at Caltech [10],
and the GLU language developed by R. Jagannathan and A. Faustini at SRI
International [23].
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7. Compilation onto parallel architectures

Simple Maude can be implemented on a wide variety of parallel architectures.
Figure 10 shows the relationship among some general classes of architectures that
we have considered. There are two orthogonal choices giving rise to four classes
of machines: the processing nodes can be either a single sequential processor
or a SIMD array of processors, and there can be either just a single processing
node or a network of them. The arrows in the diamond denote specializations
from a more general and concurrent architecture to special cases. The arrows
pointing to the left correspond to specializing a network of processing nodes to
the degenerate case with only one processing node; the arrows pointing to the
right correspond to specializing a SIMD array to a single processor.

Each of these architectures is naturally suited to different ways of performing
rewriting computations. Simple Maude has been designed so that concurrent
rewriting should be relatively easy to implement efficiently in any of these four
classes of machines. In the MIMD /Sequential (multiple instruction stream, mul-
tiple data) case many different rewrite rules can be applied at many different
places at once, but only one rule is applied at one place in each processor.
The SIMD (single instruction stream, multiple data) case corresponds to ap-
plying rewrite rules one at a time, possibly to many places in the data. The
MIMD/SIMD case corresponds to applying many rules to many different places
in the data, but here a single rule may be applied at many places simulta-
neously within a single processing node. The Rewrite Rule Machine (RRM)
[20, 3, 2, 1, 26] is a MIMD/SIMD architecture designed with the explicit goal
of supporting concurrent rewriting. Its processing nodes are two-dimensional
SIMD arrays realized on a chip and the higher level structure is a network oper-
ating in MIMD mode.

The paper [25] gives general techniques for compiling Simple Maude onto a
wide class of SIMD and MIMD /SIMD architectures, and reports on our experi-
ence in implementing those techniques in the case of the RRM. The techniques
studied include:

e Top down SIMD matching and replacement.

e Program transformations taking rules for which globally SIMD lock-step
execution is required into more flexible rules for which a less synchronized
MIMD/SIMD regime can produce the same answers (see Section 5.3).

e Optimized mappings for fixed-topology graph rewriting applications.

e Message passing optimization.
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e Efficient encoding of multiple inheritance.

e Efficient object attribute access.
We have developed a compiler for the RRM embodying many of these tech-
niques [25] that achieves performance within 20% of hand coded assembly pro-
grams for the examples we have observed.

8. Concluding remarks

To realize the goal of machine-independent parallel programming in practice
will require considerable effort. We view the present paper as a roadmap suggest-
ing directions that we consider particularly promising for connecting declarative
programming and parallel computing in a more intimate and widely applicable
way than has been the case so far.

We have emphasized the Simple Maude language as a carefully chosen sub-
language in which three different types of rewriting—term, graph, and object-
oriented rewriting—can be efficiently implemented in parallel. Since rewriting is
a very simple way of implementing and parallelizing functional and other declar-
ative and constraint-based languages (see [33, 27]) our approach can also be
applied to their parallel implementation. In this regard, Simple Maude could be
used as an intermediate language into which declarative languages are translated
in order to execute them in parallel using a Simple Maude implementation. In
addition, compilation techniques based on rewriting logic could be used to par-
allelize conventional languages by translating them into Simple Maude.

We have also emphasized the wide-spectrum character of the rewriting logic
framework, which, as illustrated by the program transformation examples in Sec-
tion 5, supports formal refinement of specifications into executable prototypes,
and of such prototypes into efficient Simple Maude programs. Much more work
remains to be done in this area, and also in the related area of program verifica-
tion techniques, including techniques involving other logical formalisms such as
modal or temporal logics.

To make the paradigm we have presented a reality, efficient compilation tech-
niques applicable to wide classes of parallel machines are essential. We are
encouraged by the results we have obtained so far on general compilation tech-
niques for SIMD and MIMD/SIMD machines [25]; and also by the concrete
experience and tools gained from implementing those techniques for the RRM.
Much more work remains ahead for further developing general compilation tech-
niques of this kind so as to cover satisfactorily most SIMD, MIMD /SIMD, and
MIMD/Sequential machines, and to demonstrate the advantages and practical
value of machine-independent parallel programming by means of implementa-
tions for machines spanning all these architectures.

Appendix A. Rewriting logic
This appendix gives the rules of deduction of rewriting logic.
A.1. Basic universal algebra. For the sake of simplifying the exposition,

we treat the unsorted case; the many-sorted and order-sorted cases can be given
a similar treatment. Therefore, a set X of function symbols is a ranked alphabet
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Y ={%¥, | n e N}. A X-algebra is then a set A together with an assignment
of a function fg : A™ — A for each f € X, with n € N. We denote by Tx
the ¥-algebra of ground X-terms, and by Tx(X) the X-algebra of Y-terms with
variables in a set X. Similarly, given a set E of Y-equations, Tx g denotes the
> -algebra of equivalence classes of ground X-terms modulo the equations E ; in
the same way, Tx g(X) denotes the ¥-algebra of equivalence classes of ¥-terms
with variables in X modulo the equations E. Let [t]g or just [¢t] denote the
E-equivalence class of t.

Given a term t € Tx({z1,...,z,}), and terms uy,...,u,, we denote by
t(ui/z1,... ,un/zy) the term obtained from ¢ by simultaneously substituting
u; for z;, ¢ = 1,...,n. To simplify notation, we denote a sequence of objects
ai,...,a, by a. With this notation, ¢t(ui1/z1,... ,u,/z,) can be abbreviated to

A.2. The rules of rewriting logic. A signature in rewriting logic is a
pair (X, E) with ¥ a ranked alphabet of function symbols and E a set of %-
equations. Rewriting will operate on equivalence classes of terms modulo the
set of equations E. In this way, we free rewriting from the syntactic constraints
of a term representation and gain a much greater flexibility in deciding what
counts as a data structure; for example, string rewriting is obtained by imposing
an associativity axiom, and multiset rewriting by imposing associativity and
commutativity. Of course, standard term rewriting is obtained as the particular
case in which the set E of equations is empty. The idea of rewriting in equivalence
classes is well known [22, 14].

Given a signature (X, E), sentences of the logic are sequents of the form
[l — [t'|g with ¢,t' Y-terms, where ¢ and ¢’ may possibly involve some vari-
ables from the countably infinite set X = {z1,...,z,,...}. A theory in this
logic, called a rewrite theory, is a slight generalization of the usual notion of
theory—which is typically defined as a pair consisting of a signature and a set of
sentences for it—in that, in addition, we allow rules to be labelled. This is very
natural for many applications, and customary for automata—viewed as labelled
transition systems—and for Petri nets, which are both particular instances of
our definition.

DEFINITION A.1. A rewrite theory R is a 4-tuple R = (X, E, L, R) where ¥
is a ranked alphabet of function symbols, E is a set of X-equations, L is a set
of labels, and R is a set of pairs R C L x Ts, g(X)? whose first component is
a label and whose second component is a pair of E-equivalence classes of terms,
with X = {z1,... ,Zn,...} a countably infinite set of variables. Elements of R
are called rewrite rules.® We understand a rule (r, ([t],[t'])) as a labelled sequent
and use for it the notation r : [t] — [t']. To indicate that {z1,...,z,} is

9To simplify the exposition the rules of the logic are given for the case of unconditional
rewrite rules. However, all the ideas and results presented here have been extended to condi-
tional rules in [28] with very general rules of the form

rofth— ] i [ur] — [va] AL A fug] — v

This of course increases considerably the expressive power of rewrite theories, as illustrated by
several of the examples presented in this paper.
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the set of variables occurring in either t or t', we write r : [t(z1,...,2,)] —
[t'(z1,...,2n)], or in abbreviated notation r : [t(T)] — [t'(T)].

Given a rewrite theory R, we say that R entails a sequent [t] — [¢'] and write
R F [t] — [t'] if and only if [t] — [¢] can be obtained by finite application of
the following rules of deduction:
(i) Reflexivity. For each [t] € Ty g(X),

i —
(ii) Congruence. For each f € ¥,,, n € N,
] =[] o [t] — [2)
[f(tla'-- 7tn)] - [f(tlh at’n)]

(iii) Replacement. For each rewrite rule
vtz ..., 20)] — [t (z1,... ,20)] in R,

[wi] — [wa] ... [wa] — [w,)]
t(@/z)] — [t'(w'/7)]

(iv) Transitivity.
[t1] — [ta]  [t2] — [ts]
[t1] — [ts]
A nice consequence of having defined rewriting logic is that concurrent rewrit-
ing, rather than emerging as an operational notion, actually coincides with de-
duction in such a logic.

DEFINITION A.2. Given a rewrite theory R = (X, E, L, R), a (%, E)-sequent
[t] — [¢t'] is called a concurrent R-rewrite (or just a rewrite) iff it can be derived
from R by finite application of the rules 1-4.
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