
DIMACS Series in Discrete Mathematicsand Theoretical Computer ScienceVolume 00, 0000
Speci�cation, Transformation, and Programmingof Concurrent Systems in Rewriting LogicPATRICK LINCOLN, NARCISO MART�I-OLIET, AND JOS�E MESEGUERMay 1994Abstract. This paper proposes a declarative paradigm in which paral-lelism is implicit and machine-independent, and the programs so developedare intrinsically parallel. This paradigm is obtained by generalizing thenotion of rewriting to make it more widely applicable and capable of ex-pressing not only functional computations but also a wide variety of parallelcomputations that are highly nonfunctional in nature. The generalizationin question is provided by rewriting logic, a logic of change in which thestates of a system are understood as algebraically axiomatized data struc-tures, and the basic local changes that can concurrently occur in a systemare axiomatized as rewrite rules that correspond to local patterns that,when present in the state of a system, can change into other patterns. Sim-ple Maude, a carefully designed sublanguage of rewriting logic supportingthree types of rewriting|term, graph, and object-oriented|, is then pro-posed as a machine-independent parallel programming language that canbe e�ciently implemented in parallel on many di�erent machines. The ad-equacy of term, graph, and object-oriented rewriting to naturally expressmany di�erent parallel programming problems is illustrated with exam-ples. Several program transformation techniques mapping rewriting logicspeci�cations into Simple Maude programs are discussed using representa-tive examples. The incorporation of modules containing conventional codeor special subsystems or devices within Simple Maude is also discussed.Finally, the advances made so far on general compilation techniques forSimple Maude are summarized.

1991 Mathematics Subject Classi�cation. Primary 68Q10, 68N15; Secondary 68Q42,68Q60.Supported by O�ce of Naval Research Contracts N00014-90-C-0086, N00014-92-C-0222,and N00014-92-C-0518, National Science Foundation Grant CCR-9224005, and by the Infor-mation Technology Promotion Agency, Japan, as a part of the Industrial Science and Tech-nology Frontier Program \New Models for Software Architecture" sponsored by NEDO (NewEnergy and Industrial Technology Development Organization).c
0000 American Mathematical Society0000-0000/00 $1.00 + $.25 per page1



2 P. LINCOLN, N. MART�I-OLIET, AND J. MESEGUER1. IntroductionThe di�culties and the limited returns often encountered when programmingparallel machines with the languages currently available are among the biggestobstacles blocking the widespread acceptance of parallel computing. In manycases users �nd that parallelizing compilers only achieve modest speedups forrunning their code on parallel machines (see for example [37] for an informativereport on experience of this kind). Indeed, given the much higher cost at presentof parallel machines compared to advanced workstations, it is only through im-pressive speedups in performance that most users will �nd parallel machinesattractive.There is, of course, the alternative of programming an application using aparallel language. However, for some machines this means programming usinglow-level machine-speci�c instructions. Even if the programming language usedis quite portable across a given class of machines|as is the case for some of theextensions of the C language with message-passing capabilities [35, 12] withinthe class of distributed memory message-passing multicomputers|such a rela-tively portable language may not be well suited for other architectures such asSIMD machines.It seems fair to say that programming parallel machines is at present con-siderably harder than programming sequential machines, and that the resultingprograms have at best limited portability. For these reasons, a considerable gapoften exists between users with applications needing fast, e�cient, solutions andthe machines that have, at least in principle, the raw power to solve them. Insome cases bridging the gap requires employing programmers who have exper-tise programming a particular parallel machine, but who need to acquire detailedknowledge of the user's application area in order to correctly program a goodsolution.The complexity and relative lack of portability currently exhibited by mostparallel programming languages are both due to the explicit way in which paral-lelism is programmed. Such explicit parallelism further complicates an alreadycomplex sequential language with additional constructs, and unavoidably buildsin some architectural assumptions about the machines on which the language issupposed to run.1.1. A machine-independent declarative paradigm. The alternativewe have in mind to bridge the existing software gap in parallel computing isto allow users to express their problem in a declarative way that is as close aspossible to the concepts of the application area in question. In this paradigm,parallelism is implicit and machine-independent, and the programs so developedare intrinsically parallel from the start.In this regard, rewriting, that is, the process of replacing instances of a left-hand side pattern by corresponding instances of a righthand side pattern, hasbeen recognized as an intrinsically concurrent computational paradigm. The ap-plication of a rewrite rule only depends on the local existence of a pattern so thatrules can be applied simultaneously in many places. In particular, rewrite ruleshave been used for expressing the implicit parallelism of functional programs ina declarative way. This has led to the investigation of so-called reduction archi-



SPECIFICATION AND PROGRAMMING IN REWRITING LOGIC 3tectures that try to exploit this type of parallelism (see for example [16, 33]).There are, however, many applications that are certainly amenable to par-allelization but do not �t well within the functional paradigm. For example, adiscrete-event simulation in which many di�erent objects interact with each othermay have a high degree of concurrency, which can be exploited using optimisticparallel simulation methods such as the Time Warp [24]. However, this usuallydoes not have a natural formulation as a functional program. E�ciency consid-erations may also discourage the functional formulation of problems for whichnonfunctional in-place data replacements can be considerably more e�cient. Ingeneral, there are many problems and algorithms that are state-oriented or non-deterministic in such an intrinsic way that thinking of them as the computationof a functional expression is both implausible and ill-advised.In this paper we explain how, by adequately generalizing the notion of rewrit-ing, we can arrive at a declarative and machine-independent parallel program-ming paradigm that is indeed widely applicable, and can therefore express notonly functional computations but also a very wide variety of other parallel com-putations that are highly nonfunctional in nature. The generalization in ques-tion is provided by rewriting logic [28], a logic of change in which the states ofa system are understood as algebraically axiomatized data structures, and thebasic local changes that can concurrently occur in a system are axiomatized asrewrite rules that correspond to local patterns that, when present in the stateof a system, can change into other patterns.Formally, viewing a state as an algebraically axiomatized data structure meansthat we give a set of equational axioms E that capture the structural propertiesof states of this kind. Then, a given state of the system we are interested incan be represented as an equivalence class [t] of a certain term t modulo thestructural axioms E. The rewrite rules axiomatizing concurrent computationare then expressions of the form [t] �! [t0]where [t] and [t0] are equivalence classes modulo E of terms t and t0 (that cancontain variables) describing respectively the local pattern to be found and itsreplacement. Concurrent computation in a system so described can be formalizedas concurrent rewriting modulo the structural axioms E; in rewriting logic eachsuch computation exactly corresponds to a proof in the logic.The case of parallel functional programming can then be recovered as thatin which the rewrite rules are con
uent (also called Church-Rosser) so thatno matter how they are applied, the �nal result, if it exists, is always unique.However, in many other applications the rules need not be con
uent and neednot terminate; this re
ects the intrinsic nondeterminism, and in some cases the\reactive" character, of the system in question.1.2. Maude and Simple Maude. Since in general rewriting can take placemodulo an arbitrary set of structural axiomsE, which could be undecidable, somerestrictions are necessary in order to use rewriting logic for parallel programming.We have therefore considered two subsets of rewriting logic. The �rst subset, inwhich the structural axioms E have algorithms for �nding all the matches of a



4 P. LINCOLN, N. MART�I-OLIET, AND J. MESEGUER'
&

$
%

'
&

$
%'& $%

Rewriting Logic: Speci�cationMaude:Prototyping andexecutable speci�cation, debuggingSimple Maude:Parallel programmingFigure 1. Maude and Simple Maude as subsets of rewriting logic.pattern modulo E, gives rise to the Maude language [31, 29], in the sense thatMaude modules are rewriting logic theories in that subset, and can be supportedby an interpreter implementation adequate for rapid prototyping, debugging, andexecutable speci�cation. The second, smaller subset gives rise to Simple Maude,a sublanguage meant to be used as a machine-independent parallel programminglanguage. Program transformation techniques can then support passage fromgeneral rewrite theories to Maude modules and from them to modules in SimpleMaude. Figure 1 summarizes the three levels involved.In Simple Maude, three types of rewriting, all of which can be e�ciently imple-mented, are supported. Together, they cover a very wide variety of applications;they are:Term rewriting. In this case, the data structures being rewritten are terms,that is, syntactic expressions that can be represented as labelled trees or acyclicgraphs. Functional programming falls within this type of rewriting, that doesalso support noncon
uent term rewrite rules, and rewriting modulo con
uentand terminating structural axioms E. Symbolic computations are naturally ex-pressible using term rewrite rules.Graph rewriting. In this case, the data structures being rewritten are la-belled graphs. For general graph rewrite rules, the graph can evolve by rewritingin highly unpredictable ways. A very important subcase is that of graph rewriterules for which the topology of the data graph remains unchanged after rewriting.Many highly regular computations, including many scienti�c computing appli-cations, cellular automata algorithms, and systolic algorithms, fall within this�xed-topology subclass, for which adequate placement of the data graph on aparallel machine can lead to implementations with highly predictable and oftenquite low communications costs.Object-oriented rewriting. This case corresponds to actor-like objectsthat interact with each other by asynchronous message-passing. Abstractly,the distributed state of a concurrent object-oriented system of this kind can benaturally regarded as amultiset data structure made up of objects and messages;the concurrent execution of messages then corresponds to concurrently rewritingthis multiset by means of appropriate rewrite rules. In a parallel machine thisis implemented by communication on a network, on which messages travel to



SPECIFICATION AND PROGRAMMING IN REWRITING LOGIC 5reach their destination objects. Many applications are naturally expressible asconcurrent systems of interacting objects. For example, many discrete eventsimulations, and many distributed AI and database applications can be naturallyexpressed and parallelized in this way.For cases in which substantial e�orts have already been spent developingconventional sequential code for some parts of an application, or interactionwith special-purpose devices needs to be included in a parallel program, SimpleMaude provides a simple way of developing parallel applications. Simple Maudeprograms can incorporate conventional or special-purpose subcomponents byencapsulating them as foreign interface modules that act as black boxes withwhich other modules can interact in a concurrent message-passing way.The design of Simple Maude seeks to support a very wide range of parallelprogramming applications in an e�cient and natural manner. In this senseSimple Maude is a multiparadigm parallel programming language that includesa functional facet (the term rewriting case), a concurrent object-oriented facet(the object-oriented rewriting case), and a facet supporting highly regular in-place computations (the graph rewriting case). By supporting programmingand e�cient execution of each application in the facet better suited for it, theinadequacies|both in terms of expressiveness and e�ciency|of a single-facetlanguage are avoided, while the bene�ts of each facet are preserved in theirentirety.1.3. Transforming speci�cations and programs. An important advan-tage of having Maude and Simple Maude as increasingly more restrictive subsetsof rewriting logic is that formal techniques can be applied within the logicalframework of rewriting logic to derive Maude prototypes from rewriting logicspeci�cations, Simple Maude programs from Maude prototypes, and more ef-�cient Simple Maude programs from less e�cient ones in a manifestly correctfashion.In Section 5 we illustrate three program transformation techniques with ex-amples. One technique, due to Viry [38], transforms a rewrite theory with rulesR and structural axioms E into an equivalent theory with rules R0 and structuralaxioms E0 such that rewriting modulo E0 is directly implementable in Maude. Asecond technique applies to Maude object-oriented modules whose rewrite rulesmay involve several objects in their lefthand side, that is, the rules require objectsynchronization; such object-oriented modules can be transformed into equiva-lent Simple Maude modules whose rules only involve asynchronous message pass-ing. A third technique applies to graph rewrite rules that require synchronous ap-plication everywhere|typically achieved by a globally SIMD implementation|for their correctness; such rules can be transformed into more 
exible rules thatdo not require simultaneous global application and that can be implemented inan asynchronous MIMD/SIMD regime.1.4. Outline of this paper. The paper is organized as follows. Section 2introduces the more familiar term rewriting case and illustrates its intrinsic par-allelism using a symbolic computation example. Section 3 motivates the inad-equacy of equational logic as a general framework for rewriting and introducesrewriting logic by means of object-oriented rewriting examples as the resolution



6 P. LINCOLN, N. MART�I-OLIET, AND J. MESEGUERof this inadequacy. Section 4 illustrates graph rewriting using an image labellingexample. Section 5 presents the three program transformation techniques dis-cussed above. Section 6 discusses how conventional programs, subsystems, andspecial hardware devices can be integrated in Simple Maude by means of foreigninterface modules. Section 7 gives a taxonomy of parallel machine architecturesand summarizes the general compilation techniques that have been developed sofar. The paper ends with some concluding remarks.2. Term rewritingThe experience of \replacing equals for equals" in elementary algebra amountsto an early introduction to term rewriting. The intrinsic parallelism of thisprocess follows from the localized nature of each replacement, being independentof any other replacement if they a�ect di�erent parts of the overall expression.We illustrate this parallelism by means of a simple example of derivatives ofpolynomials. In this example, the interpretation of rewrite rules is as equationsso that indeed we are replacing \equals for equals" in a functional module. Weshall see later other examples where rewrite rules are not equalities.Assume a set Var of variable names. A monomial is a productX1 ^ N1 ... Xk ^ Nkof powers of variables, i.e., the Xi are elements of Var, and the Ni are positiveintegers. There is a product operation on monomials satisfying, among others,the equation(X ^ N) . (X ^ M) = X ^ (N + M).A polynomial is of the form (Pi Ai �Ui)+C, where Ai and C are coe�cientsin a ring of numbers, for example integers, and Ui are monomials as describedabove. The main operations on polynomials are product and sum. They satisfy,among others, the following equations:P + 0 = P(A * U) + (B * U) = (A + B) * U(A * U) . (B * V) = (A B) * (U . V)for a polynomial P, monomials U and V, and coe�cients A and B.Polynomial derivation takes as arguments a variable (so that one can dif-ferentiate with respect to di�erent variables) and a polynomial, producing apolynomial. It can be fully de�ned by the seven equations given in the func-tional module1 POLY-DER below, which imports a POLYNOMIAL submodule, in thesense that using those equations as rewrite rules from left to right plus rulesof simpli�cation for polynomials, the result of di�erentiating a polynomial withrespect to a variable is obtained.fmod POLY-DER isprotecting POLYNOMIAL .op der : Var Poly -> Poly .op der : Var Mon -> Poly .1The syntax of functional modules is very similar to that of OBJ [18, 21] and for the mostpart is self-explanatory. They are introduced with the keyword fmod, the type of each operatorand of each variable is declared, and then the equations are introduced with the keyword eq(or ceq for conditional equations).



SPECIFICATION AND PROGRAMMING IN REWRITING LOGIC 7
P QX +der�� AA�� AA ) X P X Qder der+�� AA �� AA�� @@
Figure 2. A tree rewrite rule.var A : Int .var N : NzNat .vars P Q : Poly .vars X Y : Var .vars U V : Mon .eq der(X, P + Q) = der(X, P) + der(X, Q) .eq der(X, U . V) = (der(X, U) . V) + (U . der(X, V)) .eq der(X, A * U) = A * der(X, U) .ceq der(X, X ^ N) = N * (X ^ (N - 1)) if N > 1 .eq der(X, X ^ 1) = 1 .ceq der(X, Y ^ N) = 0 if X =/= Y .eq der(X, A) = 0 .endfmIn addition, the seven equations above constitute a parallel program for poly-nomial di�erentiation because equations can be applied concurrently with otherequations whenever they happen to match a subexpression, and the �nal result isalways the same independently of the order in which the equations are applied2.This can be visualized by representing all expressions in tree form. For example,the equationder(X, P + Q) = der(X, P) + der(X, Q)can be represented as the tree rewrite rule in Figure 2.The concurrent rewriting computation of a polynomial di�erentiation examplecan be expressed in graph form as in Figure 3, where the last step summarizesseveral concurrent steps of polynomial simpli�cation using rules in POLYNOMIAL(not shown).3. Rewriting logic and object-oriented rewritingThe type of rewriting typical of functional programming applications justillustrated in Section 2 can be generalized in two ways. We can:� allow rewrite rules that can be noncon
uent and/or nonterminating,� rewrite modulo certain structural axioms satis�ed by the data.Noncon
uence can quickly lead us outside the realm of equational logic, asillustrated by the following nonfunctional term rewriting example which adds anondeterministic choice operator to the natural numbers.mod NAT-CHOICE isextending NAT .op _?_ : Nat Nat -> Nat .2This property follows from the above equations being con
uent and terminating.



8 P. LINCOLN, N. MART�I-OLIET, AND J. MESEGUER
. . . . . . . . . . ........... ..........

X3 Y4 X5 Z37 . 15 .* *X +der�� AA�� @@�� AA �� AA�� AA �� AA ) X3 Y4 X5 Z37 . 15 .* *X. . . . . . . . . . ........... .......... X. . . . . . . . . . ........... ..........+der der��� HHH�� AA �� AA�� AA �� AA�� AA �� AA )
) X3 Y4 X5 Z3X. . . . . . . . . . ........... ........... X. . . . . . . . . . ........... ...........der der7 15+* *��� HHH�� AA �� AA�� AA �� AA�� AA �� AA ) X3 derY4der X5Z3 derder. . . .+ +7 15+* *

X. . . . . . . . . . ........... ..........X3 X. . . . . . . . . . ........... ..........Y4 X. . . . . . . . . . ........... ..........X5 X. . . . . . . . . . ........... ..........Z3
���� HHHH�� AA �� AA�� @@ �� @@�� AA�� AA �� AA �� AA�� AA �� AA �� AA �� AA )

) X3 0Y4* X5Z3 0*. . . .+ +7 15+* *
3 X2 5 X4

���� HHHH�� AA �� AA�� @@ �� @@�� AA�� AA �� AA �� AA�� AA �� AA �) X2 Y4 X4 Z321 . 75 .* *+�� @@�� AA �� AA�� AA �� AAFigure 3. Concurrent polynomial di�erentiation in graph form.



SPECIFICATION AND PROGRAMMING IN REWRITING LOGIC 9vars N M : Nat .rl N ? M => N .rl N ? M => M .endmThe intuitive operational behavior of this module is quite clear. Natural num-ber arithmetic remains unchanged and is computed using the rules in the NATmodule (not shown). Using the two rules in the module, any occurrence of thechoice operator ? in an expression can be eliminated by choosing either of thearguments. In the end, we can reduce any ground expression to a natural num-ber. However, the rules cannot be interpreted as equalities; otherwise we wouldobtain the contradictionN = N ? M = Mcollapsing all natural numbers into one point. To mark this distinction, the key-word rl (for \rule") is used in Simple Maude for rules in nonfunctional modules.Nonfunctional modules are theories in rewriting logic. We informally intro-duce rewriting logic by means of a simple object-oriented example. This example,in addition to being noncon
uent, illustrates the importance of rewriting moduloa set E of structural axioms. A precise de�nition of the rules of rewriting logicis given in Appendix A.Rewriting logic is a logic to reason correctly about the evolution in time of aconcurrent system. The distributed state of a concurrent system is representedas a term whose subterms represent the di�erent components of the concurrentstate. Typically, however, the structure of the concurrent state may have avariety of equivalent term representations because it satis�es certain structurallaws. For example, in a concurrent object-oriented system the concurrent state,which is usually called a con�guration, has typically the structure of a multisetmade up of objects and messages. Therefore, we can view con�gurations asbuilt up by a binary multiset union operator which we can represent with emptysyntax assubsorts Object Msg < Configuration .op __ : Configuration Configuration -> Configuration[assoc comm id: null] .where the multiset union operator is declared to satisfy the structural lawsof associativity and commutativity and to have identity null. The subtypedeclarationsubsorts Object Msg < Configuration .states that objects and messages are singleton multiset con�gurations, so thatmore complex con�gurations are generated out of them by multiset union.As a consequence, we can abstractly represent the con�guration of a typicalconcurrent object-oriented system as an equivalence class [t] modulo the struc-tural laws of associativity, commutativity, and identity obeyed by the multisetunion operator of a term expressing a union of objects and messages, i.e., as amultiset of objects and messages.An object in a given state is represented as a termhO : C j a1 : v1; : : : ; an : vni



10 P. LINCOLN, N. MART�I-OLIET, AND J. MESEGUERwhere O is the object's name or identi�er, C is its class, the ai's are the namesof the object's attribute identi�ers, and the vi's are the corresponding values.The set of all the attribute-value pairs of an object state is formed by repeatedapplication of the binary union operator , which also obeys structural laws ofassociativity, commutativity, and identity; i.e., the order of the attribute-valuepairs of an object is immaterial.For example, a bounded bu�er whose elements are numbers can be representedas an object with three attributes: a contents attribute that is a list of numbersof length less than or equal to the bound, and attributes in and out that arenumbers counting how many elements have been put in the bu�er or got from itsince the bu�er's creation. A typical bounded bu�er state can be< B : BdBuff | contents: 9 5 6 8, in: 7, out: 3 >In rewriting logic, sentences are rewrite rules of the form[t] �! [t0];where [t] denotes the equivalence class of t modulo the structural laws satis�edby the states of the system in question, or, more generally, conditional rewriterules of the formr : [t] �! [t0] if [u1] �! [v1] ^ : : : ^ [uk] �! [vk]:Those sentences axiomatize the basic local transitions that are possible in a con-current system. For example, in a concurrent object-oriented system includingbounded bu�ers that interact with other objects by put and get messages, andwith appropriate reply messages after a get, the local transitions of boundedbu�ers are axiomatized by rewrite rules in the module below3.omod BD-BUFF isprotecting NAT .protecting LIST[Nat] .class BdBuff | contents: List, in: Nat, out: Nat .initially contents: nil, in: 0, out: 0 .msg put_in_ : Nat OId -> Msg .msg getfrom_replyto_ : OId OId -> Msg .msg to_elt-in_is_ : OId OId Nat -> Msg .vars B I : OId .vars E N M : Nat .var Q : List .rl (put E in B) < B : BdBuff | contents: Q, in: N, out: M > =>< B : BdBuff | contents: E Q, in: N + 1, out: M >if (N - M) < bound .3Object-oriented modules in Simple Maude have special syntax facilitating their de�nition.The existence of a con�guration multiset of objects and messages is already assumed and there-fore is left implicit. The multiset union operator is indeed used in the two rewrite rules given.Note that the attributes of a class and their types are declared after the class itself. AlthoughMaude provides convenient syntax for object-oriented modules, they can be systematicallytranslated into rewrite theories by making explicit all the assumptions left implicit in theirsyntax. A detailed account of this translation process can be found in [29].



SPECIFICATION AND PROGRAMMING IN REWRITING LOGIC 11rl (getfrom B replyto I)< B : BdBuff | contents: Q E, in: N, out: M > =>< B : BdBuff | contents: Q, in: N, out: M + 1 >(to I elt-in B is E) .endomWe assume an already de�ned functional module NAT for natural numbers, witharithmetic operations and ordering predicates.The �rst rule speci�es the conditions under which a put message can beaccepted (namely, that N - M is smaller than bound) and the correspondinge�ect. The second rule does the same for getmessages; note that the requirementthat the bu�er must not be empty is implicit in the pattern Q E for the contentsattribute.The rules of deduction of rewriting logic support sound and complete reason-ing about the concurrent transitions that are possible in a concurrent systemwhose basic local transitions are axiomatized by given rewrite rules. That is,the sentence [t] �! [t0] is provable in the logic using the rewrite rules that ax-iomatize the system as axioms if and only if the concurrent transition [t] �! [t0]is possible in the system. A precise account of the model theory of rewritinglogic fully consistent with the above system-oriented interpretation, and provingsoundness, completeness, and the existence of initial models is given in [28].The intuitive idea behind the rules of rewriting logic in Appendix A is thatproofs in rewriting logic exactly correspond to concurrent computations in theconcurrent system being axiomatized, and that such concurrent computationcan be understood as concurrent rewriting modulo the structural laws obeyed bythe concurrent system in question. In the case of a concurrent object-orientedsystem such structural laws include the associativity, commutativity, and identityof the union operators and , , and this means that the rules can be appliedregardless of order or parentheses. For example, a con�guration such as(put 7 in B1) < B2 : BdBuff | contents: 2 3, in: 7, out: 5 >< B1 : BdBuff | contents: nil, in: 2, out: 2 >(getfrom B2 replyto C)(where the bu�ers are assumed to have a large enough bound) can be rewritteninto the con�guration< B2 : BdBuff | contents: 2, in: 7, out: 6 >< B1 : BdBuff | contents: 7, in: 3, out: 2 >(to C elt-in B2 is 3)by applying concurrently the two rewrite rules4 for put and get modulo asso-ciativity and commutativity.Intuitively, we can think of messages as \travelling" to come into contact withthe objects to which they are sent and then causing \communication events" byapplication of rewrite rules. In rewriting logic, this travelling is accounted forin a very abstract way by the structural laws of associativity, commutativity,and identity. The above two rules illustrate the asynchronous message passingcommunication between objects supported by Simple Maude. In general, forconcurrent object-oriented modules in Simple Maude we only allow conditional4Note that rewrite rules for natural number addition have also been applied.



12 P. LINCOLN, N. MART�I-OLIET, AND J. MESEGUERrules of the form (y) (M) hO : F j attsi�! (hO : F 0 j atts 0i)hQ1 : D1 j atts 001 i : : : hQp : Dp j atts 00p iM 01 : : :M 0qif Cinvolving at most one object and one message in their lefthand side, where thenotation (M) means that the messageM is only an optional part of the lefthandside, that is, that we also allow autonomous objects that can act on their ownwithout receiving any messages. Similarly, the notation (hO : F 0 j atts 0i) meansthat the object O|in a possibly di�erent state|is only an optional part of therighthand side, i.e., that it can be omitted in some rules so that the object isthen deleted. In addition, p new objects may be created, and q new messagesmay be generated for p; q � 0.Furthermore, the lefthand sides in rules of the form (y) should �t the generalpattern M(O) hO : C j attsiwhere O could be a variable, a constant, or more generally|in case object identi-�ers are endowed with additional structure|a term. Under such circumstances,an e�cient way of realizing rewriting modulo associativity and commutativityby communication is available to us for rules of the form (y), namely we canassociate object identi�ers with speci�c addresses in the virtual address spaceof a parallel machine and can then send messages addressed to an object to itscorresponding address.More general rewrite rules corresponding to synchronous communication be-tween objects that do not satisfy the (y) restriction can be transformed into sim-pler asynchronous rules of the form (y) by program transformation techniques,as discussed in Section 5.Support for multiple inheritance for classes is provided by the order-sortedtype structure of rewriting logic [19]|so that if C is a subclass of C 0, then Cis a subsort of C 0|and by an associated desugaring of the rules as originallygiven by the user that makes them automatically applicable in subclasses. See[29, 30] for more details on the semantics of multiple inheritance for object-oriented modules in Maude and Simple Maude.Our above introduction to rewriting logic has focused on the object-orientedcase where the structural axioms E are the associativity, commutativity, andidentity of a multiset union operator that builds up the con�guration of objectsand messages. In general, however, the axioms E can be varied as a very 
exibleparameter with which many di�erent types of concurrent systems can be nat-urally speci�ed. In this way, rewriting logic can be regarded as a very generalmodel of concurrency from which many other models can be directly obtained byspecialization. Examples of such special cases include: labelled transition sys-tems; parallel functional programming, including equational programming and



SPECIFICATION AND PROGRAMMING IN REWRITING LOGIC 13the �-calculus with explicit substitution; Post systems and related grammar for-malisms; concurrent object-oriented programming, including the Actor model[4]; Petri nets [34]; the Gamma language of Banâtre and Le M�etayer [5], andBerry and Boudol's chemical abstract machine [7]; CCS [32]; and Unity's modelof computation [9]. A detailed discussion of how all these models appear asspecial cases can be found in [28], and for CCS in [27].4. Graph rewritingGraph rewriting is an area that has received much attention and has beenused for a variety of purposes (see for example [15, 36] and references there).A number of di�erent axiomatizations of graph rewriting for somewhat di�erentvariants of the general concept have been proposed in the literature, includingaxiomatizations in terms of categorical pushouts [15]. For our purposes theaxiomatizations that provide a direct link with the rewriting logic approach arethose in which labelled graphs are axiomatized equationally as an algebraic datatype in such a way that graph rewriting becomes rewriting modulo the equationsaxiomatizing the type. Axiomatizations in this spirit include those of Bauderonand Courcelle [6], and of Corradini and Montanari [11].Among other applications, graph rewriting has been extensively used in thecompilation of functional languages. However, the importance of graph rewritinggoes far beyond functional applications. For example, many highly regular com-putations can be naturally expressed by graph rewrite rules in which the topologyof the graph does not change. This �xed-topology subcase, besides being quitecommon in applications such as scienti�c computing, systolic algorithms, signalprocessing, and cellular automata, has many advantages allowing very e�cientimplementations, including the predictability at compile time of communicationrequirements|which can be minimized by appropiate placement of the datagraph|and the lack of any need for garbage collection or for structure creation.Consider for example the problem of clustering a two-dimensional image intoits set of connected components. We may assume that the image is representedas a two-dimensional array of points, where each point has a unique identi�erdi�erent from that of any other point, say a nonzero number, if it is a point inthe image; points not in the image have the value 0. Figure 4 shows one suchimage and its two connected components.One way to compute the connected components is to assign to all pointsin each component the greatest identi�er present in the component. In theabove example all points in the left component will end up with value 12, andall those in the right component with value 7. This can be accomplished byrepeated application of the single rewrite rule in Figure 5, which can be appliedconcurrently to the data graph. Note that the rule is conditional on the valueN0 being di�erent from 0. The labels a; b; c; d; e identify the same nodes of thegraph before and after the rewrite is performed; note that only the value in nodea may change as a result of applying this rule.This one rewrite rule embodies an algorithm for computing connected com-ponents with worst-case sequential complexity of O(n4), where the input imageis a square with side n and n2 total pixels. This bound is achieved on the



14 P. LINCOLN, N. MART�I-OLIET, AND J. MESEGUER

��������������������������������������������������������������������������������������������������������������������������������������������

0 0 0 0 0 0 00 6 10 0 3 0 00 11 0 0 5 7 00 12 9 2 0 0 00 0 0 0 0 0 0

Figure 4. Image as two-dimensional array.
c����N2 a����N0 e����N4d����N3

b����N1 )if N0 6= 0
c����N2 e����N4d����N3

b����N1a�� ��maxfN0; N1; N2; N3; N4g
Figure 5. A graph rewrite rule.surprisingly bad case of an image of a spiral. The parallel complexity of this al-gorithm is O(n2), but there exist algorithms with parallel complexity O(n logn)that avoid slavishly following paths around complicated diagrams [13]. Thealgorithm above with disappointing worst-case behavior has smaller constantfactors, and good average case performance. In any case, an algorithm withoptimal worst-case performance can be expressed in a similar way as a small setof graph rewrite rules.5. Transforming speci�cations and programsThree program transformation techniques, namely: coherence completion, re-duction of synchronous object communication to asynchronous message passing,and transformation of synchronous graph rewriting into an asynchronous version,are illustrated with examples.



SPECIFICATION AND PROGRAMMING IN REWRITING LOGIC 155.1. From rewriting logic to Maude through coherence completion.As discussed in the introduction, rewriting modulo an arbitrary set of structuralaxioms E may be ine�cient and even undecidable in general. However, thereare cases in which E satis�es special properties in such a way that rewritingmodulo E can be implemented by standard rewriting, or by rewriting moduloan equational theory A for which there are suitable matching and uni�cationalgorithms, like for example associativity and commutativity. This subject hasbeen studied by P. Viry in [38], whose main results are summarized here.Viry's results can be used to semiautomate a transformation technique inwhich a rewriting logic speci�cation given by a set of rewrite rules R modulo aset of equations E can be transformed into either:(i) An equivalent Simple Maude term rewriting program with rules R0 [E0(and no structural axioms) such that the rules E0 are con
uent and ter-minating and are equivalent to the equations E, and such that rewritingmodulo E with the original rules R can be simulated by standard termrewriting using the rules R0 [ E0 in the transformed program, or(ii) An equivalent Maude program with rules R0 [E0 and structural axiomsA (for which matching algorithms modulo A exist in the Maude imple-mentation) such that the equations E are equivalent to E0[A, and suchthat rewriting modulo E with the original rules R can be simulated byrewriting modulo A using the rules R0 [E0 in the transformed program.We need to introduce some notation. Let us denote by �� the transitive andre
exive closure of a relation �!, and by�� the equivalence relation generatedby �! (its symmetric, transitive, and re
exive closure). The composition ofrelations �! and  is written �! �  . Then, a step of rewriting modulo Eusing the rules in R on both equivalence classes ([R]E) and terms (R=E) can bede�ned as[t]E [R]�! [t0]E () t R=E�! t0 () t E�� � R�! � E�� t0There is also a weaker relation R;E�! which is the restriction of E�� � R�! obtainedby allowing the E�� steps to be applied only below the redex rewritten by R.This relation can be implemented using an algorithm for matching modulo E.Assume that the equations E are (or can be completed to be) con
uent andterminating as rewrite rules. Then, we want to implement rewriting modulo Eusing R by a combination of (standard) rewriting using E and rewriting using R.Since we are going to apply R to terms instead of equivalence classes, we mustcheck that the choice of a representative in a class has no e�ect in the result.This is the case when R and E satisfy the following condition.Definition 5.1. We say that R�! is coherent with E�! if, when t R�! t0 andt E�� t00, then there exists s such that t0 E�� s and t00 E�� � R�! � E�� s.The coherence condition can be represented diagrammatically as in Figure 6,where solid arrows denote the given rewrite steps, and dotted arrows denote therewrite steps that have to exist. A similar condition using normal forms wasindependently proposed by Meseguer in [29, p. 359].



16 P. LINCOLN, N. MART�I-OLIET, AND J. MESEGUER� � �� � �
R //E � ��� E ��� � � � � � � � � � � ��� �E //� � � � � � � � � � � //� � R //� � � � � � � � � � � � E ??� � � � � � � � � � � ??� �Figure 6. Coherence condition in diagram form.Viry's main result is the followingTheorem 5.1. Assume that E�! is con
uent and terminating. If R�! is co-herent with E�!, then the following equivalence holds:[t]E [R]�! [t0]E () t E�� � R�! t00 2 [t0]E :Moreover he proves that coherence can be semiautomatically generated andcan be checked by means of a Knuth-Bendix style completion method using crit-ical pairs of coherence; see [38] for details. This completion method provides thetransformation (i) from rewriting logic speci�cations into Simple Maude pro-grams.These results can be generalized to the case in which, although E is not con-
uent and terminating, it is equivalent to E0, which is con
uent and terminatingmodulo a set of equations A � E. For example, A may consist of associativityand commutativity axioms for some operators, or more generally of any axiomsfor which suitable matching algorithms exist. The presentation of this case re-quires the de�nition of new coherence concepts for which the reader is referredto Viry's paper [38]. We just repeat here his main result in this more generalsetting.Theorem 5.2. Assume that E0=A�! is terminating, that E0;A�! is Church-Rosser,and that the set of equations A is linear, regular, and non-collapsing. If R;A�! iscoherent with A ! and with E0;A�!, then the following equivalence holds:[t]E [R]�! [t0]E () t E0;A�� � R;A�! t00 2 [t0]E :For axioms A having reasonable matching and uni�cation algorithms, the pre-vious coherence completion method can be extended to a coherence completionmethod modulo A [38]. Provided that a Maude implementation supports match-ing modulo A, this completion technique can then be employed to semiautomatethe transformation (ii) from a rewriting logic speci�cation into a Maude exe-cutable speci�cation. We illustrate this second case of transformation by meansof the following example representing in rewriting logic a subset of Milner's CCS[32].fth NAMES issort ProcessId . *** process identifierssort Label . *** ordinary actions



SPECIFICATION AND PROGRAMMING IN REWRITING LOGIC 17op ~_ : Label -> Label .var N : Label .eq ~~N = N .endftfmod PROCESS[X :: NAMES] issort Act .subsort Label < Act .op tau : -> Act . *** silent actionsort Process .subsort ProcessId < Process .op 0 : -> Process . *** inactionop _._ : Act Process -> Process . *** prefixop _+_ : Process Process -> Process *** summation[assoc comm idem id: 0] .op _|_ : Process Process -> Process *** composition[assoc comm id: 0] .endfmmod SUB-CCS[X :: NAMES] isprotecting PROCESS[X] .sort ActProcess .subsort Process < ActProcess .op {_}_ : Act ActProcess -> ActProcess .*** {A}P means that process P has performed action Avar L : Label .var A : Act .vars P P' Q Q' : Process .rl A . P => {A}P .crl P + Q => {A}P' if P => {A}P' .crl P | Q => {A}(P' | Q) if P => {A}P' .crl P | Q => {tau}(P' | Q') if P => {L}P' and Q => {~L}Q' .endmTherefore, making explicit the axioms declared with speci�c operators, theset E of structural axioms that processes must satisfy is:eq ~~N = N .eq P + Q = Q + P .eq (P + Q) + R = P + (Q + R) .eq P + 0 = P .eq P + P = P .eq P | Q = Q | P .eq (P | Q) | R = P | (Q | R) .eq P | 0 = P .and the set of rules R consists of the four rules in module SUB-CCS[X]. Exceptfor the two associativity and commutativity equations, the rest can be orientedfrom left to right giving a set of rewrite rules which is terminating and con
uentmodulo associativity and commutativity. That is, we can split E into the set Aof structural axiomseq P + Q = Q + P .



18 P. LINCOLN, N. MART�I-OLIET, AND J. MESEGUEReq (P + Q) + R = P + (Q + R) .eq P | Q = Q | P .eq (P | Q) | R = P | (Q | R) .and the set E0 of rulesrl ~~N => N .rl P + 0 => P .rl P + P => P .rl P | 0 => P .Moreover, these sets satisfy all the requirements in Theorem 5.2 [38], and there-fore, rewriting by the rules in R modulo E is equivalent to rewriting by the rulesin R [E0 modulo A.5.2. Transforming synchronous object communication into asyn-chronous message passing. In Section 3 we have described rules for SimpleMaude object-oriented modules of the form (y), involving only at most one ob-ject and one message in the lefthand side. More generally, as mentioned there,we can consider synchronous rules which involve several objects and messages inthe lefthand side of the form(z) M1 : : :Mn hO1 : F1 j atts1i : : : hOm : Fm j attsmi�! hOi1 : F 0i1 j atts 0i1i : : : hOik : F 0ik j atts 0ikihQ1 : D1 j atts 001 i : : : hQp : Dp j atts 00p iM 01 : : :M 0qif Cwhere the Ms are message expressions, i1; : : : ; ik are di�erent numbers amongthe original 1; : : : ;m, and C is the rule's condition. Although synchronous rulesof this kind could be implemented in parallel, their direct implementation wouldbe very communication intensive and therefore would be ine�cient. For this rea-son, they are not allowed in Simple Maude (where only asynchronous messagepassing communication between objects is directly supported), but they are per-mitted in Maude object-oriented modules, where they can be implemented in asequential interpreter using an associative-commutative matching algorithm. Inwhat follows we illustrate with a simple example the transformation of Maudeobject-oriented modules with synchronous rules (z) into corresponding SimpleMaude modules with asynchronous message passing rules (y).Consider the object-oriented SPREADSHEET module below which speci�es theconcurrent behavior of objects in a very simple class Cell of cells in a spread-sheet, whose unique attribute is the value stored in the cell, set initially tozero. The cells are organized in a grid and are therefore identi�ed by means ofpairs (N,M) giving the row and column numbers. For each row N there is a cell(N,total) that keeps track of the corresponding total, and similarly for eachcolumn M there is a cell (total,M). There is also a cell (total,total) provid-ing the sum of all the values in all the cells in the spreadsheet. The spreadsheetmay receive messages add(N,M,V) and sub(N,M,V) for adding or subtracting theamount V to the value stored in cell (N,M). We also assume a functional moduleNAT for natural numbers.



SPECIFICATION AND PROGRAMMING IN REWRITING LOGIC 19The reader can compare this Maude program with the more complex pro-gram developed by Chandy and Taylor in [10], which stimulated our alternativesolution.omod SPREADSHEET isprotecting NAT .sort Name .subsort Nat < Name .op total : -> Name .op (_,_) : Name Name -> OId .class Cell | val : Nat .initially val : 0 .msgs add sub : Nat Nat Nat -> Msg .vars M N V W X Y Z : Nat .rl add(N,M,V) < (N,M) : Cell | val: W >< (total,total) : Cell | val: X >< (N,total) : Cell | val: Y >< (total,M) : Cell | val: Z >=> < (N,M) : Cell | val: W + V >< (total,total) : Cell | val: X + V >< (N,total) : Cell | val: Y + V >< (total,M) : Cell | val: Z + V > .crl sub(N,M,V) < (N,M) : Cell | val: W >< (total,total) : Cell | val: X >< (N,total) : Cell | val: Y >< (total,M) : Cell | val: Z >=> < (N,M) : Cell | val: W - V >< (total,total) : Cell | val: X - V >< (N,total) : Cell | val: Y - V >< (total,M) : Cell | val: Z - V >if W >= V .endomThe problem we address in this section is how to transform synchronousobject-oriented rules of the form (z), like the ones in the module above, intoasynchronous rules of the simpler form (y). The essential idea is to introducenew messages in the righthand side of the rules, creating new states in which theoriginal computation is half-done, and is going to continue by further interactionof the new messages with the objects. In the particular case of the spreadsheetexample, we have the following program in Simple Maude.omod SPREADSHEET-ASYNCH isprotecting NAT .sort Name .subsort Nat < Name .op total : -> Name .op (_,_) : Name Name -> OId .class Cell | val: Nat .initially val: 0 .



20 P. LINCOLN, N. MART�I-OLIET, AND J. MESEGUERmsgs add sub : Nat Nat Nat -> Msg .msgs add-row add-col : Nat Nat -> Msg .msgs sub-row sub-col : Nat Nat -> Msg .msgs add-total sub-total : Nat -> Msg .vars M N V W : Nat .rl add(N,M,V) < (N,M) : Cell | val: W >=> < (N,M) : Cell | val: W + V >add-row(N,V) add-col(M,V) add-total(V) .rl add-row(N,V) < (N,total) : Cell | val: W >=> < (N,total) : Cell | val: W + V > .rl add-col(M,V) < (total,M) : Cell | val: W >=> < (total,M) : Cell | val: W + V > .rl add-total(V) < (total,total) : Cell | val: W >=> < (total,total) : Cell | val: W + V > .crl sub(N,M,V) < (N,M) : Cell | val: W >=> < (N,M) : Cell | val: W - V >sub-row(N,V) sub-col(M,V) sub-total(V)if W >= V .rl sub-row(N,V) < (N,total) : Cell | val: W >=> < (N,total) : Cell | val: W - V > .rl sub-col(M,V) < (total,M) : Cell | val: W >=> < (total,M) : Cell | val: W - V > .rl sub-total(V) < (total,total) : Cell | val: W >=> < (total,total) : Cell | val: W - V > .endomBecause of the presence of new messages, there are new con�gurations in themodule SPREADSHEET-ASYNCH that do not correspond to any con�guration in theoriginal module SPREADSHEET. However, in any computation using the new rulesthat starts in a con�guration from SPREADSHEET the new messages are going toeventually disappear by application of the new rules involving those messages onthe lefthand side, reaching in this way a con�guration in SPREADSHEET. Moreover,this con�guration is exactly the same achieved by the original synchronous rules.The spreadsheet example illustrates the main idea of this transformation tech-nique, but it is simpler than usual because the operations involved satisfy specialproperties, like for example commutativity of addition, that make the order ofapplication of rules irrelevant with respect to the �nal result. In general, theorder in which rules are applied matters, and this has to be taken care of whentransforming the program. Transformation techniques covering this general casethat can automate the compilation of Maude object-oriented modules into Sim-ple Maude have been developed by Lincoln and Meseguer in joint work withT. Winkler. The main idea of the general-purpose transformation techniquesfrom Maude rules of type (z) into Simple Maude rules of type (y) is to use one ofthe objects involved in the rewrite as the locus of control for each rule. The mainproblematic points are deadlock and fairness. Here we give the basic outline ofthe approach for Maude rules whose lefthand side contains only one messagementioning explicitly all the objects in the lefthand side. This case seems the



SPECIFICATION AND PROGRAMMING IN REWRITING LOGIC 21most important in practice; however, the technique can be generalized to handlerules with more than one message in their lefthand side.For each Maude rule, a set of Simple Maude rules is generated. First, apattern object is chosen from the lefthand side of the Maude rule to be thelocus of control. This object begins the process by locking itself to prevent theapplication of other rewrite rules. Locking may be implemented with a rewriterule of type (y) that changes the shape of the object in such a way that it wouldfail to match with any rules other than those described below5. Once locked, thisobject sends messages to each other object appearing in the lefthand side of theinstance of the original rule of type (z). Simple Maude rules of type (y) are addedfor receiving these messages, locking the recipients, and responding, perhapswith some data values. Once the locus object receives positive replies from allobjects named in the original rule (z), it begins the data-matching process. Thedata necessary to verify a match may be sent in the locking replies alreadygenerated, or may be transferred through additional messages. Once a match isfound, the locus object performs the object updates by sending messages to allaltered objects, generating all new objects and new messages that the originalrule speci�es, sending unlocking messages to all objects in the lefthand side ofthe rule, and unlocking itself. These actions can easily be encoded as SimpleMaude rules of type (y).The above scheme must be extended to avoid deadlock, which may occur if twoor more objects chosen as loci of control for two or more matches simultaneouslyattempt to lock two target objects. In such case, one of the loci objects mayobtain a lock on one of the targets, and another locus object (perhaps executinga di�erent Maude rule) may obtain a lock on the other target. Deadlock occurssince each locus object is waiting to achieve a lock on some object that is alreadylocked by another locus object. To eliminate such deadlocks, one can implementby means of rules of type (y) a solution to the Drinking Philosophers Problemof Chandy and Misra [9] using priority and backing-out schemes. In addition todeadlock avoidance, care must be taken in the priority scheme to avoid starvationof one rule of type (z) by other rules; for this purpose each locus object maintainspriority information for each rule that applies to it, based on the number ofsuccessful complete locks achieved by the locus object for that rule. When thelocus object attempts locking other objects, the corresponding priority may becommunicated within the locking messages. When a locking message is receivedby an object already locked by some locus object with higher priority (withfewer successful complete locks), a lock rejected message is generated. When alocking message is received by an object already locked by some locus objectwith lower priority, a cease and desist message is sent to the lower-priority locusobject. When a lock rejected message is received, a locus object may choose toreattempt a lock a �xed number of times or back out of the attempted rewritealtogether. When a cease and desist message is received, a locus object that hasalready obtained locks on all necessary objects may complete the rewrite, but alocus object still waiting for some subset of locks must back out of the attemptedrewrite. Backing out of a rewrite may involve simply unlocking all locked objects,5See the example of Lockable objects in [30, p. 232].



22 P. LINCOLN, N. MART�I-OLIET, AND J. MESEGUER

��������������������������������������������������������������������������������v1 v2 v3 v4 v5v6 v7v8 v9va vb vc vd ve0 0 00 0 0
Figure 7. Initial state for Dirichlet problem.

c����N2 a����N0 e����N4d����N3
b����N1 ) c����N2 e����N4d����N3

b����N1a�� ��14P4i=1Ni
Figure 8. Another graph rewrite rule.or in the case of a cease and desist message, sending a message to the lockedobject in question that atomically transfers the lock from the lower-priority locusobject to the higher-priority one.5.3. Transforming synchronous graph rewrite rules into asynchro-nous ones. Consider for example the Dirichlet problem from [10]. The problemis to �nd a solution to the Laplace equation r2� = 0, where the values of � are�xed for the boundary cells. Initially, each interior cell has value zero, and theboundary cells have their given values vi, as in the diagram in Figure 7.In one parallel step of computation, the value of each interior cell is replacedby the average of the values of its four (vertical and horizontal) neighbors. Thiscan be represented by the graph rewrite rule in Figure 8, which should be appliedsimultaneously everywhere, that is, in SIMD mode6.The computation should be performed in lock step, enforcing that all cellscompute their new values simultaneously. In other words, only maximally-parallel SIMD rewrites are allowed. If one wanted to compute exactly the same6The SIMD and MIMD/SIMDmodes of parallel rewriting are further explained in Section 7.



SPECIFICATION AND PROGRAMMING IN REWRITING LOGIC 23
c����2)N2 a����1)P02)N03)� e����2)N4d����2)N3

b����2)N1 ) c����2)N2 e����2)N4d����2)N3
b����2)N1a�� ��1)�2)N03) 14P4i=1 Ni

c����3)N2 a����1)�2)P03)N0 e����3)N4d����3)N3
b����3)N1 ) c����3)N2 e����3)N4d����3)N3

b����3)N1a�� ��1) 14P4i=1 Ni2)�3)N0
c����1)N2 a����1)N02)�3)P0 e����1)N4d����1)N3

b����1)N1 ) c����1)N2 e����1)N4d����1)N3
b����1)N1a�� ��1)N02) 14P4i=1 Ni3)�

Figure 9. Three asynchronous graph rewrite rules.sequence of values, but allow asynchronous computation, for example to makepossible solving the problem with a MIMD/SIMD machine whose computationalnodes are SIMD but operate asynchronously with decentralized controllers, onecan perform the following transformation. First, where before there was only asingle data value stored, we now allow three data values to be stored. Also, weintroduce a distinguished data value \�" that cannot be matched with a number(say, by type constraints). We then produce the three rules in Figure 9, wherewe take the notational convenience of omitting some attributes of nodes, whichare then assumed to be unchanged by the rewrite.These three rules take the place of the one globally SIMD rule in Figure 8.The intended operation is that the symbol � stands for the next value to becomputed. It is an invariant that when one of these rules applies, the value ofP0 is no longer needed in the computation, and thus can be overwritten.If one is only interested in the �nal result of a computation, that is, afterthings become stable, then, somewhat surprisingly, the original rule can also beused in an asynchronous MIMD/SIMD mode to produce the correct result. Theproof that the original rule, even in MIMD/SIMD mode, leads to the same �nal



24 P. LINCOLN, N. MART�I-OLIET, AND J. MESEGUERresult as it does in SIMD mode is not di�cult but beyond the capabilities ofour Simple Maude compiler to determine7, so for MIMD/SIMD machines ourcompiler would produce the three rule version.In general, using the technique just illustrated, one may transform maximally-parallel SIMD rewriting into MIMD/SIMD rewriting by adding clock-time andpast state attributes to all cells. Rewrite rules are then made sensitive to theclock times, enforcing that data from a consistent (arti�cial) clock time is usedin performing all rewrites. After rewriting, a cell must retain its past state toallow its neighbors to compute their next state if they have not already done so.Assuming that each rule changes the value in at most one node, and that thecontrol strategy of each SIMD rule is to rewrite using that rule until quiescence,there is a useful subclass of graph rewriting for which only one past state needbe recorded in the transformation described above. In order to characterize thissubclass, we need to give �rst some de�nitions. Given a graph rewrite rule, wesay that a node in an instance of the lefthand side of the rule is written if its valuecould be changed by application of the rule; for example, in the Dirichlet programabove only the central node in each rule is written. Given a graph rewrite ruleand a node A in a data graph, the read set of A is the set of all nodes in thegraph that appear in a match of the rule where A is written; for example, theread set of a node matching node a in the Dirichlet program consists of the �venodes matching a; b; c; d; e. Also, the write set of A is the set of all nodes thatare written in all possible matches of the rule that contain A; in the Dirichletexample, the write set of a given node A consists of itself and its four (verticaland horizontal) neighbors, because all those nodes are written when A matchesthe nodes a; b; c; d; e in di�erent instances of the rule. Finally, a graph rewriterule is symmetric in a data graph if the read set and the write set coincide forall nodes in the data graph. We have already shown that the Dirichlet rule issymmetric. On the other hand, a rule reading only the lefthand neighbor in agraph forming a line (e.g., a rule for cdr ing down a list in a list of cons cells) isnot symmetric, since the righthand neighbor of each node is in the write set, butnot in the read set of that node. The subclass of graph rewrite rules and datagraphs for which retaining only one past state is su�cient is then de�ned by thefollowing two properties:(i) each rule is symmetric in the data graph;(ii) for each written node each rule matches in at most one way8;Some graph rewrite rules can be modi�ed in simple ways to make them con-form to the above constraints. For example, some graph rewrite rules that writemore than one node of a graph can be made to conform by coalescing those nodes7See Section 7 for a discussion of compilation techniques for Simple Maude.8For the Dirichlet example the actual rewrite rules must specify directions of the pointers;otherwise each rule could match in degenerate ways. For example, the nodes b; c; d; e couldall match the same one node in the data graph, resulting in incorrect results and/or nonter-mination. Even if these overlaps were prevented, each rule could match at each written nodein 24 di�erent permutations. However, for the Dirichlet example the result of all of the per-muted matches is the same, since addition is commutative. In general, one must mark eachpointer leaving a node with direction. Simply keeping the pointers in speci�c registers namedin the rule accomplishes this directly. One could assume that this is implicit in the graphicalpresentation of the rules.



SPECIFICATION AND PROGRAMMING IN REWRITING LOGIC 25into one (for the purposes of this one graph rewrite rule). Also, asymmetric rulescan often be made symmetric by adding dummy backpointers to each node in thewrite set of the written node of the rule. These backpointers essentially performsynchronization. For example, in the cdr ing down a list example, the smallerend of the list may rewrite very quickly and get ahead of the head of the list interms of rewrites. Thus a large set of past values must be kept at each node topreserve correctness. By adding backpointers that prevent rewriting anywheremore than one step ahead of the nodes in the write set, only one past valueis needed at each node. Note that by recording more than one past state, onemay allow some nodes in the write set to be more than one step behind. Sincecomputation of a next value depends on the values in the read set, these nodescan never be more than one step behind. However, if additional past state valuesare recorded the nodes that are in the write set but not in the read set can beallowed to slip farther behind by suitable modi�cations to the rules.6. Foreign interface modulesSimple Maude can support the integration within a parallel computing con-text of modules written in conventional languages such as Fortran and C, aswell as the similar integration of entire subsystems and special-purpose hard-ware devices. All such programs and subsystems can be encapsulated as foreigninterface modules. Below we brie
y summarize the discussion in the paper [31]where this aspect of the language is treated in more detail.The notion of foreign interface module generalizes a facility already availablein Maude's functional sublanguage (OBJ) for de�ning built-in sorts and built-inrules [18, 21]. This facility has provided valuable experience with multilingualsupport, in this case for OBJ and Common Lisp, and can be generalized to afacility for de�ning foreign interface modules in Simple Maude. Such foreigninterface modules have abstract interfaces that allow them to be integrated withother Simple Maude modules and to be executed concurrently with other com-putations; however, they are treated as \black boxes." In particular, SimpleMaude's concurrent rewriting model of computation and its modular style pro-vide a simple way of gluing a concurrent program together out of pieces thatcan be either written in Simple Maude or can instead be conventional programs,subsystems, or special hardware devices. Foreign interface modules may provideeither a functional data type, or an object-oriented class. In the �rst case, thetreatment will be similar to that provided in OBJ. In the second case, the ab-stract interface will be provided by the speci�cation of the messages that actupon the new class of objects. This second case is also used to interface to ex-isting systems or applications and to special-purpose hardware devices; they aretreated as, possibly quite complex, black boxes.Related e�orts in multilingual support for parallel programming include: theLinda language developed by D. Gelernter and his collaborators at Yale [8], theStrand language designed by I. Foster and S. Taylor [17], the Program Composi-tion Notation (PCN) designed by K. M. Chandy and S. Taylor at Caltech [10],and the GLU language developed by R. Jagannathan and A. Faustini at SRIInternational [23].



26 P. LINCOLN, N. MART�I-OLIET, AND J. MESEGUER
SequentialSIMDHHHHHHj MIMD/Sequential�������

MIMD/SIMD������� HHHHHHj
Figure 10. Classes of architectures.7. Compilation onto parallel architecturesSimple Maude can be implemented on a wide variety of parallel architectures.Figure 10 shows the relationship among some general classes of architectures thatwe have considered. There are two orthogonal choices giving rise to four classesof machines: the processing nodes can be either a single sequential processoror a SIMD array of processors, and there can be either just a single processingnode or a network of them. The arrows in the diamond denote specializationsfrom a more general and concurrent architecture to special cases. The arrowspointing to the left correspond to specializing a network of processing nodes tothe degenerate case with only one processing node; the arrows pointing to theright correspond to specializing a SIMD array to a single processor.Each of these architectures is naturally suited to di�erent ways of performingrewriting computations. Simple Maude has been designed so that concurrentrewriting should be relatively easy to implement e�ciently in any of these fourclasses of machines. In the MIMD/Sequential (multiple instruction stream, mul-tiple data) case many di�erent rewrite rules can be applied at many di�erentplaces at once, but only one rule is applied at one place in each processor.The SIMD (single instruction stream, multiple data) case corresponds to ap-plying rewrite rules one at a time, possibly to many places in the data. TheMIMD/SIMD case corresponds to applying many rules to many di�erent placesin the data, but here a single rule may be applied at many places simulta-neously within a single processing node. The Rewrite Rule Machine (RRM)[20, 3, 2, 1, 26] is a MIMD/SIMD architecture designed with the explicit goalof supporting concurrent rewriting. Its processing nodes are two-dimensionalSIMD arrays realized on a chip and the higher level structure is a network oper-ating in MIMD mode.The paper [25] gives general techniques for compiling Simple Maude onto awide class of SIMD and MIMD/SIMD architectures, and reports on our experi-ence in implementing those techniques in the case of the RRM. The techniquesstudied include:� Top down SIMD matching and replacement.� Program transformations taking rules for which globally SIMD lock-stepexecution is required into more 
exible rules for which a less synchronizedMIMD/SIMD regime can produce the same answers (see Section 5.3).� Optimized mappings for �xed-topology graph rewriting applications.� Message passing optimization.



SPECIFICATION AND PROGRAMMING IN REWRITING LOGIC 27� E�cient encoding of multiple inheritance.� E�cient object attribute access.We have developed a compiler for the RRM embodying many of these tech-niques [25] that achieves performance within 20% of hand coded assembly pro-grams for the examples we have observed.8. Concluding remarksTo realize the goal of machine-independent parallel programming in practicewill require considerable e�ort. We view the present paper as a roadmap suggest-ing directions that we consider particularly promising for connecting declarativeprogramming and parallel computing in a more intimate and widely applicableway than has been the case so far.We have emphasized the Simple Maude language as a carefully chosen sub-language in which three di�erent types of rewriting|term, graph, and object-oriented rewriting|can be e�ciently implemented in parallel. Since rewriting isa very simple way of implementing and parallelizing functional and other declar-ative and constraint-based languages (see [33, 27]) our approach can also beapplied to their parallel implementation. In this regard, Simple Maude could beused as an intermediate language into which declarative languages are translatedin order to execute them in parallel using a Simple Maude implementation. Inaddition, compilation techniques based on rewriting logic could be used to par-allelize conventional languages by translating them into Simple Maude.We have also emphasized the wide-spectrum character of the rewriting logicframework, which, as illustrated by the program transformation examples in Sec-tion 5, supports formal re�nement of speci�cations into executable prototypes,and of such prototypes into e�cient Simple Maude programs. Much more workremains to be done in this area, and also in the related area of program veri�ca-tion techniques, including techniques involving other logical formalisms such asmodal or temporal logics.To make the paradigm we have presented a reality, e�cient compilation tech-niques applicable to wide classes of parallel machines are essential. We areencouraged by the results we have obtained so far on general compilation tech-niques for SIMD and MIMD/SIMD machines [25]; and also by the concreteexperience and tools gained from implementing those techniques for the RRM.Much more work remains ahead for further developing general compilation tech-niques of this kind so as to cover satisfactorily most SIMD, MIMD/SIMD, andMIMD/Sequential machines, and to demonstrate the advantages and practicalvalue of machine-independent parallel programming by means of implementa-tions for machines spanning all these architectures.Appendix A. Rewriting logicThis appendix gives the rules of deduction of rewriting logic.A.1. Basic universal algebra. For the sake of simplifying the exposition,we treat the unsorted case; the many-sorted and order-sorted cases can be givena similar treatment. Therefore, a set � of function symbols is a ranked alphabet



28 P. LINCOLN, N. MART�I-OLIET, AND J. MESEGUER� = f�n j n 2 Ng. A �-algebra is then a set A together with an assignmentof a function fA : An �! A for each f 2 �n with n 2 N. We denote by T�the �-algebra of ground �-terms, and by T�(X) the �-algebra of �-terms withvariables in a set X . Similarly, given a set E of �-equations, T�;E denotes the�-algebra of equivalence classes of ground �-terms modulo the equations E ; inthe same way, T�;E(X) denotes the �-algebra of equivalence classes of �-termswith variables in X modulo the equations E. Let [t]E or just [t] denote theE-equivalence class of t.Given a term t 2 T�(fx1; : : : ; xng), and terms u1; : : : ; un, we denote byt(u1=x1; : : : ; un=xn) the term obtained from t by simultaneously substitutingui for xi, i = 1; : : : ; n. To simplify notation, we denote a sequence of objectsa1; : : : ; an by a. With this notation, t(u1=x1; : : : ; un=xn) can be abbreviated tot(u=x).A.2. The rules of rewriting logic. A signature in rewriting logic is apair (�; E) with � a ranked alphabet of function symbols and E a set of �-equations. Rewriting will operate on equivalence classes of terms modulo theset of equations E. In this way, we free rewriting from the syntactic constraintsof a term representation and gain a much greater 
exibility in deciding whatcounts as a data structure; for example, string rewriting is obtained by imposingan associativity axiom, and multiset rewriting by imposing associativity andcommutativity. Of course, standard term rewriting is obtained as the particularcase in which the set E of equations is empty. The idea of rewriting in equivalenceclasses is well known [22, 14].Given a signature (�; E), sentences of the logic are sequents of the form[t]E �! [t0]E with t; t0 �-terms, where t and t0 may possibly involve some vari-ables from the countably in�nite set X = fx1; : : : ; xn; : : : g. A theory in thislogic, called a rewrite theory, is a slight generalization of the usual notion oftheory|which is typically de�ned as a pair consisting of a signature and a set ofsentences for it|in that, in addition, we allow rules to be labelled. This is verynatural for many applications, and customary for automata|viewed as labelledtransition systems|and for Petri nets, which are both particular instances ofour de�nition.Definition A.1. A rewrite theory R is a 4-tuple R = (�; E; L;R) where �is a ranked alphabet of function symbols, E is a set of �-equations, L is a setof labels, and R is a set of pairs R � L � T�;E(X)2 whose �rst component isa label and whose second component is a pair of E-equivalence classes of terms,with X = fx1; : : : ; xn; : : : g a countably in�nite set of variables. Elements of Rare called rewrite rules.9 We understand a rule (r; ([t]; [t0])) as a labelled sequentand use for it the notation r : [t] �! [t0]. To indicate that fx1; : : : ; xng is9To simplify the exposition the rules of the logic are given for the case of unconditionalrewrite rules. However, all the ideas and results presented here have been extended to condi-tional rules in [28] with very general rules of the formr : [t] �! [t0] if [u1] �! [v1] ^ : : : ^ [uk] �! [vk]:This of course increases considerably the expressive power of rewrite theories, as illustrated byseveral of the examples presented in this paper.



SPECIFICATION AND PROGRAMMING IN REWRITING LOGIC 29the set of variables occurring in either t or t0, we write r : [t(x1; : : : ; xn)] �![t0(x1; : : : ; xn)], or in abbreviated notation r : [t(x)] �! [t0(x)]:Given a rewrite theoryR, we say thatR entails a sequent [t] �! [t0] and writeR ` [t] �! [t0] if and only if [t] �! [t0] can be obtained by �nite application ofthe following rules of deduction:(i) Re
exivity. For each [t] 2 T�;E(X),[t] �! [t](ii) Congruence. For each f 2 �n, n 2 N,[t1] �! [t01] : : : [tn] �! [t0n][f(t1; : : : ; tn)] �! [f(t01; : : : ; t0n)](iii) Replacement. For each rewrite ruler : [t(x1; : : : ; xn)] �! [t0(x1; : : : ; xn)] in R,[w1] �! [w01] : : : [wn] �! [w0n][t(w=x)] �! [t0(w0=x)](iv) Transitivity. [t1] �! [t2] [t2] �! [t3][t1] �! [t3]A nice consequence of having de�ned rewriting logic is that concurrent rewrit-ing, rather than emerging as an operational notion, actually coincides with de-duction in such a logic.Definition A.2. Given a rewrite theory R = (�; E; L;R), a (�; E)-sequent[t] �! [t0] is called a concurrent R-rewrite (or just a rewrite) i� it can be derivedfrom R by �nite application of the rules 1-4.References1. H. Aida, J. Goguen, S. Leinwand, P. Lincoln, J. Meseguer, B. Taheri, and T. Winkler,Simulation and performance estimation for the Rewrite Rule Machine, Proc. Fourth Symp.on Frontiers of Massively Parallel Computation, McLean, Virginia, October 1992, IEEEComputer Society Press, Los Alamitos, CA, 1992, pp. 336{344.2. H. Aida, J. Goguen, and J. Meseguer, Compiling concurrent rewriting onto the RewriteRule Machine, Proc. Second Int. Workshop on Conditional and Typed Rewriting Systems,Montreal, Canada, June 1990 (S. Kaplan and M. Okada, eds.), Lecture Notes in Comput.Sci., vol. 516, Springer-Verlag, Berlin, 1991, pp. 320{332.3. H. Aida, S. Leinwand, and J. Meseguer, Architectural design of the Rewrite Rule Ma-chine ensemble, VLSI for Arti�cial Intelligence and Neural Networks (J. Delgado-Friasand W. R. Moore, eds.), Plenum Publ. Co., New York, NY, 1991, pp. 11{22.4. G. Agha, Actors, The MIT Press, Cambridge, MA, 1986.5. J.-P. Banâtre and D. Le M�etayer, The Gamma model and its discipline of programming,Sci. Comput. Programming 15 (1990), 55{77.6. M. Bauderon and B. Courcelle, Graph expressions and graph rewriting, Math. SystemsTheory 20 (1987), 83{127.7. G. Berry and G. Boudol, The Chemical Abstract Machine, Theoret. Comput. Sci. 96(1992), 217{248.8. N. Carriero and D. Gelernter, Linda in context, Comm. Assoc. Comput. Mach. 32 (April1989), 444{458.



30 P. LINCOLN, N. MART�I-OLIET, AND J. MESEGUER9. K. M. Chandy and J. Misra, Parallel Program Design: A Foundation, Addison-Wesley,Reading, MA, 1988.10. K. M. Chandy and S. Taylor, An Introduction to Parallel Programming, Jones and BartlettPublishers, Boston, MA, 1992.11. A. Corradini and U. Montanari, An algebra of graphs and graph rewriting, Category Theoryand Computer Science, Paris, France, September 1991 (D. H. Pitt et al., eds.), LectureNotes in Comput. Sci., vol. 530, Springer-Verlag, Berlin, 1991, pp. 236{260.12. D. E. Culler, A. Dusseau, S. C. Goldstein, A. Krishnamurthy, S. Lumetta, T. von Eicken,and K. Yelick, Parallel programming in Split-C, manuscript, University of California atBerkeley, 1993.13. R. E. Cypher, J. L. C. Sanz, and L. Snyder, Algorithms for image component labeling onSIMD mesh-connected computers, IEEE Trans. Comput. 39 (1990), 276{281.14. N. Dershowitz and J.-P. Jouannaud, Rewrite systems, Handbook of Theoretical ComputerScience, Volume B (J. van Leeuwen, ed.), The MIT Press/Elsevier, Cambridge, MA, 1990,pp. 243{320.15. H. Ehrig, H.-J. Kreowski, and G. Rozenberg, editors, Proc. Fourth Int. Workshop onGraph Grammars and Their Application to Computer Science, Bremen, Germany, 1990,Lecture Notes in Comput. Sci., vol. 532, Springer-Verlag, Berlin, 1991.16. J. H. Fasel and R. M. Keller, editors, Proc. Workshop on Graph Reduction, Santa Fe, NewMexico, 1986, Lecture Notes in Comput. Sci., vol. 279, Springer-Verlag, Berlin, 1987.17. I. Foster and S. Taylor, Strand: New Concepts in Parallel Programming, Prentice Hall,Englewood Cli�s, NJ, 1990.18. J. Goguen, C. Kirchner, H. Kirchner, A. M�egrelis, J. Meseguer, and T. Winkler, An in-troduction to OBJ3, Proc. Int. Workshop on Conditional Term Rewriting Systems, Orsay,France, 1987 (J.-P. Jouannaud and S. Kaplan, eds.), Lecture Notes in Comput. Sci., vol.308, Springer-Verlag, Berlin, 1988, pp. 258{263.19. J. A. Goguen and J. Meseguer, Order-sorted algebra I: Equational deduction for multipleinheritance, overloading, exceptions and partial operations, Theoret. Comput. Sci. 105(1992), 217{273.20. J. Goguen, J. Meseguer, S. Leinwand, T. Winkler, and H. Aida, The Rewrite Rule Machineproject, Technical Report SRI-CSL-89-6, Computer Science Laboratory, SRI International,March 1989.21. J. A. Goguen, T. Winkler, J. Meseguer, K. Futatsugi, and J.-P. Jouannaud, Introduc-ing OBJ, Technical Report SRI-CSL-92-03, Computer Science Laboratory, SRI Interna-tional, March 1992. To appear in: Applications of Algebraic Speci�cation Using OBJ(J. A. Goguen, ed.), Cambridge University Press, Cambridge, UK, 1994.22. G. Huet, Con
uent reductions: Abstract properties and applications to term rewritingsystems, J. Assoc. Comput. Mach. 27 (1980), 797{821.23. R. Jagannathan and A. A. Faustini, The GLU programming language, Technical ReportSRI-CSL-90-11, Computer Science Laboratory, SRI International, November 1990.24. D. R. Je�erson, Virtual time, ACM Trans. Programm. Lang. Syst. 7 (1985), 404-425.25. P. Lincoln, N. Mart��-Oliet, J. Meseguer, and L. Ricciulli, Compiling rewriting onto SIMDand MIMD/SIMD machines, Proc. PARLE'94, Lecture Notes in Comput. Sci., Springer-Verlag, Berlin, 1994, to appear.26. P. Lincoln, J. Meseguer, and L. Ricciulli, The Rewrite Rule Machine node architectureand its performance, Proc. CONPAR'94, Lecture Notes in Comput. Sci., Springer-Verlag,Berlin, 1994, to appear.27. N. Mart��-Oliet and J. Meseguer, Rewriting logic as a logical and semantic framework,Technical Report SRI-CSL-93-05, Computer Science Laboratory, SRI International, Au-gust 1993.28. J. Meseguer, Conditional rewriting logic as a uni�ed model of concurrency, Theoret. Com-put. Sci. 96 (1992), 73{155.29. J. Meseguer, A logical theory of concurrent objects and its realization in the Maudelanguage, Research Directions in Object-Based Concurrency (G. Agha, P. Wegner, andA. Yonezawa, eds.), The MIT Press, Cambridge, MA, 1993, pp. 314{390.30. J. Meseguer, Solving the inheritance anomaly in concurrent object-oriented programming,



SPECIFICATION AND PROGRAMMING IN REWRITING LOGIC 31Proc. ECOOP'93, 7th European Conf., Kaiserslautern, Germany, July 1993 (O. M. Nier-strasz, ed.), Lecture Notes in Comput. Sci., vol. 707, Springer-Verlag, Berlin, 1993, pp.220{246.31. J. Meseguer and T. Winkler, Parallel programming in Maude, Research Directions in High-Level Parallel Programming Languages (J. P. Banâtre and D. Le M�etayer, eds.), LectureNotes in Comput. Sci., vol. 574, Springer-Verlag, Berlin, 1992, pp. 253{293.32. R. Milner, Communication and Concurrency, Prentice Hall International (UK), London,1989.33. S. Peyton Jones, The Implementation of Functional Programming Languages, PrenticeHall International (UK), London, 1987.34. W. Reisig, Petri Nets: An Introduction, EATCS Monogr. Theoret. Comput. Sci., vol. 4,Springer-Verlag, Berlin, 1985.35. C. L. Seitz, J. Seizovic, and W.-K. Su, The C programmer's abbreviated guide to multi-computer programming, Technical Report CS-TR-88-1, California Institute of Technology,January 1988, revised April 1989.36. M. R. Sleep, M. J. Plasmeijer, and M. C. J. D. van Eekelen, editors, Term Graph Rewriting:Theory and Practice, John Wiley and Sons, Chichester, UK, 1993.37. C. D. Thomborson, Does your workstation computation belong on a vector supercomputer?,Comm. Assoc. Comput. Mach. 36 (November 1993), 41{49.38. P. Viry, Rewriting: An e�ective model of concurrency, Proc. PARLE'94, Lecture Notes inComput. Sci., Springer-Verlag, Berlin, 1994, to appear.Computer Science Laboratory, SRI International, Menlo Park, CA 94025, USAE-mail address: flincoln,narciso,meseguerg@csl.sri.com


