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consider carefully the sources of exponential blowup identified by these suites

of results (in this case, the splitting of contexts in applications of the ® rule).

However, it is still essentially unknown how to harness the evident power

of linear logic for useful purposes. Several interesting attempts have been

made, including using linear logic as the basis for a logic programming lan-
guage [9, 2], and as the basis for a functional programming language [1, 14].
The results given here have more direct impact on the logic programming

approach, which is still in its infancy.
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From an instance of Generalized-3-Partition, one may generate an in-
stance of 3-Partition by adding B’ + 1 to the size of each element of A’.
The instance of 3-Partition then is asked with B = 4B’ + 3, and the size of
each element satisfies the condition B/4 < s(a) < B/2, since B = 4B’ + 3,
s(a') < B', and s(a) = s(a’) + B’ + 1. By adding more than B’ + 1 to the
size each element, one can create instances of 3-Partition where elements
are as close to B/3 as desired. Thus one could avoid the complications in-
volved in “reshuffling” the groups of four and two elements above that arise
with 432-Partition by using a properly restricted 3-Partition problem. The
reshuffling only occurs for a with s(a) very close to B/4 or B/2.

Another type of simplification can be achieved with other encodings of
a 3-Partition problem. Consider the earlier encoding of 3-Partition in full
multiplicative linear logic:

[(k=oc ) @ @ (hac 7)) & (P o) -o( 0 )"

Constant-only encodings can be generated by replacing ¢ by bottom, and &
by 1(©) for some integer C'. A value of C' that is particularly interesting is
C =3",ca5(a). Although they are still polynomial, such encodings tend to
be larger than the one advocated above, but result in somewhat less compli-
cated proofs of soundness. The case of C' = 1 is an incorrect encoding, and
one may consider the “bottom only” encoding proved sound and complete
above to be generated from the case €' = 0.

3 Conclusion

We have demonstrated that simply evaluating expressions in true, false, and,
and or in multiplicative linear logic (®, ¥, 1, and —) is NP-complete. By
conservativity results the Np-hardness of larger fragments of linear logic fol-
low, although some of these results were known previously. These results
comprise further dramatic evidence of the extreme expressive power of lin-
ear logic. Other results along these lines have previously shown that full
propositional linear logic is undecidable, and there are natural fragments
which are PSPACE-complete, EXPTIME-complete, and NP-complete.
Complexity results for fragments of linear logic indicate the difficulty
of constructing eflicient decision procedures for large fragments of linear
logic. It may have been hoped previously that some “semantic” measure
condition could be used to immediately decide constant-only expressions in
linear logic. When constructing theorem provers for linear logic, one must



14

Thus, given any proof of O((A,m, B,S)), we first see that one may
identify m branches, each of which is of the form F (1D @ —), (14¥2 @
=)y, (1 @ ) (=Bp1®3)). From these m branches, we may identify
m partitions of 4,3, or 2 elements of the associated 432-Partition problem.
In other words, from any proof of the given sequent, one may construct a
solution to the 432-partition problem. ]

2.7 Main Result

From the preceding, we immediately achieve our stated result.

Theorem 2.4 (COMLL NP-COMPLETE) The decision problem for
constant-only multiplicative linear logic is NP-complete.

Also, with an easy conservativity result, we find that this NP-Hardness
proof suffices for multiplicative linear logic as well.

Theorem 2.5 (Conservativity) Multiplicative linear logic is conservative
over constant-only multiplicative linear logic.

Proof. By induction on cut-free MLL proofs. [

2.8 Using 3-Partition Directly

Instead of using 432-Partition one could use 3-Partition directly with some
simplifying assumptions.

One may also consider the following looser specification of 3-Partition,
which we will call Generalized-3-Partition.

Instance: Set A’ of 3m elements, a bound B’ € ZT, and a size
s(a’)y € ZT for each a’ € A’
Question: Can A’ be partitioned into m disjoint sets
1AL - Al such that, for 1 < @ < m,
Y arear 5(a’) = B’ such that each set contains exactly
3 elements from A’?

Generalized-3-Partition does not have a priori restrictions on the sizes
of elements, but instead has an explicit specification that only partitions of
three elements are allowed. One can immediately restrict s(a’) for all ' € A’
to be < B’, for otherwise there is no solution, since all sizes are nonnegative.
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Lemma 1.3, if there is a proof of this sequent, then there is a proof of
= (1<Sl> ® —), (1<S2> ®—), .7(1<53m> ® —), (_Bp1(3>)m

We then perform complete induction on m.

If m > 1, the proof of this sequent must end in ®, since all formulas
have main connective ®. We next show that the principal formula of that
rule application must be (—=Fp1(3))m,

First, we note that each formula (1%} ® —) has measure §j — 1. Since
we are assuming B > 8, the initial conditions of the 432-Partition problem
ensure that for all j, 57 > 2, and therefore S5 — 1 > 1. There is only one
formula, (=B91())™ with negative measure.

If we assume that one of the (1(°9 @ —) formulas is principal in an
application of ®, by Lemma 2.1, each hypothesis sequent must have measure
one. In this case we have the following supposed proof for some 3 and A
with the multiset union X [JA U(1<Si> ® —) being equal to the conclusion:

X, - A, 199
- (1<Sl> ® _)7 (1<52> ® _)7 o ‘7(1(53m> ® _)7 (_Bp1<3>)m

®

But 159, which occurs in one hypothesis, has measure > 2. Therefore, the
formula with negative measure, (—=Z91¢)™ must occur in A. Now consider
the other hypothesis, which must contain —, and other formulas ¥ from the
conclusion sequent. If any formulas of the form (159 @ —) are included in
3}, the measure of that hypothesis is greater than 1. If no such formulas are
included, then the sequent has measure 0. In either case, by Lemma 2.1,
that sequent is not provable. Thus the assumption that one of the (1<Sj> ®—)
formulas is principal must be in error, and (—B@1<3>)m must be principal.

Thus if m > 1, the only possible next proof step is @, with principal
formula (—Pp13))™. We may then focus on the case when m = 1. We
claim that each such branch in the proof corresponds to one partition in the
solution of the original 432-Partition problem. That is, we claim that when
m = 1, we must be left with a sequent of the form:

+ (1<X1> ® _)7 (1<X2> ® _)7 o ‘7(1(Xn> ® _)7 (_Bp1<3>)

Where the X7 are a subset of the 5. There are exactly B+mn—1 occurrences
of @ in this sequent, and >~ ,<,, X743 ones in this sequent. By Lemma 2.1,

(Ci<i<n Xi+3) = (B+n—1) =1, or equivalently >>,;<, Xt = B+n-3.
This gives rise to an instance of 432-Partition.
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: 1
Cp(Se q0su) 1059 B PP T
LS NN o ey P
F (15 @ =), (1% @ =), 109 1,1, B N F1,— .
F(%) o ), 1% @ —), (1% @ -),1,1,1,-F
= (1(590) ® —), (1(Sy> ®—) (1(SZ> ® —), 131, _Bm

The elided proof of F 1(52) 1¢5¥) 1{(52) _B is guaranteed to exist by the
conditions on the solution to 432-Partition. That is, since z, y, and z are
from the same partition, the sum of Sz, Sy, and Sz must be equal to B.

Given the m proofs constructed as above from each of the m groups of
elements, one combines them with & into a proof of

- (1(51) ® _)7 . _7(1(53m> ® _)7 (13p_B)m

The proof can then be completed with 3m applications of . [

2.6 Completeness

Lemma 2.3 (Completeness) For A, m, B, and S satisfying the con-
straints of 432-Partition, if there is a proof of the comLL formula O({A, m, B, S)),
then the 432-Partition problem (A, m, B, S) is solvable.

Proof.

To simplify this direction of the proof, we use the extra assumption that
the “bin size” B is greater than 8. For a justification of this assumption, see
Section 2.1. The following makes heavy use of Lemma 2.1.

Assuming we have a proof of

F (100 @ (1852 @ —)p - p(1053m) @ )p(-Bp1EnHm

we show that the corresponding 432-Partition problem is solvable.
If there is a proof of this sequent, then there is a cut-free proof, by
the cut elimination theorem (Theorem 1.1). By repeated applications of
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2.4 Constant-only Encoding

We will now describe how 432-Partition instances (which are at the same

time 3-Partition instances) can be encoded in COMLL.
Y copies

We will use the following notation: Y =r0rR--QzR x, as before,

Y copies
—_——
and ) = 2oz prpz. Note that (z¥)+ = (250 and ()L =
(z ).
Given an instance of 432-Partition equipped with aset A = {ay,- -, asn},

an integer B, and a unary function 5, presented as a tuple (A, m, B, 5), we

define the encoding function © as O((A,m, B, S5)) =
[(—o=1) & & (~ o= )] o~ o)

Using the contrapositive (A—oB =  Bl-—0AL) we can develop a “1
only” encoding:

(151 —01) @ (190 —01) @ - - - @ (159 —o1)] o[ (1B} —1(3))™]
Eliminating the linear implication in favor of § these formulas both become:
(161 @ P12 @ —)p. .. o117 g _)p(=Bp1B)Hm

We will use the last form of this formula, since it contains no implicit
negations (linear implication). One may see this formula satisfies Girard’s
measure condition, Lemma 2.1, if there are 3m elements, and the sum of
the sizes equals mB, side conditions on the statement of 432-Partition (and
3-Partition).

The claim is that these formulas are provable in the multiplicative frag-
ment of linear logic if and only if the 432-Partition problem is solvable.

2.5 Soundness

Lemma 2.2 (Soundness) If a /32-Partition problem (A, m, B, S) is solv-
able, then we are able to find a proof of the comLL formula ©((A, m, B, S)).

Proof.

The proof is straightforward. For each group of three elements in the
assumed solution to the 432-Partition problem, one forms the following sub-
proof, assuming the elements of the group are numbered z, y, and z.
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Note that if n = 2, we have by the above constraint that X1+ X2 = B—1,
and if n = 4, then X1+ X2+ X3+ X4 = B + 1. Since there are exactly
3m elements, and }°,. 4 s(a) = mB, there are exactly the same number of
groups with four elements as there are groups with two elements.

Further, we may analyze by cases to show that if there are any groups
of four, then B = 4C + 3 for some integer C'. If there are any groups of
four, and B = 4C for some C', then the smallest allowable element is C' 4 1,
since the size of each element must strictly dominate B/4. However, taking
four elements of size C' 4 1, the constraint X1+ X2+ X3+ X4=B + 1is
violated. Similarly for B = 4C'+ 1 and B = 4C 4 2. Thus if there is a group
of four elements, then B = 4C' 4 3 for some C, and by simple algebra, the
elements of any group of four elements all have size C'+ 1, and the elements
of any group of two elements both have size 2C' + 1. Noting that there
are exactly as many groups of two as groups of four, we may rearrange the
elements of a group of four and a group of two into two groups of three by
taking two elements from the group of four and one element from the group
of two to form each group of three. Both resulting groups of three have
total size 4C"+ 3, which happily is equal to B. This “reshuffling” will result
in a solution to the 3-Partition problem with the same instance. Therefore
3-Partition and 432-Partition are equivalent problems.

Note that since 432-Partition and 3-Partition are equivalent, 432-Partition
is NP-complete in the strong sense. Thus 432-Partition is NP-complete even
in unary notation. This is important, since we utilize a unary representation
of instances in our linear encoding.

2.3 Encoding with Propositions

Y copies

We use the notation, for & and ¢ propositions, Y =r0r---QrR.

Given an instance of 3-Partition equipped with a set A = {ay, -, azm},
an integer B, and a unary function 5, presented as a tuple (A, m, B, 5), we
define the encoding function # as 8((A,m, B, S5)) =

[(k—ocSI) ®-® (k—ocSSm)]—o(k?’—ocB)m

As before, we are writing S1 for s(aq) to improve readability.
It has been show that this formula is provable in the multiplicative frag-
ment of linear logic if and only if the 3-Partition problem is solvable [16].
The encoding using only constants can be generated from this one by
replacing k and ¢ by —.



counting algorithm thus solves this case in polynomial time. Thus for all
cases where B is less than or equal to 8 the 3-Partition problem is solvable in
polynomial time, and thus 3-Partition remains NP-complete with the further
constraint that B > 8.

2.2 432-Partition

We introduce a new NP-complete problem, a variant of 3-Partition, which
we call 432-Partition:

Instance:  Set A of 3m elements, a bound B € ZT, and a size
s(a) € Zt for each a € A such that
B/4 < s(a) < B/2 and such that )~ ., s(a) = mB
Question: Can A be partitioned into m disjoint sets
A1, Ag, -+, Ay, such that, for 1 <0 < m,
Yaea,; Sla) = B+ A - 37

Comment: NP-complete in the strong sense.

We will write 51 for s(ay) to improve readability of the following discus-
sion.

We will show that solutions of 432-Partition correspond to solutions
of 3-Partition for the same problem instance, under the assumption that
B > 8. There is a very strong equivalence between these two problems:
the instances are the same, instances are solvable in one case exactly when
they are solvable in the other, and solutions in one case directly correspond
to solutions in the other case. It is clear that solutions to 3-Partition are
solutions for the same instance of 432-Partition.

For an arbitrary A;, let A; consist of X1,...Xn.

If n = 0, we have 0 = B —3, which is false by our assumption that B > 8.
If n = 1, we have X1 = B —2, but the sizes are bounded above by B/2, and
with the assumption that B > 8, there is a contradiction. Also, considering
cases of n > 4, we have ) .;«, Xt = B+ n — 3, and the assumptions that
B > 8and X; > B/4, thus we have n(B/4) < B +n — 3, which implies that
n—3 > B((n/4) — 1) and from this and B > 8, we have n < 5. This leaves
the n =2, n =3, and n = 4 cases.

Thus we have a partition each element of which consists of either two,
three, or four elements.

In the case that n = 3, we have } ;3 X7 = B, and thus this set
identifies a partition which directly satisfies the requirement for 3-Partition,
that is, the sum is equal to B.



The main idea is that the small-proof property of MLL allows us to encode
“resource distribution” problems naturally. Since linear logic treats propo-
sitions as resources natively, it has been called “resource-consciousness” [5].
Note that since full linear logic is conservative over MLL, our encoding re-
mains sound and complete even in larger fragments. This does not lead to
new results, however, since the complexity of most larger linear logics have
already been completely characterized [15].

2.1 3-Partition

We use the NP-completeness of 3-Partition:
(as stated in Garey+Johnson [6] page 224)

Instance:  Set A of 3m elements, a bound B € Z7, and a size
s(a) € Z* for each a € A such that
B/4 < s(a) < B/2 and such that 3, c 4 s(a) = mB
Question: Can A be partitioned into m disjoint sets
A1, Ag, -+, Ay, such that, for 1 <0 < m,
> aca, s(a) = B (note that each A; must therefore

contain exactly 3 elements from A)?
Reference: [Garey+Johnson [6], 1975].

Comment: NP-complete in the strong sense.

Note that 3-Partition is Np-complete in the strong sense, which implies
that even when the input is represented in unary, the problem is NP-hard.
This property of 3-Partition is essential for our application, since we repre-
sent the input problem in unary by multiplicities of linear formulas.

To simplify later arguments we will want to assume that B > 8. However
there is no loss of complexity with this assumption. One may consider only
those instances of 3-Partition where B > 8. One may show this by cases. If
B=0,or B=1, B =2, or B =14 there are no possible problem instances
satisfying B/4 < s(a) < B/2. For B = 5, all elements must be equal to 2,
and thus there are no possible solutions. For B = 8, all elements must be
equal to 3, and thus there are also no possible solutions in this case. For
B = 3, all allowable problem instances have all elements equal to 1, and
thus this case is solvable in polynomial (constant) time (report “YES”). For
B = 6, similarly, all elements have size 2, and the answer is trivially “YES”.
For B = 7, all elements have size 2 or 3, and thus all partitions must be
made up of two elements of size 2 and one element of size 3. The obvious



The corresponding fact for ® does not hold, as demonstrated by the
following example - (191), (- ® —).
2 COMLL is NP-complete

Some time ago, Girard [8] developed a necessary condition for the provability
of constant multiplicative linear expressions:

Lemma 2.1 (Girard) Define a function M from constant multiplicative
linear expressions to the integers as follows:

M(1) = 1
M(=) = 0

M(A9B) = M(A)+ M(B)

M(A® B) = M(A)+ M(B)-1

If a formula A is provable in multiplicative linear logic and contains no
propositions, then M(A) = 1.

In other words, the number of tensors is one less than the number of
ones in any provable cOMLL formula. Avron (and others) have studied gen-
eralizations of this “semantic” measure to include propositions (where a
proposition p is given value 1, and pt is given value 0) yielding a necessary
condition for MLL provability. One may go even further, achieving a neces-
sary condition for MALL provability, using min for & and max for @, and
plus and minus infinity for the additive constants. For the latter case, the
condition becomes: if a formula A is provable in MALL, then M(A) > 1.
Also, one may generalize these conditions somewhat, replacing all instances
of 1 with any arbitrary constant ¢, and allowing propositions to have differ-
ent (although fixed) values, where p has value v,, and p* has value ¢ —v, [3].
Other related work is given in [17] and [4].

Since the above is only a necessary condition, there has been a question
as to whether some form of simple “truth table” or numerical evaluation
function like the above could yield a necessary and sufficient condition for
provability of constant multiplicative (COMLL) expressions. The main re-
sult of this paper shows that even this multiplicative constant evaluation or
circuit evaluation problem is NP-complete.

We will encode 432-Partition, an Np-complete problem which is a variant
of 3-Partition, in MLL, and show that our encoding is sound and complete.



argument for the NpP-hardness of this fragment was first sketched by Max
Kanovich in electronic mail [10]. Together with the earlier result [15] that
the multiplicatives are in NP, Kanovich’s result showed that this decision
problem is NP-complete. Kanovich later updated his argument to show that
the “Horn fragment” of the multiplicatives is also NP-complete [11, 12], using
a novel computational interpretation of this fragment of linear logic. This
paper continues this trend by providing a proof that evaluating expressions
in true, false, and, and or in multiplicative linear logic is NP-complete. That
is, even without propositions, multiplicative linear logic is Np-complete.

MLL and COMLL are in NP. Informally, the argument showing member-
ship in NP is simply that every connective in a multiplicative linear logic for-
mula is analyzed exactly once in any cut-free proof. Thus an entire proof, if
one exists, can be guessed and checked in nondeterministic polynomial time.

Formally, we first state a fundamental theorem originally due to Gi-
rard [7], but proven in complete gory detail in [15].

Theorem 1.1 (Cut Elimination) If a sequent is provable in MLL, then it
s provable in MLL without using the Cut rule.

The above references actually prove this theorem for full linear logic, but
the results for the fragments in question here follow immediately. Without
cut, multiplicative proofs are quite concise.

Theorem 1.2 (Small-Proofs) Fvery connective is analyzed exactly once
in any cul-free MLL or COMLL proof.

From Theorem 1.1 and Theorem 1.2, we know that given a MLL or COMLL
sequent of size n, if there is any proof of this sequent, then there is a proof
with exactly n total applications of inference rules. Since each application
of an inference rule may be represented in space linear in n, we may simply
guess and check an entire n? representation of a proof tree in nondetermin-
istic polynomial time.

The following is one of a large family of permutabilities of inferences.
Propositional classical logic allows all possible permutabilities (that is, it
never matters which formula one choses to break first in a classical proof),
and intuitionistic logic exhibits a few impermutabilities [13]. The following
permutability of (multiplicative) disjunction holds in linear logic.

Lemma 1.3 (Permutability of ©) If there is a proof of - 1,(APB), then
there is a proof of 7, A, B.



Linear negation is defined as follows:

A

(pi)t = pf
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Linear implication, —o, is defined as follows:
A—oB 2 AteB

1.2 Multiplicative Linear Logic

The multiplicative fragment of linear logic MLL is defined as follows. The
sequent rules for MLL are the same as those for LL except that the rules for
the additive connectives, additive constants, and exponentials are thrown
out: @, &, W, 7C, D, !S, and T. This leaves only the rules I, Cut, ®,
$, —, and 1.

1.3 Constant-Only Multiplicative Linear Logic

In this paper, we are concerned with the constant-only multiplicative frag-
ment of linear logic COMLL. The sequent rules for COMLL are those of MLL
except I. Thus no formulas containing any propositional symbols are prov-
able in COMLL.

1.4 Multiplicative Linear Logic is NP-Complete

In this section we summarize results about the decision problem for propo-
sitional multiplicative linear logic which is known to be Np-complete. An
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decision problem as simply evaluating expressions in true, false, and, and or
in multiplicative linear logic (®@, @, 1, and —).

1.1 Propositional Linear Logic

The formal framework we will work with throughout this paper is a Gentzen-
style sequent calculus. We discuss three independent logics here: 11 (full
propositional linear logic), MLL (LL restricted to multiplicative connectives
and constants), and coMLL (The constant-only fragment of MLL). We begin
with a definition of LL.

A linear logic sequent is a - followed by a multiset of linear logic formulas.
Note that in standard presentations of sequent calculi, sequents are often
built from sets of formulas, where here we use multisets. This difference is
crucial. We assume a set of propositions p; given, along with their associated
negations, pt. Below we give the inference rules for the linear sequent
calculus, along with the definition of negation and implication. The reader
should note that negation is a defined concept, not an operator.

The following notational conventions are followed throughout this paper:

i Positive propositional literal

P Negative propositional literal
A B, C Arbitrary formulas
,1.A Arbitrary multisets of formulas

Thus the identity rule (I below) is restricted to atomic formulas, although
in fact the identity rule for arbitrary formulas (- A, A1) is derivable in
this system. For notational convenience, it is usually assumed that —o and
® associate to the right, and that ® has higher precedence than —o. The
notation 73 is used to denote a multiset of formulas which all begin with
?. The English names for the rules given below are are shown on the right.
Note that there is no rule for the 0 constant.



(copying) and weakening (throwing away) for propositions. Without con-
traction or weakening, propositions may be thought of as resources, which
must be carefully accounted for. When propositions are treated as resources,
as they are in linear logic, one is naturally led to consider two different
forms of conjunction and disjunction. Girard named the two kinds of con-
nectives “additive” and “multiplicative”, and focussed his attention on the
multiplicative fragment by giving proof nets (a version of natural deduction
tailored for linear logic) for this fragment. Since then much of the interest in
linear logic has revolved around this fragment and small extensions to this
fragment.

In order to explain the intuitive difference between additive and mul-
tiplicative connectives, consider the conjunctive goal ¥ - A and B. In all
sequent calculi, one must prove A - A and one must also prove ? - B, for
some A and 7 in order to prove this goal. Various sequent calculi place
different requirements on the relationship between X, A, and 7. For exam-
ple, in classical logic the latter two are required to be subsets of the first
(A C ¥ and 7 C X). This may be seen as implicitly allowing copying of
some propositions, (those which appear in all three contexts), and throwing
away others (those which appear in the conclusion X, but not in either hy-
pothesis). The multiplicative conjunction ® of linear logic requires that the
context Y be divided between its hypotheses (AJ? = ¥ and AN? = 0).
The additive conjunction &, on the other hand, requires that the context be
duplicated in both hypotheses (A = 7 = X). This critical difference is also
reflected in the two forms of disjunction, which are the De Morgan duals of
the two forms of conjunction.

Girard also added “exponential” unary connectives to linear logic, in-
creasing the expressive power of the logic greatly. In fact, propositional
linear logic with exponentials is undecidable [15]. Without exponentials,
Multiplicative-Additive Linear Logic (MALL) is decidable, and is PSPACE-
complete [15].

In this paper we focus on the smaller fragment with only the multiplica-
tive connectives and constants, Constant-Only Multiplicative Linear Logic.
In an earlier paper, the first author showed that the decision problem for
Multiplicative Linear Logic (with propositions) MLL is in NP, by giving (a
sketch of) an NP algorithm [15]. However, the NP-hardness of this problem
was left open.

Here we show that not only is MLL NP-complete, but the fragment con-
taining no propostions, COMLL is Np-complete as well. Note that this frag-
ment contains no quantifiers or propositions, and thus one may view this
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Abstract

Linear logic is a resource-aware logic that is based on an analysis of the clas-
sical proof rules of contraction (copying) and weakening (throwing away). In
this paper we study the decision problem for the multiplicative fragment of
linear logic without quantifiers or propositions: the constant-only case. We
show that this fragment is NP-complete. Farlier work by Mazx Kanovich
showed that propositional multiplicative linear logic is NP-complete. With
Natarajan Shankar, the first author developed a simplified proof for the
propositional case. The structure of this simplified proof is utilized here with
a new encoding which uses only constants. The end product is the somewhat
surprising result that simply evaluating expressions in true, false, and, and
or in multiplicative linear logic (®, ¥, 1, and —) is NP-complete. By con-
servativity results not proven here, the Np-hardness of larger fragments of
linear logic follows.

1 Introduction

When Girard introduced linear logic [7], he brought to light the expressive
power which can be gained by restricting the structural rules of contraction
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