
The Formal Veri�cation of an Algorithmfor Interactive Consistency under a Hybrid FaultModel�Preprint of a paper to be presented at the Conference on Computer-AidedVeri�cation, CAV '93, Elounda, Crete, Greece, June-July 1993Patrick Lincoln and John RushbyComputer Science LaboratorySRI InternationalMenlo Park CA 94025 USALincoln@csl.sri.com Rushby@csl.sri.comPhone: +1 (415) 859-5454 Fax: +1 (415) 859-2844AbstractModern veri�cation systems such as PVS are now reaching the stage of de-velopment where the formal veri�cation of critical algorithms is feasible withreasonable e�ort. This paper describes one such veri�cation in the �eld of faulttolerance. The distribution of single-source data to replicated computing chan-nels (Interactive Consistency or Byzantine Agreement) is a central problem inthis �eld. The classic Oral Messages (OM) algorithm solves this problem underthe assumption that all channels are either nonfaulty or arbitrarily (Byzantine)faulty. Thambidurai and Park have introduced a \hybrid" fault model that dis-tinguishes additional fault modes, along with a modi�ed version of OM. Theygave an informal proof that their algorithm withstands the same number ofarbitrary faults, but more \nonmalicious" faults than OM.We detected a 
aw in this algorithm while undertaking its formal veri�-cation using PVS. The discipline of mechanically-checked formal veri�cationhelped us to develop a corrected version of the algorithm. Here we describethe formal speci�cation and veri�cation of this new algorithm. We argue thatformal veri�cation systems such as PVS are now su�ciently e�ective that theirapplication to critical fault-tolerance algorithms should be considered routine.�This work was sponsored by the National Aeronautics and Space Administration Langley Re-search Center under contract NAS1 18969. 1



1 IntroductionImproved veri�cation systems, new techniques, and modern workstations allow for-mal veri�cation of interesting properties of critical or complex systems to be un-dertaken with reasonable e�ort. For maximum utility, formal veri�cation shouldfocus on those aspects of design and analysis that are least well served by conven-tional techniques, and where errors can be catastrophic or expensive. Because thereare examples of safety-critical systems where unanticipated behaviors of the mech-anisms for fault-tolerance became the primary source of system failure [7], we viewthese mechanisms as a fruitful target for formal veri�cation energies. In this pa-per we describe the formal veri�cation of a di�cult algorithm used in fault-tolerantarchitectures, and illustrate some of the characteristics of a recently developed ver-i�cation system, called PVS [8, 9], with which we undertook the veri�cation. Thetheorems proved in this paper are not especially deep, but they do require extremeattention to detail (involving many case splits and large numbers of linear inequali-ties that vary subtly from case to case) and seem prone to error in the social processof human proof checking. The interactive theorem prover of PVS provides ratherpowerful automation, including decision procedures for arithmetic, and allows theuser to check these arguments without becoming lost in detail.In this paper, we focus on algorithms for distributing single-source data to multi-ple channels in the presence of faults. This problem, variously known as \interactiveconsistency," \Byzantine Agreement," or \source congruence" was �rst posed andsolved in 1980 [4, 10] with the \Oral Messages" algorithm (abbreviated to OM).(This algorithm has been formally speci�ed and veri�ed by Bevier and Young [1]and, subsequently, by us [11].) Algorithm OM makes no assumptions about thepossible kinds of faults. An alternative is to develop a detailed model of the kinds offaults expected and to construct an algorithm tuned to deliver maximum resilenceto those particular fault \modes." However, an overlooked fault mode may thencause unexpected failure in system operation. Thus arise hybrid fault models thatinclude the arbitrary, or Byzantine fault mode, together with a limited number ofadditional fault modes. Inclusion of the arbitrary fault mode eliminates the fearthat some unforeseen behavior may defeat the fault-tolerance mechanisms, whileinclusion of other fault modes allows greater resilence to faults of these particular(and common) kinds than a classical Byzantine fault-tolerant architecture.Thambidurai and Park [14] introduced Algorithm Z, a variant of OM that isclaimed to retain the e�ectiveness of OM with respect to arbitrary faults, but thatis also capable of withstanding more faults of the other kinds considered than is OM.We attempted to formally verify the published proof of correctness for AlgorithmZ, but failed. Eventually, our investigation led us to discover circumstances underwhich Algorithm Z fails. We developed several patches for the algorithm, alongwith rather convincing informal proofs of their correctness. However, in attempting2



formal veri�cation of these proofs we found 
aws in them, too. We �nally producedan algorithm (which we call OMH, for Oral Messages Hybrid) and a set of informalproofs that we were able to formally verify using the PVS veri�cation system. De-tailed discussion of the algorithm, and of its 
awed variants, is the topic of anotherpaper [6]; here, we outline the formal veri�cation and show that once the correctalgorithm is obtained, the proofs are not particularly hard. Because informal proofsare demonstrably unreliable in this domain, and because the consequences of failurecould be catastrophic, we argue that formal veri�cation should become routine.2 The Problem: Assumptions and RequirementsThe goal is to distribute single-source data (such as a sensor sample) from one pro-cessor of a fault-tolerant system to all the others in such a way that all nonfaultyprocessors receive the same value. The principal di�culty is that a faulty processormay send di�erent values to di�erent receivers. To overcome this, OM-like algo-rithms use several \rounds" of message exchange during which processor p tellsprocessor q what value it received from processor r and so on. Under the \OralMessages" assumptions, the di�culty is compounded because a faulty processor qmay \lie" to processor r about the value it received from processor p. More precisely,we make the following assumptions.There are n processors in total, one of which is distinguished as the transmitter(or the General, in more informal terms). Every message that is sent between non-faulty processors is correctly delivered. The absence of a message can be detected.The receiver of a message knows who sent it. The fault modes we distinguish forprocessors are nonfaulty , arbitrary-faulty , symmetric-faulty , and manifestly-faulty .(These correspond to Thambidurai and Park's nonfaulty, asymmetric malicious,symmetric malicious, and nonmalicious faults, respectively; we �nd these anthropo-morphic terms unhelpful.) We specify these fault modes semi-formally as follows.When a transmitter sends its value v to the receivers, the value obtained by a non-faulty receiver p is: v if the transmitter is nonfaulty; E (a distinguished value) if thetransmitter is manifest-faulty 1; unknown if the transmitter is symmetric-faulty, butall receivers obtain the same value; and completely unconstrained if the transmitteris arbitrary-faulty. The intuition is that manifest faults represent likely symptomsof processors that have crashed or lost synchronization, while symmetric faults arelikely symptoms of processors with corrupted memory locations. Both these kindsof faults may be expected to be much more common than arbitrary faults, and we1Some preprocessing of timeouts, parity or checksums, etc. may be necessary to identify mani-festly faulty values. Note that manifest-faults must be symmetric. If a processor were to \crash"in the middle of a protocol, it would be counted as arbitrary-faulty.3



would like to be able to withstand as many of them as possible, for a given level ofredundancy.The problem is to devise an algorithm that will allow each receiver p to com-pute an estimate �p of the transmitter's value satisfying the following requirements.Agreement: If processors p and q are nonfaulty, then they agree on the value as-cribed to the transmitter; that is: �p = �q. Validity: If processor p is nonfaulty,and the transmitter is not arbitrary-faulty, the value ascribed to the transmitter byp is the value actually sent from v to p.3 The Solution: Algorithm OMHThe basic design of OMH is similar to OM, where the transmitter �rst sends avalue to all other processors. Then each receiver plays the part of the transmitterin a recursive instance of the algorithm. Each receiver then takes a vote of thevalues it has received and uses the majority value as its �nal value. OMH di�ersfrom OM in that at each round, the processors do not forward the actual valuethey received. Instead, each processor sends a value corresponding to the statement\I'm reporting value." If a manifestly bad value is received, it is recorded as thespecial value E. After several rounds, one could imagine values corresponding to\I'm reporting that he's reporting that she's reporting E" arise. When taking themajority vote, processors ignore all E values, but treat \I'm reporting E" values asregular values. After the majority vote, if the result is \He is reporting Y," then\Y" is taken as the �nal value. The algorithm OMH(m) is de�ned semi-formallybelow. The parameter m is the number of rounds of message exchanges that are tobe performed; the functions R and UnR correspond to the addition and removal ofthe \I'm reporting" tags and are speci�ed in more detail shortly.OMH(0)1. The transmitter sends its value to every receiver.2. Each receiver uses the value received from the transmitter, or usesthe value E if a missing or manifestly erroneous value is received.OMH(m), m > 01. The transmitter sends its value to every receiver.2. For each p, let vp be the value receiver p obtains from the transmit-ter, or E if no value, or a manifestly bad value, is received.Each receiver p acts as the transmitter in Algorithm OMH(m�1) tocommunicate the value R(vp) to all of the n�1 receivers, includingitself. 4



3. For each p and q, let vq be the value receiver p received from re-ceiver q in step (2) (using Algorithm OMH(m � 1)), or else E ifno such value, or a manifestly bad value, was received. Each re-ceiver p computes the majority of all non-E values vq received, (ifno majority exists, the receiver uses some arbitrary, but function-ally determined value) and then applies UnR to that value, usingthe result as the transmitter's value.3.1 Informal Proof: SketchFor this algorithm to be correct as stated, we must make three more assumptions:(1) The class of possible messages exchanged between processors can be increasedto accommodate new kinds of messages such as \I'm reporting that she's reporting5"; (2) For all values v, R(v) 6= E (reported errors are never mistaken for errors);(3) For all values v, UnR(R(v)) = v (untagging a tagged value results in the originalvalue.) The addition of the tagging and untagging functions R and UnR is whatdistinguishes Algorithm OMH from its 
awed parent, Algorithm Z.The argument for the correctness of OMH is an adaptation of that for the Byzan-tine Generals formulation of OM [4, page 390]. We de�ne� n, the number of processors,� a, the maximum number of arbitrary-faulty processors� s, the maximum number of symmetric-faulty processors� c, the maximum number of manifest-faulty processors� m the number of rounds of message passing the algorithm is to perform.Theorem 1 For any m, Algorithm OMH(m) satis�es Validity if there are morethan 2(a+ s) + c+m processors.Proof: This is proved by induction on m. In the base case, the assumptions onmessage transmission ensure the property. For the inductive case, in step 2 of thealgorithm all nonfaulty receivers apply the algorithm OMH(m� 1) to the value re-ceived. By a counting argument we apply the inductive hypothesis to conclude thatnonfaulty receivers correctly record the forwarded value. All values forwarded fromnonfaulty processors are of the form R(x) for some value x. By another countingargument we see that the nonfaulty processors form a majority of the non-manifestlyfaulty processors, and therefore the values R(x) forwarded by them win the major-ity vote, and after applying UnR, all nonfaulty receivers settle on the value actuallysent by the transmitter. 2 5



Theorem 2 For any m, Algorithm OMH(m) satis�es Agreement if there are morethan 2(a+ s) + c+m processors and m � a.Proof: This theorem is also proved by induction onm. In the base case there can beno arbitrary faulty processors, since m � a and m = 0, so by the previous theoremwe have the result. In the inductive step there are two cases: when the transmitteris arbitrary-faulty, and otherwise. In the latter case, again the previous theoremis su�cient. In the former case, by a counting argument the inductive hypothesiscan be applied to show that all nonfaulty processors arrive at the same set of valuesbefore the hybrid majority vote is taken. If there is a majority all nonfaulty pro-cessors will agree on that value, and if there is no majority, all nonfaulty processorswill agree on the functionally determined value. Whatever that value, all nonfaultyprocessors will arrive at consistent values after applying the function UnR. 24 Formal Speci�cationThe two-page formal speci�cation of OMH in PVS is given at the end of this section.2The speci�cation language of PVS is a strongly typed higher-order logic. The lan-guage supports modularity and reuse by means of parameterized theories, and hasa rich type system, including the notions of predicate subtype and dependent type.These makes type checking undecidable (i.e., it can require theorem proving), butprovides many bene�ts (e.g., allowing many functions that are partial in other treat-ments to become total functions on precisely speci�ed domains). A PVS theoryconsists of a theory name, a parameter list, and a sequence of declarations, whichprovide names for types, constants, (logical) variables, axioms, and formulas. Thereis a large body of standard theories built into PVS, collectively referred to as theprelude.3Here we will focus on a few interesting aspects of the OMH speci�cation; adetailed English explanation of entire speci�cation is given in [5].4 The most im-portant parts of a PVS speci�cation are the parameters, assumptions, importedtheories, and axioms. Only if all of these match the intended use is the theory po-tentially useful. Validating a speci�cation against its intended interpretation is asimportant as verifying the proofs in that speci�cation.The theory OMH takes several parameters: m, the maximum number of rounds;n, the number of processors; T , the type of possible data values; error, a particular2PVS uses ascii input representations; the mathematical symbols appearing in the speci�cationare generated by the LaTEX-printer of PVS.3The PVS system and full documentation for Sun Sparc workstations are available by anony-mous FTP from ftp.csl.sri.com in directory =pub=pvs.4This can be obtained by anonymous FTP from directory =pub=reports.6



element of T ; and the two functions explained earlier, R and UnR. There are twoassumptions made about the functions R and UnR: tagged values are not mistakenfor error values, and untagging a tagged value results in the original value. Four the-ories (not shown here) are brought in by the keyword importing: �nite cardinality ,which de�nes the set cardinality function j j; �lters, which de�nes the function �lter;card set , which supplies a set of lemmas regarding the previous two theories, such as\a set is empty if and only if its cardinality is zero"; and hybrid mjrty, which de�nesand proves correct a version of the Boyer-Moore MJRTY algorithm [2] that ignoreserror values (see [5]). The �rst three of these four imported theories are from theprelude of standard theories.The OMH algorithm proceeds through a number of \rounds" counted by thenatural numbers 0; 1; : : : ;m; this range of numbers is speci�ed as the type rounds,using the prede�ned type-constructor upto from the PVS prelude. Processors, or\fault containment units" are represented by the natural numbers 0; 1; : : : ; n � 1.This type, called fcu, is speci�ed in terms of the prede�ned type-constructor belowfrom the PVS prelude. The type fcuset represents sets of fcus, and is speci�ed interms of the prede�ned type-constructor setof , also from the PVS prelude. The typefcuvector is speci�ed as the type of functions from fcus to T . The type statuses isde�ned to be an enumeration of exactly four constants, corresponding to the fourcategories of behavior: arbitrary , symmetric, manifest , and nonfaulty . The functionstatus returns the status of a given processor (i.e., fcu); this implicitly enforcesour notion that a processor not change status during execution of the agreementprotocol.Some shorthands are then de�ned for describing statuses: a, s, c, and g arepredicates recognizing the arbitrary-faulty, symmetric-faulty, manifest-faulty, andgood (nonfaulty) processors, respectively. Similarly, given a set caucus, as(caucus) isthe set of arbitrary-faulty processors in caucus. The functions ss, cs and gs similarlyselect the symmetric-faulty, manifest-faulty, and good processors, respectively. Asimple lemma, �ncard all , states that the cardinality of a set of processors is equal tothe sum of the cardinalities of the subsets of its processors of each status. This lemmafollows from a property implicit in the de�nition of statuses as an enumeration type:the members of the enumeration are inclusive and disjoint.The only axioms of this theory are those involving send, which models messagesbetween processors and is speci�ed here as a function that takes a value to be sent, asender, and a receiver as arguments; it returns the value that would be received if thereceiver were a nonfaulty processor. The result actually received is irrelevant if thereceiver is faulty because the values passed on by faulty receivers are not assumed tobe related to those received. The �rst axiom says that a nonfaulty processor sendsonly correct values. The second axiom says that a manifest-faulty processor alwaysdelivers values that are recognized as erroneous by receivers. The third axiom says7



that a symmetric-faulty processor sends the same value to all nonfaulty receivers,although that value is otherwise unconstrained (i.e., it may be any possible value,including those that are recognized as erroneous). Nothing is speci�ed for the be-havior of arbitrary-faulty senders. A de�ciency of this speci�cation is that, becausesend is a function, even arbitrarily faulty processors are constrained to be consistentfrom one round to the next. This fact is not exploited in the proof, and our colleagueShankar has formalized the classic OM algorithm using a relational send , and hasproven the corresponding correctness conditions. Unfortunately, the relational sendcomplicates and obscures the speci�cation (since it forces other functions to becomerelations also), so we have chosen to retain a functional send for this presentation.Although OMH is conceived as a distributed, concurrent algorithm, its correct-ness argument need not involve a model of distributed computation: the manner bywhich values are communicated from one processor to another, and the times andorders in which they are received, can be ignored at the level of abstraction con-cerned with correctness of the essential algorithm. Consequently, we specify OMHas a simple recursive function: OMH (G; r; t; caucus)(p) is the value that processorp ends up with when processor G uses an r-round algorithm to distribute the valuet to the processors in the set caucus. The de�nition of OMH says that this is justsend(t;G; p) in the base case (i.e., r = 0), or if p = G. Otherwise, p adopts the UnRof the hybrid majority of the set of values p receives from all other receivers whenthey employ OMH with one less round.The two main theorems are �rst de�ned as predicates on the number of rounds,then lemmas assert that the predicates hold for all r, and �nally theorems give theresult in the form desired.The �rst theorem, Validity �nal , instantiates the inductive validity property withthe full set of processors. We claim this captures the intent behind the semiformalstatement of Theorem 1. We also claim that Agreement �nal captures the intentbehind the semiformal statement of Theorem 2.

8



omh[m : nat; n : posnat; T : type; error : T; R;UnR : [T ! T ]] : theorybeginassuming act ax : assumption (8 (t : T ) : R(t) 6= error)unact ax : assumption (8 (t : T ) : UnR(R(t)) = t)endassumingrounds : type = upto[m]t : var Tfcu : type = below[n]fcuset : type = setof[fcu]fcuvector : type = [fcu! T ]G; p; q; z : var fcuv; v1; v2 : var fcuvectorcaucus : var fcusetr : var roundsimporting �nite cardinality[fcu; n; identity[fcu]];�lters[fcu];card set[fcu; n; identity[fcu]];hybrid mjrty[T; n; error]statuses : type = farbitrary; symmetric;manifest; nonfaultygstatus : [fcu! statuses]a(z) : bool = arbitrary(status(z))s(z) : bool = symmetric(status(z))c(z) : bool = manifest(status(z))g(z) : bool = nonfaulty(status(z))as(caucus) : fcuset = �lter(caucus; a)ss(caucus) : fcuset = �lter(caucus; s)cs(caucus) : fcuset = �lter(caucus; c)gs(caucus) : fcuset = �lter(caucus; g)�ncard all : lemmajcaucusj = jas(caucus)j + jss(caucus)j + jcs(caucus)j + jgs(caucus)jsend : [T; fcu; fcu! T ]send1 : axiom g(p) � send(t; p; q) = tsend2 : axiom c(p) � send(t; p; q) = errorsend3 : axiom s(p) � send(t; p; q) = send(t; p; z)send lemma : lemma : a(p) � send(t; p; q) = send(t; p; z)HMajority(caucus; v) : T = proj 1(hybrid mjrty(caucus; v; n))HMajority1 : lemmajgs(caucus)j > jas(caucus)j + jss(caucus)j^ (8 p : g(p) ^ p 2 caucus � v(p) = t)^ t 6= error ^ (8 p : c(p) ^ p 2 caucus � v(p) = error)� HMajority(caucus; v) = t 9



HMajority2 : lemma(8 p : p 2 caucus � v1(p) = v2(p))� HMajority(caucus; v1) = HMajority(caucus; v2)OMH(G; r; t; caucus) : recursive fcuvector =if r = 0then (� p : send(t; G; p))else (� p : if p = Gthen send(t; G; p)else UnR(HMajority(caucus� fGg;(� q : OMH(q; r � 1;R(send(t; G; q)); caucus� fGg)(p))))endif)endifmeasure (� G; r; t; caucus! nat : r)Validity Prop(r) : bool =: a(q) ^ p 2 caucus ^ q 2 caucus^ jcaucusj > 2 � (jas(caucus)j + jss(caucus)j) + jcs(caucus)j + r� OMH(q; r; t; caucus)(p) = send(t; q; p)Validity : lemma Validity Prop(r)Validity Final : theoremg(p) ^ : a(G) ^ 2 � jaj + 2 � jsj + jcj + m < n� OMH(G;m; t; fullset[fcu])(p) = send(t; G; p)Agreement Prop(r) : bool =g(p) ^ g(q) ^ p 2 caucus ^ q 2 caucus ^ z 2 caucus^ jcaucusj > 2 � (jas(caucus)j + jss(caucus)j) + jcs(caucus)j+ r^ r � jas(caucus)j� OMH(z; r; t; caucus)(p) = OMH(z; r; t; caucus)(q)Agreement : lemma Agreement Prop(r)Agreement Final : theoremg(p) ^ g(q) ^ jaj � m ^ 2 � jaj + 2 � jsj + jcj + m < n� OMH(G;m; t; fullset[fcu])(p) = OMH(G;m; t; fullset[fcu])(q)end omh
10



5 Formal Veri�cationThe interactive theorem prover of PVS requires all major decisions such as intro-ductions of lemmas and applications of induction to be suggested by the user. PVSthen tries to generate the correct instance of a lemma or induction scheme automat-ically, using pattern matching on the evident formulas. PVS provides arithmeticdecision procedures, rewriting, and other automation for the lower levels of deduc-tion, thereby allowing the user to focus on the construction of formal proofs at arelatively high level.For example, the PVS proof of the lemma send lemma comprises 14 user-supplied steps. This lemma states that all non-arbitrary-faulty processors exhibitsymmetric sending behavior. The PVS proof introduces all three send axioms, andthe de�nition of statuses. PVS chose correct instantiations for the �rst applicationof these lemmas (sending to q), but the user was required to suggest the secondinstance of send1 and send2 (sending to z). The application of the ground decisionprocedures then completed the proof.The most intellectually challenging proof constructed for this speci�cation is thatof Validity . After some experimentation with alternative speci�cations, includingconstructing partial failed proofs of this lemma for alternative, 
awed, versions ofthe algorithm OMH, the �rst proof of Validity was constructed in a few hours. Thepolished proof consists of 80 user-suggested steps, 15 of which are invocations ofthe ground decision procedures. The proof contains 13 invocations of lemmas andaxioms, most of them basic lemmas from the prelude and axioms from the OMHtheory. Note that the informal proof of Theorem 1 simply says \by a countingargument: : : " where in the formal proof several lemmas such as \a set is empty ifand only if its cardinality is zero" are brought in explicitly, and the ground deci-sion procedures are invoked. Some lemmas require case splitting on the status of aprocessor (arbitrary, symmetric, manifest, or nonfaulty). The result is a condensedproof description approximately two pages long, and a full prettyprinted proof tran-script over 100 pages long.formula name user-supplied number of uses ofsteps inductions assert�ncard all 30 1 7send lemma 14 0 1Validity 80 1 15Agreement 73 1 13Validity �nal 36 0 4Agreement �nal 51 0 4HMajority1 78 2 16HMajority2 20 1 311



The table above summarizes some gross measures of the size and di�culty of con-structing proofs for the lemmas and theorems of this speci�cation. The �rst columnis the name of the formula concerned. The second column is the total number ofuser-suggested proof steps in the �nal proof. The third column counts the uses ofinduction. The fourth column counts the uses of ground or assert, which invokethe ground decision procedures. The number of uses of ground and assert roughlycorresponds to the number of signi�cant branches in a proof.The critical measure, however, for speci�cation and veri�cation tasks is the totaltime taken from problem understanding through complete formal proof. The e�ortreported here took less than a month of part time work, including the exploration of
awed modi�cations to Algorithm Z that seemed intuitively plausible, and a changein notation for expository purposes. Producing the report [5] and this paper tookfar more time than the formal speci�cation and veri�cation combined.When only manifest faults are present, the constraints in Theorems 1 and 2suggest that the number of faults that can be tolerated is inversely related to thenumber of rounds. Alternative analysis shows that this is not so and that OMH isoptimal in this case. We have formally veri�ed these special cases [5].Full machine-readable PVS speci�cations and PVS proofs of the entire proofchain are available from the authors.6 DiscussionWe discovered the 
aws in Algorithm Z and in our early versions of AlgorithmOMH by attempting informal and formal veri�cations of those algorithms. Thisexperience is consistent with other veri�cation e�orts: much of the e�ort is spentdiscovering and repairing 
aws in a speci�cation, algorithm, or proof that werepreviously thought to be correct [12, 13]. Although our experience indicates thatformal veri�cation is an e�ective debugging technique, it is undeniably an expensiveone.An obvious alternative is testing: our speci�cations of these algorithms couldbe translated into a functional language where they can be run on a variety of testcases. However, testing is inherently partial, and with recursively de�ned algorithmssuch as OMH it is di�cult to select the important test cases.Between testing and conventional veri�cation lie state-exploration methods.These methods resemble testing in that they are automatic; they resemble veri-�cation in that they are formal methods. State-exploration methods systematicallyenumerate all the states of a �nite-state algorithm and test whether certain predi-cates hold at those states. What makes state exploration e�ective are recent tech-niques for handling huge numbers of states in an e�cient manner. As it stands,12



OMH is not amenable to state exploration: it has far too many states. But fordebugging, it can be useful to examine highly simpli�ed versions of the problem [3]:for example, the cases m = 1, n � 6, and a very small set of data values|E, R(E),and two distinct \good" values seem su�cient to detect all the errors in all thevariants we considered. Theorem proving and state exploration could be combinedto prove that some cases are redundant: the case where the �rst receiver is the onlyfaulty processor is very similar to the case when receiver three is the only faultyprocessor.While state exploration might be more economical than conventional formalveri�cation for debugging, correctness of the general algorithm requires full formalveri�cation. Our experience using PVS for this purpose has been very positive. Al-though still a young prototype system, it has two very important features: a richspeci�cation language, and an e�ective theorem prover. These attributes usuallytrade o� against each other, since expressive and 
exible speci�cation languagestend to be di�cult to automate. We have found the paradigm of semi-interactivetheorem proving very productive: the user supplies direction for the proof, and thesystem performs a great deal of the routine manipulation. Putting the user directlyin the proving loop requires the current state of the proof to be displayed in acomprehensible manner. (Conversion to clausal form or Skolemization are thus un-acceptable, and not used in PVS.) We have found the sequent-calculus presentationused in PVS quite acceptable, but are working on techniques to improve the qualityof the representations employed.7 ConclusionsTools for formal veri�cation have matured to the point where complex, practicallyinteresting aspects of systems can be economically veri�ed. The human e�ort re-quired to specify and prove in complete formal detail interesting theorems aboutimportant elements of fault-tolerant architectures is quite modest. In this paper wehave presented the formal veri�cation of a new algorithm for Byzantine Agreementunder a hybrid fault model. We applied PVS to this domain, discovering errors inpublished proofs and in a proposed algorithm.A crucial tool in our detection of the 
aws in Algorithm Z and our own earlyalgorithms was our use of mechanically-checked formal veri�cation. The disciplineof formal speci�cation and veri�cation was also instrumental in helping us to de-velop the correct algorithm presented here. It is worth repeating that no formalveri�cation proves any system \correct." At most, a model of some aspects of thesystem is shown to satisfy a speci�cation, or shown to exhibit certain properties.The �delity of the modeling, and the utility of the speci�cation or properties proved,must be established by informal methods. The true bene�t of formal speci�cation13



and veri�cation is not in getting a theorem prover to say proved, but rather inre�ning one's understanding through dialogue with a tirelessly skeptical theoremprover.The e�ort required to perform this formal veri�cation was not particularly largeand did not seem to us to demand special skill. We attribute some of this ease inperforming formal veri�cation of a relatively tricky algorithm to the e�ectiveness ofthe tools employed [8]. These tools (and others that may be of similar e�ectiveness)are freely available, and in light of the 
aws we discovered in Thambidurai andPark's algorithm, and had previously found in the proofs for other fault-tolerantalgorithms [9], we suggest that formal veri�cation should become a routine part ofthe social process of development and analysis of fault-tolerant algorithms intendedfor practical application in safety-critical systems.In future work, we hope to explore extensions to the OMH algorithm and itsanalysis. We also plan to formally verify a modi�ed version of the Interactive-Convergence Algorithm for clock synchronization using a hybrid fault model (wehave already formally veri�ed the standard algorithm [12], and have an informalanalysis of a hybrid version). We also plan to continue the development of PVS,improving the ground decision procedures and adding state exploration tools.Acknowledgments: PVS was constructed by our colleagues Sam Owre andNatarajan Shankar. We have had fruitful discussions with them and with MichelleMcElvany-Hugue of Allied-Signal on related topics.References[1] William R. Bevier and William D. Young. Machine checked proofs of the designof a fault-tolerant circuit. Formal Aspects of Computing, 4(6A):755{775, 1992.[2] Robert S. Boyer and J Strother Moore. MJRTY|a fast majority vote algo-rithm. In Robert S. Boyer, editor, Automated Reasoning: Essays in Honorof Woody Bledsoe, volume 1 of Automated Reasoning Series, pages 105{117.Kluwer Academic Publishers, Dordrecht, The Netherlands, 1991.[3] David L. Dill, Andreas J. Drexler, Alan J. Hu, and C. Han Yang. Protocolveri�cation as a hardware design aid. In 1992 IEEE International Conferenceon Computer Design: VLSI in Computers and Processors, pages 522{525. IEEEComputer Society, 1992. Cambridge, MA, October 11-14.[4] Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine gen-erals problem. ACM Transactions on Programming Languages and Systems,4(3):382{401, July 1982. 14



[5] Patrick Lincoln and John Rushby. Formal veri�cation of an algorithm for inter-active consistency under a hybrid fault model. Technical Report SRI-CSL-93-02, Computer Science Laboratory, SRI International, Menlo Park, CA, March1993.[6] Patrick Lincoln and John Rushby. A formally veri�ed algorithm for interactiveconsistency under a hybrid fault model. In Fault Tolerant Computing Sympo-sium 23, Toulouse, France, June 1993. IEEE Computer Society. To appear.[7] Dale A. Mackall. Development and 
ight test experiences with a 
ight-crucialdigital control system. NASA Technical Paper 2857, NASA Ames ResearchCenter, Dryden Flight Research Facility, Edwards, CA, 1988.[8] S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype veri�cation system.In Deepak Kapur, editor, 11th International Conference on Automated Deduc-tion (CADE), pages 748{752, Saratoga, NY, June 1992. Volume 607 of LectureNotes in Arti�cial Intelligence, Springer Verlag.[9] Sam Owre, John Rushby, Natarajan Shankar, and Friedrich von Henke. Formalveri�cation for fault-tolerant architectures: Some lessons learned. In FME '93:Industrial-Strength Formal Methods, pages 482{500, Odense, Denmark, April1993. Volume 670 of Lecture Notes in Computer Science, Springer Verlag.[10] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence offaults. Journal of the ACM, 27(2):228{234, April 1980.[11] John Rushby. Formal veri�cation of an Oral Messages algorithm for interactiveconsistency. Technical Report SRI-CSL-92-1, Computer Science Laboratory,SRI International, Menlo Park, CA, July 1992. Also available as NASA Con-tractor Report 189704, October 1992.[12] John Rushby and Friedrich von Henke. Formal veri�cation of algorithms forcritical systems. In SIGSOFT '91: Software for Critical Systems, pages 1{15, New Orleans, LA, December 1991. Expanded version to appear in IEEETransactions on Software Engineering , 1993.[13] Natarajan Shankar. Mechanical veri�cation of a generalized protocol for Byzan-tine fault-tolerant clock synchronization. In J. Vytopil, editor, Formal Tech-niques in Real-Time and Fault-Tolerant Systems, pages 217{236, Nijmegen, TheNetherlands, January 1992. Volume 571 of Lecture Notes in Computer Science,Springer Verlag.[14] Philip Thambidurai and You-Keun Park. Interactive consistency with multiplefailure modes. In 7th Symposium on Reliable Distributed Systems, pages 93{100,Columbus, OH, October 1988. IEEE Computer Society.15


