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Abstract

We have discovered an efficient algorithm for matching and unification in associative-
commutative (AC) and associative-commutative-idempotent (ACI) equational theories.
In most cases of AC unification and in all cases of ACI unification our method obvi-
ates the need for solving diophantine equations, and thus avoids one of the bottlenecks
of other associative-commutative unification techniques. The algorithm efficiently uti-
lizes powerful constraints to eliminate much of the search involved in generating valid
substitutions. Moreover, it is able to generate solutions lazily, enabling its use in an
SLD-resolution-based environment like Prolog. We have found the method to run much
faster and use less space than other associative-commutative unification procedures on
many commonly encountered AC problems.

1 Introduction

A number of computer science applications, including term rewriting, automatic theorem
proving, software verification, and database retrieval require AC unification (also called “bag
unification”) or ACI unification (“set unification”). A complete unification algorithm for
AC theories was developed several years ago by Mark Stickel [16]. Independently, Livesey
and Siekmann published a similar algorithm for AC and ACI unification. Their procedures
center around generating solutions to a linear diophantine equation, each coefficient of which
represents the multiplicity of some subterm in one of the unificands. There are two nagging
properties of this method. First, it requires generating a basis for the solution space of the
diophantine equation. Second, there can be a large amount of search involved in actually
generating solutions once a basis is discovered.

We have found an algorithm for dealing with associative-commutative theories without
resorting to the solution of diophantine equations. By weakening the variable abstraction
introduced by Stickel, most cases of AC and all cases of ACI unification can be solved
by working only with equations in which all coefficients are unity. The basis of solutions
of such an equation possesses a highly regular structure; this allows us to optimize the
representation of the problem and avoid spending time finding a basis. We are able instead



to begin generating unifiers almost immediately. In addition, our representation allows the
incorporation of several simple but powerful constraints in a way that is much more natural
and efficient than previous methods have allowed.

Our algorithm can solve AC matching problems (so-called “one-way unification”), most
cases of AC unification, and all cases of ACI unification very efficiently in most cases,
several times faster than Stickel’s algorithm. However, if repeated variables occur in one
unificand, our algorithm may return redundant unifiers. If repeated variables occur in both
unificands, our algorithm may not terminate. In these easily detected cases, it suffices to
dispatch to some complete algorithm, like Stickel’s; the overhead in making the decision
to dispatch is negligible. Fortunately, these cases occur in only a few percent of many
applications of AC unification like Knuth-Bendix completion [12]. In some applications like
database query compilation, these cases never occur. Thus our procedure can achieve a
significant improvement in average execution speed of AC unification. Furthermore, our
procedure requires nominal space overhead for generating solutions, and is amenable to the
lazy generation of solutions required in an SLD-resolution environment like that of Prolog.
We give a summary of our full paper [2] in the text that follows.

2 History Of AC Unification

Mark Stickel was the first to develop a complete, terminating algorithm for AC unification;
the algorithm was initially presented in 1975 [15]. Livesey and Siekmann published a sim-
ilar algorithm in 1976 [13]. Most AC unification procedures in use today are essentially
modifications of that of Stickel or of Livesey and Siekmann, but a few novel approaches
have been proposed. Within the loose framework of Stickel’s method there are two hard
problems: generating a basis of solutions to linear homogeneous diophantine equations, and
searching through all combinations of this basis for a solution to the given AC unification
problem.

Since Gordan’s study of diophantine equations in 1873, only in the last few years has
there been any significant progress made regarding the generation of their bases. Forten-
bacher, Huet, and Lankford have separately proposed a number of refinements to Gordan’s
basic method. Recently, Zhang has discovered a class of diophantine equations which can
be quickly solved. However, no published algorithm has proven to be superior in all cases.
[5, 4, 7, 12, 6, 18].

The extraction of solutions to AC problems given a basis of solutions to the diophantine
equation is also an area of concern. In the past few years Fortenbacher [4] has proposed a
method of reducing the search space by eliminating certain basis elements. Claude Kirchner
has recently developed an AC unification algorithm within the framework of the Martelli-
Montanari unification procedure, but, like Stickel’s, his method requires solving diophantine
equations [11, 14]. Also, Hullot invented an algorithm for AC unification which involves
ordered partitions of multisets [9]. While his algorithm is faster than Stickel’s, it does not
seem to offer nearly the dramatic speed increases we have obtained with our procedure. We
have not implemented Hullot’s algorithm, but base our judgement on timing comparisons
listed in his paper. In Germany, Buttner has developed a parallel algorithm for AC unifica-
tion [1]. The method involves linear algebraic operations in multi-dimensional vector spaces,
but he fails to provide the details necessary for a realistic comparison. Recently, Kapur [10]



has developed an algorithm based on Stickel’s method that uses Zhang’s equation solving
technique. The survey by Huet and Oppen [8] summarizes results in related areas.

3 Our Method

There are two basic difficulties with previous algorithms. First, generation of a basis for
a diophantine equation is an expensive operation. Second, given a basis, the search which
must be performed to produce solutions can be very expensive. It is thus necessary to
enforce several non-trivial constraints [4, 17]. Fortenbacher [4] has described many obvious
optimizations of Stickel’s method, and Stickel himself has implemented quite impressive
constraints on the generation of solutions which tame this search problem. As we shall soon
see, our algorithm is able to exploit similar constraints in a very natural and efficient way.

3.1 Slaying the Diophantine Dragon

The preparation phase of our algorithm is very similar to previous approaches. First, both
terms are put through a “flattening” operation which removes nested AC function sym-
bols. This operation can be viewed more precisely as term reduction by root application of
the rewrite rule f(t1,..., f(S1,...,Sm),---stn) — f(t1,..., 815+, Smy.-.,1tn). Hence, the
term f(f(a,a),a, f(g(u),y,x)) will be flattened to f(a,a,a,g(u),y,x), while f(a, f(b, g(c)),
fly,y),z) will be changed to f(a,b,g(c),y,y,z). The flattened term f(s1,89,...,8p) is
merely syntactic sugar for the right-associative normal form f(s1, f(s2,..., f(Sp_1,8n)--.))-
The validity of the flattening operation is guaranteed by the associativity axiom, which im-
plies that nesting of AC function symbols is largely irrelevant.

After flattening terms, the next step is to remove subterms which occur pairwise in
both unificands. For instance, after deleting duplicate subterms from f(a,a,a,g(u),y, )
and f(a,b,g(c),y,y,z) we obtain the terms f(a,a,g(u),z) and f(b,g(c),y, z), specifically
by removing one occurrence of a and one occurrence of y from each.

We suppose that both terms are sorted so that atomic constants are grouped together,
followed by function terms, followed by variables. For instance, f(a, g(u),a,y,a,x) would be
sorted to produce f(a,a,a,g(u),y,z). An important non-intuitive point is that compared
to the time required to generate all unifiers, the time spent flattening and sorting terms is
insignificant.

In the ACI case, repeated constants, terms, and variables are removed from each unif-
icand. For example, f(a,a,b, x,x) is simplified to f(a,b,x). In the AC case, this step is
omitted.

Now, our generalization step differs from others, in that we assign a distinct vari-
able for each argument. Thus, while Stickel’s algorithm would convert the f(a,a,g,x)
to f(x1, 21,79, x3), ours will produce f(x1,xq,x3,24). Effectively, we convert the problem
of solving the unification problem f(Xi,..., Xy,) = f(Y1,...,Y,) into the equivalent con-
junction of problems f(x1,...,2m) = f(y1,...,yn) Ax1 = X1 A oo ATy = X Ayp =
Yi A ANyp =Yy, where the z; and y; are distinct variables.

Notice that the diophantine equation corresponding to any pair of such generalized terms



a a | g(u) | =z
T1 T2 T3 T4 c|T |4
b Y1 | 21,1 | 21,2 | 21,3 | 21,4 clo0]0 —
gle) | y2 | 22,1 | 222 | 22,3 | 224 T |0 || <
] Y3 | 23,1 | 23,2 | 233 | 23,4 Vil ] | any
z | ya | zaq | za2 | za3 | 244

Table 1: Matrix for a simple problem and some constraints

will have only unit coefficients. Such an equation has a few nice properties, namely given a
diophantine equation of the form x1 4+ ...+ x,, = y1 + ... + yp, the minimal solution basis
is that set of solutions such that, for each solution, exactly one x; has value one, exactly
one y; has value one, and all other variables have value zero. Also, the number of basis
solutions is nm.

Knowing that the basis has such a nice, regular structure, we need not explicitly generate
it; for, given only the respective arities of the generalized unificands, we can immediately
construct a two dimensional matrix, where each column is labeled with an x;, and each
row is labeled with one of the y;. Each entry i,j in the matrix is a boolean value, that
corresponds to a new variable, z; ;, which represents the solution vector which assigns a
one to x; and y;. Thus every true boolean value 4, j in a solution matrix corresponds to
one basis element of the solution of the diophantine equation. Any assignment of true and
false to all the elements of a matrix represents a potential solution to the AC unification
problem in the same way that any subset of the basis elements of the diophantine equation
represents a potential solution to the same AC problem.

For instance, suppose we are given the (already flattened) unificands f(a, a, g(u),x) and
f(b,g(c),y,z). Substituting new variables for each argument, we obtain f(x1,x9,x3,x4)
and f(y1,y2,y3,y4). The associated solution matrix is displayed in Table 1

In our implementation, we do not create the entire n by m matrix; rather, we will utilize
a more convenient and compact data structure. But for now, let us pretend that the matrix
is represented as a simple 2-dimensional array. And as we will demonstrate below, the
matrix representation is inherently amenable to constraining the search for unifiers.

3.2 Constraining Search

Remember that unificands are sorted in the preparation step of our algorithm. Hence, a
given solution matrix comprises nine regions, illustrated in Table 1. In the table, C', T,
and V stand, respectively, for atomic constants, functional terms, and variables. An entry
in the lower left region of the matrix, for instance, corresponds to an assignment in the
(unprepared) unificands of a constant in one and a variable in the other.

As Table 1 indicates, there are several constraints on the distribution of ones and zeros
within a solution matrix. First, notice that there must be at least one non-zero entry in each
row and column of a solution matrix, so that all variables in the generalized terms receive
an assignment. The upper left corner involves assignments to incompatible constants (since
we have removed duplicate arguments from the unificands, no constants from one term can



a | a|gu)| =z
z1 | T2 I3 Za Unifying substitution:
glc) [y2 [ 0 | 0 1 0 z — f(a,a)
Y Y3 0 0 0 1 W c
z ys | 1 1 0 0

Table 2: A solution to the matrix

possibly unify with any constant from the other term). This part of any solution matrix,
then, must consist only of zeros. Similarly, the C'/T and T'/C' regions of a solution matrix
must contain all zeros. The C'/V region is constrained to have exactly a single one in each
column, since any additional ones would cause the attempted unification of a functional
term, say f(z1,1,21,2), with a constant. Similarly, any 7' row or 7' column must contain
exactly one one. Finally, the V//V region of a matrix can have any combination of ones and
zeros which does not leave a whole row or column filled only with zeros.

In reality, the nine regions depicted in Table 1 are further partitioned to handle repeated
variables and constants; for now, we will ignore this detail, and assume that all arguments
within a unificand are distinct.

3.3 Generating Solutions

Once a unification problem has been cast into our matrix representation, it is not a difficult
matter to find unifying substitutions. The approach is to determine a valid configuration
of ones and zeros within the matrix, perform the indicated assignments to the variables in
the generalized terms, and finally unify the arguments of the original unificands with their
variable generalizations.

Consider the matrix in Table 1. We know that z; ; must be zero, since it falls within the
C/C region of the matrix. Likewise, z1 2. 21,3, 22,1, and 299 must always be zero. In fact,
the only possible position for the required one in the y; column is at z1 4. Filling out the
rest of the matrix, we arrive at the solution shown in Table 2; after assigning the nonzero
2 j's to the o and y variables, and then unifying the variables with the original unificand
arguments, we obtain the substitution shown at the side of Table 2. Note that the step at
which g(u) < g(c) was derived, and recursively solved to produce u < ¢ has been omitted.

3.4 Lazy generation of solutions

Enumerating solutions essentially amounts to performing simple binary operations on re-
gions of the matrix. For instance, in the variable-constant region of the martix, a binary
rotate instruction and a few numeric comparisons usually suffice to generate the next solu-
tion from the current state.



Table 3: Redundant matrix configurations for f(a,a) = f(x,y)

3.5 Repeated terms

Until now, we have assumed that all arguments within a unificand are distinct. This will
always be true for ACI unification, since the repeated terms are removed during preparation.
However, this is not necessarily the case for AC unification. In practice, repeated terms
occur infrequently; Lankford, for instance, has found that more than 90 percent of the
unification problems encountered in some completion applications involve unificands with
distinct arguments. Nevertheless, the ability to handle repeated arguments is certainly
desirable.

Our algorithm can easily be adapted to handle repetitions in constants and functional
terms in either or both unificands. Repeated variables are more difficult to handle. If they
occur in a single unificand, our algorithm is complete and terminating, but may return
redundant unifiers. If they occur in both unificands, the algorithm might generate sub-
problems at least as hard as the original, and thus not terminate. Stickel’s algorithm can
be employed whenever repeated variables are detected; the overhead involved in making
this decision is negligible. Thus in the worst cases we do simple argument checking, and
dispatch to Stickel’s algorithm. We have several methods of minimizing the use of Stickel’s
algorithm but we have not yet discovered a straightforward, general method. In [2] we prove
that our procedure does indeed terminate whenever variables are repeated in at most one
of the unificands.

The set of unifiers returned by our algorithm is guaranteed to be complete. However,
the set of unifiers may not be minimal. The set of unifiers returned by Stickel’s algorithm
is similarly not guaranteed to be minimal. If a minimal set of unifiers is required, it suffices
to simply remove elements of the non-minimal set which are subsumed by other unifiers in
the set.

Assuming no repeated variables in one term, our algorithm can handle arbitrary rep-
etitions of constants and functional terms. But before disclosing the modification to our
algorithm which facilitates handling of repeated arguments, we show with a simple example
why the modification is needed. Suppose we wish to unify f(a,a) with f(x,y), which is
a subproblem of the earlier example. Without alteration, our algorithm as so far stated
will generate the two configurations shown in Table 3. While the matrix configurations are
distinct, they represent identical unifying substitutions — namely {z «— a,y < a}.

The solution to this problem is surprisingly simple. In short, whenever adjacent rows
represent the same term, we require that the contents of the upper row, interpreted as a
binary number, be greater than or equal to the contents of the lower row. A symmetric
restriction is imposed on columns. See the full paper for a detailed explanation of these
restrictions.



3.6

An Algorithm for Associative-Commutative Unification

Until now, we have concentrated almost exclusively on the matrix solution technique which
lies at the heart of our AC unification algorithm. Following is a statement of the unification
algorithm proper. This will serve, in the next section, as a basis for results involving the
completeness and termination of our method. The algorithm is presented as four procedures:
AC-Unify, Unify-With-Set, Unify-Conjunction, and Matrix-Solve.

Procedure AC-Unify: Given two terms z and y, return a complete set of unifiers for the equation
T =ACY-

Step 1

Step 2
Step 3
Step 4
Step 5

Step 6

Step 7

Step 8

Step 9

If z is a variable, then see if y is a functional term and z occurs in y. If both are true, return
fail. Otherwise, return {{z < y}}, unless x = y — in that case, return the null substitution

set {{}}.

If y is a variable, then see if y occurs in z. If it does, return fail. Otherwise, return {{y <« z}}.
If x and y are distinct constants, return fail.
If z and y are the same constant, return {{}}.

At this point, z and y are terms of the form f(z1,...,z.,,) and g(y1,...,yn). If f # g, return
fail.

If f is not an AC function symbol, and m = n, then call procedure Unify-With-Set with
the substitution set {{}} and the conjunction of equations 1 =4¢c y1 A ... Az, =4ac Yn, and
return the result. If m # n, return fail.

Flatten and sort  and y, and remove arguments common to both terms. Call the resulting
terms & and ¢, respectively. Assume & = f(z1,...,z;) and § = f(y1,...,yx). Set up the
conjunction of equations f(X1,...,X;) =ac f(Y1,... . Ya) A X1 =ac z1 A ... ANX; =ac
z; ANY1 =ac 1 A ... ANYy =4c Yk, where the X; and Y; are new, distinct variables. Call this
conjunction K.

Let T be the result of applying Matrix-Solve to the conjunction E. If T = fail, return
fail.

Call procedure Unify-With-Set with the set of substitutions 7" and the conjunction of equa-
tions X1 =acz1 A...ANXj =acxj ANY1 =ac y1 N...ANY, =ac Yk, and return the result.

Procedure Unify-With-Set: Given a set of substitutions 7' and a conjunction of equations F,
return Jg., CSU(OE), where CSU(X) is a complete set of unifiers for X.

Step 1
Step 2

Step 3

Let S ={}.
For each § € T, set S to S U {UU]EZ{G Uo,}}, where Z is the result of applying procedure

Unify-Conjunction to 6F.

Return S.

Procedure Unify-Conjunction Given a conjunction of equations ¥ = e; A. . .Ae,, return a complete
set of unifiers for E.

Step 1

Step 2 .

. Let V be the result of calling procedure AC-Unify with e;. If n =1, return V. If V = fail,
return fail.

Call procedure Unify-With-Set with the set of substitutions V' and the conjunction es A
... A ey, and return the result.



Procedure Matrix-Solve Given a conjunction of equations f(Xi,...,Xm) =ac f(Y1,...,Ya) A
Xi=acoiN...N Xy =ac T ANY1 =ac Y1 N ... NYy =4c Yn, where the X; and Y; are distinct
variables, determine a set of substitutions which will unify f(Xy,...,X,,) with f(Y1,...,Y,).

Step 1 Establish an m-by-n matrix M where row i (respectively column j) is headed by X; (Y;).

Step 2 Generate an assignment of 1s and 0s to the matrix, subject to the following constraints. If
z; (y;) is a constant or functional term, then exactly a single 1 must occur in row ¢ (column
7). If z; and y; are both constants, or if one is a constant and the other is a functional term,
then Mi, j] = 0. Also, there must be at least a single 1 in each row and column. Finally, if
z; = ;41 for some i, then row i interpreted as a binary number must be less than or equal
to row ¢ + 1 viewed as a binary number. (Symmetrically for y; and y;41.)

Step 3 With each entry M[i, j], associate a new variable z; ;. For each row ¢ (column j) construct the
substitution X; « f(zij,,...,z2ij.) where M[i,j;] =1, or X; < z;, if k = 1. (symmetrically
for Y;).

Step 4 Repeat Step 2 and Step 3 until all possible assignments have been generated, recording each
new substitution. If there is no valid assignment, return fail.

Step b Return the accumulated set of substitutions.

When there are repeated variables in both unificands, it is possible that our algorithm
will not terminate. For example, in the unification of f(x,2) with f(y,y) one of the recur-
sive subproblems generated is identical (up to variable renaming) to the original problem.
However, as we prove in the full version of this paper [2] our algorithm is totally correct in
other cases.

4 Benchmarks

Although we have not presented the details of our actual implementation, it should be obvi-
ous that more efficient data structures exist than an n by m boolean matrix. In particular,
finding the next matrix configuration often reduces to one lisp incf and a few comparisons in
our most optimized code. In order to quickly generate a unifier from a matrix configuration
we utilize some auxiliary data structures.

The table on the next page reflects the time in seconds necessary to prepare unificands
and to find and construct all AC unifiers. For each problem, timings were supplied by
Kapur and Zhang (RRL), Stickel (SRI), and by ourselves (MCC). All data were collected
on a Symbolics 3600 with IFU. As shown in the table, our algorithm is consistently three
to five times faster than Stickel’s and Kapur’s.

These benchmarks do not include any problems with repeated variables, since in such
cases, our algorithm would either return non-minimal sets of unifiers, or it would dispatch
to Stickel’s procedure. This is not as serious a concession as it might appear, since the
most common cases of AC Unification are the ones without repeated variables. In fact,
Lankford has found that less than 8 percent of uses of AC unification in applications like
Knuth-Bendix completion have repetitions of anything, and less than three percent have
repetitions on both sides [12]. Also, in the case of ACI, variables are never repeated.



Problem f | RRL | SRI | MCC Problem f solns | RRL | SRI | MCC
zab = ucde 2 | 0.020 | 0.018 | 0.005 rya = ucde 28 0.093 | 0.094 | 0.024
zab = uccd 2 | 0.023 | 0.011 | 0.005 rya = uccd 20 0.068 | 0.050 | 0.018
zab = uccc 2 | 0.018 | 0.008 | 0.004 TYa = uccc 12 0.045 | 0.026 | 0.013
zab = uved | 12 | 0.045 | 0.047 | 0.013 rya = uved 88 0.238 | 0.247 | 0.064
zab = uvcc | 12 | 0.055 | 0.032 | 0.014 TYya = uvce 64 0.211 | 0.133 | 0.048
zab = wvwe | 30 | 0.113 | 0.096 | 0.034 TYya = yvwc 204 0.535 | 0.538 | 0.160
zab = wvwt | 56 | 0.202 | 0.171 | 0.079 rya = uvwt 416 0.918 | 1.046 | 0.402
zraa = ucde 2 | 0.028 | 0.013 | 0.005 ryz = ucde 120 0.375 | 0.320 | 0.118
zraa = uccd 2 | 0.023 | 0.009 | 0.004 zyz = uced 75 0.185 | 0.168 | 0.072
Taa = uccc 2 | 0.021 | 0.006 | 0.005 TYz = ucce 37 0.093 | 0.073 | 0.038
zraa =uved | 8 | 0.043 | 0.032 | 0.010 ryz = uved 336 0.832 | 0.840 | 0.269
Taa = uvce 8 | 0.035 | 0.020 | 0.011 TYz = uvce 216 0.498 | 0.431 | 0.171
zaa = wvwce | 18 | 0.087 | 0.062 | 0.023 TYZ = uvwc 870 2.060 | 2.102 | 0.729
zaa = wowt | 32 | 0.192 | 0.114 | 0.051 Yz = uvwt 2161 5.183 | 5.030 | 1.994

5 Future Extensions

With simple modifications, our algorithm can apparently handle arbitrary combinations
of associativity, commutativity, identity, and idempotence. We say “apparently” because
we have not yet proven completeness or termination in all these cases, but preliminary
findings have been encouraging. Of particular interest is unification with the single axiom
of associativity, which corresponds to the word problem in free semigroups. The matrix
representation of unifiers seems well suited to capturing this limited form of equational
theory, but the details of this are beyond the scope of this report.

6 Conclusion

We have just described an algorithm which we believe to be the most efficient way of solving
a large class of associative-commutative matching and unification problems. The algorithm
obviates the need for solving diophantine equations, and it utilizes a matrix representation
which conveniently enforces powerful search constraints. Compared to Stickel’'s and Ka-
pur’s procedures, our method often yields a significant improvement in speed. Certainly,
applications of AC unification stand to benefit from our research.

We would like to thank Dallas Lankford for introducing us to his diophantine basis generation
algorithm, and for supplying us with pointers to some useful information. We would also like to
thank Hassan Ait-Kaci, Mike Ballantyne, Woody Bledsoe, Bob Boyer, and Roger Nasr for their
comments, criticisms, and laissez-faire supervision. Finally, we would like to thank Mark Stickel,
Hantao Zhang, and Deepak Kapur, for their insightful criticisms of an earlier draft of this paper,
and for supplying benchmark times.
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