
Appeared in CADE 9, 1988, LNCS 310Adventures in Associative-Commutative Uni�cationPatrick Lincoln and Jim ChristianMCC, Systems Languages3500 W. Balcones Cntr. Dr.Austin, TX, 78759(512) 338-3717April 15, 1994AbstractWe have discovered an e�cient algorithm for matching and uni�cation in associative-commutative (AC) and associative-commutative-idempotent (ACI) equational theories.In most cases of AC uni�cation and in all cases of ACI uni�cation our method obvi-ates the need for solving diophantine equations, and thus avoids one of the bottlenecksof other associative-commutative uni�cation techniques. The algorithm e�ciently uti-lizes powerful constraints to eliminate much of the search involved in generating validsubstitutions. Moreover, it is able to generate solutions lazily, enabling its use in anSLD-resolution-based environment like Prolog. We have found the method to run muchfaster and use less space than other associative-commutative uni�cation procedures onmany commonly encountered AC problems.1 IntroductionA number of computer science applications, including term rewriting, automatic theoremproving, software veri�cation, and database retrieval require AC uni�cation (also called \baguni�cation") or ACI uni�cation (\set uni�cation"). A complete uni�cation algorithm forAC theories was developed several years ago by Mark Stickel [16]. Independently, Liveseyand Siekmann published a similar algorithm for AC and ACI uni�cation. Their procedurescenter around generating solutions to a linear diophantine equation, each coe�cient of whichrepresents the multiplicity of some subterm in one of the uni�cands. There are two naggingproperties of this method. First, it requires generating a basis for the solution space of thediophantine equation. Second, there can be a large amount of search involved in actuallygenerating solutions once a basis is discovered.We have found an algorithm for dealing with associative-commutative theories withoutresorting to the solution of diophantine equations. By weakening the variable abstractionintroduced by Stickel, most cases of AC and all cases of ACI uni�cation can be solvedby working only with equations in which all coe�cients are unity. The basis of solutionsof such an equation possesses a highly regular structure; this allows us to optimize therepresentation of the problem and avoid spending time �nding a basis. We are able instead1

to begin generating uni�ers almost immediately. In addition, our representation allows theincorporation of several simple but powerful constraints in a way that is much more naturaland e�cient than previous methods have allowed.Our algorithm can solve AC matching problems (so-called \one-way uni�cation"), mostcases of AC uni�cation, and all cases of ACI uni�cation very e�ciently { in most cases,several times faster than Stickel's algorithm. However, if repeated variables occur in oneuni�cand, our algorithm may return redundant uni�ers. If repeated variables occur in bothuni�cands, our algorithm may not terminate. In these easily detected cases, it su�ces todispatch to some complete algorithm, like Stickel's; the overhead in making the decisionto dispatch is negligible. Fortunately, these cases occur in only a few percent of manyapplications of AC uni�cation like Knuth-Bendix completion [12]. In some applications likedatabase query compilation, these cases never occur. Thus our procedure can achieve asigni�cant improvement in average execution speed of AC uni�cation. Furthermore, ourprocedure requires nominal space overhead for generating solutions, and is amenable to thelazy generation of solutions required in an SLD-resolution environment like that of Prolog.We give a summary of our full paper [2] in the text that follows.2 History Of AC Uni�cationMark Stickel was the �rst to develop a complete, terminating algorithm for AC uni�cation;the algorithm was initially presented in 1975 [15]. Livesey and Siekmann published a sim-ilar algorithm in 1976 [13]. Most AC uni�cation procedures in use today are essentiallymodi�cations of that of Stickel or of Livesey and Siekmann, but a few novel approacheshave been proposed. Within the loose framework of Stickel's method there are two hardproblems: generating a basis of solutions to linear homogeneous diophantine equations, andsearching through all combinations of this basis for a solution to the given AC uni�cationproblem.Since Gordan's study of diophantine equations in 1873, only in the last few years hasthere been any signi�cant progress made regarding the generation of their bases. Forten-bacher, Huet, and Lankford have separately proposed a number of re�nements to Gordan'sbasic method. Recently, Zhang has discovered a class of diophantine equations which canbe quickly solved. However, no published algorithm has proven to be superior in all cases.[5, 4, 7, 12, 6, 18].The extraction of solutions to AC problems given a basis of solutions to the diophantineequation is also an area of concern. In the past few years Fortenbacher [4] has proposed amethod of reducing the search space by eliminating certain basis elements. Claude Kirchnerhas recently developed an AC uni�cation algorithm within the framework of the Martelli-Montanari uni�cation procedure, but, like Stickel's, his method requires solving diophantineequations [11, 14]. Also, Hullot invented an algorithm for AC uni�cation which involvesordered partitions of multisets [9]. While his algorithm is faster than Stickel's, it does notseem to o�er nearly the dramatic speed increases we have obtained with our procedure. Wehave not implemented Hullot's algorithm, but base our judgement on timing comparisonslisted in his paper. In Germany, B�uttner has developed a parallel algorithm for AC uni�ca-tion [1]. The method involves linear algebraic operations in multi-dimensional vector spaces,but he fails to provide the details necessary for a realistic comparison. Recently, Kapur [10]

has developed an algorithm based on Stickel's method that uses Zhang's equation solvingtechnique. The survey by Huet and Oppen [8] summarizes results in related areas.3 Our MethodThere are two basic di�culties with previous algorithms. First, generation of a basis fora diophantine equation is an expensive operation. Second, given a basis, the search whichmust be performed to produce solutions can be very expensive. It is thus necessary toenforce several non-trivial constraints [4, 17]. Fortenbacher [4] has described many obviousoptimizations of Stickel's method, and Stickel himself has implemented quite impressiveconstraints on the generation of solutions which tame this search problem. As we shall soonsee, our algorithm is able to exploit similar constraints in a very natural and e�cient way.3.1 Slaying the Diophantine DragonThe preparation phase of our algorithm is very similar to previous approaches. First, bothterms are put through a \attening" operation which removes nested AC function sym-bols. This operation can be viewed more precisely as term reduction by root application ofthe rewrite rule f(t1; : : : ; f(s1; : : : ; sm); : : : ; tn) �! f(t1; : : : ; s1; : : : ; sm; : : : ; tn). Hence, theterm f(f(a; a); a; f(g(u); y; x)) will be attened to f(a; a; a; g(u); y; x), while f(a; f(b; g(c)),f(y; y); z) will be changed to f(a; b; g(c); y; y; z). The attened term f(s1; s2; : : : ; sn) ismerely syntactic sugar for the right-associative normal form f(s1; f(s2; : : : ; f(sn�1; sn) : : :)).The validity of the attening operation is guaranteed by the associativity axiom, which im-plies that nesting of AC function symbols is largely irrelevant.After attening terms, the next step is to remove subterms which occur pairwise inboth uni�cands. For instance, after deleting duplicate subterms from f(a; a; a; g(u); y; x)and f(a; b; g(c); y; y; z) we obtain the terms f(a; a; g(u); x) and f(b; g(c); y; z), speci�callyby removing one occurrence of a and one occurrence of y from each.We suppose that both terms are sorted so that atomic constants are grouped together,followed by function terms, followed by variables. For instance, f(a; g(u); a; y; a; x) would besorted to produce f(a; a; a; g(u); y; x). An important non-intuitive point is that comparedto the time required to generate all uni�ers, the time spent attening and sorting terms isinsigni�cant.In the ACI case, repeated constants, terms, and variables are removed from each unif-icand. For example, f(a; a; b; x; x) is simpli�ed to f(a; b; x). In the AC case, this step isomitted.Now, our generalization step di�ers from others, in that we assign a distinct vari-able for each argument. Thus, while Stickel's algorithm would convert the f(a; a; g; x)to f(x1; x1; x2; x3), ours will produce f(x1; x2; x3; x4). E�ectively, we convert the problemof solving the uni�cation problem f(X1; : : : ;Xm) = f(Y1; : : : ; Yn) into the equivalent con-junction of problems f(x1; : : : ; xm) = f(y1; : : : ; yn) ^ x1 = X1 ^ : : : ^ xm = Xm ^ y1 =Y1 ^ : : : ^ yn = Yn, where the xi and yj are distinct variables.Notice that the diophantine equation corresponding to any pair of such generalized terms

a a g(u) xx1 x2 x3 x4b y1 z1;1 z1;2 z1;3 z1;4g(c) y2 z2;1 z2;2 z2;3 z2;4y y3 z3;1 z3;2 z3;3 z3;4z y4 z4;1 z4;2 z4;3 z4;4 C T VC 0 0 $T 0 $l $V l l anyTable 1: Matrix for a simple problem and some constraintswill have only unit coe�cients. Such an equation has a few nice properties, namely given adiophantine equation of the form x1 + : : :+ xm = y1 + : : :+ yn, the minimal solution basisis that set of solutions such that, for each solution, exactly one xi has value one, exactlyone yj has value one, and all other variables have value zero. Also, the number of basissolutions is nm.Knowing that the basis has such a nice, regular structure, we need not explicitly generateit; for, given only the respective arities of the generalized uni�cands, we can immediatelyconstruct a two dimensional matrix, where each column is labeled with an xi, and eachrow is labeled with one of the yj . Each entry i; j in the matrix is a boolean value, thatcorresponds to a new variable, zi;j, which represents the solution vector which assigns aone to xj and yi. Thus every true boolean value i; j in a solution matrix corresponds toone basis element of the solution of the diophantine equation. Any assignment of true andfalse to all the elements of a matrix represents a potential solution to the AC uni�cationproblem in the same way that any subset of the basis elements of the diophantine equationrepresents a potential solution to the same AC problem.For instance, suppose we are given the (already attened) uni�cands f(a; a; g(u); x) andf(b; g(c); y; z). Substituting new variables for each argument, we obtain f(x1; x2; x3; x4)and f(y1; y2; y3; y4). The associated solution matrix is displayed in Table 1In our implementation, we do not create the entire n bym matrix; rather, we will utilizea more convenient and compact data structure. But for now, let us pretend that the matrixis represented as a simple 2-dimensional array. And as we will demonstrate below, thematrix representation is inherently amenable to constraining the search for uni�ers.3.2 Constraining SearchRemember that uni�cands are sorted in the preparation step of our algorithm. Hence, agiven solution matrix comprises nine regions, illustrated in Table 1. In the table, C, T ,and V stand, respectively, for atomic constants, functional terms, and variables. An entryin the lower left region of the matrix, for instance, corresponds to an assignment in the(unprepared) uni�cands of a constant in one and a variable in the other.As Table 1 indicates, there are several constraints on the distribution of ones and zeroswithin a solution matrix. First, notice that there must be at least one non-zero entry in eachrow and column of a solution matrix, so that all variables in the generalized terms receivean assignment. The upper left corner involves assignments to incompatible constants (sincewe have removed duplicate arguments from the uni�cands, no constants from one term can

a a g(u) xx1 x2 x3 x4b y1 0 0 0 1g(c) y2 0 0 1 0y y3 0 0 0 1z y4 1 1 0 0 Unifying substitution:x f(b; y)z f(a; a)u cTable 2: A solution to the matrixpossibly unify with any constant from the other term). This part of any solution matrix,then, must consist only of zeros. Similarly, the C=T and T=C regions of a solution matrixmust contain all zeros. The C=V region is constrained to have exactly a single one in eachcolumn, since any additional ones would cause the attempted uni�cation of a functionalterm, say f(z1;1; z1;2), with a constant. Similarly, any T row or T column must containexactly one one. Finally, the V=V region of a matrix can have any combination of ones andzeros which does not leave a whole row or column �lled only with zeros.In reality, the nine regions depicted in Table 1 are further partitioned to handle repeatedvariables and constants; for now, we will ignore this detail, and assume that all argumentswithin a uni�cand are distinct.3.3 Generating SolutionsOnce a uni�cation problem has been cast into our matrix representation, it is not a di�cultmatter to �nd unifying substitutions. The approach is to determine a valid con�gurationof ones and zeros within the matrix, perform the indicated assignments to the variables inthe generalized terms, and �nally unify the arguments of the original uni�cands with theirvariable generalizations.Consider the matrix in Table 1. We know that z1;1 must be zero, since it falls within theC=C region of the matrix. Likewise, z1;2, z1;3, z2;1, and z2;2 must always be zero. In fact,the only possible position for the required one in the y1 column is at z1;4. Filling out therest of the matrix, we arrive at the solution shown in Table 2; after assigning the nonzerozi;j 's to the x and y variables, and then unifying the variables with the original uni�candarguments, we obtain the substitution shown at the side of Table 2. Note that the step atwhich g(u) g(c) was derived, and recursively solved to produce u c has been omitted.3.4 Lazy generation of solutionsEnumerating solutions essentially amounts to performing simple binary operations on re-gions of the matrix. For instance, in the variable-constant region of the martix, a binaryrotate instruction and a few numeric comparisons usually su�ce to generate the next solu-tion from the current state.

a ax 1 0y 0 1 a ax 0 1y 1 0Table 3: Redundant matrix con�gurations for f(a; a) = f(x; y)3.5 Repeated termsUntil now, we have assumed that all arguments within a uni�cand are distinct. This willalways be true for ACI uni�cation, since the repeated terms are removed during preparation.However, this is not necessarily the case for AC uni�cation. In practice, repeated termsoccur infrequently; Lankford, for instance, has found that more than 90 percent of theuni�cation problems encountered in some completion applications involve uni�cands withdistinct arguments. Nevertheless, the ability to handle repeated arguments is certainlydesirable.Our algorithm can easily be adapted to handle repetitions in constants and functionalterms in either or both uni�cands. Repeated variables are more di�cult to handle. If theyoccur in a single uni�cand, our algorithm is complete and terminating, but may returnredundant uni�ers. If they occur in both uni�cands, the algorithm might generate sub-problems at least as hard as the original, and thus not terminate. Stickel's algorithm canbe employed whenever repeated variables are detected; the overhead involved in makingthis decision is negligible. Thus in the worst cases we do simple argument checking, anddispatch to Stickel's algorithm. We have several methods of minimizing the use of Stickel'salgorithm but we have not yet discovered a straightforward, general method. In [2] we provethat our procedure does indeed terminate whenever variables are repeated in at most oneof the uni�cands.The set of uni�ers returned by our algorithm is guaranteed to be complete. However,the set of uni�ers may not be minimal. The set of uni�ers returned by Stickel's algorithmis similarly not guaranteed to be minimal. If a minimal set of uni�ers is required, it su�cesto simply remove elements of the non-minimal set which are subsumed by other uni�ers inthe set.Assuming no repeated variables in one term, our algorithm can handle arbitrary rep-etitions of constants and functional terms. But before disclosing the modi�cation to ouralgorithm which facilitates handling of repeated arguments, we show with a simple examplewhy the modi�cation is needed. Suppose we wish to unify f(a; a) with f(x; y), which isa subproblem of the earlier example. Without alteration, our algorithm as so far statedwill generate the two con�gurations shown in Table 3. While the matrix con�gurations aredistinct, they represent identical unifying substitutions { namely fx a; y ag.The solution to this problem is surprisingly simple. In short, whenever adjacent rowsrepresent the same term, we require that the contents of the upper row, interpreted as abinary number, be greater than or equal to the contents of the lower row. A symmetricrestriction is imposed on columns. See the full paper for a detailed explanation of theserestrictions.

3.6 An Algorithm for Associative-Commutative Uni�cationUntil now, we have concentrated almost exclusively on the matrix solution technique whichlies at the heart of our AC uni�cation algorithm. Following is a statement of the uni�cationalgorithm proper. This will serve, in the next section, as a basis for results involving thecompleteness and termination of our method. The algorithm is presented as four procedures:AC-Unify, Unify-With-Set, Unify-Conjunction, and Matrix-Solve.Procedure AC-Unify: Given two terms x and y, return a complete set of uni�ers for the equationx =AC y.Step 1 If x is a variable, then see if y is a functional term and x occurs in y. If both are true, returnfail. Otherwise, return ffx ygg, unless x = y | in that case, return the null substitutionset ffgg.Step 2 If y is a variable, then see if y occurs in x. If it does, return fail. Otherwise, return ffy xgg.Step 3 If x and y are distinct constants, return fail.Step 4 If x and y are the same constant, return ffgg.Step 5 At this point, x and y are terms of the form f(x1; : : : ; xm) and g(y1; : : : ; yn). If f 6= g, returnfail.Step 6 If f is not an AC function symbol, and m = n, then call procedure Unify-With-Set withthe substitution set ffgg and the conjunction of equations x1 =AC y1 ^ : : : ^ xn =AC yn, andreturn the result. If m 6= n, return fail.Step 7 Flatten and sort x and y, and remove arguments common to both terms. Call the resultingterms x̂ and ŷ, respectively. Assume x̂ = f(x1; : : : ; xj) and ŷ = f(y1; : : : ; yk). Set up theconjunction of equations f(X1; : : : ; Xj) =AC f(Y1; : : : ; Yk) ^ X1 =AC x1 ^ : : : ^ Xj =ACxj ^ Y1 =AC y1 ^ : : : ^ Yk =AC yk, where the Xi and Yi are new, distinct variables. Call thisconjunction E.Step 8 Let T be the result of applying Matrix-Solve to the conjunction E. If T = fail, returnfail.Step 9 Call procedure Unify-With-Set with the set of substitutions T and the conjunction of equa-tions X1 =AC x1 ^ : : : ^Xj =AC xj ^ Y1 =AC y1 ^ : : : ^ Yk =AC yk, and return the result.Procedure Unify-With-Set: Given a set of substitutions T and a conjunction of equations E,return S�2T CSU(�E), where CSU(X) is a complete set of uni�ers for X .Step 1 Let S = fg.Step 2 For each � 2 T , set S to S [fS�j2Zf� [�jgg, where Z is the result of applying procedureUnify-Conjunction to �E.Step 3 Return S.Procedure Unify-ConjunctionGiven a conjunction of equationsE = e1^: : :^en, return a completeset of uni�ers for E.Step 1 . Let V be the result of calling procedure AC-Unify with e1. If n = 1, return V . If V = fail,return fail.Step 2 . Call procedure Unify-With-Set with the set of substitutions V and the conjunction e2 ^: : : ^ en, and return the result.

Procedure Matrix-Solve Given a conjunction of equations f(X1; : : : ; Xm) =AC f(Y1; : : : ; Yn) ^X1 =AC x1 ^ : : : ^Xm =AC xm ^ Y1 =AC y1 ^ : : : ^ Yn =AC yn, where the Xi and Yi are distinctvariables, determine a set of substitutions which will unify f(X1; : : : ; Xm) with f(Y1; : : : ; Yn).Step 1 Establish an m-by-n matrix M where row i (respectively column j) is headed by Xi (Yj).Step 2 Generate an assignment of 1s and 0s to the matrix, subject to the following constraints. Ifxi (yj) is a constant or functional term, then exactly a single 1 must occur in row i (columnj). If xi and yj are both constants, or if one is a constant and the other is a functional term,then M [i; j] = 0. Also, there must be at least a single 1 in each row and column. Finally, ifxi = xi+1 for some i, then row i interpreted as a binary number must be less than or equalto row i+ 1 viewed as a binary number. (Symmetrically for yj and yj+1.)Step 3 With each entryM [i; j], associate a new variable zi;j . For each row i (column j) construct thesubstitution Xi f(zi;j1 ; : : : ; zi;jk) where M [i; jl] = 1, or Xi zi;jk if k = 1. (symmetricallyfor Yj).Step 4 Repeat Step 2 and Step 3 until all possible assignments have been generated, recording eachnew substitution. If there is no valid assignment, return fail.Step 5 Return the accumulated set of substitutions.When there are repeated variables in both uni�cands, it is possible that our algorithmwill not terminate. For example, in the uni�cation of f(x; x) with f(y; y) one of the recur-sive subproblems generated is identical (up to variable renaming) to the original problem.However, as we prove in the full version of this paper [2] our algorithm is totally correct inother cases.4 BenchmarksAlthough we have not presented the details of our actual implementation, it should be obvi-ous that more e�cient data structures exist than an n by m boolean matrix. In particular,�nding the next matrix con�guration often reduces to one lisp incf and a few comparisons inour most optimized code. In order to quickly generate a uni�er from a matrix con�gurationwe utilize some auxiliary data structures.The table on the next page reects the time in seconds necessary to prepare uni�candsand to �nd and construct all AC uni�ers. For each problem, timings were supplied byKapur and Zhang (RRL), Stickel (SRI), and by ourselves (MCC). All data were collectedon a Symbolics 3600 with IFU. As shown in the table, our algorithm is consistently threeto �ve times faster than Stickel's and Kapur's.These benchmarks do not include any problems with repeated variables, since in suchcases, our algorithm would either return non-minimal sets of uni�ers, or it would dispatchto Stickel's procedure. This is not as serious a concession as it might appear, since themost common cases of AC Uni�cation are the ones without repeated variables. In fact,Lankford has found that less than 8 percent of uses of AC uni�cation in applications likeKnuth-Bendix completion have repetitions of anything, and less than three percent haverepetitions on both sides [12]. Also, in the case of ACI, variables are never repeated.

Problem] RRL SRI MCCxab = ucde 2 0.020 0.018 0.005xab = uccd 2 0.023 0.011 0.005xab = uccc 2 0.018 0.008 0.004xab = uvcd 12 0.045 0.047 0.013xab = uvcc 12 0.055 0.032 0.014xab = uvwc 30 0.113 0.096 0.034xab = uvwt 56 0.202 0.171 0.079xaa = ucde 2 0.028 0.013 0.005xaa = uccd 2 0.023 0.009 0.004xaa = uccc 2 0.021 0.006 0.005xaa = uvcd 8 0.043 0.032 0.010xaa = uvcc 8 0.035 0.020 0.011xaa = uvwc 18 0.087 0.062 0.023xaa = uvwt 32 0.192 0.114 0.051

Problem] solns RRL SRI MCCxya = ucde 28 0.093 0.094 0.024xya = uccd 20 0.068 0.050 0.018xya = uccc 12 0.045 0.026 0.013xya = uvcd 88 0.238 0.247 0.064xya = uvcc 64 0.211 0.133 0.048xya = uvwc 204 0.535 0.538 0.160xya = uvwt 416 0.918 1.046 0.402xyz = ucde 120 0.375 0.320 0.118xyz = uccd 75 0.185 0.168 0.072xyz = uccc 37 0.093 0.073 0.038xyz = uvcd 336 0.832 0.840 0.269xyz = uvcc 216 0.498 0.431 0.171xyz = uvwc 870 2.050 2.102 0.729xyz = uvwt 2161 5.183 5.030 1.9945 Future ExtensionsWith simple modi�cations, our algorithm can apparently handle arbitrary combinationsof associativity, commutativity, identity, and idempotence. We say \apparently" becausewe have not yet proven completeness or termination in all these cases, but preliminary�ndings have been encouraging. Of particular interest is uni�cation with the single axiomof associativity, which corresponds to the word problem in free semigroups. The matrixrepresentation of uni�ers seems well suited to capturing this limited form of equationaltheory, but the details of this are beyond the scope of this report.6 ConclusionWe have just described an algorithm which we believe to be the most e�cient way of solvinga large class of associative-commutative matching and uni�cation problems. The algorithmobviates the need for solving diophantine equations, and it utilizes a matrix representationwhich conveniently enforces powerful search constraints. Compared to Stickel's and Ka-pur's procedures, our method often yields a signi�cant improvement in speed. Certainly,applications of AC uni�cation stand to bene�t from our research.We would like to thank Dallas Lankford for introducing us to his diophantine basis generationalgorithm, and for supplying us with pointers to some useful information. We would also like tothank Hassan A��t-Kaci, Mike Ballantyne, Woody Bledsoe, Bob Boyer, and Roger Nasr for theircomments, criticisms, and laissez-faire supervision. Finally, we would like to thank Mark Stickel,Hantao Zhang, and Deepak Kapur, for their insightful criticisms of an earlier draft of this paper,and for supplying benchmark times.

References[1] Wolfram B�uttner. \Uni�cation in Datastructure Multisets". Journal of Automated Reasoning,2 (1986) 75-88.[2] Jim Christian and Pat Lincoln \Adventures in Associative-Commutative Uni�cation" MCCTechnical Report Number ACA-ST-275-87, Microelectronics and Computer Technology Corp.,Austin, TX, Oct 1987.[3] Fran�cois Fages. \Associative-Commutative Uni�cation". Proceedings 7th International Confer-ence on Automated Deduction, Springer Verlag. Lecture Notes in Computer Science, NapaValley, (California), 1984.[4] Albrecht Fortenbacher. \An Algebraic Approach to Uni�cation Under Associativity and Com-mutativity" Rewriting Techniques and Applications, Dijon, France, May 1985, ed Jean-PierreJouannaud. Springer-Verlag Lecture Notes in Computer Science Vol. 202, (1985) pp. 381-397[5] P. Gordan, \Ueber die Au�osung linearer Gleichungen mit reelen Coe�cienten".MathematischeAnnalen, VI Band, 1 Heft (1873), 23-28.[6] Thomas Guckenbiehl and Alexander Herold. \Solving Linear Diophantine Equations". Univer-sitat Kaiserslautern, Fachbereich Informatik, Postfach 3049, 6750 Kaiserslautern.[7] G�erard Huet. \An Algorithm to Generate the Basis of Solutions to Homogeneous Linear Dio-phantine Equations". IRIA Research Report No. 274, January 1978.[8] G�erard Huet and D.C.Oppen. \Equations and Rewrite Rules: a Survey". In Formal Languages:Perspectives and Open Problems, ed R. Book, Academic Press, 1980.[9] J.M. Hullot. \Associative Commutative Pattern Matching". Proceedings IJCAI-79, VolumeOne, pp406-412, Tokyo, August 1979.[10] Deepak Kapur, G. Sivakumar, H. Zhang. \RRL: A Rewrite Rule Laboratory". Proceedings ofCADE-8, pp 691-692, Oxford, England, 1986.[11] Claude Kirchner. \Methods and Tools for Equational Uni�cation". in Proceedings of the Col-loquium on the Resolution of Equations in Algebraic Structures, May 1987, Austin, Texas.[12] Dallas Lankford. \New Non-negative Integer Basis Algorithms for Linear Equations with IntegerCoe�cients". May 1987. Unpublished. Available from the author, 903 Sherwood Drive, Ruston,LA 71270.[13] M. Livesey and J. Siekmann. \Uni�cation of A + C-terms (bags) and A + C + I-terms (sets)".Intern. Ber. Nr. 5/76, Institut f�ur Informatik I, Unifersit�at Karsruhe, 1976.[14] A. Martelli and U. Montanari. \An E�cient Uni�cation Algorithm". ACM Transactions onProgramming Languages and Systems, 4(2):258-282, 1982.[15] Mark Stickel. \A complete uni�cation algorithm for associative-commutative functions" Proc.4th IJCAI, Tbilisi (1975), pp.71-82.[16] Mark Stickel. \A Uni�cation Algorithm for Associative-Commutative Functions". JACM,Vol.28, No.3, July 1981, pp.423-434.[17] Mark Stickel. \A Comparison of the Variable-Abstraction and Constant-Abstraction methodsfor Associative-Commutative Uni�cation" Journal of Automated Reasoning, Sept 1987, pp.285-289.[18] Hantao Zhang \An E�cient Algorithm for Simple Diophantine Equations", Tech. Rep. 87-26,Dept. of Computer Science, RPI, 1987.

