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AbstractWe develop a framework for analyzing security protocols inwhich protocol adversaries may be arbitrary probabilisticpolynomial-time processes. In this framework, protocols arewritten in a form of process calculus where security may beexpressed in terms of observational equivalence, a standardrelation from programming language theory that involvesquantifying over possible environments that might interactwith the protocol. Using an asymptotic notion of proba-bilistic equivalence, we relate observational equivalence topolynomial-time statistical tests and discuss some exampleprotocols to illustrate the potential of this approach.1 IntroductionProtocols based on cryptographic primitives are commonlyused to protect access to computer systems and to protecttransactions over the internet. Two well-known examplesare the Kerberos authentication scheme [15, 14], used tomanage encrypted passwords, and the Secure Sockets Layer[12], used by internet browsers and servers to carry out se-cure internet transactions. Over the past decade or two, avariety of methods have been developed for analyzing andreasoning about such protocols. These approaches includespecialized logics such as BAN logic [5], special-purposetools designed for cryptographic protocol analysis [13], andtheorem proving [26, 27] and model-checking methods usinggeneral purpose tools [16, 18, 23, 28, 29].Although there are many di�erences among these ap-proaches, most current approaches use the same basic modelof adversary capabilities. This model, apparently derivedfrom [10], treats cryptographic operations as \black-box"primitives. For example, encryption is generally considereda primitive operation, with plaintext and ciphertext treatedas atomic data that cannot be decomposed into sequences ofbits. In most uses of this model, as explained in [23, 26, 29],�Partially supported by DoD MURI \Semantic Consistency in In-formation Exchange," ONR Grant N00014-97-1-0505.yAdditional support from NSF CCR-9509931.zAdditional support from NSF CCR-9629754.xAdditional support from Stanford University Fellowship.{Additional support from NSF Grant CCR-9800785.Permission to make digital or hard copies of all or part of this work forpersonal or classroom use is granted without fee provided that copiesare not made or distributed for pro�t or commercial advantage andthat copies bear this notice and the full citation on the �rst page. Tocopy otherwise, to republish, to post on servers or to redistribute tolists, requires prior speci�c permission and/or a fee. c
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there are speci�c rules for how an adversary can learn newinformation. For example, if the decryption key is sent overthe network \in the clear", it can be learned by the ad-versary. However, it is not possible for the adversary tolearn the plaintext of an encrypted message unless the en-tire decryption key has already been learned. Generally, theadversary is treated as a nondeterministic process that mayattempt any possible attack, and a protocol is consideredsecure if no possible interleaving of actions results in a se-curity breach. The two basic assumptions of this model,perfect cryptography and nondeterministic adversary, pro-vide an idealized setting in which protocol analysis becomesrelatively tractable.While there have been signi�cant accomplishments usingthis model, the assumptions inherent in the standard modelalso make it possible to \verify" protocols that are in factsusceptible to attack. For example, the adversary is notallowed (by the model) to learn a decryption key by guessingit, since then some nondeterministic execution would allow acorrect guess, and all protocols relying on encryption wouldbe broken. However, in some real cases, adversaries canlearn some bits of a key by statistical analysis, and can thenexhaustively search the remaining (smaller) portion of thekey space. Such an attack is simply not considered by themodel described above, since it requires both knowledge ofthe particular encryption function involved and also the useof probabilistic methods.Another way of understanding the limitations of com-mon formal methods for protocol analysis is to consider theplight of someone implementing or installing a protocol. Aprotocol designer may design a protocol and prove that itis correct using the \black-box" cryptographic approach de-scribed above. However, an installed system must use aparticular encryption function, or choice of encryption func-tions. Unfortunately, very few, if any, encryption functionssatisfy all of the black-box assumptions. As a result, animplementation of a protocol may in fact be susceptible toattack, even though both the abstract protocol and the en-cryption function are individually correct.Our goal is to establish an analysis framework that canbe used to explore interactions between protocols and cryp-tographic primitives. In this paper, we set the stage for aform of protocol analysis that allows the analysis of theseinteractions as well as many other attacks not permitted inthe standard model. Our framework uses a language forde�ning communicating probabilistic polynomial-time pro-cesses [22]. We restrict processes to probabilistic polynomialtime so that we can say that a protocol is secure if there is1



no de�nable program which, when run in parallel with theprotocol, causes a security breach. Establishing a bound onthe running time of an adversary allows us to lift other re-strictions on the behavior of an adversary. Speci�cally, anadversary may send randomly chosen messages, or performsophisticated (yet probabilistic polynomial-time) computa-tion to derive an attack from statistical analysis of messagesoverheard on the network. In addition, we treat messagesas sequences of bits and allow speci�c encryption functionssuch as RSA or DES to be written in full as part of a pro-tocol. An important feature of our framework is that wecan analyze probabilistic as well as deterministic encryptionfunctions and protocols. Without a probabilistic framework,it would not be possible to analyze an encryption functionsuch as ElGamal [11], for example, for which a single plain-text may have more than one ciphertext.In our framework, following the work of Abadi and Gor-don [1], security properties of a protocol P may be formu-lated by writing an idealized protocol Q so that, intuitively,for any adversary M , the interactions between M and Phave the same observable behavior as the interactions be-tween M and Q . Following [1], this intuitive descriptionmay be formalized by using observational equivalence (alsocalled observational congruence), a standard notion fromthe study of programming languages. Namely, two pro-cesses (such as two protocols) P and Q are observationallyequivalent, written P ' Q , if any program C[P ] contain-ing P has the same observable behavior as the programC[Q] with Q replacing P . The reason observational equiv-alence is applicable to security analysis is that it involvesquantifying over all possible adversaries, represented by theenvironments, that might interact with the protocol partic-ipants. Our framework is a re�nement of this approach inthat in our asymptotic formulation, observational equiva-lence between probabilistic polynomial-time processes coin-cides with the traditional notion of indistinguishability bypolynomial-time statistical tests [17, 30], a standard wayof characterizing cryptographically strong pseudo-randomnumber generators.2 A language for protocols and intruders2.1 Protocol descriptionA protocol consists of a set of programs that communicateover some medium in order to achieve a certain task. In thispaper, we are concerned with the security of cryptographicprotocols, which are protocols that use some set of cryp-tographic operations. For simplicity, we will only considerprotocols that require some �xed number of communicationsper instance of the protocol. For example, for each client-server session, we assume that there is some �xed number ofclient-server messages needed to execute the protocol. Thisis the case for most handshake protocols, key-exchange pro-tocols and authentication protocols, such as Kerberos, theSecure Sockets Layer handshake protocol, and so on. Whilewe do not foresee any fundamental di�culty in extendingour basic methods to more general protocols that do nothave a �xed bound set in advance, there are some techni-cal complications that we avoid by making this simplifyingassumption.We will use a form of � -calculus (a general process cal-culus) [21] for de�ning protocols. One reason for using aprecise language is to make it possible to de�ne protocolsexactly. As will be illustrated by example, many protocols

have been described using an imprecise notation that de-scribes possible traces of the protocol, but does not de�nethe way that protocol participants may respond to incor-rect messages or other communication that may arise fromthe intervention of a malicious intruder. In contrast, pro-cess calculus descriptions specify the response to adversaryactions precisely.The second reason for de�ning a precise process compu-tation and communication language is to characterize thepossible behavior of a malicious intruder. Speci�cally, weassume that the protocol adversary may be any process orset of processes that are de�nable in the language. In thefuture, we hope to follow the direction established by the spi-calculus [1] and use proof methods for forms of observationalcongruence. However, in order to proceed in this direction,we need further understanding of probabilistic observationalcongruence and approximations such as probabilistic bisimu-lation. Since there has been little prior work on probabilisticprocess formalisms, one of our near-term goals is to betterunderstand the forms of probabilistic reasoning that wouldbe needed to carry out more accurate protocol analysis.2.2 Protocol languageThe protocol language consists of a set of terms, or sequen-tial expressions that do not perform any communication,and processes, which can communicate with one another.The process portion of the language is a restriction of stan-dard � -calculus. All computation done by a process is ex-pressed using terms. Since our goal is to model probabilisticpolynomial-time adversaries by quantifying over processesde�nable in our language, it is essential that all functionsde�nable by terms lie in probabilistic polynomial time.Although we use pseudo-code to write terms in this pa-per, we have developed an applied, simply-typed lambda cal-culus which exactly captures the probabilistic polynomial-time terms. Our language is described in [22].2.3 ProcessesFor any set of terms, we can de�ne a set of processes.Since we are interested in protocols with a �xed numberof steps, we do not need arbitrary looping. We therefore usea bounded subset of asynchronous � -calculus, given by thefollowing grammar:P : : =O empty process (does nothing)nhMi transmit value of M on port nn(x): P read value for x on port n and do PP jQ do P in parallel with Q�n: P do P with port n considered private!kP execute up to k copies of process P[M = N ]P if M = N then do P (guarded command)let x =M in P bind variable x to M and do P2.4 CommunicationIntuitively, the communication medium for this language isa bu�ered network that allows messages sent by any processto be received by any other process, in any order. Messagesare essentially pairs consisting of a \port name" and a datavalue. The expression nhMi sends a message M on theport n . In other words, it places a pair hn;Mi onto the2



network. The expression n(x): P matches any pair hn;miand continues process P with x bound to value m . Whenn(x): P matches a pair hn;Mi , the pair hn;Mi is removedfrom the network and is no longer available to be read byanother process. Evaluation of n(x): P does not proceedunless or until a pair hn;mi is available.Although we use port names to indicate the intendedsource and destination of a communication, there are nodelivery guarantees in this model. Any process containinga read expression for a given port can read any messagesent by any other process on that port. In particular, anadversary can read any public network message sent by anyprotocol participant.Some readers may wonder why reading a message hasthe side-e�ect of removing it from the network. One reasonis that we wish to allow an attacker to intercept messageswithout forwarding them to other parties. This may occurin practice when an attacker 
oods the subnet of a receiver.In addition, we may express passive reads, which do notremove messages from the network, as a combination of de-structive read and resend. To make this precise, let us writenpasv(x): P as an abbreviation for n(x): (nhxi j P ) . It isnot hard to see that this de�nable combination of actionsis equivalent to the intuitive notion of a passive read. Forexample, consider the process xhai j npasv(x): P j Q con-taining an output and a passive read. If the passive read isscheduled �rst, one computation step of this process leadsto xhai j P [a=x] j Q which is what one would expect froma passive read primitive. Further details on the operationalsemantics of the process language appear in Appendix A.2.5 Example using symbolic cryptosystemFor readers not familiar with � -calculus, we give a brief ex-ample using a simple set of terms with \black-box" cryptog-raphy. Speci�cally, for this section only, let us use algebraicexpressions over sorts plain , cipher and key , representingplaintext, ciphertext and keys, and function symbolsencrypt : plain� key ! cipherdecrypt : cipher � key ! plainWe illustrate the calculus by restating a simple protocolwritten in \the notation commonly found in the literature"where A! B indicates a message from A to B .In the following protocol, A sends an encrypted messageto B . After receiving a message back that contains theoriginal plaintext, A sends another message to B .A! B: encrypt (p1; kB) (1)B ! A: encrypt (conc(p1; p2); kA) (2)A! B: encrypt (p3; kB) (3)We can imagine that p1 is a simple message like \hello"and p3 is something more critical, like a credit card number.Intuitively, after A receives a message back containing p1 ,A may believe that it is communicating with B becauseonly B can decrypt a message encoded with B0s key kB .This protocol can be written in � -calculus using thesame cryptographic primitives. However, certain decisionsmust be made in the translation. Speci�cally, the notationabove says what communication will occur when everythinggoes right, but does not say how the messages depend oneach other or what might happen if other messages are re-ceived. Here is one interpretation of the protocol above. Inthis interpretation, B responds to A without examining the

contents of the message from A to B . However, in step 3,A only responds to B if the message it receives is exactlythe encryption of the concatenation of p1 and p2 .ABhencrypt(p1; kB)i (1)j AB(x):BAhencrypt(conc(decrypt(x;KB); p2); kA)i (2)j BA(y): [decrypt(y;KA) = conc(p1; p2)]ABhencrypt(p3; kA)i (3)In words, the protocol is expressed as the parallel composi-tion of three processes. Port AB is used for messages fromA to B while port BA for messages from B to A .A fundamental idea that we have adopted from spi-calculus [1] is that an intruder may be modeled by a pro-cess context, which is a process expression containing a holeindicating a place that may be �lled by another process.Intuitively, we think of the context as the environment inwhich the process in the hole is executed. To give a speci�cexample, consider the contextC[ ] = [ ] j AB(x):ABhencrypt(p1; kC)iwhere the empty square brackets [ ] indicate the holefor an additional process. If we insert a process Pin this context, the resulting process C[P ] will runAB(x):ABhencrypt(p1; kC)i in parallel with P . It is easyto see that if we insert the protocol above in this context,then the context could intercept the �rst message from Ato B and replace it by another one using a di�erent key.2.6 ExampleOur �rst example (continued in Section 4.1) is a simple pro-tocol based on ElGamal Encryption [11] and Di�e-HellmanKey Exchange [8], formulated in a way that gives us a seriesof steps to look at. The protocol assumes that a prime pand generator g of Z�p are given and publicly available. Us-ing the notation commonly found in the security literature,this protocol may be writtenA ! B : ga mod pB ! A : gb mod pA ! B : msg � gab mod pThe main idea here is that by choosing a and receivinggb mod p , Alice can compute gab mod p . Bob can sim-ilarly compute gab mod p , allowing Alice and Bob to en-crypt by multiplying by gab and decrypt by dividing by gab .It is generally believed that no eavesdropper can computegab mod p by overhearing ga and gb . Since this protocol issusceptible to attack by an adversary who intercepts a mes-sage and replaces it, we will only consider adversaries wholisten passively and try to determine if the message msg hasbeen sent.In � -calculus notation, the protocol may be writtenas follows. We use the convention that port ABi is usedfor the ith message from A to B , and meta-notation forterms that could be written out in detail in our probabilisticpolynomial-time language. To make explicit the assumptionthat p and g are public, the protocol transmits them on apublic port.let p be a random n -bit prime andg a generator of Z�pin PUBLIChpi j PUBLIChgij let a be a random number in [1; p� 1]3



in AB1hga mod pij BA(x):AB2hmsg � xa mod pij let b be a random number in [1; p� 1]in AB1(y):BAhgb mod piAn analysis appears in Section 4.1.2.7 Parallelism, Nondeterminism and ComplexityFor complexity reasons, we must give a nonstandard prob-abilistic semantics for to parallel composition. Speci�cally,our intention is to design a language of communicating pro-cesses so that an adversary expressed by a set of processesis restricted to probabilistic polynomial time. However, ifwe interpret parallel composition in the standard nondeter-ministic fashion, then a pair of processes may nondetermin-istically \guess" any secret information.This issue may be illustrated by example. Let us assumethat B has a private key Kb that is k bits long and considerthe one-step protocol where A encrypts a message using thiskey and sends it to B .A ! B : fmsggKbWe assume that an evil adversary wishes to discover themessage msg . If we allow the adversary to consist of 3processes E0 , E1 and E , scheduled nondeterministically,then this can be accomplished. Speci�cally, we letA = ABhencrypt(Kb;msg)iE0 = !kEh0iE1 = !kEh1iE = E(b0): : : :E(bk�1):AB(x):Publichdecrypt(conc(b0; : : : ; bk�1);msg)iAdversary processes E0 and E1 each send k bits to E , allon the same port. Process E reads the message from Ato B , concatenates the bits that arrive nondeterministicallyin some order, and decrypts the message. One possible ex-ecution of this set of processes allows the eavesdropper tocorrectly decrypt the message. Under traditional nondeter-ministic semantics of parallel composition, this means thatsuch an eavesdropper can break any encryption mechanism.Intuitively, the attack described above should not suc-ceed with much more than probability 1=2k , the probabilityof guessing key Kb using random coins. Speci�cally, sup-pose that the key Kb is chosen at random from a spaceof order 2k keys. If we run processes E0; E1; E on phys-ical computers communicating over an ethernet, for exam-ple, then the probability that communication from E0 andE1 will accidentally arrive at E in an order producing ex-actly Kb cannot be any higher than the probability of ran-domly guessing Kb . Therefore, although nondeterminismis a useful modeling assumption in studying correctness ofconcurrent programs, it does not seem helpful for analyzingcryptographic protocols.Since nondeterminism does not realistically model theprobability of attack, we use a probabilistic form of par-allel composition. This is described in more detail in Ap-pendix A, which contains a full operational semantics.3 Process EquivalenceObservational equivalence, also called observational congru-ence, is a standard notion in the study of programming lan-guages. We explain the general concept brie
y, as it arisesin a variety of programming languages.

The main idea is that the important features of a partof a program, such as a function declaration, processes orabstract data type, are exactly those properties that can beobserved by embedding them in full programs that may pro-duce observable output. To formalize this in a speci�c pro-gramming language L , we assume the language de�nitionsgives rise to some set of program contexts, each context C[ ]consisting of a program with a \hole" (indicated by emptysquare brackets [ ]) to insert a phrase of the language, andsome set Obs of concrete observable actions, such as integeror string outputs. We also assume that there is some se-mantic evaluation relation eval; , with M eval; v meaning thatevaluation or execution of the program M produces the ob-servable action v . In a functional language, this would meanthat v is a possible value of M , while in a concurrent settingthis might mean that v is a possible output action. Underthese assumptions, we may associate an experiment on pro-gram phrase with each context C[ ] and observable v : givenphrase P , run the program C[P ] obtained by placing P inthe given context and see whether observable action v oc-curs. The main idea underlying the concept of observationalequivalence is that the properties of a program phrase thatmatter in program construction are precisely the propertiesthat can be observed by experiment. Phrases that give thesame experimental results can be considered equivalent.Formally, we say program phrases P and Q are obser-vationally equivalent, written P ' Q , if, for all programcontexts C[ ] and observables v 2 O , we haveC[P ] eval; v i� C[Q] eval; vIn other words, P ' Q if, for any program C[P ] contain-ing P , we can make exactly the same concrete observationsabout the behavior of C[P ] as we can about the behaviorof the program C[Q] obtained by replacing some number ofoccurrences of P by Q .For the process language considered in this paper, we areinterested in contexts that distinguish between processes.(We will not need to consider observational equivalence ofterms.) Therefore, the contexts of interest are process ex-pressions with a \hole", given by the following grammarC[ ] : : = [ ] j n(x): C[ ] j P jC[ ] j C[ ]jQ j�n: C[ ] j [M = N ]C[ ] j let x =M in C[ ]A process observation will be a communication event on aport whose name is not bound by � . More speci�cally, welet Obs be the set of pairs hn;mi , where n is a port nameand m is an integer, and write P eval; hn;mi if evaluationof process expression P leads to a state (represented bya process expression) of the form : : : jnhmi in which theprocess is prepared to communicate integer m on port nand n is not within the scope of a binding �n: . (Thiscan be made more precise using the structural equivalencerelation in the Appendix.) In more general terms, P eval; vin our language if process P publicly outputs v .The general de�nition of ' above is essentially standardfor deterministic or nondeterministic functional, imperativeor concurrent languages. Some additional considerations en-ter when we consider probabilistic languages. Drawing fromstandard notions in cryptography, we propose the followingadaptation of observational equivalence to the probabilisticpolynomial-time process language at hand.Intuitively, given program phrases P and Q , context C[ ]and observable action v , it seems reasonable to compare the4



probability that C[P ] eval; v to the probability that C[Q] eval;v . However, since a probability distribution is an in�niteentity, it is not clear how to \observe" a distribution. Wemight run C[P ] some number of times, count how manytimes v occurs, and then repeat the series of experiments forC[Q] . If the probabilities are very di�erent, then we mightbe able to observe this di�erence (with high con�dence) bya few runs of each program. However, if the probabilitiesare very close, then it might take many more runs of bothprograms to distinguish them.As a �rst step toward developing a workable notion ofobservable equivalence, we de�ne computational indistin-guishability within factor � by saying that P '� Q if8C[ ]: 8v 2 Obs:jProb[C[P ] eval; v]� Prob[C[Q] eval; v]j � �An immediate di�culty with '� is that it is not a transi-tive relation. Moreover, it is not clear how to di�erentiatelarge � from small � . Speci�cally, we would like to drawa distinction between sets of processes that are \close" inbehavior from those that are \far apart." Intuitively, thedistinction should have something to do with running time,since it takes more trials to distinguish random variablesthat di�er by a small amount than random variables thatdi�er by a large amount.We can bring concepts from asymptotic complexity the-ory to bear on the situation if the processes P and Q underconsideration are actually families of processes indexed bynatural numbers. This �ts our intended application, sincecryptographic primitives and security protocols are gener-ally de�ned with some security parameter that may be in-creased if greater resistance to tampering is required. Forany protocol that begins by generating encryption and de-cryption keys, the security parameter is typically the numberof bits used in the keys. If the key length is increased, thengreater security is generally provided.Let us assume that P = fPngn�0 and Q = fQngn�0 areindexed families of processes. We can also consider contextsas similarly parameterized, so that a context family consistsof a set C[ ] = fCn[ ]gn�0 of contexts. In our setting, acontext provides a set of processes to be run in parallel withthe protocol being observed. We assume that the runningtimes of Pn , Qn and Cn[ ] are bounded by polynomials inn . Then for function f , we de�ne asymptotic equivalencewithin f by writing P 'f Q if8C[ ]: 8v 2 Obs: 9n0: 8n � n0:jProb[Cn[Pn] eval; v]� Prob[Cn[Qn] eval; v]j � f(n)In words, P and Q are asymptotically equivalent within fif, for every computational experiment given by a contextfamily and an observable value, the di�erence between ex-perimental observation of Pn and experimental observationof Qn is bounded by f(n) , for all su�ciently large n .Since we consider polynomial factors \small", we de�neobservational equivalence of probabilistic processes byP ' Q if P '1=p Q for every polynomial p:It is easy to check that this (�nally) is an equivalence rela-tion. Moreover, we believe that this formal de�nition rea-sonably models the ability to distinguish two processes byfeasible intervention and observation. The examples given inSection 4 provide some evidence for this thesis, and we hope

that future work will further con�rm our belief (or allow usto usefully re�ne the concept).Example: If P = fPngn�0 is a scheme for generatingpseudorandom sequences of bits, and Q = fQngn�0 consistsof processes that generate truly random bits (e.g., by callsto our built-in random-bit primitive), then our de�nition ofobservational equivalence corresponds to a standard notionfrom the study of pseudorandomness and cryptography (see,e.g., [17, 30]). Speci�cally, P ' Q i� P and Q pass thesame polynomial-time statistical tests.4 Speci�cation of Security Properties4.1 A variant of ElGamal EncryptionProtocol In section 2.6, we formulated a variant of ElGa-mal encryption as a three-step protocol and expressed thisin probabilistic � -calculus. We can regard this protocol asa parameterized family of protocols by making the depen-dence on the length of the public prime (and therefore thekey length) explicit:Protocol Pn :let p be a random n -bit prime andg a generator of Z�pin PUBLIChpi j PUBLIChgij let a be a random number in [2; p� 1]in AB1hga mod pij BA(x):AB2hmsg � xa mod pij let b be a random number in [2; p� 1]in AB1(y):BAhgb mod piNote that although the algorithm for generating a primep and generator g may be probabilistic and may fail withsmall probability (see, e.g., [19]), our speci�cation will alsocontain the same algorithm, compensating for this minordi�culty.This protocol is easily defeated if an adversary interceptsgb from Bob and sends gc instead. In this case, Alice willsend msg � gac mod p . Since the adversary will know gaand c , the plaintext can discovered. However, the protocolis secure against a non-interfering eavesdropper, under theassumption that discrete logarithm is hard. We will stateprecisely what we mean by \secure" and give a form of dis-crete logarithm recognition problem that is equivalent todecrypting the message from Alice to Bob.Speci�cation In general, we specify the intended securityproperties of a protocol P by writing an idealized protocolQ so that P ' Q will imply the intended properties. If Pis intended to send some data securely, then Q could sendrandom numbers (noise) instead and use a private port tocommunicate the same information if needed. In this case,P ' Q will imply that no adversary can uncover the secret,since the adversary would have no chance to uncover thesecret from any run of Q .For the simple protocol P above, we wish to specifya weak security property, namely, that msg is transmittedsecretly from Alice to Bob in the presence of any passive ad-versary. This requires a restriction of our general approach.However, since the proof of correctness is simpli�ed by therestriction on adversaries, this seems like an appropriate �rstexample.Our speci�cation is written using an idealized protocolthat clearly cannot reveal msg to an adversary:5



Protocol Qn :let p be a random n -bit prime andg a generator of Z�pin PUBLIChpi j PUBLIChgij let a 2r [2; p� 1] in AB1haij let a 2r [2; p� 1] in BA(x):AB2hcij let b 2r [2; p� 1] in AB1(y):BAhbiIn the idealized protocol Qn , each secret message in Pnis replaced by a random number in the appropriate range.Intuitively, our aim is to specify that to any other processobserving Pn , the network tra�c appears to be a series ofencrypted random numbers. The reason we send encryptedrandom numbers in Qn instead of random numbers is thatany variation in probability distribution induced by encryp-tion should not be counted as a protocol 
aw. In otherwords, our view of secrecy is that the content of the mes-sages must be hidden. While we could also specify that noobserver can tell that encryption is used, we choose not torequire this stronger property.The next part of our speci�cation requires a de�nition ofequivalence with passive observers. First, a process P pas-sively reads port n if every subexpression of P that mentionsport n is of the form npasv(x): . We say C[ ] is a passiveobserver of ports n1; : : : ; nk if every process expression inC[ ] passively reads n1; : : : ; nk . Finally, we de�ne passiveobservational congruence by limiting the de�nition of obser-vational congruence to passive contexts. Speci�cally, we sayP and Q are passively indistinguishable within function fif 9n0: 8n � n0:jProb[Cn[Pn] eval; v]� Prob[Cn[Qn] eval; v]j � f(n)for all context families such that each Cn[ ] is a passive ob-server of all ports that occur free (not bound by � ) in Pnand Qn . We say P and Q are passively indistinguishable,and write P 'passive Q is if P and Q are passively indis-tinguishable within function 1=p(n) , for every polynomialp . Our secrecy speci�cation for protocol family P above isthat P 'passive Q , where Q is the protocol family abovethat sends encrypted random numbers in place of data ex-changed by P .Equivalent Game We cannot hope to prove P 'passiveQ without establishing signi�cant new results about the dif-�culty of computing discrete logarithms. Instead, we willprove that any context that passively distinguishes P andQ provides a method for asymptotically winning the follow-ing family of games, based on the decision form of Di�e-Hellman (see [24]):Game Gn :Player A : Announces a prime and generatorhg; pi and displays two cards with triples of num-bers ha; b; ci and ha0; b0; c0i , one consisting ofthree random numbers 1 < a; b; c < p and theother numbers of the form hgu; gv; guvi mod p ,with u and v chosen randomly.Player B : Chooses one of the triples, winningthe game if the triple has the form hgu; gv; guvi .For simplicity, we assume that prime p , generator g , and

random a; b; c; u; v are chosen according to exactly the samedistribution as in runs of Pn and Qn .Intuitively, the �rst two numbers of a triple hgu; gv; guvicomputed as above will chosen randomly from the interval[2; p�1] . Therefore, the game consists of trying to determinewhether the third number of a triple bears the indicatedrelationship to the other two.Protocol Correctness We outline the proof that the pro-tocol is correct. Speci�cally, if there is a context passivelydistinguishing P from Q , then there is an probabilitisticpolynomial-time strategy for winning the game with relatedprobability.Since [2; p� 1] is a multiplicative group, multiplicationby msg is simply a permutation. This allows us to ar-gue that a game G0n where a tuple ha; b;msg � ci is gener-ated instead of random ha; b; ci will be equivalent to Gn .Speci�cally, the distribution of pairs of cards where onepair is generated by choosing random a; b; c and presentingha; b;msg�ci and the other by choosing random hgu; gv; guviwill be exactly the same as Gn . Therefore, we show that acontext family C[ ] asymptotically distinguishing P from Qwill asymptotically win game G0 with the related probabil-ity.Suppose C[ ] is a family of passive observer contexts andv 2 Obs an observable such that8n0: 9n � n0:jProb[Cn[Pn] eval; v]� Prob[Cn[Qn] eval; v]j > 1=poly(n)and let n be any number where the di�erence in probabil-ities is greater than 1=poly(n) . Let ha; b; ci and ha0; b0; c0ibe a pair of cards generated by Player A in game G0n afterannouncing g and p .Our objective is to construct a pair of protocols that canbe distinguished by Cn[ ] and use this to determine PlayerB 's move in game G0n . We do this using a process templateTemplate R(p; g; a; b; c) :PUBLIChpi j PUBLIChgij AB1haij BA(x):AB2hcij AB1(y):BAhbiFor cards ha; b; ci and ha0; b0; c0i dealt from G0n , one ofR(p; g; a; b; c) , R(p; g; a0; b0; c0) will behave like a run of Pnand the other a run of Qn . However, our assumption is thatthat probabilities Prob[Cn[Pn] eval; v] and Prob[Cn[Qn] eval;v] di�er by 1=poly(n) . This gives us a method for choos-ing which of the triples ha; b; ci and ha0; b0; c0i has the formhgu; gv; guvi . For the purpose of simplifying the argument,let us assume that Prob[Cn[Pn] eval; v] > Prob[Cn[Qn] eval; v] .The opposite case is symmetric.To decide probabilistically which of the triples ha; b; ciand ha0; b0; c0i has form hgu; gv; guvi , we run R(p; g; a; b; c)and R(p; g; a0; b0; c0) to completion; this requires timebounded by a polynomial in n . If observable v occurs inboth runs, or in neither, then we have no useful information.Therefore, we 
ip a coin and choose among triples ha; b; ciand ha0; b0; c0i with equal probability. Otherwise, we ratio-nally suspect that the triple used in the the process produc-ing observable v is more likely to have the form hgu; gv; guviand choose this triple. A simple calculation, using the factthat the distribution of cards in the game is the same as6



the distribution of triples generated by runs of Pn and Qn ,reveals that the probability of choosing the correct triple is1=(2poly(n)) . This completes the proof.4.2 Part of Needham-Schroeder Private-Key Pro-tocolOur second example involves authentication as well as se-crecy and uses arbitrary contexts that may intercept andreplace network messages.Protocol Let us consider the following authenticationprotocol, intended to ensure that Alice knows she is talk-ing to Bob if they share a private key k . Alice chooses arandom binary string i of length n and Bob uses some nu-merical function f computable in probabilistic polynomialtime to respond. A! B : figkB ! A : ff(i)gkA! B : OKWhen Alice receives the message she expects, she concludesthat Bob read her nonce since the encryption key is assumedto be shared only with Bob. This protocol may be expressedin our framework as follows, using key-generation, encryp-tion and decryption functions computable in probabilisticpolynomial time:Protocol Pn :let k be a random n -bit key andi be a random n -bit numberin ABhencrypt(k; i)ij AB(x):BAhencrypt(k; f(decrypt(k; x)))ij BA(y):[y = encrypt(k; f(i))] ABh\OK00iThis process calculus expression contains three sequen-tial processes, each corresponding to one step of the pro-tocol. The �rst sends encrypt(k; i) on port AB , rep-resenting communication from Alice to Bob. In thesecond process, "Bob" receives input x and transmitsencrypt(k; f(decrypt (k; x))). In the third process, "Alice"checks whether the message y she receives from Bob is whatshe expected. (This check should be written slightly di�er-ently if the encryption function is probabilistic instead ofdeterministic.)Speci�cation Our speci�cation is given using a similarfamily of processes, sending encrypted random numbers inplace of the data sent in the protocol. We specify a form ofauthentication by causing the protocol to halt if a messageis altered. The speci�cation process accomplishes this byusing a private channel s to send the data received by Bobback to Alice securely. In addition, we specify that i mustbe kept secret. (For example, i may be a session key.) Thesedecisions about what should be secret and what should beauthentic are not made explicit in the usual notation, butmust be established before correctness can be shown.Protocol Qn :� S: let k be a random n -bit key andi ,j be random n -bit numbers

in ABhencrypt(k; i)ij AB(x): (BAhencrypt(k; j)i j Shxi)j BA(y): S(x):[x = encrypt(k; i)][y = encrypt(k; j)] ABh\OK00iThis speci�cation illustrates a general technique we havefound useful for authentication aspects of protocols. Al-though we do not expect this protocol (which models a keyidea used in Kerberos, for example) to be implemented us-ing private channels, we use a private channel (in this caseS ) in the speci�cation as a way of expressing the ideal ob-servable behavior of the protocol. In this speci�cation, Bforwards on the private channel the message x that B re-ceives on the open channel. This allows A to check, in thethird step, whether the messages have been tampered withby an intruder.Correctness We show that if a context C[ ] asymptoti-cally distinguishes P from Q , then this context provides astrategy for winning a number-theoretic game related to theencryption function and the function f , so far unspeci�ed,used in the protocol. To illustrate some of the reasoninginvolved, we break this down into various cases, dependingon the kind of \attacks" used in the context family.Suppose C[ ] asymptotically distinguishes P from Q andv 2 Obs is an observable such that8n0: 9n � n0:jProb[Cn[Pn] eval; v]� Prob[Cn[Qn] eval; v]j > 1=poly(n)Assume for simplicity that the �rst probability is greaterthan the second and let n be any number where the di�er-ence in probabilities is greater than 1=poly(n) .In outline, we consider all possible executions (traces)of Cn[Pn] that produce observable v , each with an associ-ated probability. For some runs of Cn[Pn] , we can �nd acorresponding run of Cn[Qn] , with exactly the same com-munication on ports AB and BA , and v is also produced.However, since it is the same context in both cases, and thebranching structures of Pn and Qn are similar, we can showthat there must be some number of traces of Cn[Pn] eval; vthat do not correspond to any trace of Cn[Qn] . The totalsum of probabilities associated with these traces is at least1=poly(n) . Furthermore, these traces can be divided intothree cases:(i) The context does not alter any communication on AB orBA . This is a passive attack in which the context observessomething di�erent about the behavior of Pn from Qn .(ii) The context alters at least one communication on ABor BA in such a way that neither Pn nor Qn would issueABh\OK00i . This is an active attack in which the protocolis aborted, but the context still observes some di�erence be-tween Pn and Qn .(iii) The context alters at least one communication on ABor BA in such a way that Pn produces ABh\OK00i but Qncannot. This is an active attack in which the protocol issubverted so that one principal commits when it should not.This division into cases applies to any n where theprobabilities of Cn[Pn] eval; v and Cn[Qn] eval; v di�erby 1=poly(n) . Since there are in�nitely many such n ,there must be at least on case that arises with probability1=(3poly(n)) for in�nitely many choices of n . Therefore,we can show that if there is a context asymptotically distin-guishing P from Q , there is a strategy for winning at least7



one of three possible games. This allows us to formulatesomewhat simpler games than if we did not subdivide theset of possible attacks.If case (i) arises in�nitely often, then as with the pre-vious example, we can obtain a reduction to a recognitiongame. In particular, the adversary will be able to tell apair figk; ff(i)gk from a pair figk; fjgk , for i; j; k chosenrandomly as in protocol P and speci�cation Q .If case (ii) arises in�nitely often, then the adversary isable to chose a function g such that it can probabilisticallydistinguish a pair figk; ff(decrypt (k; g(encrypt(k; i))))gkfrom a pair figk ; fjgk . This is an interesting form of activeobservation of properties of the encryption function. Suchobservable properties could conceivably be used to assem-ble some useful statistical information about the choice ofnonces or the behavior of function f under encryption.Finally, if case (iii) arises in�nitely often, then the ad-versary must expose a malleability property of the encryp-tion function [9]. Speci�cally, for some functions g and hcomputed by the adversary, at least one di�erent from theidentity function, we havedecrypt(k; h(ff(decrypt (k; g(figk)))gk; figk)) = f(i)This imposes an interesting condition on the relation be-tween f and the encryption function. A realistic scenarioin which this form of attack is possible arises with RSA en-cryption [19] and f(x) = 2x . Since f2igk = f2gkfigk , theintruder may take g(x) = f2gkx and h(x; y) = g(y) . Insimple terms, this attack will blind Bob into thinking thatAlice's nonce is 2i , rather than i .5 Comparison with related workThe framework described in this paper may be regardedas a probabilistic, polynomial-time variant of spi-calculus[1], with cryptographic primitives expressed directly in theprobabilistic polynomial-time expression language insteadof by the � operator and additional primitives. Thus ourframework di�ers from others in two ways: the use of a pro-cess calculus and observational equivalence to express secu-rity properties (as in the spi-calculus), and the probabilis-tic polynomial-time treatment of cryptographic primitives(in contrast to the spi-calculus). We view the spi-calculusas a convenient means to an end, a useful setting for ex-pressing protocols and security properties. Our main goalhas been to develop a formal framework for studying pro-tocols under complexity-theoretic assumptions, rather thanthe traditional \perfect cryptography" assumptions associ-ated with most logic- or linguistic-based approaches.The closest work in the direction of protocol analysis un-der complexity-theoretic assumptions is a series of protocolstudies by Bellare and Rogaway [2, 3]. In these studies, aprotocol is represented as a set of oracles, each correspond-ing to one input-output step of one principal. These oraclesare each available to the adversary, which is a probabilisticpolynomial-time oracle Turing machine. This correspondsfairly closely to our setting, since an adversary has accessto each input-output step by a principal by sending and re-ceiving data on the appropriate ports. The main di�erencesare that in our setting, the protocol and the adversary areboth expressed in a formal language. This opens the pos-sibility for proof techniques that are based on the syntacticstructure of the protocol or semantic properties of all ex-pressible adversaries. In addition, we have found the speci-

�cation method adopted from spi-calculus relatively naturaland more systematic than the protocol speci�cations usedby Bellare and Rogaway.Among approaches based on speci�c languages for de�n-ing protocols and intruders, the distinguishing feature of oure�ort is the use of probability and polynomial time in placeof a conventional model of \perfect cryptography" that ap-pears to have developed from positions taken by Needhamand Schroeder [25] and a model presented by Dolev and Yao[10]. In the conventional model, an intruder may interceptor block communication, remember parts of messages, andconstruct new messages from data it has observed. Theseare similar to the capabilities of our intruders. The di�er-ence lies in precisely what messages can be constructed fromdata observed by the intruder. In the conventional model,the adversary is only allowed to concatenate or (possibly)encrypt data it has observed, or been given at the outset, orobtained by decryption with keys obtained in these limitedways. The adversary cannot make random guesses, accu-mulate information by statistical analysis of network tra�c,or use partial information in other sophisticated ways. Thegeneral trade-o� is this: the conventional model makes itpossible to automatically search for attacks with some e�-ciency, or formally prove protocols correct. However, someattacks lie outside the model. In our approach (as in thework of Bellare and Rogaway described above), it is muchharder to prove protocols correct, but the model encom-passes a much wider range of possible attacks.6 Conclusion and Future DirectionsWe introduce a framework for security protocol analysisthat can account for interactions between protocols and theunderlying cryptography. This allows us to re�ne proto-col analysis beyond the basic model of adversary capabili-ties [10], which treats cryptographic operations as primitive.Our framework uses a process calculus for de�ning prob-abilistic polynomial-time processes, communicating over anetwork that gives an adversarial process access to commu-nication between other processes. Many of the languagedesign decisions are motivated by interests in security prop-erties, as illustrated by a series of examples throughout thepaper. In particular, the probabilistic semantics of par-allel composition is chosen to avoid unrealistic attacks oncomplexity-based encryption schemes. Because every pro-cess de�nable in our framework is probabilistic polynomialtime, this makes it possible to express security properties ofa protocol in terms of its interactions with other de�nableprocesses in the calculus.More precisely, security properties of a given protocolmay be formulated in our framework by writing another,idealized protocol and showing that the environment behav-iors, which represent de�nable adversaries, have the sameobservable interactions with either protocol. For this pur-pose we propose a de�nition of observational equivalencefor probabilistic programs that is based on the view thatlarge di�erences in probability are easier to observe thansmall di�erences. When we distinguish between \large" and\small" using asymptotic behavior, we arrive at a de�nitionof observational equivalence that coincides with a standardconcept from cryptography, namely, indistinguishability bypolynomial-time statistical tests [30]. While we have notfully explored the consequences of this de�nition, we believeit may shed new light on other basic concepts in cryptog-8
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Computation proceeds by probabilistic ! reduction stepson � -equivalence classes of processes, with + used to de�nereduction.Since the terms we are most interested in are evaluatedprobabilistically, we assume a probabilistic evaluation rela-tion on terms, with M +r v indicating that if we chooseto evaluate M , then with probability r , the result willbe value v . We may also write Prob[M + v] = r toexpress that M +r v . Since evaluation of probabilisticpolynomial-time terms is guaranteed to terminate, we knowthat for any term M , there is a set V of values so thatPv2V Prob[M + v] = 1.The structural equivalence relation formalizes the intu-itive fact that a process can be written in a variety of syn-tactic forms. The inference rule(React Struct) P 0 � P P ! Q Q � Q0P 0 � Q0indicates that structurally equivalent processes have pre-cisely the same reductions. Structural equivalence is de�nedby the following axioms and inference rules.(Struct Re
) P � P(Struct Nil) P jO � P(Struct !k) !kP � kz }| {P jP j : : : jP(Struct Comm) P jQ � QjP(Struct Assoc) P j(QjR) � (P jQ)jR(Struct Switch) �m: �n: P � �n: �m:P(Struct Extrusion) �n: (P jQ) � P j�n:Q;provided n 62 fn(P )(Symm) P � QQ � P(Trans) P � Q Q � RP � R (Par) P � P 0P jQ � P 0jQ(Res) P � P 0�n: P � �n: P 0The �rst form of reduction is communication betweenprocesses, with the remaining involving \internal" reductionwithout communication. While communication is determin-istic, once input and output are chosen, an internal stepmay have an associated probability distribution, induced byprobabilistic evaluation of terms.(React Inter) nhvijn(x): P ! [v=x]P(Red Let) let x =M in P !r [v=x]P;provided M +r v(Red Output) nhMi !r nhvi;provided M +r v(Red Test) [M = N ]P !rs P;provided M +r vand N +s vReduction may occur inside a parallel composition or re-striction, as indicated by the �nal inference rules.(React Par) P ! P 0P jQ! P 0jQ (React Res) P ! P 0�n: P ! �n: P 0This concludes the de�nition of reduction, except for prob-abilistic considerations.

Probability distribution In the axioms and inferencerules above, we have de�ned an operational semantics that isboth probabilistic and nondeterministic. As suggested by re-searchers in other contexts (e.g., Markov decision processes[6, 7]), nondeterminism and probability can be combined byintroducing additional machinery to associate probabilitieswith nondeterministic choices.One natural way to determine probabilities is throughthe notion of policy, used in [6, 7]. The main idea is thata policy (or scheduler) associates a probability with eachaction, conditional on the sequence of preceding actions.While our interest in security protocols suggests that weshould allow the protocol adversary to choose any schedul-ing policy that is computable in probabilistic polynomialtime, we will consider a more restricted setting in this pa-per. One complication with adversary-chosen policies arisesin connection with restriction: if a process representing oneparticipant in a protocol uses local communication for somepurpose, the adversary should not be able to use this todetermine the probability of one of its own actions. In or-der to avoid this issue, and generally simplify our semantics,we therefore adopt a �xed policy with uniform distribution:if process P can be written in k structurally equivalentforms, P1; : : : ; Pk , each with a corresponding distinct re-duction Pi !r Qi , then we let the probability P ! Qi ber=k .Although space considerations prevent us from develop-ing this idea in full, we remark that if we rename communi-cation ports so that the protocol adversary intercepts everycommunication, then the protocol adversary may e�ectivelycontrol the probability of each action. Therefore, the moregeneral setting of adversary-chosen scheduling policies is de-�nable within our more restricted language based on a uni-form scheduling policy.We can consider a process P as a function from networkcontents (atoms PORThni) to network contents. Speci�cally,we start the process with some set of pairs in the networkbu�er and execute the processes until all have terminated (orare stuck waiting for input). The set of pairs remaining inthe network form the \output" of the program. We thereforemeasure running time as a function of the lengths of all thenatural numbers in the initial network bu�er.Theorem A.1. The running time of process P , measuredas a function of the size of the initial network contents, isbounded by a polynomial whose degree may be determinedfrom the height of the execution tree of P and the polynomialbounds on all the terms that occur in P .
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