A probabilistic poly-time framework for protocol analysis

P. Lincoln*f
Computer Science Laboratory
SRI International

Abstract

We develop a framework for analyzing security protocols in
which protocol adversaries may be arbitrary probabilistic
polynomial-time processes. In this framework, protocols are
written in a form of process calculus where security may be
expressed in terms of observational equivalence, a standard
relation from programming language theory that involves
quantifying over possible environments that might interact
with the protocol. Using an asymptotic notion of proba-
bilistic equivalence, we relate observational equivalence to
polynomial-time statistical tests and discuss some example
protocols to illustrate the potential of this approach.

1 Introduction

Protocols based on cryptographic primitives are commonly
used to protect access to computer systems and to protect
transactions over the internet. Two well-known examples
are the Kerberos authentication scheme [15, 14], used to
manage encrypted passwords, and the Secure Sockets Layer
[12], used by internet browsers and servers to carry out se-
cure internet transactions. Over the past decade or two, a
variety of methods have been developed for analyzing and
reasoning about such protocols. These approaches include
specialized logics such as BAN logic [5], special-purpose
tools designed for cryptographic protocol analysis [13], and
theorem proving [26, 27] and model-checking methods using
general purpose tools [16, 18, 23, 28, 29].

Although there are many differences among these ap-
proaches, most current approaches use the same basic model
of adversary capabilities. This model, apparently derived
from [10], treats cryptographic operations as “black-box”
primitives. For example, encryption is generally considered
a primitive operation, with plaintext and ciphertext treated
as atomic data that cannot be decomposed into sequences of
bits. In most uses of this model, as explained in [23, 26, 29],
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there are specific rules for how an adversary can learn new
information. For example, if the decryption key is sent over
the network “in the clear”, it can be learned by the ad-
versary. However, it is not possible for the adversary to
learn the plaintext of an encrypted message unless the en-
tire decryption key has already been learned. Generally, the
adversary is treated as a nondeterministic process that may
attempt any possible attack, and a protocol is considered
secure if no possible interleaving of actions results in a se-
curity breach. The two basic assumptions of this model,
perfect cryptography and nondeterministic adversary, pro-
vide an idealized setting in which protocol analysis becomes
relatively tractable.

While there have been significant accomplishments using
this model, the assumptions inherent in the standard model
also make it possible to “verify” protocols that are in fact
susceptible to attack. For example, the adversary is not
allowed (by the model) to learn a decryption key by guessing
it, since then some nondeterministic execution would allow a
correct guess, and all protocols relying on encryption would
be broken. However, in some real cases, adversaries can
learn some bits of a key by statistical analysis, and can then
exhaustively search the remaining (smaller) portion of the
key space. Such an attack is simply not considered by the
model described above, since it requires both knowledge of
the particular encryption function involved and also the use
of probabilistic methods.

Another way of understanding the limitations of com-
mon formal methods for protocol analysis is to consider the
plight of someone implementing or installing a protocol. A
protocol designer may design a protocol and prove that it
is correct using the “black-box” cryptographic approach de-
scribed above. However, an installed system must use a
particular encryption function, or choice of encryption func-
tions. Unfortunately, very few, if any, encryption functions
satisfy all of the black-box assumptions. As a result, an
implementation of a protocol may in fact be susceptible to
attack, even though both the abstract protocol and the en-
cryption function are individually correct.

Our goal is to establish an analysis framework that can
be used to explore interactions between protocols and cryp-
tographic primitives. In this paper, we set the stage for a
form of protocol analysis that allows the analysis of these
interactions as well as many other attacks not permitted in
the standard model. Our framework uses a language for
defining communicating probabilistic polynomial-time pro-
cesses [22]. We restrict processes to probabilistic polynomial
time so that we can say that a protocol is secure if there is



no definable program which, when run in parallel with the
protocol, causes a security breach. Establishing a bound on
the running time of an adversary allows us to lift other re-
strictions on the behavior of an adversary. Specifically, an
adversary may send randomly chosen messages, or perform
sophisticated (yet probabilistic polynomial-time) computa-
tion to derive an attack from statistical analysis of messages
overheard on the network. In addition, we treat messages
as sequences of bits and allow specific encryption functions
such as RSA or DES to be written in full as part of a pro-
tocol. An important feature of our framework is that we
can analyze probabilistic as well as deterministic encryption
functions and protocols. Without a probabilistic framework,
it would not be possible to analyze an encryption function
such as ElGamal [11], for example, for which a single plain-
text may have more than one ciphertext.

In our framework, following the work of Abadi and Gor-
don [1], security properties of a protocol P may be formu-
lated by writing an idealized protocol @ so that, intuitively,
for any adversary M, the interactions between M and P
have the same observable behavior as the interactions be-
tween M and Q. Following [1], this intuitive description
may be formalized by using observational equivalence (also
called observational congruence), a standard notion from
the study of programming languages. Namely, two pro-
cesses (such as two protocols) P and @ are observationally
equivalent, written P ~ @, if any program C[P] contain-
ing P has the same observable behavior as the program
C[Q] with @ replacing P. The reason observational equiv-
alence is applicable to security analysis is that it involves
quantifying over all possible adversaries, represented by the
environments, that might interact with the protocol partic-
ipants. Our framework is a refinement of this approach in
that in our asymptotic formulation, observational equiva-
lence between probabilistic polynomial-time processes coin-
cides with the traditional notion of indistinguishability by
polynomial-time statistical tests [17, 30], a standard way
of characterizing cryptographically strong pseudo-random
number generators.

2 A language for protocols and intruders

2.1 Protocol description

A protocol consists of a set of programs that communicate
over some medium in order to achieve a certain task. In this
paper, we are concerned with the security of cryptographic
protocols, which are protocols that use some set of cryp-
tographic operations. For simplicity, we will only consider
protocols that require some fixed number of communications
per instance of the protocol. For example, for each client-
server session, we assume that there is some fixed number of
client-server messages needed to execute the protocol. This
is the case for most handshake protocols, key-exchange pro-
tocols and authentication protocols, such as Kerberos, the
Secure Sockets Layer handshake protocol, and so on. While
we do not foresee any fundamental difficulty in extending
our basic methods to more general protocols that do not
have a fixed bound set in advance, there are some techni-
cal complications that we avoid by making this simplifying
assumption.

We will use a form of w-calculus (a general process cal-
culus) [21] for defining protocols. One reason for using a
precise language is to make it possible to define protocols
exactly. As will be illustrated by example, many protocols

have been described using an imprecise notation that de-
scribes possible traces of the protocol, but does not define
the way that protocol participants may respond to incor-
rect messages or other communication that may arise from
the intervention of a malicious intruder. In contrast, pro-
cess calculus descriptions specify the response to adversary
actions precisely.

The second reason for defining a precise process compu-
tation and communication language is to characterize the
possible behavior of a malicious intruder. Specifically, we
assume that the protocol adversary may be any process or
set of processes that are definable in the language. In the
future, we hope to follow the direction established by the spi-
calculus [1] and use proof methods for forms of observational
congruence. However, in order to proceed in this direction,
we need further understanding of probabilistic observational
congruence and approximations such as probabilistic bisimu-
lation. Since there has been little prior work on probabilistic
process formalisms, one of our near-term goals is to better
understand the forms of probabilistic reasoning that would
be needed to carry out more accurate protocol analysis.

2.2 Protocol language

The protocol language consists of a set of terms, or sequen-
tial expressions that do not perform any communication,
and processes, which can communicate with one another.
The process portion of the language is a restriction of stan-
dard m-calculus. All computation done by a process is ex-
pressed using terms. Since our goal is to model probabilistic
polynomial-time adversaries by quantifying over processes
definable in our language, it is essential that all functions
definable by terms lie in probabilistic polynomial time.

Although we use pseudo-code to write terms in this pa-
per, we have developed an applied, simply-typed lambda cal-
culus which exactly captures the probabilistic polynomial-
time terms. Our language is described in [22].

2.3 Processes

For any set of terms, we can define a set of processes.
Since we are interested in protocols with a fixed number
of steps, we do not need arbitrary looping. We therefore use
a bounded subset of asynchronous m-calculus, given by the
following grammar:

P::=

(@] empty process (does nothing)

n(M) transmit value of M on port n

n(z). P read value for z on port n and do P

P|IQ do P in parallel with Q

vn. P do P with port n considered private

P execute up to k copies of process P

[M = NP if M = N then do P (guarded command)

let x = M in P bind variable z to M and do P

2.4 Communication

Intuitively, the communication medium for this language is
a buffered network that allows messages sent by any process
to be received by any other process, in any order. Messages
are essentially pairs consisting of a “port name” and a data
value. The expression m(M) sends a message M on the
port m. In other words, it places a pair (n, M) onto the



network. The expression n(z). P matches any pair (n, m)
and continues process P with z bound to value m. When
n(x). P matches a pair (n, M), the pair (n, M) is removed
from the network and is no longer available to be read by
another process. Evaluation of n(z). P does not proceed
unless or until a pair (n,m) is available.

Although we use port names to indicate the intended
source and destination of a communication, there are no
delivery guarantees in this model. Any process containing
a read expression for a given port can read any message
sent by any other process on that port. In particular, an
adversary can read any public network message sent by any
protocol participant.

Some readers may wonder why reading a message has
the side-effect of removing it from the network. One reason
is that we wish to allow an attacker to intercept messages
without forwarding them to other parties. This may occur
in practice when an attacker floods the subnet of a receiver.
In addition, we may express passive reads, which do not
remove messages from the network, as a combination of de-
structive read and resend. To make this precise, let us write
Npase(x). P as an abbreviation for n(z). (w(z) | P). It is
not hard to see that this definable combination of actions
is equivalent to the intuitive notion of a passive read. For
example, consider the process Z(a) | npeso(z). P | @ con-
taining an output and a passive read. If the passive read is
scheduled first, one computation step of this process leads
to Z(a) | Pla/x] | @ which is what one would expect from
a passive read primitive. Further details on the operational
semantics of the process language appear in Appendix A.

2.5 Example using symbolic cryptosystem

For readers not familiar with 7-calculus, we give a brief ex-
ample using a simple set of terms with “black-box” cryptog-
raphy. Specifically, for this section only, let us use algebraic
expressions over sorts plain, cipher and key, representing
plaintext, ciphertext and keys, and function symbols

encrypt: plain x key — cipher
decrypt: cipher x key — plain

We illustrate the calculus by restating a simple protocol
written in “the notation commonly found in the literature”
where A — B indicates a message from A to B.

In the following protocol, A sends an encrypted message
to B. After receiving a message back that contains the
original plaintext, A sends another message to B.

A — B: encrypt(p1, ki) (1)
B — A: encrypt(conc(pi,p2),ka) (2)
A — B: encrypt(ps, ks) (3)

We can imagine that p; is a simple message like “hello”
and p3 is something more critical, like a credit card number.
Intuitively, after A receives a message back containing p1,
A may believe that it is communicating with B because
only B can decrypt a message encoded with B's key kg .
This protocol can be written in w-calculus using the
same cryptographic primitives. However, certain decisions
must be made in the translation. Specifically, the notation
above says what communication will occur when everything
goes right, but does not say how the messages depend on
each other or what might happen if other messages are re-
ceived. Here is one interpretation of the protocol above. In
this interpretation, B responds to A without examining the

contents of the message from A to B. However, in step 3,
A only responds to B if the message it receives is exactly
the encryption of the concatenation of p; and ps.

AB(encrypt(p1, ks)) (1)

AB(z). BA(encrypt(conc(decrypt(x, Kg),p2),ka)) (2)
| BA(y). [decrypt(y, Ka) = conc(p1,p2)] 3)
an(encrypt(ps, ka))

In words, the protocol is expressed as the parallel composi-
tion of three processes. Port aBs is used for messages from
A to B while port Ba for messages from B to A.

A fundamental idea that we have adopted from spi-
calculus [1] is that an intruder may be modeled by a pro-
cess context, which is a process expression containing a hole
indicating a place that may be filled by another process.
Intuitively, we think of the context as the environment in
which the process in the hole is executed. To give a specific
example, consider the context

Cl1 = [11 as(x). 7B encrypt(p1, kc))

where the empty square brackets [ ] indicate the hole
for an additional process. If we insert a process P
in this context, the resulting process C[P] will run
AB(z). aB(encrypt(p1,kc)) in parallel with P. It is easy
to see that if we insert the protocol above in this context,
then the context could intercept the first message from A
to B and replace it by another one using a different key.

2.6 Example

Our first example (continued in Section 4.1) is a simple pro-
tocol based on ElGamal Encryption [11] and Diffie-Hellman
Key Exchange [8], formulated in a way that gives us a series
of steps to look at. The protocol assumes that a prime p
and generator g of Z, are given and publicly available. Us-
ing the notation commonly found in the security literature,
this protocol may be written

A —- B : g modp
B = A : ¢g® modp
A —» B msg * g°® mod p

The main idea here is that by choosing a and receiving
¢® mod p, Alice can compute ¢*° mod p. Bob can sim-
ilarly compute ¢** mod p, allowing Alice and Bob to en-
crypt by multiplying by ¢?° and decrypt by dividing by ¢%°.
It is generally believed that no eavesdropper can compute
g*® mod p by overhearing g® and g°. Since this protocol is
susceptible to attack by an adversary who intercepts a mes-
sage and replaces it, we will only consider adversaries who
listen passively and try to determine if the message msg has
been sent.

In w-calculus notation, the protocol may be written
as follows. We use the convention that port AB; is used
for the ith message from A to B, and meta-notation for
terms that could be written out in detail in our probabilistic
polynomial-time language. To make explicit the assumption
that p and g are public, the protocol transmits them on a
public port.

let p be a random n-bit prime and
g a generator of Z
in PuBLic(p) | PUBLIC(g)
| let a be a random number in [1,p — 1]




in 2B1(g* mod p)
| BA(z). AB2(msg * z* mod p)
| let b be a random number in [1,p — 1]
in AB1(y). Ba(g® mod p)

An analysis appears in Section 4.1.

2.7 Parallelism, Nondeterminism and Complexity

For complexity reasons, we must give a nonstandard prob-
abilistic semantics for to parallel composition. Specifically,
our intention is to design a language of communicating pro-
cesses so that an adversary expressed by a set of processes
is restricted to probabilistic polynomial time. However, if
we interpret parallel composition in the standard nondeter-
ministic fashion, then a pair of processes may nondetermin-
istically “guess” any secret information.

This issue may be illustrated by example. Let us assume
that B has a private key K, that is k bits long and consider
the one-step protocol where A encrypts a message using this
key and sends it to B.

A — B {msg}x,

We assume that an evil adversary wishes to discover the
message msg. If we allow the adversary to consist of 3
processes Eg, E; and E, scheduled nondeterministically,
then this can be accomplished. Specifically, we let

A = 7as(encrypt(Ky, msg))
Eo = ILB(0)

Ei = LE()

E = E(bo)....E(bk—1). AB(z).

Public{decrypt(conc(bo, ... ;bk_1), msg))

Adversary processes Fo and FE; each send k bits to E, all
on the same port. Process E reads the message from A
to B, concatenates the bits that arrive nondeterministically
in some order, and decrypts the message. One possible ex-
ecution of this set of processes allows the eavesdropper to
correctly decrypt the message. Under traditional nondeter-
ministic semantics of parallel composition, this means that
such an eavesdropper can break any encryption mechanism.

Intuitively, the attack described above should not suc-
ceed with much more than probability 1/2¥, the probability
of guessing key K} using random coins. Specifically, sup-
pose that the key K is chosen at random from a space
of order 2% keys. If we run processes Fo, E1, E on phys-
ical computers communicating over an ethernet, for exam-
ple, then the probability that communication from E; and
E, will accidentally arrive at E in an order producing ex-
actly K, cannot be any higher than the probability of ran-
domly guessing K. Therefore, although nondeterminism
is a useful modeling assumption in studying correctness of
concurrent programs, it does not seem helpful for analyzing
cryptographic protocols.

Since nondeterminism does not realistically model the
probability of attack, we use a probabilistic form of par-
allel composition. This is described in more detail in Ap-
pendix A, which contains a full operational semantics.

3 Process Equivalence

Observational equivalence, also called observational congru-
ence, is a standard notion in the study of programming lan-
guages. We explain the general concept briefly, as it arises
in a variety of programming languages.

The main idea is that the important features of a part
of a program, such as a function declaration, processes or
abstract data type, are exactly those properties that can be
observed by embedding them in full programs that may pro-
duce observable output. To formalize this in a specific pro-
gramming language £, we assume the language definitions
gives rise to some set of program contezts, each context CJ ]
comnsisting of a program with a “hole” (indicated by empty
square brackets [ ]) to insert a phrase of the language, and
some set Obs of concrete observable actions, such as integer
or string outputs. We also assume that there is some se-

mantic evaluation relation E«vgl, with M %5 v meaning that
evaluation or execution of the program M produces the ob-
servable action v. In a functional language, this would mean
that v is a possible value of M | while in a concurrent setting
this might mean that v is a possible output action. Under
these assumptions, we may associate an experiment on pro-
gram phrase with each context C[] and observable v: given
phrase P, run the program C[P] obtained by placing P in
the given context and see whether observable action v oc-
curs. The main idea underlying the concept of observational
equivalence is that the properties of a program phrase that
matter in program construction are precisely the properties
that can be observed by experiment. Phrases that give the
same experimental results can be considered equivalent.

Formally, we say program phrases P and () are obser-
vationally equivalent, written P ~ @, if, for all program
contexts C[] and observables v € O, we have

cpl Xy it ClQ] v

In other words, P ~ @ if, for any program C[P] contain-
ing P, we can make exactly the same concrete observations
about the behavior of C[P] as we can about the behavior
of the program C[Q] obtained by replacing some number of
occurrences of P by @.

For the process language considered in this paper, we are
interested in contexts that distinguish between processes.
(We will not need to consider observational equivalence of
terms.) Therefore, the contexts of interest are process ex-
pressions with a “hole”, given by the following grammar

Cl] === T[] | n@).C[] | PIC[] | C[]lQ |
vn.Cl] | [M=N]c[] | letz=MinC[]

A process observation will be a communication event on a
port whose name is not bound by v. More specifically, we
let Obs be the set of pairs (n,m), where n is a port name

val

and m is an integer, and write P 5 (n,m) if evaluation
of process expression P leads to a state (represented by
a process expression) of the form ...|m(m) in which the
process is prepared to communicate integer m on port n
and n is not within the scope of a binding vn.. (This
can be made more precise using the structural equivalence

eval

relation in the Appendix.) In more general terms, P ~ v
in our language if process P publicly outputs v.

The general definition of ~ above is essentially standard
for deterministic or nondeterministic functional, imperative
or concurrent languages. Some additional considerations en-
ter when we consider probabilistic languages. Drawing from
standard notions in cryptography, we propose the following
adaptation of observational equivalence to the probabilistic
polynomial-time process language at hand.

Intuitively, given program phrases P and @, context C[]
and observable action v, it seems reasonable to compare the
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probability that C[P] %' v to the probability that C[Q] <5
v. However, since a probability distribution is an infinite
entity, it is not clear how to “observe” a distribution. We
might run C[P] some number of times, count how many
times v occurs, and then repeat the series of experiments for
C[Q]. If the probabilities are very different, then we might
be able to observe this difference (with high confidence) by
a few runs of each program. However, if the probabilities
are very close, then it might take many more runs of both
programs to distinguish them.

As a first step toward developing a workable notion of
observable equivalence, we define computational indistin-
guishability within factor e by saying that P ~, Q if

VC[]. Vv € Obs.
[Prob[C[P] %5’ v] — Prob[C[Q] “5' v]| < €

An immediate difficulty with ~. is that it is not a transi-
tive relation. Moreover, it is not clear how to differentiate
large e from small e. Specifically, we would like to draw
a distinction between sets of processes that are “close” in
behavior from those that are “far apart.” Intuitively, the
distinction should have something to do with running time,
since it takes more trials to distinguish random variables
that differ by a small amount than random variables that
differ by a large amount.

We can bring concepts from asymptotic complexity the-
ory to bear on the situation if the processes P and ) under
consideration are actually families of processes indexed by
natural numbers. This fits our intended application, since
cryptographic primitives and security protocols are gener-
ally defined with some security parameter that may be in-
creased if greater resistance to tampering is required. For
any protocol that begins by generating encryption and de-
cryption keys, the security parameter is typically the number
of bits used in the keys. If the key length is increased, then
greater security is generally provided.

Let us assume that P = {P,}n>0 and Q = {Qn}n>0 are
indexed families of processes. We can also consider contexts
as similarly parameterized, so that a context family consists
of a set C[ | = {Cn[ ]}n>0 of contexts. In our setting, a
context provides a set of processes to be run in parallel with
the protocol being observed. We assume that the running
times of P,, @, and C,[] are bounded by polynomials in
n. Then for function f, we define asymptotic equivalence
within f by writing P ~; @ if

VC[ ].Yv € Obs.3ng.Vn > ng.
[Prob[C, [P,] %' v] — Prob[C,[Qn] %5 v]| < f(n)

In words, P and @) are asymptotically equivalent within f
if, for every computational experiment given by a context
family and an observable value, the difference between ex-
perimental observation of P, and experimental observation
of @, is bounded by f(n), for all sufficiently large n.
Since we consider polynomial factors “small”, we define
observational equivalence of probabilistic processes by

P~@Q if Px~,Q for every polynomial p.

Tt is easy to check that this (finally) is an equivalence rela-
tion. Moreover, we believe that this formal definition rea-
sonably models the ability to distinguish two processes by
feasible intervention and observation. The examples given in
Section 4 provide some evidence for this thesis, and we hope

that future work will further confirm our belief (or allow us
to usefully refine the concept).

Ezample: If P = {P,},>0 is a scheme for generating
pseudorandom sequences of bits, and @ = {Qn}.>0 consists
of processes that generate truly random bits (e.g., by calls
to our built-in random-bit primitive), then our definition of
observational equivalence corresponds to a standard notion
from the study of pseudorandomness and cryptography (see,
e.g., [17, 30]). Specifically, P ~ @ iff P and @ pass the
same polynomial-time statistical tests.

4 Specification of Security Properties

4.1 A variant of ElGamal Encryption

Protocol In section 2.6, we formulated a variant of ElGa-
mal encryption as a three-step protocol and expressed this
in probabilistic 7-calculus. We can regard this protocol as
a parameterized family of protocols by making the depen-
dence on the length of the public prime (and therefore the
key length) explicit:

Protocol P, :

let p be a random n-bit prime and
g a generator of Z;

in PuBLIC(p) | PUBLIC(g)

| let a be a random number in [2,p — 1]
in 2B1(9* mod p)
| BA(z). AB2(msg * z* mod p)

| let b be a random number in [2,p — 1]
in AB;(y).BA(g" mod p)

Note that although the algorithm for generating a prime
p and generator g may be probabilistic and may fail with
small probability (see, e.g., [19]), our specification will also
contain the same algorithm, compensating for this minor
difficulty.

This protocol is easily defeated if an adversary intercepts
g® from Bob and sends g¢° instead. In this case, Alice will
send msg * g°“ mod p. Since the adversary will know g¢*
and c, the plaintext can discovered. However, the protocol
is secure against a non-interfering eavesdropper, under the
assumption that discrete logarithm is hard. We will state
precisely what we mean by “secure” and give a form of dis-
crete logarithm recognition problem that is equivalent to
decrypting the message from Alice to Bob.

Specification In general, we specify the intended security
properties of a protocol P by writing an idealized protocol
Q@ so that P ~ ) will imply the intended properties. If P
is intended to send some data securely, then () could send
random numbers (noise) instead and use a private port to
communicate the same information if needed. In this case,
P ~ () will imply that no adversary can uncover the secret,
since the adversary would have no chance to uncover the
secret from any run of Q.

For the simple protocol P above, we wish to specify
a weak security property, namely, that msg is transmitted
secretly from Alice to Bob in the presence of any passive ad-
versary. This requires a restriction of our general approach.
However, since the proof of correctness is simplified by the
restriction on adversaries, this seems like an appropriate first
example.

Our specification is written using an idealized protocol
that clearly cannot reveal msg to an adversary:



Protocol @y, :

let p be a random n-bit prime and
g a generator of Z;
in PoBLIC(p) | PUBLIC(g)
| let a €, [2,p — 1] in AB1(a)
| let a €, [2,p —1] in BA(z). AB2{c)
| let b€, [2,p—1] in aBi(y). BA(b)

In the idealized protocol Q. , each secret message in P,
is replaced by a random number in the appropriate range.
Intuitively, our aim is to specify that to any other process
observing P, , the network traffic appears to be a series of
encrypted random numbers. The reason we send encrypted
random numbers in @, instead of random numbers is that
any variation in probability distribution induced by encryp-
tion should not be counted as a protocol flaw. In other
words, our view of secrecy is that the content of the mes-
sages must be hidden. While we could also specify that no
observer can tell that encryption is used, we choose not to
require this stronger property.

The next part of our specification requires a definition of
equivalence with passive observers. First, a process P pas-
sively reads port n if every subexpression of P that mentions
port n is of the form npasy(z).. We say C[] is a passive
observer of ports ni,...,ny if every process expression in
C[ ] passively reads mi,...,ni. Finally, we define passive
observational congruence by limiting the definition of obser-
vational congruence to passive contexts. Specifically, we say
P and @ are passively indistinguishable within function f
if

dng. Vn > ng.

eval eval

[Prob[C, [Pa] "5 v] — Prob[Ca[Qa] &' v]] < f(n)

for all context families such that each C,[] is a passive ob-
server of all ports that occur free (not bound by v) in P,
and @, . We say P and @ are passively indistinguishable,
and write P ~passive @ is if P and ) are passively indis-
tinguishable within function 1/p(n), for every polynomial
p.

Our secrecy specification for protocol family P above is
that P ~passive @), where @) is the protocol family above
that sends encrypted random numbers in place of data ex-
changed by P.

Equivalent Game We cannot hope to prove P ~pqssive
@ without establishing significant new results about the dif-
ficulty of computing discrete logarithms. Instead, we will
prove that any context that passively distinguishes P and
Q@ provides a method for asymptotically winning the follow-
ing family of games, based on the decision form of Diffie-
Hellman (see [24]):

Game G, :

Player A: Announces a prime and generator
(g,p) and displays two cards with triples of num-
bers (a,b,c) and {(a’,b’,c’), one consisting of
three random numbers 1 < a,b,c < p and the
other numbers of the form (g“, ¢°, ¢“") mod p,
with 4 and v chosen randomly.

Player B: Chooses one of the triples, winning
the game if the triple has the form (g“, g",9"").

For simplicity, we assume that prime p, generator g, and

random a, b, ¢, u,v are chosen according to exactly the same
distribution as in runs of P, and Q.

Intuitively, the first two numbers of a triple {(g", g", g"")
computed as above will chosen randomly from the interval
[2,p—1]. Therefore, the game consists of trying to determine
whether the third number of a triple bears the indicated
relationship to the other two.

Protocol Correctness We outline the proof that the pro-
tocol is correct. Specifically, if there is a context passively
distinguishing P from (@, then there is an probabilitistic
polynomial-time strategy for winning the game with related
probability.

Since [2,p — 1] is a multiplicative group, multiplication
by msg is simply a permutation. This allows us to ar-
gue that a game G, where a tuple (a,b, msg % c) is gener-
ated instead of random (a,b,c) will be equivalent to G, .
Specifically, the distribution of pairs of cards where one
pair is generated by choosing random a,b,c and presenting
(a,b, msg#c) and the other by choosing random {(g“, g", g"")
will be exactly the same as G,,. Therefore, we show that a
context family C[] asymptotically distinguishing P from @
will asymptotically win game G’ with the related probabil-
ity.
Suppose C[] is a family of passive observer contexts and
v € Obs an observable such that

Vng.dn > nyg.

eval eval

|Prob[Cr[Pn] ~ v] — Prob[Cn[@xr] ~ v]| > 1/poly(n)

and let n be any number where the difference in probabil-
ities is greater than 1/poly(n). Let (a,b,c) and (a’,b' ')
be a pair of cards generated by Player A in game G, after
announcing g and p.

Our objective is to construct a pair of protocols that can
be distinguished by C,[ ] and use this to determine Player
B’s move in game G, . We do this using a process template

Template R(p,g,a,b,c):

PUEO(p) | PuBLIC(g)
| aBi(a)

| Ba(2).AmE(C)

| A (y). BA)

For cards (a,b,c¢) and (a’,b',c¢') dealt from G, , one of
R(p,g,a,b,c), R(p,g,a’,b’,c") will behave like a run of P,
and the other a run of @}, . However, our assumption is that

eval eval

that probabilities Prob[C,[P,] ~ v] and Prob[C,[Q.] ~
v] differ by 1/poly(n). This gives us a method for choos-
ing which of the triples (a,b,c) and (a’,b’,c') has the form
(9%, 9%,9""). For the purpose of simplifying the argument,

let us assume that Prob[C,[P,] %5’ v] > Prob[Ca[Qn] “5' v].
The opposite case is symmetric.

To decide probabilistically which of the triples (a,b,c)
and (a',V’,c') has form (g“,g",9""), we run R(p,g,a,b,c)
and R(p,g,a’,b',c’) to completion; this requires time
bounded by a polynomial in n. If observable v occurs in
both runs, or in neither, then we have no useful information.
Therefore, we flip a coin and choose among triples (a,b, c)
and (a’,b’,c') with equal probability. Otherwise, we ratio-
nally suspect that the triple used in the the process produc-
ing observable v is more likely to have the form (g“, g, g**)
and choose this triple. A simple calculation, using the fact
that the distribution of cards in the game is the same as



the distribution of triples generated by runs of P, and @,
reveals that the probability of choosing the correct triple is
1/(2poly(n)). This completes the proof.

4.2 Part of Needham-Schroeder Private-Key Pro-
tocol

Our second example involves authentication as well as se-
crecy and uses arbitrary contexts that may intercept and
replace network messages.

Protocol Let us consider the following authentication
protocol, intended to ensure that Alice knows she is talk-
ing to Bob if they share a private key k. Alice chooses a
random binary string ¢ of length n and Bob uses some nu-
merical function f computable in probabilistic polynomial
time to respond.

B— A {f(®)}x
A— B OK

When Alice receives the message she expects, she concludes
that Bob read her nonce since the encryption key is assumed
to be shared only with Bob. This protocol may be expressed
in our framework as follows, using key-generation, encryp-
tion and decryption functions computable in probabilistic
polynomial time:

Protocol P, :

let k£ be a random n-bit key and
¢ be a random n-bit number
in AB(encrypt(k,i))
| aB(z).
BA(encrypt(k, f(decrypt(k, z))))
| Ba(y)

[y = encrypt (k, £(i))] 75(“OK")

This process calculus expression contains three sequen-
tial processes, each corresponding to one step of the pro-
tocol. The first sends encrypt(k,i) on port am, rep-
resenting communication from Alice to Bob. In the
second process, "Bob” receives input x and transmits
encrypt(k, f(decrypt(k,z))). In the third process, ” Alice”
checks whether the message y she receives from Bob is what
she expected. (This check should be written slightly differ-
ently if the encryption function is probabilistic instead of
deterministic.)

Specification Our specification is given using a similar
family of processes, sending encrypted random numbers in
place of the data sent in the protocol. We specify a form of
authentication by causing the protocol to halt if a message
is altered. The specification process accomplishes this by
using a private channel s to send the data received by Bob
back to Alice securely. In addition, we specify that i must
be kept secret. (For example, i may be a session key.) These
decisions about what should be secret and what should be
authentic are not made explicit in the usual notation, but
must be established before correctness can be shown.

Protocol Q:

v s. let k be a random n-bit key and
i,j be random n-bit numbers

in AB(encrypt(k,i))
| ab(@). (BA(encrypi(k, §)) | 5())
| a(y). s(@).
[z = encrypt(k,i)]
[y = encrypt (k. §)] T5(“OK")

This specification illustrates a general technique we have
found useful for authentication aspects of protocols. Al-
though we do not expect this protocol (which models a key
idea used in Kerberos, for example) to be implemented us-
ing private channels, we use a private channel (in this case
S) in the specification as a way of expressing the ideal ob-
servable behavior of the protocol. In this specification, B
forwards on the private channel the message x that B re-
ceives on the open channel. This allows A to check, in the
third step, whether the messages have been tampered with
by an intruder.

Correctness We show that if a context C[] asymptoti-
cally distinguishes P from (), then this context provides a
strategy for winning a number-theoretic game related to the
encryption function and the function f, so far unspecified,
used in the protocol. To illustrate some of the reasoning
involved, we break this down into various cases, depending
on the kind of “attacks” used in the context family.

Suppose C[] asymptotically distinguishes P from @ and
v € Obs is an observable such that

Vng.dn > ng.

[Prob[C,[Pa] %5 v] — Prob[C,[Qn] “5' v]| > 1/poly(n)
Assume for simplicity that the first probability is greater
than the second and let n be any number where the differ-
ence in probabilities is greater than 1/poly(n).

In outline, we consider all possible executions (traces)
of C,[P,] that produce observable v, each with an associ-
ated probability. For some runs of C,[P,], we can find a
corresponding run of C,[@,], with exactly the same com-
munication on ports A and BA, and v is also produced.
However, since it is the same context in both cases, and the
branching structures of P, and @), are similar, we can show

eval

that there must be some number of traces of Cn[P,] ~ v
that do not correspond to any trace of C,[@r]. The total
sum of probabilities associated with these traces is at least
1/poly(n). Furthermore, these traces can be divided into
three cases:
(i) The context does not alter any communication on AB or
BA. This is a passive attack in which the context observes
something different about the behavior of P, from @, .
(ii) The context alters at least one communication on 4B
or BA in such a way that neither P, nor @, would issue
AB{“OK"). This is an active attack in which the protocol
is aborted, but the context still observes some difference be-
tween P, and Q.
(iii) The context alters at least one communication on AB
or BA in such a way that P, produces aB(“OK") but @,
cannot. This is an active attack in which the protocol is
subverted so that one principal commits when it should not.
This division into cases applies to any n where the

eval eval

probabilities of Cn[P,] ~ v and Cn[Qn] ~ v differ
by 1/poly(n). Since there are infinitely many such n,
there must be at least on case that arises with probability
1/(3poly(n)) for infinitely many choices of n. Therefore,
we can show that if there is a context asymptotically distin-
guishing P from @, there is a strategy for winning at least



one of three possible games. This allows us to formulate
somewhat simpler games than if we did not subdivide the
set of possible attacks.

If case (i) arises infinitely often, then as with the pre-
vious example, we can obtain a reduction to a recognition
game. In particular, the adversary will be able to tell a
pair {i}r,{f(?)}r from a pair {i}x,{j}x, for ¢,j,k chosen
randomly as in protocol P and specification Q.

If case (ii) arises infinitely often, then the adversary is
able to chose a function g such that it can probabilistically
distinguish a pair {i}, {f(decrypt(k, g(encrypt(k,i))))}r
from a pair {i}x,{j}x. This is an interesting form of active
observation of properties of the encryption function. Such
observable properties could conceivably be used to assem-
ble some useful statistical information about the choice of
nonces or the behavior of function f under encryption.

Finally, if case (iii) arises infinitely often, then the ad-
versary must expose a malleability property of the encryp-
tion function [9]. Specifically, for some functions g and h
computed by the adversary, at least one different from the
identity function, we have

decrypt (k, h({f (decrypt (k, g({i}x))) }r, {i}x)) = £(2)

This imposes an interesting condition on the relation be-
tween f and the encryption function. A realistic scenario
in which this form of attack is possible arises with RSA en-
cryption [19] and f(z) = 2z. Since {2i}r = {2} {i}x, the
intruder may take g(z) = {2}xz and h(z,y) = g(y). In
simple terms,; this attack will blind Bob into thinking that
Alice’s nonce is 2i, rather than 7.

5 Comparison with related work

The framework described in this paper may be regarded
as a probabilistic, polynomial-time variant of spi-calculus
[1], with cryptographic primitives expressed directly in the
probabilistic polynomial-time expression language instead
of by the v operator and additional primitives. Thus our
framework differs from others in two ways: the use of a pro-
cess calculus and observational equivalence to express secu-
rity properties (as in the spi-calculus), and the probabilis-
tic polynomial-time treatment of cryptographic primitives
(in contrast to the spi-calculus). We view the spi-calculus
as a convenient means to an end, a useful setting for ex-
pressing protocols and security properties. Our main goal
has been to develop a formal framework for studying pro-
tocols under complexity-theoretic assumptions, rather than
the traditional “perfect cryptography” assumptions associ-
ated with most logic- or linguistic-based approaches.

The closest work in the direction of protocol analysis un-
der complexity-theoretic assumptions is a series of protocol
studies by Bellare and Rogaway [2, 3]. In these studies, a
protocol is represented as a set of oracles, each correspond-
ing to one input-output step of one principal. These oracles
are each available to the adversary, which is a probabilistic
polynomial-time oracle Turing machine. This corresponds
fairly closely to our setting, since an adversary has access
to each input-output step by a principal by sending and re-
ceiving data on the appropriate ports. The main differences
are that in our setting, the protocol and the adversary are
both expressed in a formal language. This opens the pos-
sibility for proof techniques that are based on the syntactic
structure of the protocol or semantic properties of all ex-
pressible adversaries. In addition, we have found the speci-

fication method adopted from spi-calculus relatively natural
and more systematic than the protocol specifications used
by Bellare and Rogaway.

Among approaches based on specific languages for defin-
ing protocols and intruders, the distinguishing feature of our
effort is the use of probability and polynomial time in place
of a conventional model of “perfect cryptography” that ap-
pears to have developed from positions taken by Needham
and Schroeder [25] and a model presented by Dolev and Yao
[10]. In the conventional model, an intruder may intercept
or block communication, remember parts of messages, and
construct new messages from data it has observed. These
are similar to the capabilities of our intruders. The differ-
ence lies in precisely what messages can be constructed from
data observed by the intruder. In the conventional model,
the adversary is only allowed to concatenate or (possibly)
encrypt data it has observed, or been given at the outset, or
obtained by decryption with keys obtained in these limited
ways. The adversary cannot make random guesses, accu-
mulate information by statistical analysis of network traffic,
or use partial information in other sophisticated ways. The
general trade-off is this: the conventional model makes it
possible to automatically search for attacks with some effi-
ciency, or formally prove protocols correct. However, some
attacks lie outside the model. In our approach (as in the
work of Bellare and Rogaway described above), it is much
harder to prove protocols correct, but the model encom-
passes a much wider range of possible attacks.

6 Conclusion and Future Directions

We introduce a framework for security protocol analysis
that can account for interactions between protocols and the
underlying cryptography. This allows us to refine proto-
col analysis beyond the basic model of adversary capabili-
ties [10], which treats cryptographic operations as primitive.
Our framework uses a process calculus for defining prob-
abilistic polynomial-time processes, communicating over a
network that gives an adversarial process access to commu-
nication between other processes. Many of the language
design decisions are motivated by interests in security prop-
erties, as illustrated by a series of examples throughout the
paper. In particular, the probabilistic semantics of par-
allel composition is chosen to avoid unrealistic attacks on
complexity-based encryption schemes. Because every pro-
cess definable in our framework is probabilistic polynomial
time, this makes it possible to express security properties of
a protocol in terms of its interactions with other definable
processes in the calculus.

More precisely, security properties of a given protocol
may be formulated in our framework by writing another,
idealized protocol and showing that the environment behav-
iors, which represent definable adversaries, have the same
observable interactions with either protocol. For this pur-
pose we propose a definition of observational equivalence
for probabilistic programs that is based on the view that
large differences in probability are easier to observe than
small differences. When we distinguish between “large” and
“small” using asymptotic behavior, we arrive at a definition
of observational equivalence that coincides with a standard
concept from cryptography, namely, indistinguishability by
polynomial-time statistical tests [30]. While we have not
fully explored the consequences of this definition, we believe
it may shed new light on other basic concepts in cryptog-



raphy, such as the distinction between semantically secure
and non-malleable cryptosystems [9].

The steps taken in this paper form the beginning of a
larger program that we hope to carry out over the next few
years. In part following the program established in the study
of spi-calculus [1], we hope to develop methods for reasoning
about observational equivalence (or some approximation to
observational equivalence such as probabilistic trace equiv-
alence or bisimulation) and use these methods to establish
security properties of various protocols. We expect some in-
teresting foundational questions to arise in the formulation
of security properties such as authentication and secrecy.

Acknowledgements: Thanks to M. Abadi, D. Boneh,
C. Dwork, S. Kannan, and M. Naor for helpful discussions.
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A Operational Semantics

We use an operational semantics similar in outline to the spi-
calculus semantics given in [1]. This is a variant of Milner’s
reaction relation approach [20], inspired by the Chemical
Abstract Machine of Berry and Boudol [4]. One difference
is that we only allow values (the results of evaluating terms)
to be communicated. Another is the use of probabilistic
schedules instead of nondeterminism.

The operational semantics is defined using three rela-
tions on processes. The first is the evaluation relation | on
closed terms, which we will take as given by the language of
terms. The second is a structural congruence relation = on
processes and the third a reduction relation — on processes.



Computation proceeds by probabilistic — reduction steps
on =-equivalence classes of processes, with | used to define
reduction.

Since the terms we are most interested in are evaluated
probabilistically, we assume a probabilistic evaluation rela-
tion on terms, with M |}, v indicating that if we choose
to evaluate M, then with probability r, the result will
be value v. We may also write Prob[M | v] = r to
express that M |, v. Since evaluation of probabilistic
polynomial-time terms is guaranteed to terminate, we know
that for any term M, there is a set V' of values so that
D vey Prob[M | v] =1.

The structural equivalence relation formalizes the intu-
itive fact that a process can be written in a variety of syn-
tactic forms. The inference rule

PP=P P-Q Q=Q
P =qQ

(React Struct)

indicates that structurally equivalent processes have pre-
cisely the same reductions. Structural equivalence is defined
by the following axioms and inference rules.

(Struct Refl) P =P
(Struct Nil) PO = P
k
—~
(Struct !z) WP = P|P|...|P
(Struct Comm) PIQ = Q|P
(Struct Assoc) P|(Q|R) = (P|Q)IR
(Struct Switch) vm.vn.P = vn.vm.P
(Struct Extrusion) wvn.(P|Q) = Plvn.Q,
provided n ¢ fn(P)
P=Q pP=pP
(Symm) %Eg (Par) PLQTP:\Q
P= =R P=P
(Trans) P=R (Res) vn.P=vn. P’

The first form of reduction is communication between
processes, with the remaining involving “internal” reduction
without communication. While communication is determin-
istic, once input and output are chosen, an internal step
may have an associated probability distribution, induced by
probabilistic evaluation of terms.

(React Inter) n(v)|n(z). P — [v/z]P
(Red Let) letz=MinP —, [v/z]P,
provided M |}, v
(Red Output) n(M) —, 7n(v),
provided M |}, v
(Red Test) [M = NP —,s P,
provided M |}, v
and N {s v
Reduction may occur inside a parallel composition or re-
striction, as indicated by the final inference rules.
PP PP
(React Par) PIOS PO (React Res) e R—

This concludes the definition of reduction, except for prob-
abilistic considerations.
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Probability distribution In the axioms and inference
rules above, we have defined an operational semantics that is
both probabilistic and nondeterministic. As suggested by re-
searchers in other contexts (e.g., Markov decision processes
[6, 7]), nondeterminism and probability can be combined by
introducing additional machinery to associate probabilities
with nondeterministic choices.

One natural way to determine probabilities is through
the notion of policy, used in [6, 7]. The main idea is that
a policy (or scheduler) associates a probability with each
action, conditional on the sequence of preceding actions.
While our interest in security protocols suggests that we
should allow the protocol adversary to choose any schedul-
ing policy that is computable in probabilistic polynomial
time, we will consider a more restricted setting in this pa-
per. One complication with adversary-chosen policies arises
in connection with restriction: if a process representing one
participant in a protocol uses local communication for some
purpose, the adversary should not be able to use this to
determine the probability of one of its own actions. In or-
der to avoid this issue, and generally simplify our semantics,
we therefore adopt a fixed policy with uniform distribution:
if process P can be written in k structurally equivalent
forms, Pi,..., P, each with a corresponding distinct re-
duction P; —, @Q;, then we let the probability P — Q; be
r/k.

Although space considerations prevent us from develop-
ing this idea in full, we remark that if we rename communi-
cation ports so that the protocol adversary intercepts every
communication, then the protocol adversary may effectively
control the probability of each action. Therefore, the more
general setting of adversary-chosen scheduling policies is de-
finable within our more restricted language based on a uni-
form scheduling policy.

We can consider a process P as a function from network
contents (atoms POrT(n) ) to network contents. Specifically,
we start the process with some set of pairs in the network
buffer and execute the processes until all have terminated (or
are stuck waiting for input). The set of pairs remaining in
the network form the “output” of the program. We therefore
measure running time as a function of the lengths of all the
natural numbers in the initial network buffer.

Theorem A.1. The running time of process P, measured
as a function of the size of the initial network contents, is
bounded by a polynomial whose degree may be determined
from the height of the execution tree of P and the polynomial
bounds on all the terms that occur in P.



