An Empirical Reexamination of Global DNS Behavior

Hongyu Gao† Vinod Yegneswaran‡ Yan Chen† Phillip Porras∗
Shalini Ghosh† Jian Jiang† Haixin Duan§

†Northwestern University · ‡SRI International · §Tsinghua University

ABSTRACT
The performance and operational characteristics of the DNS protocol are of deep interest to the research and network operations community. In this paper, we present measurement results from a unique dataset containing more than 26 billion DNS query-response pairs collected from more than 600 globally distributed recursive DNS resolvers. We use this dataset to reaffirm findings in published work and notice some significant differences that could be attributed both to the evolving nature of DNS traffic and to our differing perspective. For example, we find that although characteristics of DNS traffic vary greatly across networks, the resolvers within an organization tend to exhibit similar behavior. We further find that more than 50% of DNS queries issued to root servers do not return successful answers, and that the primary cause of lookup failures at root servers is malformed queries with invalid TLDs. Furthermore, we propose a novel approach that detects malicious domain groups using temporal correlation in DNS queries. Our approach requires no comprehensive labeled training set, which can be difficult to build in practice. Instead, it uses a known malicious domain as anchor, and identifies the set of previously unknown malicious domains that are related to the anchor domain. Experimental results illustrate the viability of this approach, i.e., we attain a true positive rate of more than 96%, and each malicious anchor domain results in a malware domain group with more than 53 previously unknown malicious domains on average.

Categories and Subject Descriptors
C.2.2 [COMPUTER-COMMUNICATION NETWORKS]: Network Protocols

Keywords
DNS; Measurement; Malicious Domain Detection

1. INTRODUCTION
The Domain Name System (DNS) protocol plays a cardinal role in the operation of the Internet by enabling the bi-directional association of domain names with IP addresses. It is implemented as a hierarchical system with a few trusted root servers that distribute the responsibility of updating the name-to-IP-address mapping to hundreds of millions of authoritative name servers that correspond to each domain. DNS as a protocol has steadily evolved since its initial specification [28–31] as has the the mix of applications that find new and innovative ways of using it. Most applications today and future Internet architectures (such as Named Data Networks and Software-Defined Networks) depend on DNS. It is also increasingly abused by malware authors, both as an effective redirection mechanism for obfuscating location of their servers [17] and as a covert channel for command and control [15, 32].

Given its crucial importance for the Internet’s functioning, DNS has been the subject of many measurement studies during the last decade. Prior measurement studies have scrutinized the behavior of DNS caches [20], characterized global DNS activity from the perspective of root servers [12, 13] and evaluated the effectiveness of DNS in the context of content-delivery networks [35]. The first study of global DNS activity was by Danzig et al., which uncovered the prevalence of many bugs in popular DNS implementations [14]. More recently, this problem was revisited by Brown-lee et al., who measured the prevalence of bogus DNS traffic at the F-root nameserver finding that some of the same problems persist: 60-85% of observed queries were repeated queries from the same host and more than 14% of requests involved queries that violated the DNS specification. Jung et al., measured that a significant portion of DNS lookups (more than 23%) receive no answer and that they account for more than half of all DNS packets in the wide-area due to persistent retransmissions.

Several of these studies were conducted more than a decade ago and often from a small number of vantage points. Collaboration between the Internet research and operations community has evolved significantly since these foundational studies and we now have access to a new and unique data source, the Internet Systems Consortium (ISC)’s Secure Information Exchange (SIE) [18], which enables researchers to monitor DNS activity from hundreds of operational networks in real-time. One of the driving forces behind such data sharing has been its untapped potential for rapidly identifying malware domains. In particular, domain registrations and DNS access patterns could be an effective means for tracking cyber-criminal behavior and several recent studies have explored the application of machine-learning techniques to automatically identify malicious domains [8, 11, 39].

In this paper we report on findings from a global and multidimensional analysis of DNS activity, as observed from a large set of widely distributed and operational DNS resolvers. Specifically, we analyze two weeks of data from more than 600 resolvers comprising more than 26 billion queries and responses. First, we systematically dissect this data, present high-level characteristics of observed traffic behavior and identify invariant characteristics across
resolvers. Second, we use this dataset to critically reexamine the validity of certain prior measurement studies, in the context of this more global perspective and modern traffic characteristics. Finally, we evaluate the feasibility of using this dataset to automatically extract malicious domain groups. We make the following key findings:

- We find that resolvers from different /24 subnets have different profiles, including query/response counts; unanswered query rates; unsolicited response rates; query type distributions; and query success-to-failure ratios.
- In comparison with prior measurement results, “A” queries continue to dominate. “AAAA” queries have sharply increased and other query types depict a decrease in popularity.
- We find that although root servers are always available (i.e., have no unanswered queries), more than 15.1% of the queries sent by recursive DNS resolvers are unanswered.
- We explore the cause of DNS query with negative answer (queries that do not return “NOERROR”). We identify DNSBL as having a much higher failure ratio than do other query types.
- We find that invalid TLD is the primary cause of query with negative answer at root servers, and that the percentage of invalid TLD has increased in comparison with the results from prior measurements. However, A-for-A queries have decreased in popularity, and almost disappeared in our data.
- We find that 12.0% of traffic to root servers and 8.0% to other servers are truly repeated queries. We further identify the possible causes including concurrent query, CNAME chain sanitization, premature retransmission.
- We find that temporal correlation of domain queries is an effective means to detect correlated domain groups. Based on this finding, we develop a novel approach that detects previously unknown malicious domains related to known anchor malicious domains. The approach achieves 96.4% detection precision and detects 53 more malicious domains on average for each given anchor domain.

2. BACKGROUND AND DATASET

DNS Protocol. The Domain Name System (DNS) is a distributed, hierarchical naming system that translates between domain names and IP addresses. Client end hosts (also called stub resolvers) simply contact a recursive resolver that implements the hierarchical resolution process of iterating through name servers to perform the translation. In the example shown in Figure 1, the stub resolver queries the local recursive resolver for the IP address of www.example.com. The recursive resolver usually resides within the local network of the client’s organization and is managed by the organization’s administrator. However, clients can also choose to contact recursive resolvers located outside their local network (e.g., OpenDNS resolvers and Google public DNS resolvers). Assuming an empty cache, the recursive resolver starts by querying the root server for the IP address of www.example.com. The root server responds with a referral to the .com TLD server. The recursive resolver then queries the .com TLD server, and in response is provided with a referral to the authoritative server for example.com, which hosts the name-to-address mapping. Finally, the recursive resolver contacts the authoritative server of example.com to obtain the corresponding IP address.

Data. Our data is collected from a high-volume passive DNS source at the Security Information Exchange (SIE) [18]. This provides a real-time data feed from multiple hundreds of recursive DNS resolvers distributed over the Internet. These resolvers represent large ISPs, universities, as well as public DNS service providers located in North America and Europe, suggesting a wide diversity in the user population behind these resolvers. We plot the geo-locations of the DNS resolvers in Figure 2. We first use a third party service [27] to convert the IP addresses into their latitude and longitude, and then plot the locations in a Google map.

Due to privacy concerns, the data-collection sensor is deployed “above” the recursive resolvers and records all DNS queries and responses between the recursive resolvers and the remote DNS servers. The sensor does not collect traffic between client stub resolvers and recursive resolvers. As a result, the identity of client endhosts that sit behind the recursive resolvers is not available.

Previous SIE data analysis has shown that 93% of the domain labels immediately under the .edu TLD have a resource record in the SIE data in a two-week observation period [40]. The DNS servers that generate responses are dispersed in 70.7% of the .edu CIDR blocks and 69.2% routable ASes [40]. We collected all DNS traffic in the raw SIE channel for two weeks from December 9, 2012 to December 22, 2012. In total, our dataset contains about 26 billion DNS queries and responses.

Local and Root Perspective. Since our data is collected from local recursive DNS resolvers, it naturally enables studying DNS behavior from the perspective of the local resolvers. On the other hand, 13 root servers of vital importance sit atop the DNS hierarchy. Due to their importance, multiple prior works have analyzed DNS protocol behavior from the perspective of the root servers [12, 13, 42].

We attempt to analyze our DNS data from the root perspective as well. As described in Section 2, if a client-side nameserver restarts with empty cache, or the TTL expires for a TLD nameserver entry, the recursive resolution process starts by querying the root servers and obtaining a referral to an authoritative TLD nameserver. Although our data is collected from local recursive DNS resolvers, the availability of the response nameserver’s IP address enables us to isolate the DNS traffic to and from root servers. Given the volume and diversity of our dataset, we believe that the subset of DNS traffic is a representative sample of DNS traffic that root servers experience. In this paper, we analyze the DNS traffic.
characteristics from both the local perspective (i.e., using the full dataset) and the root perspective (i.e., using only traffic to and from root servers), whenever applicable.

3. DNS TRAFFIC CHARACTERISTICS

In this section, we analyze the characteristics of the collected DNS traffic from various perspectives.

3.1 High-level Characteristics

Figure 3 plots the number of outgoing DNS queries observed from each resolver in log scale. We sort the resolvers according to their corresponding traffic volume. Our data includes traffic from 628 distinct DNS resolvers including 10 IPv6 resolvers. Not surprisingly, we find significant variance in the volume of DNS queries that they generate. The most active resolver generates more than 70M queries per day, which translates to an average of more than 800 queries per second. In contrast, 407 resolvers generate fewer than 10,000 queries during the two week measurement period.

This observed range shows that the query volume of DNS resolvers has a heavily skewed distribution. A small fraction of deployed DNS resolvers are serving the majority of the DNS queries. This observation is consistent with that of prior measurement studies by Pang et al. [35] in 2004 and Osterweil et al. [33] in 2012. Interestingly, the vast majority of inactive resolvers belong to a European educational institution (354 resolvers) and a US educational institution (49 resolvers). We subsequently learned that DNS experiments are conducted at these institutions, and speculate that ongoing DNS experiments may be the reason behind the large number of inactive DNS resolvers. Nonetheless, the amount of traffic generated by the inactive resolvers is negligible and should not remarkably affect our measurement results.

We note that the top 20 organizations have different profiles and are also small in number. We also put all resolvers with IPv6 addresses into one group. Our monitored DNS resolvers span 71 distinct /24 subnets, 33 distinct /16 subnets, and 22 distinct /8 subnets. The traffic volume of each subnet is also plotted in Figure 3. This further validates that our data is collected from vantage points distributed widely across the IPv4 address space.

3.1.2 DNS Data Type

In normal operation, each DNS query is associated with a response. However, cases exist when a DNS query is not answered or a DNS response is received without a matching query, either due to misconfiguration, backscatter from attack traffic or packet loss. Hence, we group DNS traffic in our data into three categories: query-response pairs, unanswered queries and unsolicited responses. More than 83.3% of the entries in our data are query-response pairs, 14.9% are unanswered queries and 1.8% are unsolicited responses. The percentage of abnormal cases, including both unanswered queries and unsolicited responses, is 16.7%, which seems anomalous and is worthy of deeper investigation. An obvious consideration is packet loss in the data collection infrastructure.

We note that the top 20 organizations have different profiles and plot the respective percentage of query-response pairs and unanswered queries in Figure 4. We find that three subnets deviate significantly from others with drastically lower percentage of query-response pairs and higher percentage of unanswered queries. They belong to two organizations— the public DNS service and the European educational institute. In addition, the public DNS service is the only organization whose results are far off from the line \(x+y=100\). Recall that the percentage sum of query-response pairs, unanswered queries and unsolicited answers equals to 100. Hence, the public DNS service is the only organization that suffers from a high percentage of unsolicited answers (15.2%). As pointed out by Brownlee et al. in [12], unsolicited answers may be indicators of targeted DoS attack, by flooding the target with answers to queries it does not issue. However, we can see that this network also has a high ratio of unanswered queries (more than 40%), suggesting that there is a data collection issue at this provider. Though the

<table>
<thead>
<tr>
<th>Organization</th>
<th>Resolver #</th>
<th>Traffic %</th>
</tr>
</thead>
<tbody>
<tr>
<td>US ISP A (subnet 1)</td>
<td>40</td>
<td>32.6%</td>
</tr>
<tr>
<td>US ISP A (subnet 2)</td>
<td>34</td>
<td>22.7%</td>
</tr>
<tr>
<td>US ISP A (subnet 3)</td>
<td>10</td>
<td>17.4%</td>
</tr>
<tr>
<td>Public DNS Service</td>
<td>4</td>
<td>11.7%</td>
</tr>
<tr>
<td>US ISP B</td>
<td>2</td>
<td>2.0%</td>
</tr>
<tr>
<td>US ISP C (subnet 1)</td>
<td>2</td>
<td>1.6%</td>
</tr>
<tr>
<td>US ISP C (subnet 2)</td>
<td>2</td>
<td>1.5%</td>
</tr>
<tr>
<td>US ISP D (subnet 1)</td>
<td>8</td>
<td>1.1%</td>
</tr>
<tr>
<td>US ISP D (subnet 2)</td>
<td>8</td>
<td>1.0%</td>
</tr>
<tr>
<td>US ISP E (subnet 1)</td>
<td>2</td>
<td>1.0%</td>
</tr>
<tr>
<td>EU ISP A</td>
<td>8</td>
<td>1.0%</td>
</tr>
<tr>
<td>US ISP C (subnet 3)</td>
<td>2</td>
<td>1.0%</td>
</tr>
<tr>
<td>US ISP D</td>
<td>4</td>
<td>0.8%</td>
</tr>
<tr>
<td>US ISP D (subnet 3)</td>
<td>8</td>
<td>0.7%</td>
</tr>
<tr>
<td>EU EDU (subnet 1)</td>
<td>11</td>
<td>0.6%</td>
</tr>
<tr>
<td>IPv6</td>
<td>10</td>
<td>0.6%</td>
</tr>
<tr>
<td>US ISP C (subnet 4)</td>
<td>1</td>
<td>0.5%</td>
</tr>
<tr>
<td>US EDU</td>
<td>50</td>
<td>0.4%</td>
</tr>
<tr>
<td>US ISP E (subnet 2)</td>
<td>1</td>
<td>0.4%</td>
</tr>
<tr>
<td>EU EDU (subnet 2)</td>
<td>2</td>
<td>0.2%</td>
</tr>
<tr>
<td>EU ISP B</td>
<td>2</td>
<td>0.2%</td>
</tr>
</tbody>
</table>
Table 2: Distribution of DNS lookups by popular query types. The table omits the percentage of other query types. The percentages for years 2001, 2002 and 2008 are from [20], [42] and [13], respectively.

<table>
<thead>
<tr>
<th>Perspective</th>
<th>Year</th>
<th>A</th>
<th>AAAA</th>
<th>PTR</th>
<th>MX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local</td>
<td>2012</td>
<td>66.2%</td>
<td>13.4%</td>
<td>11.1%</td>
<td>2.3%</td>
</tr>
<tr>
<td>Local</td>
<td>2001</td>
<td>60.4% - 61.5%</td>
<td>N/A</td>
<td>24% - 31%</td>
<td>2.7% - 6.8%</td>
</tr>
<tr>
<td>Root</td>
<td>2012</td>
<td>57.5%</td>
<td>26.6%</td>
<td>4.3%</td>
<td>0.2%</td>
</tr>
<tr>
<td>Root</td>
<td>2008</td>
<td>60%</td>
<td>15%</td>
<td>8.4%</td>
<td>3.5</td>
</tr>
<tr>
<td>Root</td>
<td>2002</td>
<td>55.5%</td>
<td>4.7%</td>
<td>19.9%</td>
<td>4.6%</td>
</tr>
</tbody>
</table>

Table 3: Percentage of queries with successful answers, negative answers and no answers.

<table>
<thead>
<tr>
<th>Qtype</th>
<th>Successful</th>
<th>Negative Answer</th>
<th>Unanswered</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>76.3%</td>
<td>14.1%</td>
<td>9.6%</td>
</tr>
<tr>
<td>AAAA</td>
<td>78.1%</td>
<td>6.2%</td>
<td>15.7%</td>
</tr>
<tr>
<td>PTR</td>
<td>30.4%</td>
<td>44.5%</td>
<td>25.1%</td>
</tr>
<tr>
<td>MX</td>
<td>48.3%</td>
<td>20.6</td>
<td>31.1%</td>
</tr>
</tbody>
</table>

3.2 Query Type Breakdown

The DNS protocol supports a variety of query types for different purposes. To summarize the most popular types, an “A” query translates a domain name into IPv4 addresses, a “AAAA” query translates a domain name into IPv6 addresses, an “MX” query translates the name of a mail exchange server into IP addresses, and a “PTR” query translates an IP address back to domain names. We examine how popular each query type is in the real world, and measure how this distribution has changed over time. Table 2 shows the distribution of the four popular types of DNS queries in real-world traffic. Because we do not have access to legacy DNS traffic, we quote the numbers reported by Jung et al. [20], Wessels et al. [42] and Castro et al. [13] in the row of year 2001, 2002 and 2008, respectively. Jung et al. collected their data from local resolvers at MIT and Kaist. On the other hand, Wessels et al. and Castro et al. reported the distribution observed from only root servers.

From the perspective of local DNS resolvers. After more than ten years, the “A” query remains the most dominant DNS query type in US and Europe, accounting for about 66.2% of total queries. This percentage remains stable with a slight increase after 10 years. With wider deployment of IPv6 protocol, the volume of AAAA queries (13.4%) has risen sharply. This query type did not exist 10 years ago. Meanwhile, the percentage of PTR queries has decreased from 24-31% to 11.1% and MX queries have decreased from 2.7-6.8% to 2.3%. While the absolute number of queries has also grown significantly in the past 10 years the growth of other query types is not comparable to that of AAAA queries.

From the perspective of root DNS servers. We observe a similar trend with local perspective. The percentage of A query remains steady high at root servers. The percentage of AAAA query has increased with time, while the percentage of PTR and MX query has decreased. However, the change is more drastic from the root perspective than from the local perspective. At root, the percentage of AAAA queries has increased by 466% from 2002 to 2012. In contrast, the percentages of PTR query and MX queries have shrunk by 76% and 94% respectively in the same time period.

AAA Queries. The significant increase in AAAA queries reflects wide adoption of IPv6 capable operating systems and browsers which issue AAAA queries along with A queries for requested names, as well as IPv6 capable resolvers which also issue AAAA queries for seen NS names by default. In particular, the top 3 domains that are looked up by AAAA queries are akamai.net, amazonaws.com and akadns.net. We also observe an anti-virus service, mcafee.com, and a DNS service, yahoodns.net that are among the top 10 most popular domains receiving AAAA queries.

3.3 DNS Query Success Rates

Next, we study the question of how many modern DNS queries return successful answers. We reuse the categorization method adopted by Jung et al. in [20]. In particular, DNS queries with successful answers are those having “NOERROR” as the return code in the response. We further divide the remaining queries into two categories: queries without response, and queries returning negative answers. Our definition of negative answer broadly includes all responses whose return code is not “NOERROR”.

Table 3 presents the percentage of queries with successful answers, negative answers and no answers in our dataset. It shows the numbers for the aggregated traffic from both the root and the local perspective, and for specific query types. We exclude unsolicited DNS responses from the analysis in this section. As a result, the ratio of unanswered queries in Table 3 is larger than the number in § 3.1.2. Apparently, different types of DNS queries have radically different success rates. A queries and AAAA queries have similarly high success rates. “Unsuccessful” A queries are primarily due to negative responses, whereas “unsuccessful” AAAA queries frequently result from unanswered queries. PTR query and MX query have much lower success rates. In particular, majority of PTR queries result in negative answers, while almost one third of the MX queries does not return any response.

Query Success Rate from the Local Perspective. The aggregated ratio of DNS queries with successful answers is 66.9%. The overall ratio of unanswered queries is 15.1%. The unreliable UDP protocol underlying the DNS protocol may be one of the causes. However, given the zero unanswered query ratio at root servers, the unavailability of other authoritative servers is likely to be the
primary cause. The overall ratios are similar to the result from ten years ago, when Jung et al. reported that the percentages of answers with successful, negative answer and unanswered queries were 64.3%, 11.1% and 23.5% respectively in their MIT trace [20]. This suggests that many of the contributors to DNS queries with negative answers and no answers, persist from a decade ago.

Query Success Rate from the Root Perspective. Noticeably, the ratio of unanswered query is 0, meaning that every query issued to the root servers is answered. It implies that root servers were always available during the measurement period. However, the percentage of successful answers returned by root servers, (i.e., referrals to nameservers that should know the queried hostname), is significantly lower than that of other servers. More than 50% of the queries issued to root servers return negative answers. In comparison, in 2000 only about 2% of lookups to root servers return negative answers [20]. The sharply increased percentage of query with negative response at root servers may result from the high ratio of invalid traffic reaching them, as reported by multiple previous measurement studies at root servers [12, 13]. We further investigate the cause of failed query in §3.4.

Query Success Rates in Different Organizations. Figure 5 illustrates the breakdown of queries with successful answer, negative answer and no answer in different organizations. We observe different organizational profiles:

1. High success rate, low negative answer rate and low unanswered rate: The EU ISP A subnet and a US ISP D subnet have more than a 95% success rate.

2. Low success rate, low negative answer rate, and high unanswered rate: As mentioned earlier in §3.1.2, both EU EDU subnets and the public DNS service resolvers have exceptionally high ratio of unanswered queries. In addition, one of the EU EDU subnets has a very low negative answer rate (less than 1%).

3. High negative answer rate: Three subnets have over 50% negative answer rate. They belong to US ISP E, the US EDU, and EU ISP B, respectively.

3.4 Causes of Queries with Negative Answers

We first identify which query types cause the most negative answers. Table 4 shows the top four types with their respective percentages. We find that A queries cause the vast majority of negative answers, in viewing from both the root and the local perspective. In comparison, in 2000 the dominant query type resulting in negative answers was the PTR query type [20]. Due to the shrinking percentage of PTR queries in our traffic, A queries have now become the dominant contributor to negative query responses. At the root servers, negative answers caused by PTR queries and DNSBL are much less common when compared with the local perspective.

Different query types also have differing ratios of negative answers. The ratio of DNSBL query with negative answers to the total number of DNSBL queries is 73.9%, which is significantly higher than any other query types due to the nature of blacklist lookup: most of lookups do not hit the blacklist, in which case an ‘NXDomain’ response is returned. We further analyze DNSBL in §3.4.3. Among the other three types, the ratio of PTR query with negative answers to the total number of PTR queries is 46.5%, which is higher than corresponding ratios for the A (14.8%) and AAAA (6.5%) query types.

Independent from query types, prior research has identified problematic query names that evoke negative answers [12, 13, 20, 42], including invalid TLD and A-for-A query. We investigate these in detail in §3.4.1, §3.4.2, and present their respective percentages in Table 5.

3.4.1 Invalid TLD

Invalid TLD denotes the case when the queried hostname does not have a valid TLD. This may be caused by either user typos or client-side application implementation bugs. Because the queried names do not exist, such queries will result in NXDomain as the response. Table 5 presents that 1.2% of the traffic from the local perspective contains an invalid TLD. However, 53.5% of the queries seen by root servers contain invalid TLDs. This observation, although highly skewed, seems reasonable, because queries with invalid TLDs terminate the recursive resolution process at root servers, in the absence of valid TLD servers. Recall that from the root perspective, the total percentage of queries with negative answers is 54.0% (Table 3). It means that invalid TLD has become the primary contributor to negative answers at root servers.

Multiple prior studies have investigated the prevalence of invalid TLD domains at root servers [12, 13, 42]. The percentage of invalid TLD domains reported in 2001, 2003 and 2008 were 20%, 19.53% and 22.0%, respectively, which is stable. Surprisingly, it has sharply increased to 53.5% in 2012, from the perspective of our dataset. In addition, the resolvers issuing invalid TLD queries were widespread in all the major organizations that we monitor. Note that the above comparison only applies to root servers. The percentage of invalid TLD is low from the local perspective.

We summarize the most common invalid TLDs in Table 6. For each TLD, the table shows its count in million as well as its percentage among all invalid TLDs. We observe that a large number of invalid domains do not contain any dot. We put such domains in a special “no_dot” group, which is the second most popular form of invalid TLDs. Together with “local” and “helkin” these three invalid TLDs are far more popular than the other ones. “local” is a pseudo-TLD that a computer running Mac OS X uses to identify itself if it is not assigned a domain name. Similarly, queries with
“.lan,” “.home,” “.localdomain,” “.loc,” and “.internal” are likely used by other programs under certain circumstances. Nevertheless, these queries are meant to stay local, and should not leak out to the Internet. “Belkin” is a famous brand that manufactures electronic device. We suspect that queries with “.belkin” are generated by the device under the same brand due to misconfiguration. These are likely good candidates to be suppressed by local implementations. Although we have identified several likely causes of frequently appearing invalid TLDs, user typos can also result in invalid TLDs. In our data, the count of invalid TLDs exhibit a long-tailed distribution. More than 500,000 other invalid TLDs are used much less frequently.

3.4.3 DNS Blacklists

DNS blacklist (DNSBL) is a popular method used by site administrators to vet domains for spam, malware etc. Although DNSBL utilizes the DNS protocol, it does not translate between hostnames and IP addresses. Rather, site administrators use it to determine whether the target hostname is blacklisted, by crafting the target hostname into a special URL under the blacklist provider’s domain and issuing an A query. When the query reaches the blacklist provider’s authoritative nameserver, the nameserver will send a response according to its own format. In popular DNSBL designs, the return code will be NXDomain (domain not exist) if the target hostname does not hit the blacklist. In particular, 73.9% of DNSBL queries return NXDomains, which gives DNSBL queries significantly higher failure odds than other query types.

The usage of DNS blacklists has been reported in [19]. DNS blacklists lookups accounted for 0.4% and 14% of lookups in their December 2000 trace and February 2004 trace, respectively. In 2012, DNSBL queries account for 1.7% of the lookups. The percentage is lower than year 2004, but higher than year 2000.

3.5 TTL Distribution

The time-to-live (TTL) field in the DNS responses informs the resolver how long it should cache the results. Figure 6 shows the cumulative distribution of TTL values of three distinct record types in our DNS data: A, AAAA and NS. Root servers very rarely answer with A or AAAA records, so we only plot NS record TTLs returned by root servers. In particular, A and AAAA records provide a direct mapping from a hostname to an IPv4 address and an IPv6 address, respectively and the NS record provides a reference to the authoritative nameserver that should know the queried hostname when the nameserver being queried does not know the IP address of the queried hostname. We observe that NS records have much larger TTL values than A and AAAA records. This result is consistent with the result reported by Jung et al. from ten years ago [20], except that AAAA record did not exist back then. Given that AAAA and A records play a similar role, which is to translate domain names to IP addresses, it is reasonable to observe that AAAA records and “A” records shares similar TTL distributions. On the other hand, the longer TTL value of NS records is the key reason that keeps the load of DNS servers residing higher in the hierarchy manageable. Only 1.8% of the queries are issued to root servers in our trace, because in most cases the client-side nameserver knows the authoritative nameserver using the cached NS records. If NS records have a much shorter TTL, the client-side nameserver will need to query the root servers much more frequently. We also observe that the TTL of NS records returned by root servers is extremely regular: almost all records have TTL of 1 day. We further compare the TTL of A and NS records in 2012 and that in 2000 as reported in [20]. The TTL of NS records roughly remains stable. However, the TTL of A records in 2012 is much smaller. In 2000, only about 20% of A records have TTL less than one hour. About 20% of A records have TTL larger than one day. In 2012, about 90% of A records have TTL less than one hour and almost 0% of A records have TTL larger than one day. This difference shows the wide deployment of CDN and other services that leverage short TTLs, which inevitably poses more pressure on the DNS infrastructure.

Repeated DNS Queries

Multiple previous studies of root DNS servers have revealed that over 56%-85% of queries observed at root servers are repeated [13, 42]. These studies further identified that misconfigured or abusive clients mainly caused these astonishingly high numbers. Ideally, a “normal” resolver should not issue many, if any, repeated queries to authoritative servers because of the effect of caching. However, our dataset shows that this is not the case—a considerable portion of DNS queries from “normal” resolvers could still be considered
repeated. In this section, we analyze the prevalence and explore potential reasons behind the repeated query behavior of resolvers in more detail.

3.6.1 Simulation Methodology

For our analysis, we simulate an infinite resolver cache while re- playing the captured DNS traffic. If the query returns an A, AAAA, or PTR record, the resolver knows the IP address of the queried do- main or the domain for the queried IP address. It should not issue a query for the same domain or IP address before the TTL expires. If it issues such a query, we count it as a repeated query.

We find that from the perspective of our resolvers, the percentage of repeated queries that is issued to the root servers and other authoritative servers is 12.0% and 8.8% respectively. The ratio of repeated query varies significantly across different organizations. We plot the hourly repeated query ratio, in addition to the overall query volume for major organizations in Figure 7. Although some organizational subnets have a repeated query rate of 20% or higher, their traffic volume is low. The repeated query rates for the largest subnets lie between 10% and 15%.

3.6.2 Hourly Plot of Repeated Query Ratio

The three resolvers shown in Figure 8 exhibit very different characteristics. The university resolver (Figures 8(b)) has the highest repeated query rate. Meanwhile, it also exhibits a strong positive correlation (p-value < 0.001) between the repeated query rate and the query volume (i.e., the repeated query rate rises when the query volume rises). In addition, its overall query volume shows a clear diurnal pattern and weekly pattern. The traffic peaks appear during business hours of each day. Much more DNS traffic occurs during weekdays and less traffic during weekends.

The commercial ISP resolver (Figure 8(a)) has a repeated query rate that varies between 5% and 10% during most of the days. However, the repeated query rate rises to 15% and above between Dec. 15th and Dec. 18th. The overall query traffic also exhibits a strong diurnal pattern, i.e., the traffic volume rises during night time and falls during day time. It reflects the typical usage pattern of a residential network. However, we do not observe strong weekly pattern. In addition, a strong positive correlation (p-value < 0.001) between the overall query volume and the repeated query rate exists.

The public DNS resolver (Figure 8(c)) has fluctuating repeated query rate ranging from 5% to 15%. Because its users span different time zones, we naturally observe neither diurnal patterns nor weekly patterns from its overall query volume. Although hard to observe from the plot, statistical tests also indicate a strong positive correlation (p-value < 0.001) between its overall query volume and its repeated query rate.

While many resolvers exhibit strong positive correlation between the query volume and the repeated query rate, it is not always the case. The former suggests that cache eviction has a important role in the volume of repeated queries. The higher the query volume is, the higher the repeated query rate will be. We further observe that resolvers within a /24 subnet show high homogeneity (i.e., either all of them or none of them exhibit strong correlation, with very few exceptions). We omit these graphs due to space considerations. This reflects on the administrative policies within /24 subnets, the choice and configuration of network and DNS software.

3.6.3 Possible Causes

To further understand the cause of these repeated queries, we performed additional analysis to separate repeated queries that were issued in close proximity (the remainder could be attributed to cache eviction). We find that over 75% of repeated queries (across all resolvers) are due to related queries issued in close temporal proximity and the remainder are likely due to cache evictions at the resolver. We investigate two popular resolver implementations BIND (9.9.2-P1) and Unbound (1.4.16), as well as the behaviors of OpenDNS and GoogleDNS, from which we distill a few possible implementation-related factors that cause repeated queries in close temporal proximity.

- **CNAME Chain Sanitization.** When a response includes multiple records forming a CNAME chain, both BIND and Unbound issue extra queries to verify the trustworthiness of the chain. This is an intentional security enhancement to counter the Kaminsky attack[21], which could cause repeated queries and increased response times. Nearly 20% of A and AAAA queries in our dataset were eventually responded to with CNAME answers, which makes CNAME chain sanitization contribute to about 40% of all repeated queries in our simulation.

- **Concurrent Overlapping Queries.** A resolver could issue repeated queries if it receives two overlapping queries in close proximity. Two queries are considered overlapping if they belong to either of the two cases: (i) They request identical name; or (ii) Some parts of their delegation chain or CNAME chain are identical. If the identical segment is missing in the cache, the resolver will send two identical requests, which will be counted as repeated query. Implementing birthday attack protection[41] can help mitigate this effect. We observe that both BIND and Unbound have implemented birthday attack protection, but interestingly GoogleDNS and OpenDNS do not strictly suppress identical queries.

- **Premature Retransmissions.** We found that Unbound takes an arguably aggressive retransmission strategy, waiting for only one round-trip time before it retransmits the request. BIND is more conservative and has a minimum retransmission timeout of 800 ms. In our local experiments, we observed that Unbound issued several times more repeated queries than did BIND due to its premature retransmission timer.

- **Resolver Quirks.** Resolvers might also have some implementation quirks (or bugs) that could trigger repeated queries in some cases. We have found that, in certain cases, BIND will resolve expired ‘NS’ names twice before replying to client queries, resulting in repeated queries and increased response times. Given the complexity of the name resolution process, we suspect similar vagaries could lurk in resolver implementations.

4. **MALWARE DOMAIN GROUP DETECTION**
In this section, we present our approach to detect previously unknown malicious domains by simply using temporal correlation in DNS queries. The key intuition is that DNS queries are not isolated from each other. For any DNS query, the underlying process that generates it is likely to generate other related queries. For example, when a browser loads a web page, it starts by querying the page’s domain name, assuming it is not cached already. After the browser starts to render the page, it will generate additional DNS queries for other domain names whose content is embedded or linked in this page. This applies to malware as well. For example, drive-by exploits typically involve a long redirection chain before the occurrence of an exploit. Malware frequently uses domain generation algorithms (DGAs) as a rendezvous technique to search for command and control updates. Hence, we propose to detect malicious domain groups by using the temporal correlation among DNS queries, given some well-known seed malicious domains (also known as anchor points).

One of the key differentiators between our work and recent malicious domain detection work using DNS traffic [7, 8, 11] is the ability to detect malicious domains groups. We also only need only a small number of malware domains as seeds instead of a large training set. In addition, our intuition of DNS query correlation is general, so that our approach can detect different types of correlated domain groups, including but not limited to phishing, spam and scan campaigns, DGA-generated domains, redirection links, and so on. The ability to detect malicious domains in general also differentiates our work from existing work targeting specific types of correlated domains [9, 23, 37, 45].

Detecting correlated malicious domain groups using the DNS traffic collected from recursive resolvers is a challenging task. The difficulty rises from two major factors. First, the DNS queries are quite noisy, in the sense that we observe a mixture of queries belonging to many different groups. We will also frequently fail to observe some queries that should have been in the group because of DNS caching. Second, the traffic volume is high. With about 80 million DNS queries per hour, conventional approaches that are able to discover correlated groups like clustering will not scale.

In order to make the problem tractable, we introduce the notion of “anchor malicious domains.” Instead of searching in the entire DNS corpus, we only target domains that are correlated with the anchor domains. Given one anchor domain, we discover a group of additional malicious domains that are related with it. The processing of different anchor domains is mutually independent. This design benefits our detection approach with high applicability. It can work as long as at least one anchor domain is available. Thus, the bar to apply our approach is much lower than those systems that require a comprehensive labeled training set. In addition, parallelizing our approach for large-scale computation is straightforward.

In particular, we devise a multi-step approach to discover correlated domain groups for each anchor domain. We describe the steps in detail in Section 4.1, 4.2.1 and 4.2.2, respectively.

4.1 Coarse Identification of Related Domains

We represent the notion of correlation with co-appearance (i.e., a domain is considered to be correlated with the anchor domain if it is frequently queried together with the anchor from the same resolver). We set a time window threshold T_w to restrict the search scope. Given an anchor domain, we extract the domain segment with the anchor domain in the middle according to the window size. All domains in the segment are considered as related domain candidates.

We quantify how closely the candidate domain is related with the anchor domain using two metrics derived from the idea of TF-IDF [26], a metric used widely in information retrieval to measure the importance of a term in a document, given a collection of documents. Let us consider the set of anchor domains to be A. Given a query domain d, a segment s corresponding to an anchor domain a (note that there can be multiple segments corresponding to an anchor domain), and a total set of n segments S, the TF-IDF-based metric has two components: (a) the term frequency $m_{tf} = n(d, s)$, where n is a function indicating how many times the domain d occurs in the segment s, and (b) the inverse document frequency $m_{idf} = |S|/|\{s \in S : d \in s\}|$, which measures how rare the domain d is across the set of segments S by computing the ratio of the total number of segments to the number of segments in which the domain occurs. The final TF-IDF score is the product of m_{tf} and m_{idf}.

Note that if the candidate domain is popularly queried in the DNS traffic, its m_{tf} value is expected to be large no matter whether it is related with the anchor domain or not—this will be counteracted by m_{idf} in the score, which down-weights popular domains. For the domains truly correlated with the anchor domain, we expect both its m_{tf} and m_{idf} value to be large. We set two thresholds—T_{tf} is the minimum value of m_{tf}, and T_{idf} is the minimum value of m_{idf}. Given an anchor domain, we extract all domain segments containing it, and then compute the m_{tf} and m_{idf} values for all domains that appear in the segments—we keep the domains with both values passing the corresponding thresholds to get a coarse identification of the group of domains related to the anchor domain.

4.2 Finer Identification of Related Domains

To get a more precise identification of domains related to the anchor domains, we first cluster domains according to their pattern of co-occurrence with the anchor domain.
4.2.1 Domain Clustering

Let us consider the set S_a of domain segments that have anchor domain a at their center point (note that there can be multiple such domain segments for any anchor domain). Let $f(a, S_a)$ denote the number of times a occurs in S_a. Each domain d in S_a is represented as a Boolean vector v of dimension $f(a, S_a)$, where v_i is set to 1 if d co-occurs close (within a small window) to the i^{th} occurrence of the anchor domain a in S_a, and 0 otherwise. We then cluster the vectors corresponding to each domain in S_a using XMeans [36] clustering, with squared Euclidean distance as the clustering distance metric. Note that XMeans is a partitional clustering algorithm like KMeans, which additionally selects the number of clusters automatically. In clustering models, it is possible to increase the likelihood by adding parameters, but that may overfit the data. We use XMeans with Bayesian Information Criteria (BIC) as the model complexity cost, which gives a penalty term proportional to the number of parameters in the model — XMeans finds the number of clusters that trades off the increased data likelihood with the increased penalty term. Each cluster in the output of XMeans groups together domains that share a common pattern of co-occurrence with a (e.g., a cluster may have domains that co-occur with only the first and second occurrence of the anchor point a, but not with other occurrences of a in S_a).

4.2.2 Domain Group Extraction

After clustering the domains related to an anchor domain, we further process the domain segments surrounding the anchor domain. We break each domain segment into multiple subsegments according to the cluster result, where each subsegment is created from the domains in a particular cluster. Note that the subsegment size is smaller than or equal to the cluster size, because part of the cluster may not appear in that particular segment.

We use two filters to further refine subsegments—the first filter T_{freq} is based on domain frequency, while the second filter T_{size} is based on the size of the subsegment. Small subsegments with infrequent domains are more likely to have benign domains that pass the co-occurrence-based relatedness checks but actually share little commonality with the anchor domain.

The subsegments corresponding to the anchor domains form the refined domain groups (i.e., related domains) for the anchor domains—they are considered to be potentially malicious, and hence prime candidates for further analysis.

4.3 Evaluation

We use one day’s worth of the DNS traffic to evaluate the malicious domain group detection technique. The data was collected on Dec. 16, 2012 and contains 1.82 billion DNS query/response pairs.

4.3.1 Evaluation Methodology

The module needs known malicious domains as anchors as input. We visit three blacklists: Malware Domain Block List [1], Malware Domain List [25] and Phishtank [3]. We choose these three blacklists instead of other popular ones because they provide their blacklisted domain database including timestamp for download. We select all domains that are blacklisted on the same days of the data used for the experiment as anchor domains. We obtain 129 anchor domains using this method. Note that although we use these three blacklists to obtain the anchor malicious domains, our approach is not limited to these three blacklists. Rather, this method can be used as long as some initial anchor domains are available.

Next, we need to label the detected domains as either malicious or legitimate to measure the detection accuracy. Labeling all domains in our dataset is impractical due to the huge volume. Hence, we only label the domains that are identified in the coarse identification of related domains (according to Section 4.1).

We conduct a two-step process to label the domains as follows.

1. Blacklist Matching. We match the detected domains against five popular external blacklists, including Malware Domain Block List [1], Malware Domain List [25], Phishtank [3] WOT (Web of Trust) [4] and McAfee SiteAdvisor [2]. If a domain is listed as malicious by any one blacklist, we will confirm it as malicious.

2. IP Address Comparison. If a domain resolved to the same IP address with a known malicious domain confirmed in the first two steps, we also confirm it as malicious. Because DNS name resolutions may contain multiple steps (e.g., a CNAME record that reveals the canonical name followed by an A record that translates into IP addresses), we build a directed graph to represent the name resolution results for all the detected domains. Next, we use standard graph traversal to find all detected domains that resolve to the same IP address with known malicious domains.

We label a domain as malicious if any of the above steps confirms it. Any domain that cannot be confirmed is conservatively labeled as benign, although some of them look very suspicious. Our data labeling approach is strict. Hence, our evaluation may overestimate the false positive rate. (We make this design choice because the damage of false alarms on legitimate domains is greater than missing malicious domains.)

Table 7 presents the result of step 1 (coarse related domain identification), as well as the number of malicious domains that we can label based on the identified domains. We observe that first, domain co-appearance is an effective way to discover more malicious domains given anchor domains. On average each anchor domain is expanded to 128 malicious domains. Second, the coarse identification includes large number of benign domains as well. This is expected, because the DNS traffic is noisy in nature. However, this does not mean that our approach incurs 8772 false positive domains. This is only the intermediate result after the first step described in Section 4.1. Our approach contains two more steps to further refine the detection result.

4.3.2 Detection Accuracy

In order to understand how the values of different thresholds affect the detection accuracy, we apply step 2 (fine-grained identification of related domains), systematically tune the thresholds, measure the system performance with different values, and plot the result in Figure 9. In our experiment, we find that setting threshold $T_{freq} = 2$ and $T_{size} = 0.05$ produces significantly better results than higher values, so we only show the varying detection accuracy when these two thresholds are fixed at such values. Due to space constraint, we do not show the other cases. We vary T_{freq} from 0 to 40, and T_{size} from 0 to 40. We observe a steep drop in true positive number when T_{freq} increases from 0 to 40. In the mean time, the number of false positive domains also decreases quickly. We observe a similar trend when we vary the T_{size} threshold value. A larger threshold causes both the number of true positives and the number of false positives to decrease. As detection modules are typically tuned towards a low false positive rate, we find $T_{freq} = 40$ and $T_{size} = 20$ to be a good threshold choice. With this setting, this module detects 6890 previously
unknown malicious domains (true positives), with 258 false positive domains. The detection precision achieves 96.4%. On average, each anchor domain is expanded to 53 previously unknown malicious domains. During real-world deployment, the operator who runs the malware domain group generation system will determine whether he prefers a tighter or a looser threshold. A tight threshold produces fewer false positives, but also discovers fewer malicious domains. A loose threshold does the opposite.

4.4 Domain Group Analysis

Although we have 129 anchor domains, only 79 of them result in correlated domain groups. Figure 10(a) plots the distribution of the detected domain group size. The largest group contains as many as 852 domains.

Next, we study the similarity among the detected domain groups. We quantify the similarity using the Jaccard similarity metric between group pairs. Figure 10(b) shows the raw value of intersection and union size of all the domain group pairs. We observe that they are almost mutually exclusive. On the other hand, 85.2% of the pairs have a Jaccard similarity of less than 0.05, meaning that they share the same TLD, “.ru”. Also, they all contain special terms like “drug,” “med,” or “pill” in their domain names. We examined their DNS query trace and find that a subset of them is served by the same name server whose domain is blacklisted.

Domain Group 1 (accounts.s5.com). The first domain group we examine is detected with the anchor domain accounts.s5.com. This group includes 25 domains as shown in Table 8. The first 23 domains are highly similar. They share prefixes with the same format, and contain a likely randomly generated segment in the middle. Further, they resolve to the same IP address and share the same name server in our DNS data. Based on Google SafeSearch results, we suspect that these belong to the same coordinated malware campaign. The last two domains also resolve to the same IP address in our DNS data, but their IP address is different from that of the previous 23 domains.

domains used by human users. The domain names exhibit regular patterns (i.e., they share the same TLD “.ru” and their second-level domain name contains four random characters). This corresponds to a variant of the TDS botnet. Our analysis further shows that only a subset of them is served by the same name server whose domain is blacklisted.

Domain Group 3 (Counterfeit Goods). We identify a scam campaign of counterfeit good containing 17 domains, shown in Table 10. All domains contain the brand name to make them look like legitimate. Nonetheless, users have reported a subset of them “selling fake goods” on the Internet. We list the scam domains for Uggs and Louis Vuitton as one campaign because their domains resolve to the same IP address in our DNS data.

5. RELATED WORK

DNS Measurement studies. Many prior studies have measured the performance of the DNS infrastructure. Multiple measurement studies conducted at root servers reported that a large percentage of traffic at root servers is invalid [5, 12, 13, 42]. In particular,
Prior Work

PTR and A queries cause the most negative answer in 2000 and 2012, respectively. The ratio is steady 20% in 2001, 2002 and 2008, but rises to 50% in 2012. There are no AAAA queries in 2000, but 13.4% of all queries are AAAA queries in 2012. 14.7%, 27.3% and 54% in Jan 2000, Dec 2000 and 2012, respectively.

The ratio of AAAA queries increases from 4.7% (year 2000), to 15% (year 2008) to 26.6% (year 2012). The ratio is 12%, 7.03%, 2.7% and <0.1% in 2001, 2002, 2008 and 2012. The ratio rises from 11.1% (year 2000) to 18.0%. 0.4%, 14.0% and 1.7% in year 2000, 2004 and 2012, respectively.

TTLs of A records in 2012 are much smaller than those in 2000.

Table 12: Summary of comparisons with prior measurement studies

<table>
<thead>
<tr>
<th>Compared Feature</th>
<th>Prior Work</th>
<th>Result Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Root perspective</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Invalid TLDs</td>
<td>[12, 13, 42]</td>
<td>The ratio is steady 20% in 2000, 2002 and 2008, but rises to 50% in 2012.</td>
</tr>
<tr>
<td>DNS query type breakdown</td>
<td>[13, 42]</td>
<td>The ratio of AAAA queries increases from 4.7% (year 2000), to 15% (year 2008) to 26.6% (year 2012).</td>
</tr>
<tr>
<td>Queries with negative answer</td>
<td>[20]</td>
<td>14.7%, 27.3% and 54% in Jan 2000, Dec 2000 and 2012, respectively.</td>
</tr>
</tbody>
</table>

Local perspective

DNS query type breakdown	[20]	There are no AAAA queries in 2000, but 13.4% of all queries are AAAA queries in 2012.
Queries with negative answer	[20]	The ratio rises from 11.1% (year 2000) to 18.0%.
Queries with no answer	[20]	The ratio drops from 23.5% (year 2000) to 15.1% (year 2012).
Cause of negative answer	[20]	PTR and A queries cause the most negative answer in 2000 and 2012, respectively.
TTL distribution	[20]	TLLs of A records in 2012 are much smaller than those in 2000.
DNSBL query ratio	[19]	0.4%, 14.0% and 1.7% in year 2000, 2004 and 2012, respectively.

Table 11: A suspected DGA domain group

Brownlee et al. discovered that 60%-85% of queries to the F-root server are repeated [12]. Castro et al. analyzed traffic collected from multiple root servers and reported that 98% of the traffic is invalid [13]. Castro et al. confirmed in a later study that a low fraction of busy clients (0.55%) generate the most invalid traffic at root servers [5]. We cross-compare some of these same results from the perspective of a globally distributed resolver set to assess the persistence of such problems. Our vantage point provides a different perspective and greater opportunity for understanding the root cause of certain phenomena.

Jung et al. analyzed SMTP traffic with DNS blacklist lookup [19]. In this work, we compare the DNS blacklist usage in 2012 with their reported findings. Ager et al. used active probing techniques to compare local DNS resolvers with public DNS services like GoogleDNS and OpenDNS in terms of latency, returned address, and so on, by actively issuing DNS queries from more than 50 commercial ISPs [6]. Otto et al. studied the impact of using public DNS resolvers instead of local resolvers on the network latency of CDN content fetching [34]. Liang et al. measured and compared the latency of root and TLD servers from various vantage points [24]. Our measurement study has a different goal from theirs. In particular, we study the performance of recursive DNS resolvers. We do not cover the client perceived DNS performance in our study.

DNS performance studies. Jung et al. characterized the DNS traffic obtained from two university sniffers and evaluated the effect of different TTL values with trace driven simulations [20]. Pang et al. measured DNS server responsiveness from the vantage points inside a large content distribution network [35] finding that a significant fraction of LDNS resolvers do not honor TTLs. Wessels et al. measured how the cache policy of different DNS software affects the number of DNS queries by trace driven simulations [43]. Bhattacharj et al. conducted experiments to reduce the TTL of A records on university DNS resolvers and found a low increase in DNS traffic [10]. While the focus of this paper is on the broad high-level characteristics of DNS data such as the overall distribution of query types and failures, prevalence of repeated queries etc., revisiting the implications of caching and DNS performance in greater depth in the context of the SIE dataset is future work.

DNS Malware Studies. Researchers have recently proposed using DNS traffic statistics to identify malicious domains [7, 8, 11]. Notos [7] and EXPOSE [11] build models of known legitimate domains and malicious domains, and use these models to comput-
main names. The high rate of invalid TLD queries to root servers suggests that client-side implementations should differentiate local names (used only in Intranets) with global domain names. Our analysis of repeated queries reveals that complementary security enhancements of resolvers could have non-negligible effects on DNS resolution, suggesting that more evaluations should be conducted before the wide adoption of such features. Our analysis also reveals several possible optimizations to suppress unnecessary queries.

Furthermore, we propose a novel approach that isolates malicious domain groups from temporal correlation in DNS queries, using a few known malicious domains as anchors. On average, this approach achieves more than 96% detection accuracy while producing more than 50 previously unknown malicious domains for every known malicious anchor domain.

Acknowledgements. We are grateful to Paul Vixie and the SIE contributors for providing us access to this extraordinary data source. In addition, we appreciate the insightful comments from David Dagon, the SIGCOMM reviewers and our shepherd, Sonia Fahmy, which have greatly improved the quality and presentation of this paper. We would also like to thank Yunsheng Cao for his help with some of our early analysis scripts. This material is based upon work supported in part by the National Science Foundation under grant no. CNS-0831300, Army Research Office under Cyber-IA Grant no. W911NF-06-1-0316, and the National Basic Research Program (973 Program) of China under grant no. 2009CB320505. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the funding agencies.

7. REFERENCES