
Rosemary: A Robust, Secure, and High-Performance
Network Operating System

Seungwon Shin*

claude@kaist.ac.kr
Yongoo Song†

yongjoo.song@atto-research.com
Taekyung Lee†

taekyung.lee@atto-research.com

Sangho Lee†

sangho.lee@atto-research.com
Jaewoong Chung†

jaewoong.chung@atto-research.com
Phillip Porras††

porras@csl.sri.com

Vinod Yegneswaran††

vinod@csl.sri.com
Jiseong Noh*

jiseong.noh@kaist.ac.kr
Brent Byunghoon Kang*

brentkang@kaist.ac.kr

*KAIST †Atto Research Korea ††SRI International

ABSTRACT
Within the hierarchy of the Software Defined Network (SDN) net-
work stack, the control layer operates as the critical middleware fa-
cilitator of interactions between the data plane and the network ap-
plications, which govern flow routing decisions. In the OpenFlow
implementation of the SDN model, the control layer, commonly re-
ferred to as a network operating system (NOS), has been realized
by a range of competing implementations that offer various per-
formance and functionality advantages: Floodlight [11], POX [30],
NOX [14], and ONIX [18]. In this paper we focus on the ques-
tion of control layer resilience, when rapidly developed prototype
network applications go awry, or third-party network applications
incorporate unexpected vulnerabilities, fatal instabilities, or even
malicious logic. We demonstrate how simple and common failures
in a network application may lead to loss of the control layer, and
in effect, loss of network control.

To address these concerns we present the ROSEMARY controller,
which implements a network application containment and resilience
strategy based around the notion of spawning applications indepen-
dently within a micro-NOS. ROSEMARY distinguishes itself by its
blend of process containment, resource utilization monitoring, and
an application permission structure, all designed to prevent com-
mon failures of network applications from halting operation of the
SDN Stack. We present our design and implementation of ROSE-
MARY, along with an extensive evaluation of its performance rel-
ative to several of the mostly well-known and widely used con-
trollers. Rather than imposing significant performance costs, we
find that with the integration of two optimization features, ROSE-
MARY offers a competitive performance advantage over the major-
ity of other controllers.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Network Operat-
ing Systems

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCS’14, November 3, 2014, Arizona, USA.
Copyright 2014 ACM 978-1-4503-2957-6/14/11 ...$15.00.
http://dx.doi.org/10.1145/2660267.2660353.

Keywords
Software-Defined Network (SDN); OpenFlow; Controller Robust-
ness

1. INTRODUCTION
At the center of the growing emergence of the SDN paradigm

is the notion of giving control of network flow routing decisions
to a globally intelligent view, hosted above the data plane, that is
able to coordinate across network components. SDNs enable this
intelligence to be written in software, as network applications, us-
ing open APIs that better facilitate agile development and perhaps
faster network innovations.

The OpenFlow stack is an embodiment of this notion. It offers
a dramatic shift from the proprietary closed control layer of tradi-
tional network switches, to one in which the control layer exports
both the API and the data plane abstractions necessary to facilitate
a wide range of network applications. The introduction of the term
network operating system (NOS) was born from the recognition of
how the OpenFlow control layer provides network application de-
velopers with programming abstractions necessary to control the
network data-plane hardware. The control layer provides interface
and abstraction in a role analogous to that of operating systems,
which provide software developers an appropriate abstraction for
interacting with a host computer. Here, we will follow and ex-
tend this analogy, and will use the term network operating systems
(NOSs) and OpenFlow controllers interchangeably.

Unfortunately, the myriad of parallel efforts to design NOSs (e.g.,
POX [30], NOX [14], Beacon [10], Floodlight [11]), have largely
assumed the role of the NOS as the facilitator between benign Open-
Flow applications and the data plane. The problems that may arise
when an OpenFlow application contains flaws, vulnerabilities, or
malicious logic that may interfere with control layer operations
have remained largely unaddressed by existing OpenFlow controller
implementations. Indeed, we will show examples of various Open-
Flow applications that, when implemented with the basic flaws
commonly found in prototype applications, lead to the crash of the
control plane and effective loss of the network itself. These exam-
ples serve to both establish the importance of solid network appli-
cation development and illustrate an important need for robust con-
trol layer safeguards to ensure network applications remain within
bounds that protect the OpenFlow stack.

We introduce ROSEMARY as a NOS that integrates key safe-
guards that extend the control layer to not just facilitate OpenFlow
applications, but also to impose an independent sandbox around



OpenFlow Services

Internal StorageService Modules

Routing App Monitoring 
App Firewall App Test App

Network Operating System Instance

Host A OpenFlow Switch Host B

Controller

Figure 1: NOS evaluation environment

each network application. ROSEMARY’s objective is to prevent ap-
plications from performing operations that will otherwise corrupt
other widely used OpenFlow controllers. We refer to ROSEMARY’s
containment strategy as a micro-NOS architecture, in which each
OpenFlow application is spawned within an independent instance
of ROSEMARY, wherein it is monitored and constrained with re-
source utilization controls that prevent it from interfering with the
broader operations of the OpenFlow stack.

A micro-NOS implements several key functional design require-
ments that combine to provide application containment. First, it
provides process context separation from the control layer by spawn-
ing a network application in a separate process context, with the
NOS interface libraries and data abstractions necessary for the ap-
plication to operate. Second, the micro-NOS incorporates resource
monitoring services that track and recognize consumption patterns
that may violate resource utilization policies imposed upon the ap-
plication. Third, each micro-NOS instance operates within a per-
mission structure of the ROSEMARY NOS, that limits which li-
braries are incorporated into the micro-NOS, thereby constraining
the ability of the network application to access interfaces or re-
sources of the NOS kernel. Finally, ROSEMARY’s design pays care-
ful attention to the performance considerations that are imposed
with its micro-NOS compartmentalization.

We present two optimization mechanisms that can be utilized
in ROSEMARY deployments to enable a balance between the need
for strict robustness controls and the need for network application
performance. Request pipelining represents a series of task, IPC,
and task-to-CPU core-pinning optimizations that enable substan-
tial performance optimization in ROSEMARY’s packet processing
pipeline. We further introduce a trusted execution mode for net-
work applications, which can be employed with well-vetted appli-
cations to remove the micro-NOS IPC overhead. With or without
trusted execution services, ROSEMARY’s performance is substan-
tially superior to many leading OpenFlow controllers.

To summarize, the paper’s contributions include the following:

1. We survey a range of critical robustness issues found in sev-
eral existing OpenFlow controllers. We identify the underly-
ing vulnerabilities in the controller operations that enable the
network application layer to destabilize the control plane.

2. We present the design of ROSEMARY, which introduces the
use of a micro-NOS sandboxing strategy to safeguard the
control layer from errant operation performed by the network
application. ROSEMARY’s resilience in the presence of ma-
licious or faulty network applications that would otherwise
crash other OpenFlow controllers is derived from three key
services: context separation, resource utilization monitoring,

and the micro-NOS permissions structure that limits the net-
work application’s access to library functionality.

3. We design and implement a prototype of ROSEMARY, which
we argue offers a robust application execution environment,
while also enabling execution modes that can run vetted net-
work applications with very high performance metrics rel-
ative to existing OpenFlow controllers. We have evaluated
the prototype system under a range of diverse test cases to
measure its performance, finding that ROSEMARY can sus-
tain more than 10 million flow requests per second.

Roadmap. The remainder of this paper is organized as follows. In
Section 2, we provide a few motivating examples and discuss some
open research problems. In Sections 3 and 4, we present the design
and implementation of our system, respectively. Next, we provide
evaluation results demonstrating the robustness and scalability of
our system in Section 5. We also discuss system limitations (Sec-
tion 6) and related work (Section 7). Finally, we conclude with a
brief summary in Section 8.

2. MOTIVATING EXAMPLES AND
RESEARCH QUESTIONS

2.1 Few Motivating Examples
We have witnessed the emergence of several open-source and

commercial efforts to develop NOSs including POX [30], Flood-
light [11], OpenDaylight [23], and NOX [14]. These controller
designs have formed the basis of many commercial SDN network
deployments and academic research efforts. Additional results with
Beacon and POX are provided in the appendix. Until recently, most
of these designs (from industry and academia) have been primar-
ily focused on efficiently handling data plane requests. Security
and robustness of OpenFlow controllers has arguably been an un-
derstudied area with some recent notable exceptions [29, 19, 36].
However, these unfledged research efforts are still very much in
flux and require validation through large scale deployments. Fur-
thermore, they have largely ignored controller robustness, i.e., the
threat vector of malicious OpenFlow applications directly attacking
the controller.

In this section, we motivate the need for both network controller
robustness and ROSEMARY through tangible examples that under-
score the vulnerability of contemporary OpenFlow controllers to
malicious OpenFlow applications.

Test Environment. To test the robustness and the security of a
NOS, we have set up a simple test environment, as shown in Fig-
ure 1. We choose Floodlight and OpenDaylight as our main target
OpenFlow controllers, because they are two of the most popular
and emerging network operating systems. Two hosts (Host A and
Host B) are connected to each other through an OpenFlow switch
(i.e., data plane), and this switch is controlled by the OpenFlow
controller. Here, we run four network applications on the Open-
Flow controller: (i) a simple routing application, (ii) a network
monitoring application, (iii) a firewall application, and (iv) a test
application. We modify this test application to evaluate the robust-
ness and the security of the NOS.

2.1.1 Floodlight Case Study
We describe results from three different evaluations, including

two misbehaving applications for testing robustness and another
rogue application that affects security The objective of the first ap-
plication is to silently crash a Floodlight instance. This application



simply calls an exit function, when it is invoked by Floodlight. The
next application, whose code is illustrated below, creates multiple
memory objects. We will test how this application consumes mem-
ory resources allocated to a Floodlight instance. The final appli-
cation, illustrated through source code on the right, modifies the
internal data structure of a Floodlight instance. In this case, we
assume that this application is installed by an attacker, and that it
deletes some network links in an attempt to confuse other applica-
tions.

Testing Floodlight Robustness. In this case, we let the test ap-
plication conduct two unintended operations: (i) exit a program
suddenly and (ii) continuously allocate memory space. These op-
erations, when performed in the wrong context, result in a crash of
the Floodlight controller.

In the first of these examples, the developer inadvertently calls a
system exit or return (with exit) function. Figure 2 (in next page)
shows the result: when a buggy application accidentally calls an
exit function, we observe that the Floodlight instance is also killed.

For the second case, a memory leakage is presented in Figure
3 (in next page). Here, the developer creates a linked list without
bounds checking and allows the list to grow without limit. The
Floodlight instance does not limit memory allocations by its ap-
plications, finally resulting in the controller (technically, the JVM)
crashing with an out of memory error.

As both of these errors result from programming errors, we con-
sider these to be misbehaving, and not necessarily malicious, appli-
cations.

Testing Floodlight Security. We modify the test application to
access an internal data structure in Floodlight, which contains net-
work link information, and change certain values representing net-
work links. To show the effect of this test, we let the monitoring
application (shown in Figure 1) periodically access a Floodlight
data structure (i.e., network link table) and display network link in-
formation. When our test application modifies values in the data
structure (i.e., network link information), the monitoring applica-
tion presents the wrong information. To perform this test, we sim-
ply create a network environment with Mininet [20], which consists
of two switches connected to each other. The network link infor-
mation before and after the attack is presented in Figure 4 (top and
bottom) to illustrate how a simple rogue application can easily con-
fuse other network applications.

2.1.2 OpenDaylight Case Study
Next, we evaluate the recently announced OpenDaylight con-

troller [23], and check if it the problems that are similar to the
Floodlight controller. Due to space we simply present the case of
crashing a NOS instance by calling a system exit function, and the
test result is shown in Figure 5. We find that OpenDaylight has sim-
ilar robustness issues, despite its recent release (i.e., early 2014).

2.1.3 POX Case Study
Next, we conduct an experiment that results in the POX con-

troller [30] being killed. In this test, we run a monitoring applica-
tion and a test applications which we crash simultaneously using
Mininet [20]). Here, our test application (shown in Figure 6) sim-
ply calls a system exit function (i.e., sys.exit(0) function), when
it is launched, and the monitoring application periodically collects
network statistics information. The result shown in Figure 7, illus-
trates how a crash of the test application causes both the monitoring
application and the controller to terminate.

2.1.4 Beacon Case Study

Figure 4: Network link information from Floodlight before
(top) and after (bottom) attack. Only 1 link remains after the
attack.

Finally, we conduct the same robustness tests (i.e., crash and
memory leak) with Beacon [10], and the results are presented in
Figure 8 and Figure 9. This second set of studies illustrate that these
problems are not only problems of a specific NOS (i.e., Floodlight),
but also prevalent in other NOSs. These examples illustrate how
simple applications (in under 10 lines of code) can crash an Open-
Flow controller rather easily.

We do not include exemplar security attacks on OpenDaylight,
Beacon, and POX due to space limitations, but similar vulnerabili-
ties exist. While we assume and hope that trusted network experts
design and implement network applications, our objective here is to
motivate the need to incorporate safeguards into the control layer

Figure 5: OpenDaylight crash result



Figure 2: Floodlight crash result Figure 3: Floodlight memory leakage result

def handle_PacketIn(event):
packet = event.parsed
inport = event.port
.....

def launch():
core.openflow.addListenerByName("PacketIn", handle_PacketIn)
print ’[ATTACK] Crash Application’
sys.exit(0)

Figure 6: POX crash source code

Figure 7: POX crash result

Figure 8: Beacon crash result

Figure 9: Beacon memory leakage result

design to provide a degree of resilience to such deviant network
application behavior.

2.2 Why Are NOSs NOT Robust?
R1. No Separation of Applications from Network OS. Perhaps
the most critical problem affecting existing NOSs is that they run
applications in the same privilege zone where a NOS resides. For
example, in the case of NOX, it runs a network application as a
function invoked from the main module of NOX [14]. We as-
sume that the reasoning behind this design choice is to improve
performance by reducing potential overhead due to increased inter-
process communication (IPC) and additional I/O between the main
module and the application.

However, this design choice poses serious problems when cou-
pled with misbehaving applications. If a network application crashes,
it will also kill a NOS. Of course, one could pass the burden to
skilled programmers and static program analysis methods to en-
sure correctness. In practice, it is very hard to guarantee that an
application is flawless across all inputs and execution scenarios.

Runtime enforcement of application robustness and security con-
straints, simplifies SDN application development and fosters greater
SDN adoption through third-party SDN application stores [16] that
are modeled after popular mobile application stores. This motivates
the need for rethinking NOS design with a critical eye toward pro-
tection from buggy and untrusted network applications.

R2. No Application Resource Control. SDN applications can in-
terfere with NOS and other co-resident applications in other ways
besides crashing the controller. For example, they may consume
more than their fair share of system resources (memory or CPU)
such that other applications and the network controller cannot con-
duct necessary operations.

This problem stems from the lack of resource controls for each
application. Traditional operating systems have mechanisms to
limit the resource usage and provide fairness across applications
(e.g., schedulers, ulimit, etc.) However, most existing NOSs do not
provide such capabilities and allow a network application to obtain
resources without constraints, thereby undermining the robustness
of the NOS.

R3. Monolithic NOSs–A Case for micro-NOS. If we consider the
main module of a NOS as the kernel of operating system, we can

then view the design of most NOSs as monolithic architectures that
contain the most important services running as an agglomerated
kernel with all privileges. Most NOSs provide diverse services,
such as internal storage and event handling [17], to help developers
easily implement network applications. Usually, these services are
integrated as functions into the main module of a NOS.

This sort of monolithic architecture can support high-performance
at the cost of added complexity. However, as NOSs evolve, they
become burdened with more and more functionality for legacy ap-
plication support and to ease development of new network applica-
tions. For example, the latest version of Floodlight provides much
more functionality than first generation of the NOX controller. We
make the case that the design of NOSs need to be fundamentally
reconsidered with first principles from the operating systems com-
munity. Specifically, we argue for efficient containment of appli-
cations, improved monitoring of resource utilization for policy en-
forcement and an effective permission structure.

2.3 Why Are NOSs NOT Secure?
R1. No Authentication. Most contemporary NOSs assume that
network applications are trustworthy and do not implement any
mechanisms to validate the authenticity of their authorship. For
example, in the case of commodity operating systems applications
have the ability to be signed, and digital certificate validation is
used to notify users when they attempt to run applications that fail
validation. Similarly, ROSEMARY incorporates a process for au-
thenticating application developers. Here, we rely on recent re-
search efforts on a new secure NOS that supports digital applica-
tion authentication [27].

R2. No Access Control. Traditional operating systems (OSs), such
as Linux and Windows, do not allow an application to directly ac-
cess resources managed by the OS. When an application needs ac-
cess to an OS resource, it requests permission from the operating
system (i.e., kernel layer). However, in the case of a NOS, as shown
in the example above, a network application can easily access a re-
source managed by a NOS. This problem stems from the lack of
access control methods for system resources.

2.4 What About Performance?
Since a NOS needs to handle many network requests from mul-

tiple data planes, most NOSs are designed to treat as many network



requests as possible [11, 14]. In our design, to implement a more
robust and secure NOS, we must ensure that the added costs of
these extensions do not introduce overheads that are prohibitive.

3. SYSTEM DESIGN

3.1 Design Considerations and Philosophy
Considering the issues described in Section 2, we summarize the

guiding principles that inform the design of ROSEMARY as follows.

• network applications must be separated from the trusted com-
puting base of the NOS

• resources for each network application needs to be monitored
and controlled

• shared modules of NOSs need to be compartmentalized

• network applications must explicitly possess capabilities to
access resource of a NOS

• the system must be adjustable to balance the need for robust-
ness safeguards and the need for higher performance.

In this section, we present the design of a new NOS, ROSE-
MARY, that follows from these principles. The overall architecture
of ROSEMARY is illustrated in Figure 10. Technically, ROSEMARY
is an application program running on a generic operating system
(e.g., Linux), much like other NOSs.

ROSEMARY employs a specialized application containment ar-
chitecture that is inspired by prior work on microkernels [1], and
exokernels [9]. These architectures sought to enable increased se-
curity and stability by reducing the amount of code running in ker-
nel mode1. Exokernels seek to separate protection from manage-
ment and they do so by using “secure bindings” that reduce the
shared portions of OS kernels and implementing “resource revo-
cation” protocols. This approach minimizes the running overhead
of an application and reduces hardware abstraction by moving ab-
stractions into untrusted user-space libraries, allowing application
visibility into low-level resource information.

We believe that a robust and secure SDN controller can bene-
fit from several of these ideas. Ê First, a NOS needs to provide a
clear view of the data planes to applications: the abstraction of a
NOS should be minimal. Ë Second, applications and libraries can
be buggy. Hence, important modules for a NOS should be com-
partmentalized to maximize the reliability of a network operating
system. Ì Third, each application has its own purpose, and thus
each application requires specialized functions and libraries. Í Fi-
nally, a NOS needs to be minimal and lightweight to guarantee that
it can handle large numbers of network requests with low latency.

3.2 System Architecture
As illustrated in Figure 10, ROSEMARY consists of four main

components: (i) a data abstraction layer (DAL), (ii) the ROSE-
MARY kernel, (iii) system libraries, and (iv) a resource monitor.
DAL encapsulates underlying hardware devices (i.e., network de-
vices) and forwards their requests to the upper layer (i.e., ROSE-
MARY kernel). A key objective of DAL is to marshal requests from

1A concept is tolerated inside the microkernel only if moving it out-
side the kernel, i.e., permitting competing implementations, would
prevent the implementation of the system’s required functionality.
– Liedtke’s minimality principle

diverse network devices. For example, while OpenFlow is the dom-
inant SDN interface between the data plane and the control plane,
it is conceivable that future controllers would want to support a di-
verse set of SDN protocols (e.g., XMPP [28], DevoFlow [7]) in an
application-agnostic manner.

The ROSEMARY kernel provides basic necessary services for
network applications, such as resource control, security manage-
ment, and system logging. They are basic services to operate net-
work applications, and we design this component as thinly as pos-
sible to expose a clear view of the data plane to an application.
ROSEMARY provides diverse libraries for applications, and each
application can choose necessary libraries for its operations. When
it selects libraries, each application is required to solicit permission
from ROSEMARY kernel. The resource monitor (RM) is used to
track the respective resource utilization of running applications and
terminate misbehaving applications.

The components described here will be used in addressing the
aforementioned design issues. Below, we discuss in detail how
each issue is addressed with specific component(s).

1) Separating Applications from a Network OS Kernel. As
we presented in Section 2, one of the primary reasons behind the
fragility of NOSs is their tight coupling with applications. To ad-
dress this issue, we need to have a clear separation between appli-
cations and the NOS. A simple means to ensure such isolation is
to spawn applications as independent processes. In ROSEMARY,
each new network application will be invoked as a new process,
which connects to the ROSEMARY kernel process instance through
a generic IPC method.

Imagine a scenario where an application periodically requests
several services from ROSEMARY (e.g., network topology infor-
mation, switch statistics). If we provide each of these services only
through an IPC channel, the overhead caused by such communica-
tion could be considerable. To mitigate such overhead, we let an
application use libraries provided by ROSEMARY to directly com-
municate over the network. This design is inspired by the Exok-
ernel [9]. For example, if an application wants to access a data
structure, it can attach itself to the storage library as shown in Fig-
ure 10. Of course, each application is required to obtain the specific
capabilities prior to using the library.

2) Compartmentalizing Network OS Kernel Modules. The no-
tion of privilege separation needs to be considered not only be-
tween the application and a NOS instance, but also in the design
of the NOS itself. To the best of our knowledge, leading NOSs
(e.g., Floodlight, NOX, and POX) have all implemented necessary
functions in a single protection zone. We refer to such a single-
protection-zone NOS as a monolithic kernel architecture.

While a case could be made that the monolithic architecture
improves performance by minimizing communications across pro-
tection zones (IPC), the inherent complexity of such architectures
can make reasoning about its security and isolation challenging.
The first generation of NOSs (e.g., NOX classic version [14]) only
supported elemental functionality – receive flow requests from the
data plane, deliver them to applications, and enforce flow rules
to the data planes – to make their design lightweight and simple.
However, this is not so true anymore. Current NOSs are bundled
with many component libraries to simplify application develop-
ment. For example, Floodlight provides network status informa-
tion, and an application developer can simply query this informa-
tion from Floodlight instead of reimplementing this logic.

Adding complexity to any system inherently increases its vul-
nerability to failures and misbehavior. A NOS that conducts the



Device Abstraction Layer (DAL)

OpenFlow 
Switch Middlebox Network 

Switch
Network
Device

OpenFlow SNMP XMPP Network Protocol

System Log ManagerSecurity 
Manager

U-App 1

Lib 1 Lib 2 Lib 3

Resource
Monitor

Resource Manager

K-App 1

Lib 1 Lib 3
Rosemary Kernel

U-App n

Lib 1 Lib 3 Lib 4

- Library Samples -
1. Scheduler
2. Internal Storage
3. I/O Manager
4. IPC Manager

K-App n
Lib 1 Lib 2

U-App : User Application
K-App: Kernel Application
Lib: Library

App Zone App Zone

Figure 10: Overall architecture of ROSEMARY comprising of four key components: (i) a data abstraction layer (DAL), (ii) the
ROSEMARY kernel, (iii) system libraries, and (iv) a resource monitor. ROSEMARY provides diverse libraries for applications, and
each application can choose necessary applications for its operations. Applications may be run in user-mode for robustness or
kernel-mode for maximal performance.

mission-critical operation of managing networks should be designed
to be unsusceptible to such calamities.

To improve controller resilience, we separate services in the ROSE-
MARY kernel into different pieces (i.e., processes), making it anal-
ogous to a microkernel architecture. We call this design a micro-
NOS. A NOS with this architecture has several advantages over a
NOS using the monolithic architecture. First, it makes a network
operating system lightweight by enabling on-demand invocation of
services. For example, if a NOS only needs to support an appli-
cation for simple network switching, it simply needs to distribute
data plane events to the application; thus it is not necessary to run
other network services.

This design increases the robustness of a NOS, because it only
runs necessary services. Second, services in the ROSEMARY kernel
communicate each other through an IPC channel, and the implica-
tion is that if a service crashes, other services are immune to this
crash.

3) Controlling Application Resource Utilization. Although net-
work applications are detached from the core of the ROSEMARY
network operating system and cannot crash it, it is possible that
a buggy or a malicious network application can interfere with the
operation of co-resident applications. As shown in Section 2, an
application that keeps allocating memory can consume all of the
available memory in a host, thereby affecting other applications.

To mitigate this effect, we need to differentiate each application’s
working space and limit resources that each network application
can use, much like a generic operating system does. ROSEMARY
also provides similar functionality to control the resource usage of
each network application through its resource manager (RM) com-
ponent. The vantage point of the RM provides unique ability to
control diverse resources used by SDN applications, but here we
focus on critical system resources that are tightly coupled with the
robustness of a network operating system and co-resident applica-
tions. The resources that ROSEMARY currently considers include
the following: (i) CPU, (ii) memory, and (iii) file descriptor.

The algorithm to control the resources is presented in Figure 11
(right). The maximum resources assigned to each application are
managed by a table. This table, illustrated through the resource
table in Figure 11, maintains two values for each resource item:
(i) a hard limit and (ii) a soft limit. The hard limit specifies that

an application cannot obtain more resource than this value. For
example, if a hard limit value for the memory item is 2 GB, then
the application is terminated if it attempts to allocate more than 2
GB of memory. The soft limit defines a value that each application
may pass but is not recommended. Violations of the soft limit result
in an alert that is passed back to the application and reported to the
network operator.

Resource manager

- resource table -

Memory: hard limit (2G), soft limit (1G)
CPU: hard limit (100%), soft limit (80%)
File Descriptor: hard limit (1024), soft limit (512)
Network Usage: hard limit (1G/s), soft limit (800M/s)

Application

monitoring 

> soft limit

> hard limit

start

WARNING
(issue an alert)

ERROR
(no more allocation 

or 
kill an app)

Figure 11: Application resource monitoring and control

4) Providing Access Control and Authentication. The aforemen-
tioned design choices are primarily intended to improve system ro-
bustness; however, we still need to address the security concerns
described in Section 2. For example, a malicious application may
access internal data structures and modify them without restriction,
thereby confusing other network applications.

We address this issue by employing a sandbox approach, which
we have named App Zone. Its detailed architecture is presented in
Figure 12, and it essentially runs an application within a confined
environment to monitor and control the application’s operations.
When an application makes privileged system calls (e.g., spawns
processes or accesses internal storage modules), such operations
are interposed by our management module which we call the sys-
tem call access check module. This enables the operator to control
the set of operations that may be performed by applications.

In addition, App Zone examines whether this application is au-
thorized or not by investigating its signed key (application autho-
rization module). ROSEMARY provides a public key, and all appli-
cation developers are required to sign their applications with this
key. Such an approach has also been adopted by other related work



App 
Zone

system call access check module

App

Lib1 Lib2

application 
authorization module

flow rule enforcement 
module

App

Figure 12: Internal architecture of Application Zone

[26]. Besides these issues, App Zone monitors flow rule enforce-
ment operations initiated by an application to investigate whether
there is any abnormal behavior. For example, if an application tries
to enforce too many flow rules that cannot be inserted into the data
plane, its operation is considered abnormal. In this case, the flow
rule enforcement module monitors this operation, and reports if it
finds these abnormal behaviors. In the current state, we have a
threshold-based detector, which generates an alert when it finds an
application that tries to deliver more flow rules than a predefined
threshold value. This threshold value will be determined based on
the capability of the data plane at boot time. Specifically, this mod-
ule checks the maximum number of flow rule entries for each data
plane, and it sets the corresponding threshold value to be a certain
percentage of this number (currently, we use 90%).
5) Monitoring the Network OS. When ROSEMARY is invoked, its
core services are monitored by an external monitoring process (Re-
source Monitor in Figure 10). If this monitor process detects any
anomalous behaviors in ROSEMARY (e.g., service crash or memory
leakage), it will react to them are summarized in Table 1.

Behavior Reaction
Service crash restart the crashed service
Multiple services
crash

restart ROSEMARY

Memory leakage of a
ROSEMARY service is
detected

restart a service causing memory leakage

Kernel App crash restart ROSEMARY services (if necessary),
and restart the app as a user app

Table 1: Reaction strategies against anomalous behaviors of
ROSEMARY

When the monitor process detects any anomalous behaviors, it
also records them into a logging system. This record is useful for
further analysis of anomalous behaviors as well as for improving
and hardening ROSEMARY.

6) Safely Restarting the Network OS. When the Resource Mon-
itor process detects serious problems (e.g., crash of critical ser-
vices) it immediately restarts ROSEMARY services. At this time,
ROSEMARY decides whether or not it must restarts all services and
network applications. Since sometimes it is not easy to discover
why ROSEMARY crashed (i.e., which service or application caused
ROSEMARY to crash), we need to carefully restart each service. In-

spired by the Safe Mode booting of the Windows operating system
that boots up only the basic and necessary services of Windows, we
have designed a safe mode booting process for ROSEMARY that is
similar in spirit.

When the Resource Monitor decides to boot up ROSEMARY in
Safe Mode, it only runs the basic services and network applica-
tions that are defined by the administrator. At first, it invokes basic
ROSEMARY kernel services: resource manager, system log man-
ager, and security manager. Then, it runs network applications
in the order specified by the administrator. Since it is very pos-
sible that a single misbehaving application is the main cause of
the crash, we need to run only necessary network applications at
the boot stage. Once this initial boot is complete, if there are any
kernel-applications running, it changes their modes to be user-level
applications in order to guarantee robustness. After booting up nec-
essary services and applications, the Resource Monitor analyzes
log files to investigate the reason behind the problem. If the cause
of the crash can be attributed to a single application, it reports this
log indicator to the administrator.

7) Performance Considerations. Separation of applications from
a NOS instance is good for robustness and security, but it imposes
additional latency overhead due to added IPC. To minimize the
overhead and guarantee required performance, we employ two mech-
anisms: (i) request pipelining and (ii) trusted execution.

Request Pipelining - Pipelining is a well-known technique that
splits a task into multiple subtasks and executes them with as many
execution units as subtasks. Though it adds latency overhead to
pass data between subtasks, it can greatly improve throughput. ROSE-
MARY overlaps the subtask split for pipelining with the kernel/application
separation for robustness, named request pipelining, as shown in
Figure 13. As such, from the perspective of pipelining, the ker-
nel and applications are pipelined subtasks and their communica-
tion is data transfer between subtasks. When ROSEMARY receives
packets from switches and routers, the kernel thread processes the
controller protocol (e.g., OpenFlow), prioritizes the packets, passes
them to applications through an IPC (inter-process communication)
primitive, and completes the first stage of request pipelining. The
IPC primitive, a domain socket in the case of the current implemen-
tation, works both as a pipelining latch for throughput improvement
and as a boundary of separated execution between the kernel and
application for robustness. Receiving the packets through the IPC
primitive, the application that will process the packets starts the
second stage of request pipelining. In Section 5, we show how
request pipelining yields high packet processing throughput while
also providing robustness in ROSEMARY.

For further performance improvement, ROSEMARY carefully pins
down the kernel process and application processes onto CPU cores
so that communication between pipelined stages is assigned to ad-
jacent CPU cores for lower CPU interconnect overhead. In ad-
dition, interrupt signals from network cards are configured to be
routed to the CPU cores that are running the kernel process in or-
der to eliminate possible interrupt rerouting among cores. Lock-
free data structures, such as a lock-free FIFO for queuing packets,
are heavily used to avoid locking overhead as well.

Trusted Execution - While request pipelining provides high through-
put and robustness, ROSEMARY offers another application execu-
tion mode for latency-critical applications, named trusted execu-
tion. At the discretion of system operators, an application can be in-
tegrated with the kernel and run in the kernel process; we call this a
Kernel-application). The application should be seriously sanitized,
because this execution mode compromises robustness for latency



Original Task Kernel + Application

Subtask 1 Pipeline 
Latch Subtask 2 Kernel Interface Application

Kernel Task Pipelining 
Interface

Application 
Task

Request Pipelining

Pipelining Kernel/App Separation

Figure 13: Overall approach of request pipelining. IPC is used
as a pipelining latch for throughput improvement and as a
boundary of separated execution between the kernel and ap-
plication.

Rosemary

Firewall AppCrash App

Host B OpenFlow Switch Host C

Controller

Memory 
Leak App

Data 
Access App

Host A

Figure 14: Test environment for evaluating the robustness and
security of ROSEMARY

reduction. If the application crashes and kills a kernel service, the
Resource Monitor restarts a kernel service promptly but does not
allow the application to restart in trusted execution mode. Instead,
the application runs in a normal mode (i.e., User-Application) with
request pipelining.

4. IMPLEMENTATION
We have implemented a prototype of ROSEMARY to evaluate its

robustness, security, and performance. We implement the proto-
type as a C application consisting of approximately 20,000 lines
of code. ROSEMARY libraries are also written in C. The system
currently supports both the OpenFlow 1.0 specification [12] and
the OpenFlow 1.3 specification [13] in the data abstraction layer
(DAL), and we are planning to support the XMPP protocol [37] in
the near future.

We employ standard pthread libraries (i.e., POSIX pthread [4])
to implement the basic kernel services and applications to increase
the portability. In addition, each network application can run mul-
tiple working threads at the same time to increase its performance,
and the thread package (i.e., pthread) has also been used in this
case.

In its current stage, APIs for developing an application (both user
application and kernel application) are written in C, and thus net-
work applications are also written in C. We are currently develop-
ing APIs in additional languages, such as Python and Java, which
will provide developers with additional options. We have also im-
plemented a tool to generate both types of applications automati-
cally. Note that a network application developer need only imple-
ment an application once, and it can be instantiated as either a user
or kernel application.

10 G network interface

1 G network interface

Host A Host B 

PACKET_IN

CPU: Intel i7
4 cores, 3.7GHz

2 CPU: Intel Xeon
both 8 cores, 2.7GHz

MEM: 64 GBMEM: 8 GB

FloodLight Rosemary

NOX 

cbench

Beacon

Figure 15: Test environment for measuring throughput of each
NOS

5. EVALUATION

5.1 Evaluation Environment
Robustness and Security Testing Environment. Figure 14 presents
the evaluation environment used to test the robustness and the secu-
rity of ROSEMARY. In this environment, we run three applications
that we have tested in Section 2. The first application - Crash App
- will simply call an exit function to kill itself. The second applica-
tion - Memory Leak App - will allocate memory objects continu-
ously. The third application - Data Access App - will try to access
an internal data structure, which is not allowed. In addition, we run
a normal network security application - Firewall App, which sim-
ply blocks malicious packets from Host A - to investigate whether
this application is affected by other applications.
Performance Testing Environment. To measure and compare the
throughput of each NOS, we use the test environment shown in
Figure 15. Here, we have two independent hosts: (i) a client gener-
ating data plane requests and (ii) a server operating each NOS. The
hardware specifications of each host are illustrated in Figure 15.
Note that each host is connected with two network interfaces: (i)
1 Gbps and (ii) 10 Gbps NICs, respectively. We turn on each net-
work interface one at a time to test four different NOSs - Floodlight
[11], NOX [14], Beacon [10], and ROSEMARY). For each software,
we have installed their most recent version2.

In addition, to minimize any unintended overhead, we run a sin-
gle NOS at a time, and turn off any functions that may cause ad-
ditional overhead (e.g., system logging) for each application. A
simple learning switch application is used for this test, because all
NOSs provide a similar application by default. For generating data
plane requests, we use the cbench tool [25], because it is widely
used in measuring the throughput of NOSs.

5.2 Robustness Test
We first present the test result for ROSEMARY, when it runs an

application that simply calls an exit function (i.e., Crash App in
Figure 14)). As shown in Section 2, Floodlight, POX and Beacon
are terminated along with similar test applications. However, since
core parts of ROSEMARY are clearly separated from applications,
they are not affected by this crash and other applications continue
to run. This result is presented in Figure 16, which shows that a
firewall app can block attack trials from Host A whose IP is 10.0.0.1
(Figure 16 (red rectangle in left bottom)), even if the Crash App has
been terminated (Figure 16 (right bottom)). In addition, we can see

2Specifically, in the case of NOX, we have used the newly devel-
oped multi-threaded NOX and NOT the classic version.



Figure 16: Application crash test for ROSEMARY. A firewall
app will block attack trials (left) although the Crash App ter-
minates with a System.exit() (right).

0	  	  

500	  	  

1000	  	  

1500	  	  

2000	  	  

2500	  	  

1	   2	   3	   4	   5	   6	   7	   8	   9	   10	   11	   12	   13	   14	   15	   16	   17	   18	   19	   20	   21	   22	   23	   24	   25	   26	   27	   28	   29	  

M
em

or
y	  
U
sa
ge
	  (i
n	  
M
Bs
)	  

Time	  (seconds) 

Rosemary	   Floodlight	  

PACKET_IN	  event	  start! 

Rosemary/Floodlight	  start! Rosemary	  APP	  Memory	  Hard	  Limit 

JVM	  MAX	  Heap	  Size 

OutOf	  Memory	  ERROR 

Figure 17: Memory leakage test for Floodlight and ROSEMARY.
Floodlight crashes with an out-of-memory error while ROSE-
MARY limits memory allocation to 1.2 GB.

that Host B (a benign user whose IP address is 10.0.0.2) is able to
contact Host C without any problem (Figure 16 top-right).

In addition, we run an application that keeps allocating memory
objects (i.e., our Memory-Leak App) to verify how ROSEMARY
handles this condition. We also run the same application on Flood-
light to clearly compare the reaction of each NOS, and the result
is shown in Figure 17. When an application starts its operation (at
time 14), we can easily observe that the memory footprint of each
NOS is increasing. Here, since we set a hard limit of the memory
usage for the ROSEMARY application at 1.2 GB, the test applica-
tion running on ROSEMARY cannot allocate more than 1.2 GB of
memory (at time 19). However, the memory footprint of the appli-
cation running on Floodlight keeps continuously increasing until
it reaches its maximum allocation size (at time 21) at which point
Floodlight issues an out-of-memory error alert.

5.3 Security Test
We repeat the security experiment from Section 2 to test the se-

curity of ROSEMARY. We created an application (i.e., Data-Access
App) that accesses and modifies an internal data structure. Unlike
the case of Floodlight, ROSEMARY checks whether an application
has a right to access or modify a data structure; thus this application
fails in accessing the data structure, as it cannot obtain the neces-
sary capability. Figure18 shows a screen shot in which the Data-
Access App tries to modify a data structure inside ROSEMARY,
which is not allowed. We can clearly see that the access attempt
has been rejected by ROSEMARY.

Figure 18: Data-Access App tries to modify a privileged data
structure inside ROSEMARY, which is not allowed. This access
attempt is rejected by ROSEMARY.

	  -‐	  	  

	  200,000	  	  

	  400,000	  	  

	  600,000	  	  

	  800,000	  	  

	  1,000,000	  	  

	  1,200,000	  	  

	  1,400,000	  	  

	  1,600,000	  	  

1	   4	   8	   16	   32	   64	   128	   256	   512	  

Th
ro
ug
hp

ut
	  (fl

ow
s/
se
co
nd

)	  

number	  of	  switches	  

Rosemary	  (K-‐App)	   NOX	   Floodlight	   Rosemary	  (U-‐App)	   Beacon	  

Figure 19: Throughput comparison between ROSEMARY and
other NOSs (1G interface, varying the number of switches, and
the number of threads is 8)

5.4 Performance Test
Throughput. We measure the overall throughput of ROSEMARY,
and compare it with other NOSs - NOX [14], Beacon [10], and
Floodlight. Here, we have optimized each NOS based on its recom-
mendations. In the case of Beacon [10], we have followed the in-
structions described in a recent work [10]. Floodlight also provides
instructions for benchmark [24]. Although NOX does not provide
such an instruction, we use all recommended libraries (e.g., boost
library [3]) to improve its performance. In addition, in the case of
ROSEMARY, we separately measure two cases: a test application is
implemented as (i) User-Application (denoted as ROSEMARY U-
App) and (ii) Kernel-Application (denoted as ROSEMARY K-App).

Figure 19 and Figure 20 show that the overall throughput of each
NOS when the data plane (i.e., Host A in Figure 15) and the control
plane (Host B in Figure 15) are connected through a 1G network
interface. Figure 19 presents a case in which we vary the num-
ber of connected switches (i.e., data planes) when the number of
working threads for each network operating system is fixed at 8.
In this case we can clearly observe that ROSEMARY (both U-App
and K-App) and Beacon nearly saturate the hardware limitation of
network bandwidth (i.e., 1 GB). In the case of NOX, it also satu-
rates the hardware limitation when it is connected to more than 4
switches. However, the throughput of Floodlight is relatively low
compared with others.

Next, we vary the number of working threads from 1 to 16 to un-
derstand how the performance of each NOS depends on the number
of working threads, and the results are presented in Figure 20. In
this case, we set the number of the connected switches as 64. Simi-
lar to the result of Figure 19, ROSEMARY (both U-App and K-App)
and Beacon nearly hit the hardware limitation, even if they only
have a small number of working threads. NOX also saturates the
hardware limitation, but it requires more than 5 working threads.
Floodlight shows much worse performance than other NOSs, and



	  -‐	  	  

	  200,000	  	  

	  400,000	  	  

	  600,000	  	  

	  800,000	  	  

	  1,000,000	  	  

	  1,200,000	  	  

	  1,400,000	  	  

	  1,600,000	  	  

1	   2	   3	   4	   5	   6	   7	   8	   9	   10	   11	   12	   13	   14	   15	   16	  

Th
ro
ug
hp

ut
	  (fl

ow
s/
se
co
nd

)	  

number	  of	  threads	  

Roemary	  (K-‐App)	   NOX	   Floodlight	   Rosemary	  (U-‐App)	   Beacon	  

Figure 20: Throughput comparison between ROSEMARY and
other NOSs (1G interface, varying the number of threads, and
the number of switches is 64)

	  -‐	  	  

	  1,000,000	  	  

	  2,000,000	  	  

	  3,000,000	  	  

	  4,000,000	  	  

	  5,000,000	  	  

	  6,000,000	  	  

	  7,000,000	  	  

	  8,000,000	  	  

	  9,000,000	  	  

	  10,000,000	  	  

1	   4	   8	   16	   32	   64	   128	   256	   512	  

Th
ro
ug
hp

ut
	  (fl

ow
s/
se
co
nd

)	  

number	  of	  switches	  

Rosemary	  (K-‐App)	   NOX	   Floodlight	   Rosemary	  (U-‐App)	   Beacon	  

Figure 21: Throughput comparison between ROSEMARY and
other NOSs (10G interface, varying the number of switches,
and the number of threads is 8)

it reaches the saturation value when it has more than 15 working
threads.

We changed the network interface between the data plane and
the control plane to a 10G interface, and we repeated the same tests
in order to discover the maximum throughput of each NOS. Fig-
ure 21 presents the results of throughput when we vary the number
of switches while fixing the number of working threads at 8. In
this case, we can clearly find that ROSEMARY outperforms most of
the the other NOSs. For example, ROSEMARY (K-App) shows 8
to 25 times better performance than Floodlight, and 3 to 14 times
better performance than NOX. Although we only consider ROSE-
MARY (U-App), it also shows 5 to 22 times better performance than
Floodlight, and from 2 to 12 times better than NOX.

When we vary the number of working threads with the 10G inter-
face, the test results (in Figure 22) still show that ROSEMARY out-
performs most of the other network operating systems. At this time,
ROSEMARY (K-App) can handle more than 10 million network re-
quests from the data planes. We believe these results show that
ROSEMARY can support a large scale network environment. For
example, recent work in [2] surveys how many new flows will hit
a centralized controller, and its estimation result shows that around
10 million new flows can be issued by a data center in the worst
case. In this case, ROSEMARY can handle this large number of re-
quests and provides capabilities for robustness and the security at
the same time. Beacon outperforms ROSEMARY in some cases -
when there more than 11 working threads– we suspect this is due

	  -‐	  	  

	  2,000,000	  	  

	  4,000,000	  	  

	  6,000,000	  	  

	  8,000,000	  	  

	  10,000,000	  	  

	  12,000,000	  	  

	  14,000,000	  	  

	  16,000,000	  	  

1	   2	   3	   4	   5	   6	   7	   8	   9	   10	   11	   12	   13	   14	   15	   16	  

Th
ro
ug
hp

ut
	  (fl

ow
s/
se
co
nd

)	  

number	  of	  threads	  

Rosemary	  (K-‐App)	   NOX	   Floodlight	   Rosemary	  (U-‐App)	   Beacon	  

Figure 22: Throughput comparison between ROSEMARY and
other NOSs (10G interface, varying the number of threads, and
the number of switches is 64)

to of ROSEMARY’s CPU pinning overhead. However, in our test,
we find that CPU pinning overhead is nearly ignorable, and thus
we think that the performance difference between ROSEMARY and
Beacon is caused by the scheduling method of each application.
We plan to investigate this issue more deeply in future work.

6. LIMITATIONS AND DISCUSSION
Although our work considers diverse issues concerning the secu-

rity and robustness of NOSs, there remain lingering challenges that
are attractive avenues for future research.

First, ROSEMARY primarily focuses on potential threats from a
buggy or malicious application, but does not address threats from
vulnerabilities in the host operating system. For example, if a mal-
ware infects the host running a NOS, it can abuse the NOS quite
easily. We believe that such threats would be addressed through the
use of auxiliary host and network intrusion monitoring systems, as
well as by following best practices in host and network manage-
ment, e.g., regular patch management and isolating the manage-
ment interface of the network controller to selected trusted internal
hosts.

Second, if a remote attacker mounts a control flow saturation
attack against ROSEMARY [33], the impact of flow request floods
may degrade the SDN controller and application performance. Here,
the adversary attacks the SDN stack by crafting packet streams to
saturate the data plane to control plane communications. This kind
of attack is beyond the scope of our current work, but is addressed
by systems such as [34]. These SDN extensions are complementary
and could be integrated into ROSEMARY in future work.

Third, ROSEMARY kernel-mode applications provide improved
performance at the cost of robustness and security. If an operator
strictly requires robustness and security from the NOS, he or she
may run all SDN applications as user applications. Although the
user application gives up some performance (around 20 - 30% in
10G, but interestingly close to 0% in 1G) for security, we believe
such trade-offs may well be worth the cost of resilience. We will
investigate opportunities to further narrow this gap in future work,
such as reducing the application scheduling overhead.

7. RELATED WORK
Our work builds on a rich body of prior work on designing net-

work operating systems [14, 11, 30, 5, 15, 18, 35, 22, 10, 8]. These
systems have largely focused on improving the scalability of the
control plane[14, 11, 30, 10] or efficiently distributing control plane



functionality across different nodes and locations [18, 5, 35, 22, 8,
15] and provide many useful insights on devising more advanced
network operating systems. While the contributions of these efforts
in evangelizing SDN technology cannot be understated, we believe
that robustness and security issues for NOSs have been overlooked.
Our work aims to fill this hole by exploring complementary meth-
ods that improve the robustness and security of NOSs while pro-
viding performance that is comparable to leading controllers.

The problem of malicious contoller applications attacking the
data plane was first raised by Porras et al. [29]. They address this
problem by designing a security enforcement kernel for SDN con-
trollers whose primary objective is to perform rule conflict detec-
tion and resolution. An extended version of the system [26] pro-
vides support for digital certificate validation of applications much
like ROSEMARY. While these efforts have focused on protecting
the data plane from malicious applications, our central objective is
to improve the resilience of the control plane to both buggy and
malicious applications.

Several recent studies have investigated security issues in SDNs
[19, 33, 32]. Shin et al., discuss techniques to protect the con-
trol plane against control flow saturation attacks[33]. Kreutz et
al. [19] and Scott-Hayward et al. [32] survey possible SDN secu-
rity issues. These efforts inform and motivate the development of
ROSEMARY. In addition, there have been parallel research efforts
that have explored applying generic operating system design prin-
ciples toward the design of network operating systems. Matthew
et al. have proposed a new network operating system that borrows
several ideas from generic operating system design [21]. Specifi-
cally, they introduce a file system concept to the network operating
system which they implemented through a prototype system. How-
ever, their work does not consider robustness and security issues in
NOS design. Wen et al., discuss a secure controller platform [36]
that is primarily focused on implementing access control methods
in NOS. ROSEMARY differs from their system in that it tackles di-
verse challenges (i.e., robustness, security, and performance) and
illustrates how these challenges could be addressed in tandem.

Finally, another approach to addressing robustness issues is through
formal methods. Canini et al.[6] use model-checking to holistically
explore the state space of SDN networks and detect when they
reach inconsistent network states. While model checking works
well for small control programs, it is vulnerable to state explosion
on large systems. Scott et al. [31], describe a new technique called
restrospective causal inference for post-facto analysis of failures.
We believe that both of these techniques are complementary to our
design of a robust and secure micro-controller.

8. CONCLUSION
Balancing the seemingly irreconciliable goals of robustness, se-

curity, and performance represents a fundamental challenge in con-
temporary network controller design. We view this as an oppor-
tunity to advance network security research and realize our vision
through the design of a new NOS called ROSEMARY.

ROSEMARY adopts a practical and timely approach to address-
ing this challenge through careful redesign of a NOS comprising
three integral features: (i) context separation, (ii) resource uti-
lization monitoring, and (iii) the micro-NOS permissions structure
which limits the library functionality that a network application is
allowed to access. In addition, ROSEMARY also provides competi-
tive performance, while supporting its robustness and security fea-
tures. Through our in-depth evaluation, we confirm that our system
can effectively handle a large volume of network requests (nearly
saturating hardware limitation in some cases) while ensuring the

robustness of the OpenFlow stack in the presence of faulty or ma-
licious network applications.

9. ACKNOWLEDGMENTS
We thank the anonymous reviewers for their helpful and insight-

ful comments. In this work, Seungwon Shin was supported by the
ICT R&D program of MSIP/IITP, Korea (2014-044-072-003, De-
velopment of Cyber Quarantine System using SDN Techniques)
project, and researchers at Atto Research Korea were supported by
the ICT R&D program of MSIP/IITP, Korea (10045253, The devel-
opment of SDN/OpenFlow-based Enterprise Network Controller
Technology) project. Additional funding for researchers at SRI
was provided by the MRC2 Project that is sponsored by the De-
fense Advanced Research Projects Agency (DARPA) and the Air
Force Research Laboratory (AFRL), under contract FA8750-11-C-
0249. The views, opinions, and/or findings contained in this paper
are those of the authors and should not be interpreted as represent-
ing the official views or policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the Department of
Defense. It is approved for public release, distribution unlimited.

10. REFERENCES
[1] ACCETTA, M., BARON, R., BOLOSKY, W., GOLUB, D.,

RASHID, R., TEVANIAN, A., AND YOUNG, M. Mach: A
new kernel foundation for unix development. In USENIX
Conference (1986).

[2] BENSON, T., AKELLA, A., AND MALTZ, D. A. Network
traffic characteristics of data centers in the wild. In
Proceedings of the 10th ACM SIGCOMM Conference on
Internet Measurement (2010).

[3] BOOST.ORG. Boost c++ libraries.
http://www.boost.org/.

[4] BUTENHOF, D. R. Addison-Wesley, 1997.
[5] CAI, Z., COX, A. L., AND NG, T. S. E. Maestro: A system

for scalable openflow control. In Rice University Technical
Document (2010).

[6] CANINI, M., VENZANO, D., PEREŜÍNI, P., KOSTIĆ, D.,
AND REXFORD, J. A NICE Way to Test OpenFlow
Applications. In Usenix Symposium on Networked Systems
Design and Implementation (April 2012).

[7] CURTIS, A., MOGUL, J., TOURRILHES, J.,
YALAGANDULA, P., SHARMA, P., AND BANERJEE, S.
Devoflow: Scaling flow management for high-performance
networks. In Proceedings of ACM SIGCOMM (2011).

[8] DIXIT, A., HAO, F., MUKHERJEE, S., LAKSHMAN, T.,
AND KOMPELLA, R. Towards an elastic distributed sdn
controller. In Proceedings of the Second ACM SIGCOMM
Workshop on Hot Topics in Software Defined Networking
(2013).

[9] ENGLER, D. R., KAASHOEK, M. F., AND O’TOOLE, JR.,
J. Exokernel: An operating system architecture for
application-level resource management. In Proceedings of
the Fifteenth ACM Symposium on Operating Systems
Principles (1995).

[10] ERICKSON, D. The beacon openflow controller. In
Proceedings of the Second ACM SIGCOMM Workshop on
Hot Topics in Software Defined Networking (2013).

[11] FLOODLIGHT. Open sdn controller.
http://floodlight.openflowhub.org/.

[12] FOUNDATION, O. N. Openflow specification 1.0.
https://www.opennetworking.org/images/



stories/downloads/sdn-resources/onf-
specifications/openflow/openflow-spec-
v1.0.0.pdf.

[13] FOUNDATION, O. N. Openflow specification 1.3.
https://www.opennetworking.org/images/
stories/downloads/sdn-resources/onf-
specifications/openflow/openflow-spec-
v1.3.0.pdf.

[14] GUDE, N., KOPONEN, T., PETTIT, J., PFAFF, B., CASADO,
M., MCKEOWN, N., AND SHENKER, S. NOX: Towards an
Operating System for Networks. In Proceedings of ACM
SIGCOMM Computer Communication Review (July 2008).

[15] HASSAS YEGANEH, S., AND GANJALI, Y. Kandoo: A
framework for efficient and scalable offloading of control
applications. In Proceedings of the First Workshop on Hot
Topics in Software Defined Networks (2012).

[16] HP. Hp opens sdn ecosystem.
http://h17007.www1.hp.com/us/en/events/
interop/index.aspx#.UuNbjGSmo6g.

[17] HUB, O. Floodlight architecture.
http://www.openflowhub.org/display/
floodlightcontroller/Architecture.

[18] KOPONEN, T., CASADO, M., GUDE, N., STRIBLING, J.,
POUTIEVSKI, L., ZHU, M., RAMANATHAN, R., IWATA, Y.,
INOUE, H., HAMA, T., AND SHENKER, S. Onix: A
Distributed Control Platform for Large-scale Production
Networks. In The Symposium on Operating Systems Design
and Implementation (OSDI) (2010).

[19] KREUTZ, D., RAMOS, F. M., AND VERISSIMO, P. Towards
secure and dependable software-defined networks. In
Proceedings of the Second ACM SIGCOMM Workshop on
Hot Topics in Software Defined Networking (2013).

[20] MININET. An instant virtual network on your laptop (or
other pc). http://mininet.org/.

[21] MONACO, M., MICHEL, O., AND KELLER, E. Applying
operating system principles to sdn controller design. In
Proceedings of the Twelfth ACM Workshop on Hot Topics in
Networks (2013).

[22] ONLAB.US. Network os.
http://onlab.us/tools.html#os.

[23] OPENDAYLIGHT. Open source network controller.
http://www.opendaylight.org/.

[24] OPENFLOWHUB.ORG. Benchmark configuraion.
http://www.openflowhub.org/display/
floodlightcontroller/Benchmarking+
Configuration.

[25] OPENFLOWHUB.ORG. Cbench.
http://www.openflowhub.org/display/
floodlightcontroller/Cbench+(New).

[26] OPENFLOWSEC.ORG. Se-floodlight. http:
//www.openflowsec.org/Technologies.html.

[27] OPENFLOWSEC.ORG. Secuirng sdn environment.
http://www.openflowsec.org.

[28] PLANET, E. N. Juniper builds sdn controller with xmpp.
http://www.enterprisenetworkingplanet.
com/datacenter/juniper-builds-sdn-
controller-with-xmpp.html.

[29] PORRAS, P., SHIN, S., YEGNESWARAN, V., FONG, M.,
TYSON, M., AND GU, G. A security enforcement kernel for
openflow networks. In Proceedings of the First ACM

SIGCOMM Workshop on Hot Topics in Software Defined
Networking (2012).

[30] POX. Python network controller.
http://www.noxrepo.org/pox/about-pox/.

[31] SCOTT, C., WUNDSAM, A., WHITLOCK, S., OR, A.,
HUANG, E., ZARIFIS, K., AND SHENKER, S. How did we
get into this mess? isolating fault-inducing inputs to sdn
control software. Tech. rep., Technical Report
UCB/EECS-2013-8, EECS Department, University of
California, Berkeley, 2013.

[32] SCOTT-HAYWARD, S., O’CALLAGHAN, G., AND SEZER,
S. Sdn security: A survey. In Future Networks and Services
(SDN4FNS), 2013 IEEE SDN for (2013).

[33] SHIN, S., AND GU, G. Attacking software-defined
networks: A first feasibility study. In Proceedings of the
Second ACM SIGCOMM Workshop on Hot Topics in
Software Defined Networking (2013).

[34] SHIN, S., YEGNESWARAN, V., PORRAS, P., AND GU, G.
Avant-guard: Scalable and vigilant switch flow management
in software-defined networks. In Proceedings of the 2013
ACM SIGSAC Conference on Computer and
Communications Security (2013).

[35] TOOTOONCHIAN, A., AND GANJALI, Y. Hyperflow: A
distributed control plane for openflow. In Proceedings of the
Internet Network Management Workshop/Workshop on
Research on Enterprise Networking (2010).

[36] WEN, X., CHEN, Y., HU, C., SHI, C., AND WANG, Y.
Towards a secure controller platform for openflow
applications. In Proceedings of the Second ACM SIGCOMM
Workshop on Hot Topics in Software Defined Networking
(2013).

[37] XMPP.ORG. Extensible messaging and presence protocol.
http://xmpp.org.


