POSTER: A Path-Cutting Approach to Blocking XSS
Worms in Social Web Networks

Yinzhi Cao
Northwestern University
Evanston, IL

yinzhi.cao@eecs.northwestern.edu

Phillip Porras

SRI International

Menlo Park, CA
phillip.porras@sri.com

ABSTRACT

Worms exploiting JavaScript XSS vulnerabilities rampantly infect
millions of webpages, while drawing the ire of helpless users. To
date, users across all of the popular social networks, including Face-
Book, MySpace, Orkut and Twitters, have been vulnerable to XSS
worms. We propose PathCutter as a new approach to severing the
self-propagation path of JavaScript worms. PathCutter works by
blocking two critical steps in the propagation path of an XSS worm:
(¢) DOM access to different views at the client-side and (¢7) unau-
thorized HTTP request to the server. As a result, although an XSS
vulnerability is successfully exercised at the client, the XSS worm
is prevented from successfully propagating to the would be victim’s
own social network page. PathCutter is effective against all of the
current forms of XSS worms, including those that exploit tradi-
tional XSS, DOM-based XSS, and content sniffing XSS vulnera-
bilities. We demonstrate PathCutter using WordPress and perform
a preliminary evaluation on a proof-of-concept JavaScript Worm.

Categories and Subject Descriptors

D.4.6 [Security and Protection]: Invasive software (e.g., viruses,
worms, Trojan horses); Information flow controls

General Terms

Security

Keywords

Cross site scripting (XSS), JavaScript Worms, Security, Social Net-
work

1. INTRODUCTION

The high degree of connectivity and dynamism observed in mod-
ern social networks enables worms to spread quickly by making un-

solicited transformations to millions of pages. In particular, JavaScript-

based Cross Site Scripting (XSS) worms pose a severe security con-
cern to operators of modern social networks. In October 2005, the
MySpace Samy worm [2] infected over one million users on the
Internet within a span of 20 hours. More recently, outbreaks of
similar worms have infected other major social networks (such as
Renren [4] and Facebook [1]), while garnering significant public
attention.

Copyright is held by the author/owner(s).
CCS’11, October 17-21, 2011, Chicago, Illinois, USA.
ACM 978-1-4503-0948-6/11/10.

Vinod Yegneswaran
SRI International
Menlo Park, CA

vinod@csl.sri.com

Yan Chen
Northwestern University
Evanston, IL
ychen@northwestern.edu

[

%equest to Request to Request to post
change benign change benign comments on the

user's profile user's profile attacker's profile

Web Server]

Attacker's
Profile
(malicious
session)

- Benign User's
Attacker's Profile Benign User's P%ofile
(malicious page (normal >< >< (normal

session) session)

session)

(a) XSS Worm Propagation (b) Cutting off XSS Worm Propagation
Figure 1: PathCutting an XSS Worm Propagation

We propose PathCutter as a new approach to XSS worm preven-

tion to protect modern social networks. The twin goals of PathCut-
ter are to (¢) block the propagation of an XSS worm early, and (i7)
to do so in an exploit agnostic manner. To achieve its objectives,
PathCutter proposes two integral mechanisms: view separation and
request authentication. PathCutter works by dividing a web appli-
cation into different views, and then isolating these views at the
client side. PathCutter separates a page into views if it identifies
the page as containing an HTTP request that modifies server con-
tent, e.g., a comment or blog post. If the request is from a view
that has no right to perform a specific action, the request is de-
nied. To enforce DOM isolation across views within the client,
PathCutter encapsulates content inside each view, using an abstrac-
tion called pseudodomains. However, isolation by itself does not
provide sufficient protection against all XSS attacks. To further
prevent Same Origin Cross Site Request Forgery (SO CSRF) at-
tacks, where one view forges an HTTP request from another view
from the same site, PathCutter introduces per-url session tokens
and referrer-based view validation to ensure that requests are only
made by views with the corresponding capability.
Scenario: PathCutting an XSS Worm Propagation. To illustrate
how PathCutter blocks the propagation of a JavaScript-based XSS
worm, we begin by describing the steps involved in a typical XSS
worm exploit. Although XSS worms exploit different types of XSS
attacks, they all share a common need to issue an unauthenticated
cross-view request (shown in Step 3).

e Step 1 — Enticement and Exploitation: The victim is tricked into
visiting (or stumbles upon) a malicious social network page with
embedded worm logic. The worm is in the form of potentially
obfuscated, self-propagating JavaScript, which is injected via an
XSS vulnerability.

e Step 2 — Privilege Escalation: ~The malicious JavaScript ex-
ploits the XSS vulnerability to gain all the rights and privileges
of the victim user, with the goal of propagating its malicious
logic to the victim’s social network page. For example, if the

user logged into the social network account, the worm may mod-
ify the victim’s profile and send messages to his friends.

e Step 3 — Replication: The worm copies itself onto the victim’s
page. As shown in Figure 1(a), the malicious JavaScript worm
uses the victim’s stolen privilege to send the server a request to
change the victim’s profile page.

e Step 4 — Propagation: When other benign users subsequently
visit the infected victim’s page, steps 2 and 3 are repeated, con-
tinuing the propagation of the worm

Related Work. The growing threat of XSS worms has been recog-
nized by the academic community, notably in the following three
papers. The Spectator [5] system proposed one of the first meth-
ods to defend against JavaScript worms. Their proxy system tracks
the propagation graphs of activity on a web site and fires an out-
break alarm when propagation chains exceed a certain length. A
fundamental limitation of the Spectator approach is that it does not
prevent the attack propagation until the worm has infected a large
number of users. In contrast, Sun et al. [6] propose a purely client-
side solution, implemented as a Firefox plugin, to detect the prop-
agation of the payload of a JavaScript worm. They use a string
comparison approach to detect instances where downloaded scripts
closely resemble outgoing HTTP requests. However, this approach
is vulnerable to simple polymorphic attacks. Meanwhile, Xu et
al. [7] propose social graph monitoring as a means to detect worms
that spread through social networks. However, as stated in their pa-
per, their approach cannot detect XSS worms, such as the MySpace
Samy worm, which do not modify the social graph and generate
activities that are “passively noticeable by friends”. PathCutter’s
goals and approach are complementary, addressing the limitations
identified in the above systems.

2. DESIGN

PathCutter first isolates different pages from the server at the
client side, then authenticates the communication between different
pages and the server. Doing so, effectively halts the XSS worm’s
propagation path by essentially preventing the worm’s unautho-
rized request on its infected page from altering the victim’s own
social network page, as illustrated in Figure 1(b).

e Malicious HTTP request to the server from the infected page.

This is the most common exploit method employed by XSS
worms, i.e., a content modification request of the victim’s so-
cial network page is sent from the worm’s infected page through
the browser. Because the request is from the victim’s browser,
the social network’s server will honor this request. However, us-
ing PathCutter, the origin page of each request is cross-checked
against the target page, enabling the server to distinguish the re-
quest as an unauthorized modification attempt.

e Malicious DOM access to the victim’s page from an infected
page at client-side. An XSS worm can also modify the victim’s
page at the client side to send a request on the behalf of that page.
To prevent this attack, PathCutter introduces pseudodomain iso-
lation, which enables the browser to prevent cross-domain page
modifications from the client-side.

2.1 Concepts Definition

Views. A view refers to a portion of a web application. From the
client side, a view is in the form of a web page or part of a web
page. As a simple example, one implementation at a blogging site
might consider different blogs from different owners to be different
views. It might also consider comment post forms to represent a
separate view from the rest of the page.

Actions. An action is defined as an operation belonging to a view.
For example, a simple client-side action may be a request from blog
X (view X) to post a comment on X’s blog post.

Access Control List (ACL) or Capability. An Access control list

It cannot break
_isolate.x.com
/" (different origin).

isolate.x.com isolate.x.com

content.x.com content.x.com

attacker -
View 1 \ View 2

Secret token is
required to access
content.x.com.
Attackers are not
able to guess it.

> content.x.com

Figure 2: Isolating Views Using Pseudodomain Encapsulation

(ACL) defines all the actions that a view can perform. As we de-
scribed request authentication, PathCutter prevents a request from
site X to post on Y’s blog. A Capability is a secret key that a view
owns, which enables it to perform a specific action. PathCutter
can enforce request authentication using either ACLs (in the form
referrer-based validation) or capabilities (in the form of per-url ses-
sion tokens) for access control.

2.2 Web Application Modification

We explore different implementation strategies to securing an ap-
plication using PathCutter.

2.2.1 Dividing Web Applications into Views

By Semantics. A web application can be divided into views by its
semantics. For example, blog sites can be divided based on blog
names. Forums can be divide based on threads and subject matter.
By URLSs. An alternate way to divide web applications is by URLSs.
For example, when clients visitblog.com/optionsandblog.
com/update, we can consider those two to be from different
views.

Isolating vulnerable actions or user injected content into sepa-
rate views. In some web applications, user injected content, such
as comments, might be in the same web page as vulnerable actions
such as posting comments. In such cases, we need to either isolate
those user comments or the vulnerable actions.

2.2.2 Isolating Views at the Client Side

According to the same-origin policy (SOP), DOM access for dif-
ferent sessions from the same server is allowed by default. PathCut-
ter encapsulates views within a pseudodomain to achieve isola-
tion. As shown in Figure 2, for each view from contents.x.com, we
embed it within an iframe from pseudodomain name isolate.x.com.
Therefore, even if a worm obtains control of contents.x.com in one
view, it cannot break isolate.x.com to access contents inside another
view that also belongs to contents.x.com due to the same-origin
policy. HTMLS also provides a sandbox feature for preventing the
origin access, which can be used to further strengthen the isolation
between different views.

2.2.3 Checking Actions

PathCutter checks the originating view for each action (e.g., post-
ing a comment) to ensure that the view has the right to perform the
specific action. Either of the following two strategies may be im-
plemented to authenticate actions.

o Secret Tokens. PathCutter may explicitly embed a secret token
(e.g., a capability-based strategy) with each action or request,
especially those that tend to modify content on the server side.
A simple request could be implemented as follows:

http://www.foo.com/submit.php?sid=****g. ..

www.foo.com/blog1/index.php :

<iframe scr="contents.foo.com/blogl/index.php?token=****"
sandbox="allow-forms, allow-scripts">
</iframe> . . .
Figure 3: Session Isolation
document .onloand = function () {
forms = document.getElementsByTagName ("form") ;
for (i=0;i<forms.length;i++) {
forms[i].innerHTML="<input type=\"hidden\" value=\""
+window.mySID+"\"/>"
+forms[i].innerHTML;

Figure 4: Inserting secret tokens into actions.

The server will check the sid (secret token) of each request to see
if it has the right to modify the contents. As the client-site XXS
worm cannot guess the sid value, a request from the attacker’s
view will not have right to modify contents on the target victim’s
page.

o Referrer-based View Validation. The referrer header in the
HTTP request can be used to distinguish the view from which an
action request originates. Then server can then deny any action
for which the ACL does not specifically authorize.

2.3 Severing Worm Propagation

For a JavaScript worm which seizes control of a certain view of
an application by exploiting an XSS vulnerability, there are two
possible avenues from which to propagate, as shown in Section
2. Blocking the worm propagation can be considered in terms of
blocking the following two forms of malicious behavior.
Enforcing View Separation. The worm may attempt a direct mod-
ification on a page whose origin is associated with a different view.
Because PatchCutter checks every action originating from each view,
the worms cross-view propagation attempt will be prevented.
Protecting View Boundaries at the Client-side. The worm can
open another view on the client, and then infect that view by mod-
ifying its content. However, PathCutter isolates different views at
the client side. Thus, the worm cannot break boundaries of differ-
ent views belonging to a web application at the client side.

3. IMPLEMENTATION

To illustrate the feasibility of implementing the server-side mod-
ifications required by PathCutter, we use WordPress [3], an open
source blog platform. We find that just forty three lines of addi-
tional code were required to add support for secret token authen-
tication and view isolation. It took the authors five days to under-
stand WordPress source code and insert modifications.

Dividing and Isolating Views. We enable the multi-site func-
tionality of WordPress and our implementation classifies different
blogs in WordPress as belonging to different views. For example,
www.foo.com/blogl and www. foo.com/blog2 will be di-
vided into different views. A finer-grained separation of views,
such as different URLSs, can also be supported. As a proof of con-
cept, we implemented separation by different blogs. As shown in
Figure 3, a view will be isolated at the client-side using iframes.

<script>
check_infected();
// check i1f the user is infected or not
xmlhttp = new XMLHttpRequest;
xmlhttp.open ("POST", post_url,true);
xmlhttp.onreadystatechange=function () {

if (xmlhttp.readyState==4) {

set_infected();

}
b
str = payload;
xmlhttp.setRequestHeader ("Content-type",

"application/x-www-form-urlencoded") ;

xmlhttp.setRequestHeader ("Content-length", str.length);
xmlhttp.send(str);
</script>

Figure 5: A Proof-of-concept XSS Worm

Every time a client browser visits another user’s blog, the real con-
tents will be embedded inside the outer frame to achieve isolation.
Borders, paddings, and margins will be set to zero in order to avoid
any visual differences.

Identifying Actions. Vulnerable actions in WordPress are nor-
mally handled by a post operation in a form tag. For example, the
comments posting functionality is output to a user through comment-
template.php and handled in wp-comments-post.php. Similarly, the
blog posting/updating functionality is output to a user through edit-
form-advanced.php and handled in post.php.

Authenticating Actions. We use capability-based authentication
(using a secret token) to validate user actions. Every action belong-
ing to comment or blog posting categories must be accompanied by
a capability, or else the action will be rejected. We implement this
by injecting a hidden input into the form tag, as shown in Figure
4, using JavaScript, such that the client’s post request to the server
always includes a capability.

The ideal location for implementing authentication is at points
where client-side actions affect the server database. WordPress has
a class for all such database operations and because every database
operation will go through that narrow interface, we can quickly
ensure that our checks are comprehensive.

4. PRELIMINARY EVALUATION

Experiment Setup. We deployed WordPress with and without our
modification on a Linux machine with Apache-PHP-mySQL in-
stalled. To simulate XSS vulnerabilities, we simply disabled XSS
filering in WordPress. XSS filter is at wp-includes/formatting.php.
esc_js, esc_html and esc_sql are used to filter the corresponding
languages. We block all of them.

A Proof of Concept Worm. Next, we developed a simple worm to
propagate on the network as shown in Figure 5. The functionality
of the worm is to post itself on the benign user’s blog comments by
AJAX when the benign user visits an infected page.

Results. Finally, we validated that before adopting our PathCutter
approach, the worm is able to easily post comments on visiting
user pages and propagate. After adopting our approach, the worm
is unable to post itself as a comment on visitor’s blogs, because the
posting request and the benign user’s blog belong to different views
that are isolated. The worm propagation is thus prevented.

5. CONCLUSION

In this paper, we propose a new approach to blocking the two
main propagation paths of JavaScript worms, DOM access to a dif-
ferent view and unauthorized HTTP requests to the server. We im-
plement a prototype based on WordPress, and evaluate it using a
simple proof-of-concept worm. Our preliminary evaluation demon-
strates that the PathCutter approach requires minimal modifications
to the server application and is effective against most XSS worms.

6. REFERENCES

[1] Boonana java worm.
http://www.microsoft.com/security/portal/Threat/
Encyclopedia/Entry.aspx%?Name=Worm%3AJava%2FBoonana

[2] Myspace samy worm. http://namb.la/popular/tech.html.

[3] Wordpress. http://wordpress.org/

[4] XSS worm on renren social network.

http://issmall.isgreat.org/blog/archives/2.

LIvsHITS, B., AND Cul, W. Spectator: Detection and containment of JavaScript

worms. In Proceedings of the Usenix Annual Technical Conference (July 2008).

[6] SuN, F., Xu, L., AND Su, Z. Client-side detection of XSS worms by
monitoring payload propagation. In ESORICS (2009), M. Backes and P. Ning,
Eds., vol. 5789 of Lecture Notes in Computer Science, Springer, pp. 539-554.

[7] XU, W., ZHANG, F., AND ZHU, S. Toward worm detection in online social
networks. In Proceedings of the 26th Annual Computer Security Applications
Conference (New York, NY, USA, 2010), ACSAC ’10, ACM, pp. 11-20.

(5

