DELTA: A Security Assessment Framework
for Software-Defined Networks

Chanhee Leef
T KAIST

Seungsoo Lee! Changhoon Yoon'

Seungwon Shin'
fSRI International

Vinod Yegneswaran! Phillip Porrast

{1ss365, chyoon87, mitzvah, claude}@Xkaist.ac.kr {vinod, porras}@csl.sri.com

Abstract—Developing a systematic understanding of the attack
surface of emergent networks, such as software-defined networks
(SDNs), is necessary and arguably the starting point toward
making it more secure. Prior studies have largely relied on
ad hoc empirical methods to evaluate the security of various
SDN elements from different perspectives. However, they have
stopped short of converging on a systematic methodology or
developing automated systems to rigorously test for security flaws
in SDNs. Thus, conducting security assessments of new SDN
software remains a non-replicable and unregimented process.
This paper makes the case for automating and standardizing
the vulnerability identification process in SDNs. As a first step,
we developed a security assessment framework, DELTA, that
reinstantiates published SDN attacks in diverse test environments.
Next, we enhanced our tool with a protocol-aware fuzzing module
to automatically discover new vulnerabilities. In our evaluation,
DELTA successfully reproduced 20 known attack scenarios across
diverse SDN controller environments and discovered seven novel
SDN application mislead attacks.

I. INTRODUCTION

With the increasing interest and visibility of SDN proto-
cols, so too grows the increasing need for thorough security
assessments of SDN components and component interactions.
This need has not gone unnoticed by security researchers.
Indeed, several security challenges have been raised in prior
work [23], [31], [38], and an even wider range of attack sce-
narios have been enumerated against SDN environments [1],
[17], [22].

Such security-critical reviews of SDNs offer a view into
various breaches, but overall, the attack surfaces thus far
explored have been quite limited to either highly targeted
exploits, such as ARP spoofing, or specific vulnerabilities that
arise in various SDN components. Each previous result may
not be applicable to other SDN environments (e.g., different
control planes). Hence, operators seeking to assess security
issues in their SDN environments need to survey existing SDN
security-related studies and determine relevance on a case-by-
case basis. Furthermore, an operator may have to adapt or
redesign deployment-specific security test suites.

Permission to freely reproduce all or part of this paper for noncommercial
purposes is granted provided that copies bear this notice and the full citation
on the first page. Reproduction for commercial purposes is strictly prohibited
without the prior written consent of the Internet Society, the first-named author
(for reproduction of an entire paper only), and the author’s employer if the
paper was prepared within the scope of employment.

NDSS ’17, 26 February - 1 March 2017, San Diego, CA, USA

Copyright 2017 Internet Society, ISBN 1-1891562-46-0
http://dx.doi.org/10.14722/ndss.2017.23457

This paper introduces a new SDN security evaluation
framework, called DELTA, which can automatically instantiate
attack cases against SDN elements across diverse environ-
ments, and which may assist in uncovering unknown security
problems within an SDN deployment. Motivated by security
testing tools in the traditional network security domain [13],
[36], DELTA represents the first security assessment tool for
SDN environments. Moreover, we enhanced our tool with a
specialized fuzzing module [26] to exploit opportunities for
discovering unknown security flaws in SDNs.

In designing DELTA, we first assessed the overall operation
of an SDN by tracking its operational flows. Operational flow
analysis provides a basis for understanding the attack surfaces
available to external agents across an SDN deployment, and is
a generally applicable strategy for approaching any SDN stack.
Based on the popular OpenFlow protocol specification [29], we
categorize operational flows into three categories (see Section
II). In each category, we explore possible security issues and
assess which ones are covered by existing studies.

Our intent is to design a testing framework that automates
the systematic exploration of vulnerabilities exposed in SDN
deployments from diverse perspectives. To date, previous stud-
ies are limited in their coverage of the SDN attack surface, in
that they usually depend on specific SDN elements or network
environments. To overcome this issue, we devised a method
to reveal possible unknown security problems in an SDN by
employing a blackbox fuzzing technique, which randomizes
message input values to detect vulnerabilities in the direct
interface or failures in the downstream message processing
logic. When generating random test vectors, DELTA uses the
information from the analysis of the SDN operations and
focuses on the cases where vulnerabilities are likely to be
located.

We implemented a prototype framework for DELTA and
evaluated it with real-world SDN elements. For each controller,
DELTA is customized with a simple configuration file. The
flexible design of DELTA accommodates both open source and
commercial SDN controller implementations. Our prototype
can (currently) reproduce 20 known SDN-related attack sce-
narios targeting several well-known SDN elements, such as the
ONOS controller [2], the OpenDaylight (ODL) controller [25],
the Floodlight controller [27] and the commercial Brocade
Vyatta SDN controller [3]. In addition, DELTA was able
to discover seven new attack scenarios by applying protocol
fuzzing techniques.

The new attack scenarios exposed by DELTA have been
reported to the Open Networking Foundation (ONF) [28], the

standards body dedicated to the promotion of SDN and defin-
ing the OpenFlow protocol [12]. The results of our analysis
have also informed our collaborations with the ONF security
working group in drafting white papers defining best practices
for securing SDN environments. Furthermore, DELTA has
been open sourced as one of ONF’s official open SDN projects
[33].

This paper describes the following contributions:

e An analysis of vulnerabilities in the SDN stack that
can mislead network operations. Through this analy-
sis, we can reconcile test input with erroneous SDN
errors and operational failures. We introduce seven
criteria for automatically detecting a successful attack
scenario from these failure conditions. We then show
how to combine this information for assessing root
cause analysis on successful attacks.

o The development of an automated security assessment
framework for SDN capable of reproducing diverse
attack scenarios. This framework currently reproduces
20 attack scenarios against real-world SDN elements
with simple configurations and is readily extensible to
support more scenarios.

e The incorporation of blackbox fuzzing techniques
into our framework to detect new unknown attack
scenarios. Through our evaluation, we verified that
this technique found seven previously unknown attack
cases.

e The demonstration of flexibility of system design by
evaluating it against three popular, open-source SDN
controllers and the commercial Brocade Vyatta SDN
controller.

We have shared our results with ONF and they are being
referenced by its security working group in defining new
standards. Furthermore, our framework has been promoted to
an official open source project by ONF [33].

II. BACKGROUND AND MOTIVATION
A. SDN and OpenFlow

In traditional networks, a control plane, computing sophis-
ticated networking functions, and a data plane, handling low-
level packet forwarding based on the policies of the control
plane, are tightly coupled and usually colocated within a single
device. Since these two planes are often embedded within
a proprietary network device, it is inherently challenging
to insert new functions into the device without specialized
knowledge or vendor cooperation.

To overcome this fundamental problem, software-defined
networking presents a paradigm that emphasizes the decou-
pling of the control plane from the data plane, with a logically
centralized control plane operated using (high-performance)
commodity hardware. This separation allows network ad-
ministrators to manage complicated traffic within a central-
ized network view. The key features of SDN are high-level
network abstraction and programmability. Another difference
between SDNs and traditional networks is a strong movement
away from static network policies, in which an administrator

manually configures network flow-handling policies for each
network device. Instead, an SDN abstracts the complexity of
the underlying networks, and this abstraction hides network
topologies and network devices from end-users. Thus, unlike
traditional networks, SDN contains the global view of the
whole network through the high-level network abstraction.

OpenFlow: OpenFlow is the de-facto standard protocol
for the communication between the control plane (a.k.a., the
OpenFlow controller') and the data plane. Hence, considering
OpenFlow in SDN networks is quite natural, and many com-
mercial deployments have successfully employed OpenFlow
as the primary interface between those two planes [16], [20].

B. SDN Control Flows

Controller

Load Balancer

‘ [Routing App } [APP }' - - { Applications J ‘

<
NN
N

X
PACKET_IN Flow Rule |___| Statistics .
Notifier Service Service Core Services

T
PACKET_IN FLOW_MOD

STATS_REQUEST
L2

STATS_RESPONSE

{ Switch

Fig. 1: Examples of SDN/OpenFlow control flows. Dotted lines indi-
cate symmetric control flows and solid lines correspond to asymmetric
control flows.

The operations of SDN (specifically, those based on the
OpenFlow protocol) can be classified into three types of
control based on the control flow of the OpenFlow protocol:
() symmetric control flow operations, (¢¢) asymmetric control
flow operations, and (7i7) intra-controller control flow opera-
tions.

Symmetric control flow operations: In these operations,
an SDN component sends a request to another component
and receives a reply back (i.e., a request-reply pair). Fig-
ure 1 presents an example illustrating this operation using
dotted lines. Consider a load balancer on a controller that
needs switch statistics to distribute traffic loads. To retrieve
statistics from the switch, the load balancer first issues a
statistics request event to the statistics service in the con-
troller core. Once the service notices the event, it sends
the STATS_REQUEST message to the switch through an
OpenFlow message. Then, the switch packs its statistics in-
formation in the STATS_RESPONSE message and sends it to
the controller again. Finally, the statistics service returns the
received statistics to the load balancer.

Asymmetric control flow operations: In contrast to the
previous operation, some SDN operations only involve unidi-
rectional messaging (e.g., messages that do not require a reply).
Technically, most SDN control-flow interactions fall under
asymmetric control flows (e.g., control for handling packet

Tn the case of OpenFlow-based SDN networks, the term controller is
commonly used to denote the control plane. This paper uses both terms
interchangeably.

arrival and inserting flow policy). The solid lines in Figure 1
represent two kinds of asymmetric control flows (PACKET_IN
and FLOW_MOD). Once a packet arrives at the switch, the
switch first matches the packet with the flow entries in its
flow table. If the switch cannot find any matching flow entries,
it sends a PACKET_IN message containing a portion of the
packet header to the controller. Then, the controller delivers the
packet-arrival event to its applications. This message passing
occurs in one asymmetric control flow as packets arrive. The
other asymmetric control flow is started from the application
on the controller. For example, once a routing application
receives the packet arrival event, it must decide how best to
process the event (e.g., forwarding the packet to somewhere or
dropping the packet). Thus, the routing application may inform
the data plane at which port the packet should be output. After
the routing application issues a packet-forwarding policy to the
Flow-Rule service, the service sends a FLOW_MOD message
to the switch. Finally, the switch inserts the packet-forwarding
policy into its flow table and forwards the packet.

Intra-controller control flow operations: Unlike symmet-
ric and asymmetric control flows, intra-controller control flows
are initiated by applications running on a controller (i.e., con-
trol plane). When applications interact with one another or use
the internal services of the controller, they do so by employing
the APIs exposed by the controller. If a routing application
requires the topology information from the internal services to
compute a dynamic routing path, the routing application calls
an API that returns the current topology information. This API
function may in turn invoke several internal APIs. Finally, the
topology information is delivered to the routing application.
This call-chain is an example of intra-controller control flow.

C. Motivating Example

%App1 || App 2 || App 3 || App 4 |
PACKET_IN Subscribers

(1) App 2
(2) App4

T
|
1
| PACKET_IN
1
|
1

Core Services

Controller Instance

PACKET_IN —"> Flow

g7 ==&
L e
[EE [E=

N OpenFlow
Host A Switch Host B

Fig. 2: Event Listener Unsubscription attack

Figure 2 illustrates how a malicious application could
make a benign application incapable of receiving any of the
necessary control messages from a switch. In this instance,
a malicious application (App 1) accesses the list knowing
which application receives the PACKET_IN control message
(the most important control message), and discovers that App
4 is waiting for PACKET_IN messages (1). Then, App 1
unsubscribes App 4 from the list (2), and thus App 4 is unable
to receive any PACKET_IN messages (3).

This is a real working example (applicable to Floodlight
[27] and OpenDaylight [25] controllers), and it illustrates

how a malicious application confuses a benign application by
manipulating the intra-controller control flow operation.

III. RELATED WORK

Our work is inspired by prior work in SDN security and
vulnerability-analysis techniques.

SDN Security and Attacks: There have been several stud-
ies [1], [22] dealing with attack avenues in SDNs. Kreutz et al.
argue that the new features and capabilities of SDN, such as
a centralized controller and the programmability of networks,
introduce new threats [22]. Benton et al. point out that failures
due to lack of TLS adoption by vendors for the OpenFlow
control channel can make attacks such as man-in-the-middle
attacks and denial of service attacks easier [1]. Moreover, some
researchers have raised other issues, such as inter-application
conflicts, access control, topology manipulation, and sharing
relationships [5], [9], [17], [31], [39]. Ropke et al. [32] have
demonstrated that SDN applications can launch stealth attacks
and discussed how such applications can be easily distributed
via third-party SDN app stores, such as the HP App Store [19].
Besides, even without delivering malicious SDN applications
to SDNs, Dover et al. have also shown that it is possible to
launch denial-of-service and spoofing attacks by exploiting
the implementation vulnerability that exists in the switch
management module of Floodlight [10], [11]. Although there
have been several studies on SDN vulnerabilities, contempo-
rary controllers remain vulnerable to many of these attacks.
Hence, we propose a software framework that can simplify
reproducibility and verification of diverse attack scenarios.

Vulnerability Detection Tools and Techniques: Tradi-
tional network security testing tools such as Metasploit [24],
Nessus [36], and Nmap [13] are equipped with a rich library
of vulnerabilities and composable attack modules. However,
because these tools are specialized for legacy and wide-area
networks, they are directly unsuitable for SDN networks. In
a recent BlackHat briefing, the presenters explored the SDN
attack surface by actually attacking each layer of SDN stack,
and then demonstrated some of the most critical attacks that
directly affect the network availability and confidentiality.
Thus, SDN-specific security threats are complex and cannot
be revealed by existing network security testing tools, such as
Metasploit [24] and Nessus [36], as they are not SDN-aware.

Our goal is to develop an analogous tool for OpenFlow
networks. Fuzz testing was first proposed by Miller et al. in
the early 1990s and has steadily evolved to become a vital tool
in software security evaluation [26], [41]. The current body of
work in black-box fuzz testing may be broadly divided into
mutational and generation- (or grammar-) based techniques.
While the former strategies rely on mutating input samples
to create test inputs, the latter develop models of input to
derive new test data. DELTA makes use of both strategies,
with mutational being the primary approach.

Examples of mutational fuzzers include SYMFUZZ [4],
zzuf [15], BFF [18], AFL-fuzz [46] and PacketVaccine [43].
Unlike these approaches, our system employs a fuzz-testing
methodology that is specialized for SDNs. We recognize that
because the operations and topologies of SDNs are more
dynamic than traditional networks, randomization of a specific
portion of the packets is insufficient. Hence, we classify the

Flow Type Attack Code | Attack Name ONOS Opeigr;t;;gfl; Floodlight
SE-1 Switch Table Flooding [11] X X O
Symmetric Flows SF-2 Switch Identification Spoofing [10] X O O
SE-3 Malformed Control Message [37] X O O
SF-4 Control Message Manipulation [35] @) @) (@)
AF-1 Control Message Drop [35] o (@) o
AF-2 Control Message Infinite Loop [35] O (6] (0]
AF-3 PACKET_IN Flooding [21], [38], [40] 0) [e) [e)
AF-4 Flow Rule Flooding [8], [38], [45] @) (@) (@)
Asymmetric Flows AF-5 Flow Rule Modification [35] [0) O O
AF-6 Switch Firmware Misuse [35] O (6] (0]
AF-7 Flow Table Clearance [35] [0) O O
AF-8 Eavesdrop [35] O (6] (0]
AF-9 Man-In-The-Middle [35] 0) [0) (0]
CF-1 Internal Storage Misuse [39] O O (0]
Intra-Controller Control Flows CF-2 Application Eviction [39] O O N/A
CF-3 Event Listener Unsubscription [39] N/A O O
NF-1 System Command Execution [39] (@) 6] O
Non Flow Operations NF-2 Memory Exh{lustion [39] O O O
NF-3 CPU Exhaustion [39] (@) O O
NF-4 System Variable Manipulation [35] X O O

TABLE I: Summary of known SDN attack cases: N/A means this attack is not available. O means the controller is vulnerable to this attack,

and X means that it is not vulnerable.

operations of SDN into three types of control based on the
control flow, and incorporate the features of those operations
into DELTA’s fuzzing module. ShieldGen is an example of
a grammar-based fuzzer, that uses knowledge of data formats
and probing, to automatically generate vulnerability signatures
and patches from a single attack instance [7]. Godefroid et
al. present a grammar-based whitebox fuzz-testing approach
inspired by symbolic execution and dynamic test generation
[14]. Unlike such approaches, DELTA does not require the
entire source code of the target system. Scott et al. introduced a
troubleshooting system called STS that automatically inspects
vulnerabilities in control platforms using a fuzzing technique
[34]. The focus of STS is identifying the MCS (minimal causal
sequence) associated with a bug. However, DELTA reproduces
known vulnerabilities and even finds unknown ones by chang-
ing the parameters of its fuzzing modules without MCS. Yao et
al. proposed a new formal model and corresponding systematic
blackbox test approaching for SDN data plane [44]. While
this approach mainly focuses on the testing paths of SDN data
planes, DELTA applies fuzzing functions to discover unknown
security flaws.

IV. VULNERABILITIES IN SDN FLOWS

This section explores how the three SDN flow operations
described in Section II are related to vulnerabilities that can
harm SDN operations. Vulnerabilities related to the SDN
control flows are discussed in Section IV-A, and the locations
of vulnerabilities resulting from irrelevant flow operation are
described in Section IV-B. Table I provides a high-level
overview of SDN vulnerabilities. It also denotes which attacks
relate to the controller (i.e., control plane). However, some
attacks highly depend on the architecture of a specific con-
troller. Here, we consider three well-known controllers: ONOS,
OpenDaylight, and Floodlight, as these controllers arguably
represent the most popular and widely used SDN controllers
in use today.

A. SDN Control Flow Operation Vulnerabilities

Symmetric Control Flow Vulnerabilities: Table I identi-
fies four symmetric control flow vulnerabilities. One vulnera-
bility arises in the presence of weak authentication during the
handshake step. This vulnerability can lead to replay attacks to
the controller, such as the Switch Identification Spoofing attack.
For example, the Floodlight controller classifies the identi-
fication of the connected switch according to a Data Plane
ID (DPID). However, a man-in-the-middle (MITM) concern
arises, in which an attacker replays handshake steps with the
DPID of an already connected switch causing Floodlight to
disconnect itself from the switch. Also, as Floodlight manages
the connected switch’s information in its internal storage, it
consumes the memory resources within the host. An attacker
can persistently replay meaningless handshake messages to
exhaust the internal storage of the controller (i.e., Switch Table
Flooding attack). Such an attack could result in a controller
shutdown.

In addition to the relay attack, symmetric control flow mes-
sages also enable Malformed Control Message attacks. Each
control message carries the OpenFlow version information in
its header, which should be consistent with other messages. If
the attacker replaces the version value in a response message
within a symmetric control flow with an invalid value, an
inconsistency arises that may result in a switch disconnection.
The Control Message Manipulation attack is similar to the
Malformed Control Message attack; however, in this case, the
attacker manipulates the header type of symmetric control
flows leading to switch disconnection.

Asymmetric Control Flow Vulnerabilities: Table I iden-
tifies nine asymmetric control flow vulnerabilities. Most con-
trollers maintain a listener mechanism that allows applications
to register to receive specific messages from the data plane.
When a message arrives at the controller, this mechanism
delivers the message to the applicable registered applications,

either in sequence or parallel, depending on the implemen-
tation of controllers. Misbehaving or rogue applications can
interfere with the order of applications in the list, and cause the
application to drop the message (i.e., Control Message Drop
attack). Malicious applications can alternatively implement an
infinite loop (i.e., Control Message Infinite Loop attack) to
prevent other applications from acting on the message.

Controllers and switches are also vulnerable to perfor-
mance degradation by malicious or erroneous applications.
One such example is the PACKET_IN Flooding attack. In
this scenario, an adversary generates a number of meaningless
flows to other hosts in order to trigger a flood of PACKET_IN
messages to the controller, which eventually degrades the
performance of the controller. On the other hand, a Flow Rule
Flooding attack is also feasible. A malicious application can
install a number of flow rules through FLOW_MOD messages
to the target switch to overflow the flow table, which could lead
the switch into an unpredictable state.

A malicious application may also manipulate resident flow
rules in the switch that have been installed by other applica-
tions. For instance, although a flow rule installed by a firewall
application may instruct the switch to drop the flows from
the malicious host, a peer application could modify the flow
rule to forward corresponding flows from the malicious host
(i.e., Flow Rule Modification attack). Also, by changing the
rules, the malicious application can manipulate the flow table
in the switch (i.e., Firmware Misuse and Flow Table Clearance
attack).

When the control messages between the controller and the
switch are unencrypted, an attacker located between them can
guess what topology is constructed by sniffing control mes-
sages (i.e., Eavesdrop attack) in a passive manner. The attacker
may also intercept the control message and then change some
field values of the control messages with malicious intent (i.e.,
Man-In-The-Middle attack).

Intra-Controller Control Flow Vulnerabilities: Table 1
identifies three intra-controller control flow vulnerabilities.
Unfortunately, most controllers do not provide access control
mechanisms to limit API usage among applications. A mali-
cious application may access and alter network topology data
within the internal storage of the controller, impacting all peer
applications that derive flow control decisions based on this
network topology data (i.e., an Internal Storage Misuse attack).

Some controllers provide a mechanism that dynamically
controls applications running on the controller. The problem
with this is that a malicious application can also abuse this
mechanism without any constraint. For example, the malicious
application can dynamically unload a Firewall application (i.e.,
Application Eviction attack). Also, the malicious application
can prevent some applications which want to receive the
control message from the switch from being notified of the
control message (i.e., Event Listener Unsubscription attack).

B. Non Flow Operation Vulnerabilities

Table I identifies four non-flow operation vulnerabilities.
Although SDN controllers have been referred to network
operating systems (NOS), most controllers are implemented as
general networking applications. Thus, controllers are unfor-
tunately subject to the same vulnerabilities as found in normal

applications. For instance, a developer who implements an
application running on the controller could make a mistake
inside the application logic, which can cause the termination
of the application (i.e., System Command Execution attack).
Since most controllers employ the multi-threaded program-
ming paradigm, the termination of the application can mislead
the controller into shutdown. If a target network does not
have controller redundancy, this could result in a network-wide
outage.

The malicious application can intentionally consume all
available system resources of a controller to affect other ap-
plications or even the controller. For instance, malicious appli-
cations can halt the control layer by intentional unconstrained
memory consumption (i.e., Memory Exhaustion attack), or
by unconstrained thread creation to exhaust available CPU
cycles (i.e., CPU Exhaustion attack). System time is also
considered a system resource that is used to check the response
time of symmetric control flows. If the malicious application
manipulates this system time, the switch connected to the
controller could enter an unexpected state (i.e., System Variable
Manipulation attack).

V. SYSTEM DESIGN

This section discusses the design considerations motivating
our design and then describes the DELTA system architecture.

A. Design Considerations

Table I reviewed 20 known attack scenarios, which can be
reproduced without much difficulty. If testing each case re-
quires a different testing environment, the costs of conducting
these tests can rapidly become prohibitive, even within highly
sensitive computing environments. Thus, the testing framework
should be easily configured and correctly reproduced. In ad-
dition, these attack scenarios should be operated with diverse
SDN components, such as different control planes and network
applications, to cover most possible attack surfaces of SDN.

Given these practical testing concerns, the requirements
driving our penetration framework can be summarized as fol-
lows: (2) it should cover as many attack scenarios as possible,
(22) it should be highly automated, to minimize the human
skills and time necessary to conduct testing, and (¢¢2) it should
be inter-operable with a diverse set of SDN components.
In addition, we also require that our framework be easily
extensible to new test cases, and assist in the identification
of entirely new attack scenarios. The following sections will
consider these requirements in more detail.

B. Blackbox Fuzzing

As previously summarized, 20 attacks against SDN have
been presented so far. However, a wider range of undiscovered
attack scenarios against SDNs remain, which our framework
can help operators explore and discover. To identify such
unknown attack cases, we borrow the notion of fuzz testing
developed in the context of legacy software and protocol test-
ing. Fuzz testing allow the development of entirely randomized
testing vectors to determine if program interfaces are subject to
unexpected input handling errors. We choose blackbox fuzzing,
rather than whitebox fuzzing, because the former does not
require the source code of target programs, and it can be

@

send HELLO receive HELLO —~ send FEATURES_REQ/—\receive FEATURES?RES/—\send GET_CONFIG_REQ/-\ receive GET_CONFIG_RES/—\send SET_CONFIG
send STATS_REQ @ receive STATS_RES @ deliver to applications update topology
receive PORT_STATUS date topolo
_ /A‘1\ up pology
N
send ECHO_REQ ™\ receive ECHO_RES

\5\19 N update topology
) (h3) (n
R N S
ﬁ send VENDOR m receive VENDOR send FLOW_MOD

S12 S13 .

N send BARRIER_REQ —receive BARRIER_RES

S14 S15
receive PACKET_IN N deliver to applications N
A2 update internal
send FLOW_MOD A~ update internal flow tables flow tables
A4
. N
receive FLOW_REMOVED /A-s\ update internal flow tables
N
send PORT_MOD /) send PACKET_OUT update internal flow tables
A6
send PACKET_OUT N update internal flow tables
5/-\'7] 12

Fig. 3: Operational state diagram of typical SDN controller and fuzzing vector (FV) examples

applied to both open source and proprietary SDN components
and devices.

State Diagram of SDN Control Message: A key analysis
in blackbox fuzzing is that of determining the input parameters
that must be subject to input randomization, which is a central
consideration in our framework design. Instead of selecting
values for randomization in an ad hoc manner, we derive those
values from the analysis of SDN control flows.

The SDN operations of a typical SDN controller, which
employs OpenFlow protocol v1.0 [29], can be represented in
an operational state diagram as shown in Figure 3. Although
we only present the state diagram for OpenFlow v1.0, we have
also analyzed OpenFlow v1.3 [30] and it is a straightforward
extension.

In the state diagram (Figure 3), label R stands for a ready
state to receive or send the control messages. The other states
are labeled in accordance with the type of control messages: (7)
states labeled S involve symmetric control message transitions,
(i7) states labeled A involve asymmetric control message tran-
sitions, and (¢7¢) states labeled I involve API calls generating
intra-controller control messages.

Each edge designates the type of control message or the
specific controller behavior that triggered the state transition.
For example, as shown in Figure 3, when a controller in
R state receives a PACKET_IN message from a switch, the
state of the controller transitions to A2. In A2, the controller
delivers the message to the applications, causing another state
transition to the next state A3, where the controller verifies if
the PACKET_IN includes link information. Once the packet is
verified to include link information, the controller updates the
network topology, moves to I1 state, and finally, comes back
to the ready state. As illustrated, the state diagram can clearly
describe the points at which the controller takes the input and
how each input induces the state transition. Therefore, based on
such an operational analysis result, we can effectively perform
the input randomization against the SDN controllers.

Next, based on the state diagram, we investigated (¢) the
sequence of control flows, presented in Section II, to determine
whether there are candidate control flows for randomization
(Fuzzing Vectors FV 1 and FV 2 in Figure 3), and then
examined the (i7) input values conveyed in each control flow
(FV 3 in Figure 3).

Controller Switch

HELLO
HELLO

FEATURES_REQUEST

GET_CONFIG_RESPONSE

SET_CONFIG

Fig. 4: Symmetric flow sequence randomization example

Randomizing Control Flow Sequence: We can randomize
the control flow sequence in two major steps: (¢) inferring
current state of an SDN controller, and (¢7) manipulating the
control flow sequence.

Inferring the current state of an SDN controller is simple:
intercept the ongoing control messages to understand and track
down the operations of the controller. In the case of the
symmetric control flows, the current state of the controller
can be inferred from the control messages intercepted from
the control channel between the controller and the switches.
For example, as shown in Figure 3, the controller states from
R to S7 represents the OpenFlow handshake process. Based
on which type of OpenFlow message is sent or received,
it is possible to infer in which state the controller resides.
Meanwhile, in the case of the asymmetric control flows, the
state of the controller can be detected by not only intercepting
the control messages but also by monitoring the changes in
the controller behaviors, because some of the state transitions

in asymmetric control flows are triggered by the controller
operations. As illustrated in Figure 3, the states from R to
A3 describes how PACKET _IN messages are delivered to
applications, and it is difficult to detect state transitions to
A3 by intercepting the control messages. Thus, to detect such
state transitions, we monitor any changes in the controller
behavior and specifically in this example deploy an additional
application to confirm the reception of PACKET_IN.

Once the state of the controller is analyzed, we can
manipulate the sequence of the control flow. To randomize the
sequence of the symmetric control flows, we intentionally drive
an SDN controller to violate the standard protocol. Figure 3
(Fuzzing Vector 1) illustrates the control flow of the standard
OpenFlow handshake that could be potentially manipulated.
For example, as shown in Figure 4, it is possible to manipulate
the sequence by omitting a couple of message exchanges
(crossed out) to test if the controller or the switch is subject
to such protocol violations.

After | ..

appp |+ aprc }+{ apps |+ arra | Befm

/™[APPA > APPB [APPC [> APP DT.L
T
1 J
' Control Message
) Notifier

(1) Coo]ler

Core Services

Switch B

Co-)
Host A \Swnch A

Fig. 5: Asymmetric flow sequence randomization example in the
sequential order

Such control flow manipulation can be also applied to the
asymmetric flows, such as the flow shown in Figure 3 (from
A2 to A3 in FV 2). If a PACKET_IN message is sent to
the controller by the network device (step 1 in Figure 5), the
controller sequentially delivers the message to the applications
in a specific order (step 2 in Figure 5). Figure 5 (Before)
shows the default sequence where App A first receives the
PACKET_IN message, and App D receives the message last
(i.e., A— B — C — D). Here, we can change the control
flow (i.e., change the order of the applications) randomly at
runtime as shown in Figure 5 (After).

In addition to the sequential asymmetric control message
delivery mechanism, messages can be delivered to applications
in parallel as shown in Figure 6. For example, when the
controller receives a PACKET_IN message (step 1 in Figure
6), it simultaneously delivers the asymmetric message to the
applications (step 2 in Figure 6). However, of those applica-
tions concurrently running on the controller, a certain set of
applications may be defined to follow a particular order in
receiving the message. In this example, we arbitrarily injected
App X, so that this application can receive the message ahead
of App B (Figure 6 (After)). As demonstrated, it is possible
to randomize such sequences.

Randomizing Input Values: Besides the control flow,
input values of a control flow can also be randomized. For
example, we selected the FLOW_MOD message, which allows

After
| appx |+ appB |

*
[appa | [\apre | [TAPPc | [aerD |
@ — \Peoe ———"

Control Message
Notifier

Core Services

(1) Contro‘ller

% . \M = %
Host A Switch A Switch B Host B

Fig. 6: Asymmetric flow sequence randomization example in the
parallel order

the controller to modify the state of a switch (FV 3 in Figure
3). Most fields are defined as an unsigned integer type, and we
can randomize these values to mislead the switch into parsing it
(e.g., 0 or maximum). Since control messages between the data
plane and the control plane are commonly delivered through
a plain TCP channel?, all field values of the control messages
can be intercepted at the control channel and manipulated
easily, which could result in critical network instabilities.
For example, a priority field in a FLOW_MOD message can
be maximized. Such field-value randomization can be also
applied to the symmetric flows. Also, most controllers provide
their own APIs to improve the flexibility of intra-controller
control flows. These APIs may be used by any hosted network
application, which means that any application has a chance
to change (or randomize). Our framework adopts this idea to
randomize input values of a control flow.

DELTA uses fuzzing techniques and ex-post-facto anal-
ysis to identify vulnerabilities in the target program. We
have outlined seven test criteria as vulnerability detectors
that trigger ex-post-facto analysis: (¢) a controller crash, (i)
an application crash, (¢i¢) internal-storage poisoning (iv) a
switch disconnection, (v) switch-performance downgrade, (vi)
inter-host communication disconnection, and (viz) error-packet
generation. If a fuzz case generated by DELTA results in any of
the following, the test inputs will be flagged for ex-post-facto
vulnerability assessment.

C. System Architecture

This section presents the overall architecture of DELTA
and explain each of its components. As shown in Figure 7,
our framework consists of a centralized agent manager and
multiple agents. The agents are classified into three different
types based on their location: application, channel, and host.
Those agents are located in the middle of SDN control flows
and implement attack scenarios.

Agent Manager: The agent manager (AM) assumes the
role of a controller that manages all the agents. The AM
consists of four modules: Controller Manager, Attack Con-
ductor, Agent Handler, and Result Analyzer. The AM is not

2The OpenFlow specification suggests an encryption transport (e.g., TLS)
to encrypt outgoing messages; however, it is frequently disabled in favor of
performance [1].

ONOS OpenDaylight Floodlight Brocade Vyatta
\Y 1.2 1.3 1.4 1.5 |Hydrogen | Helium | Lithium | Beryllium | 0.91 1.0 1.1 1.2 2.3.0
RD | 6/5/15 | 9/18/15 | 12/16/15 | 3/10/16 | 2/4/14 | 9/29/14 | 6/29/15 | 2/22/16 |12/8/14 | 12/30/14 | 4/17/15|2/7/16 2016
SP| Vv v v v v v v - v v v v v

TABLE II: Supported application agents for various controller versions: V indicates version, RD indicates release date (MM/DD/YY), and SP
indicates whether or not it is supported.

Application Agent

Channel Agent

Host Agent

‘ Attack Simulator

‘ Attack Simulator ‘

Flow Information Collector

Control-Flow Value Control-Flow Value
Fuzzer ‘ Fuzzer Fuzzer ‘ Fuzzer ‘ Flow Generator ‘
‘ AM Interface ‘ ‘ AM Interface ‘ ‘ AM Interface ‘
AN X —
"N ¥ —
l Agent Handler I
1
. ' Result
[Attack Conductor || Result Analyzer e — o o

[onos] [openDaylight] [Fioodlight || Dummy Controlier |
Controller Manager |l ettty Config.

Agent Manager (AM)

Fig. 7: Overall architecture of DELTA with four key components: (i)
Agent Manager, (ii) Application Agent, (iii) Channel Agent, and (iv)
Host Agent.

coupled with SDN components; it independently conducts two
functions: (¢) controls other agents remotely, to replay known
attack scenarios or discover unknown attack scenarios against
the target network, and (¢¢) retrieves the executed results from
each agent.

In the initial stage of our framework, the controller manager
reads a configuration file containing the information of a target
controller (e.g., version information and installed path) because
each target controller has a different way of loading network
applications. For testing SDN-enabled switches, the controller
manager invokes the dummy controller that behaves as if it was
a simple SDN controller. Then, the attack conductor initiates
known attack scenarios. Its operational scenarios are pre-
defined in this module. When our framework replays a known
attack scenario, this module controls each agent to conduct
the scenario based on the defined information. This module
controls other agents through the agent handler. Finally, if an
attack is completed by each agent, the result will be sent back
to the result analyzer module, which will report these results
to the operator. The attack conductor also controls the fuzzing
modules in each agent to find unknown attack cases.

Application Agent: The application agent is an SDN ap-
plication running inside the controller, and it launches attacks
under the supervision of the AM. Since an SDN application
can be directly involved in SDN control flows, our framework
inserts an application (i.e., application agent) into a controller
to intercept, forge, and change SDN control flows and input
variables, as applicable to the attack scenario. Application
agents are controller specific, as they must interact directly
with each controller APIs.

The application agent consists of four modules: (i) At-
tack Simulator, (ii) AM Interface, (iii) Control-Flow Fuzzer,
and (iv) Value Fuzzer. The attack simulator includes known
malicious functions for a target controller, and it executes
malicious functions as indicated by the AM. For example, if
the AM initiates an Internal Storage Misuse attack [39], its
operational scenario is already located within the application
agent. Command messages from the AM are delivered to the
agent via the AM interface. The other modules (i.e., control-
flow fuzzer and value fuzzer) are used to randomize SDN
control flows and their input values. They will be invoked by
a command message from the AM, and they will randomize
required elements to detect unexpected reactions produced by
the controller. More detailed descriptions of those modules are
provided in the last part of this section.

Channel Agent: The channel agent sniffs and modifies the
control messages passing through the control channel between
the control plane (i.e., controller) and the data plane. As
the communication is often unencrypted, the channel agent
can manipulate control messages by intercepting them. While
the application agent is controller-dependent, the channel
agent is SDN protocol-dependent. DELTA currently supports
OpenFlow 1.0 and 1.3, and the channel agent automatically
catches this information by inspecting the header field of
control messages. The internal architecture of the channel
agent shares many things with the application agent. The
channel agent consists of four modules: (i) Attack Simulator,
(ii)) AM Interface, (iii) Control-Flow Fuzzer, and (iv) Value
Fuzzer. The functions of these four modules are the same as
those of the application agents.

Host Agent: The host agent behaves as a host (or multiple
hosts) participating in the target SDN network. It is capable of
generating network traffic to any reachable targets (e.g., switch
and host), and such a remotely controllable host is useful for
launching some attacks initiated by hosts. For example, a host
agent can send a large volume of network traffic to an SDN-
enabled switch, causing a PACKET_IN flooding attack [21],
[38], [40]. Unlike other agents, the host agent does not have
known attack scenarios, but it can be employed to generate
small or massive flows (mice or elephant flows), which can be
used during attack scenarios.

The host agent consists of three modules: (i) Flow Infor-
mation Collector, (:¢) Flow Generator, and (i7z) AM Interface.
Here, the AM interface performs the same operations as that of
other agents. The flow information collector captures diverse
flow-related information, such as latency and the number of
sent and received flows. This information is used to detect
some attack types. The flow generator produces network flows
under the control of the AM.

Fuzzing Modules: An administrator who chooses to em-
ploy the blackbox fuzzing functions of our framework can ask

the AM to activate fuzzing functions for the application and
channel agents. If no guidelines are presented to the fuzzing
functions, they operate continuously until manual termination.
The operator can alternatively supply input to narrow fuzzy
testing to a boundary range of randomization for the specific
cases.

Currently, our framework provides two fuzzing module
randomizing functions: (¢) Control-Flow Fuzzer and (i7) Value
Fuzzer, which are both located within each agent. As their
name implies, the control-flow fuzzer randomizes SDN control
flow operations, and the value fuzzer randomizes the input
values of each function. These modules may operate in tandem
or independently.

Two fuzzing modules in the application agent use APIs
provided by a controller to randomize control flows and values
respectively. Since each controller provides different types of
APIs, we analyze APIs provided by well-known controllers
and extract common functionalities. Then, we try to design
a generalized module that can cover diverse randomization
scenario in each controller. Of course, the implementation will
be different in each controller, but the conceptual architecture
is similar across all controllers, which simplifies the DELTA
framework. In the case of the channel agent, the fuzzing
modules intercept and parse ongoing control messages between
a controller and the data plane to randomize control flows
and values. For example, the control-flow fuzzer randomly
holds one of control messages and later resends the message
to manipulate the symmetric flow sequence. If a controller
manages all flow-rule installations to the data plane, this
information will be delivered through a network message (e.g.,
a TCP channel). In this case, the value fuzzer can capture and
forge this message (i.e., mounting a form of MITM attack

[35D).

Whenever a randomization procedure is completed, the test
results will be delivered to the result analyzer in the AM, which
then analyzes the results to verify the effectiveness of an attack
scenario. This evaluation for detecting new successful attacks
is currently based on the set of seven test criteria mentioned in
the previous subsection on Blackbox Fuzzing. If any of these
seven outcomes is detected, the result analyzer regards this as
a new attack and reports the test case to the operator.

VI. IMPLEMENTATION

We have implemented an instance of DELTA to verify its
feasibility and effectiveness. To support the design features
described in Section V, we implemented three types of agents
and an agent manager in Java, in approximately 11,000 lines
of code.

DELTA currently includes application agents for three
well-known open source controllers (i.e., ONOS, OpenDay-
light, and Floodlight) and one commercial controller, enabling
it to replay attack scenarios and launch fuzzing functions as
shown in Table II (OpenDaylight-Beryllium is under develop-
ment). As the controller integration design involves the user
of modular application agents, we are able to minimize the
integration cost (and impact) of extending DELTA to other
controllers. The channel agent employs a packet capture library
to capture and modify control messages between a controller
and network devices, and it currently understands OpenFlow

version 1.0 and 1.3. The host agent is a Java application
program that generates network flows by creating new TCP
connections or by using existing utilities, such as Tcpreplay
[42]. Tt can also collect network flow information by passively
sniffing network packets. All agents have direct connections to
the agent manager (AM) with TCP connections. We implement
fuzzing modules by modifying functions for controlling SDN
operations. In the case of the application agent, the fuzzing
modules parse arguments of each function, track the sequence
of function call, and randomize arguments or the sequence
of function call based on the information provided by the
AM. With respect to the channel agent, the fuzzing modules
manipulate OpenFlow messages and delay the sequence of
message flows.

VII. EVALUATION

We conducted a wide range of experiments and perfor-
mance evaluations involving the DELTA security assessment
framework with well-known SDN controllers, ONOS(v1.4.0),
OpenDaylight (Helium), Floodlight (v1.2), and a commercial
controller (Brocade Vyatta v2.3.0).

A. Use Case 1: Finding Unknown Attacks

Among the key features of DELTA is its ability to use spe-
cialized fuzz testing to uncover new SDN vulnerabilities. Here,
we highlight this capability using experiments we conducted
on ONOS, OpenDayLight (ODL), and Floodlight controllers.
Table III summarizes seven new attack scenarios that were
revealed through our evaluation. These scenarios span all three
SDN control flow categories (symmetric, asymmetric, and
intra-controller).

Unknown Attack Name Flow Target
Sequence and Data-Forge ASY Floodlight
Stats-Payload-Manipulation SYM | Floodlight, ODL
Echo-Reply-Payload-Manipulation SYM ODL
Service-Unregistration INT ODL
Flow-Rule-Obstruction INT ONOS
Host-Tracking-Neutralization INT ONOS
Link-Discovery-Neutralization INT Floodlight

TABLE III: Unknown attack case classification: ASY (Asymmetric),
SYM (Symmetric), and INT (Intra-controller) flows.

1) Asymmetric Control Flows: In this scenario, a previ-
ously unknown asymmetric control flow attack involves the
PACKET_IN message and the Floodlight controller.

Sequence and Data-Forge Attack: In the implementation
of the Floodlight controller, when PACKET_IN messages
arrive at the controller, it sequentially delivers the messages to
a set of applications that have registered callbacks. Moreover,
any application that receives the messages can get, insert,
and even remove the payload within a message. Thus, the
combination of these two features can be misused by a mali-
cious or buggy application (e.g., delivering crafted payloads).
Furthermore, this problem can result in the network entering
an unstable state. The following step by step procedure is used
to find an unknown attack.

1) On the initialization of DELTA, each subagent con-
nects to the agent manager (AM). Then, the AM dis-
plays the initial commands, which we can choose. We

select ‘Finding Unknown attack’. The AM requests a
target control flow scenario code, and then selects an
asymmetric control flow.

We select the target asymmetric control flow mes-
sages to randomize. In this case, the PACKET_IN
message is selected, and the AM notifies the target
message type to each fuzz module in the application
and channel agent.

As the host agents communicate with each other, the
fuzz modules randomize the sequence and the input
values of messages matching the target message type.
Whenever a fuzz cycle is completed, the AM checks
each case for violations of the criteria mentioned in
Section V-B. If violations are found, the AM retrieves
the randomized inputs from each fuzz module, and
saves them in the log file.

2)

3)

4)

______ App uzzing Topology Other
It Agent [Modules Manager Applications
|
i PACKET_IN Other Core Semvi
! Notifier Services ore services
A
| S :
Floodlight Instance
PACKET_IN }- B
Agent Controller
Manlager %
1)
IS e T
1
i Channel Agent Network Hub
i
\
R =1 =1
Host Agent Switch Switch Normal Host

Fig. 8: Fuzz points of the Sequence and Data-Forge attacks

Using the control-flow fuzzer and the value fuzzer in
the application agent, Figure 8 illustrates the attack scenario,
highlighting with the points where the fuzzing modules ran-
domize. Specifically, the control-flow fuzzer randomizes the
delivery sequence of PACKET_IN messages (A in Figure 8),
and the value fuzzer randomizes the message payloads (B
in Figure 8). When the fuzz modules change the sequence
and remove all payload bytes in a PACKET IN message,
DELTA discovers the vulnerability. Due to the removal of the
payload, the Topology Manager (in Figure 8) is unable
to receive the original payload and thus causes an exception
error (e.g., NULL pointer exception). As a result, the switch
that sends the PACKET_IN message is disconnected because
the controller has no exception-handling mechanism. Since
the switch disconnection is one of the criteria that determines
whether this finding is an unknown attack, the AM determines
that this case is an unknown attack scenario.

Based on the log file generated by the result analyzer in the
AM, we re-examine the unknown case. Figure 9 illustrates the
output of the controller’s console during this analysis process.
Initially, the application agent is located at the end of the
sequence (in the ‘Before’ column of Figure 9). However, after
modifying the sequence, the application agent is moved to the
first entry of the ‘After’ column in Figure 9.

Finally, the controller shows a NULL pointer exception
because the Topology Manager cannot properly handle a
PACKET_IN message, as the application agent removes the

10

Before After

[appagent] Packet-In listener as follows:| |[[appagent] Packet-In listener as follows
[appagent] 1 [linkdiscovery] application| [[appagent] 1 [appagent application
[appagent] 2 [topology] application appagent] 2 [topolody] application

[app 1t] 3 [devic r] application| [[app 1t] 3 [devic r] application
[appagent] 4 [loadbalancer] application |fl[appagent] 4 [loadbalancer] application
[appagent] 5 [firewall] application [appagent] 5 [firewall] application
appagent] 6 [forwardin application [appagent] 6 [forwarding] application
appagen appagen application [appagent] 7 [linkdiscovery] application

java.lang.NullPointerException: null

at net floodllghtcontroller topology TopologyManager processPacketInMessage(
ood ro Q00 a guologyiana

Fig. 9: Results of the Sequence and Data-Forge attack experiment

payload from the message, and then the switch that sent the
PACKET_IN message is subsequently disconnected (i.e., the
switch disconnection case in the criteria).

2) Symmetric Control Flows: Unlike the previous exper-
iment, this experiment involves symmetric control flows and
presents two new attack scenarios. These cases are detected
by the control channel fuzz module, using randomizing input
values.

Stats-Payload-Manipulation Attack: As mentioned in
Section II-B, the STATS_REQUEST and STATS_RESPONSE
messages are the representative messages for symmetric con-
trol flows. If an application wants to know specific flow
statistics, the controller sends a STATS_REQUEST message
to solicit switch status information, then the switch responds
to the controller with the STATS_RESPONSE message.

Packet Capture

63 20.99990400(10.0.0.201
64 21.01149600(160.0.0.252
71 22.01144900(10.0.0.252
75 23.01042600(10.0.0.252

10.0.0.252 OFP
10.0.0.201 OFP
10.0.0.201 OFP
10.0.0.201 OFP

£a 2

86 Stats Request (CS
86 Error (SM) (32B)
86 [TCP Retransmissi
86 [TCP Retransmlssl

cn [rxen nos

OpenFlow Protocol
> Header

v Error Message

| Type: Reguest was not understood (1)

Code: ofp stats request.type not supported (2)

T Datla: 011000141C304TedlUlouuou Plelelelelelelololelele) [

Controller

o.0.c.p.o.core.internal.Controller - Switch:10.0.0.252:59906
SWID:00:0a:f0:92:1c:21:3d:cO is removed

c.p.o.c.internal.SwitchHandler - Timeout while waiting for S
TATS_REQUEST replies from 00:0a:f0:92:1c:21:3d:c0O

Fig. 10: Results of the Stats-Payload-Manipulation attack experiment

In this case, the DELTA operator first targets symmetric
control flows. Then, the value fuzzer in the channel agent
randomizes control messages passing through the control chan-
nel. Technically, when the fuzzing module modifies the type
of STATS_REQUEST message to an undefined value (before
fuzzing: flow stats, after fuzzing: undefined), the Agent
Manager notices the switch disconnection matched to our
criteria.

Figure 10 shows the results of the Stats-Payload-
Manipulation attack. When the value fuzzer changes the type
of the STATS_REQUEST message to a randomized value, the
switch sends an error message (see Packet Capture in Figure

10) to the controller, and the switch disconnects from the
controller (see Controller in Figure 10), which violates the
switch-disconnection criterion.

Echo-Reply-Payload-Manipulation Attack: In
another experiment involving symmetric control flows,
the ECHO_REQUEST and ECHO_REPLY messages are
popularly used in OpenFlow to exchange information about
latency, bandwidth, and liveness on connected switches. If the
controller does not receive a reply to the ECHO_REQUEST
in time, it assumes that the switch is disconnected.

The operator first selects the symmetric control flows
as the target flow type. Then, the AM randomly picks the
ECHO_REPLY message type, and the value fuzzer in the chan-
nel agent starts to randomize the message passing through the
control channel. When the fuzz module in the channel agent
randomizes the length field of the ECHO_REPLY message as
an undefined value (before: 8, after fuzzing: 0), the switch
disconnection event is triggered in the controller.

Packet Capture
ARP

60.10.0.0.216 is at 44:8a:5b:ec:51:ed
OFP 74 Echo Reply (SM) (8B)

ARP 60 Who has 10.0.0.2117 Tell 10.0.0.242
64 e5 99 f0 e9 65 44 8a 5b ec 51 ed 08 00 45 00
60 30 2a 89 00 00 40 06 3a 76 6a 00 00 f2 Oa 00

00 d8 €7 19 19 e9 78 ff Za 42 f7 2c 27 21 50 18
{00 oo ff ff ff f2

0000
0010
0020

0030 81 7c 00 f6 00 00 061 03

Length Field

Controller

n: New I/O worker #20]

OFParseError
protocol.verl®.0 SRea ea

protocol.verle. OFMessageVer10$Reader readFrom(OF
protocol.verl0.0FMessageVerl@$Reader. readFrom(0OF!

-saae\e 10 jav
ssageVerl@.java:

Fig. 11: Results of the Echo-Reply-Payload-Manipulation attack
experiment

From the log information, we try to reproduce this attack
case. Figure 11 shows the results of the Echo-Reply-Payload-
Manipulation attack. When the value fuzzer changes the length
field of the ECHO_REPLY message to 0 value (Packet Capture
in Figure 11), the controller causes the exception to parse
wrong length value of the message. Finally, the switch is
disconnected from the controller.

3) Intra-Controller Control Flows: In the case of intra-
controller control flows, the fuzz modules in the application
agent have a significant role, and the channel agent is not
involved. Many services provided by each controller, and these
services form the targets. Next, we consider the following four
unknown attack cases.

Service-Unregistration Attack: OpenDaylight provides a
substantial diversity of network services, and OpenDaylight-
hosted applications can dynamically register and use these
services. For example, applications can freely register the
DataPacketService to parse control messages arriving
from the switch (e.g., PACKET_IN). While the application
can register these services at initialization, the applications can
dynamically change the services of other applications without
constraint, and potentially with malicious intent.

11

During one experiment, the value fuzzer in the application
agent found that it is possible to unregister certain services
from other applications resulting in a significant disruption of
network connectivity. For this experiment, a DELTA operator
targets intra-controller control flows and fuzzes only input
values. The value fuzzer chooses the DependencyManager,
one of the available services to fuzz. While fuzzing input
parameters, DELTA will try to unregister all services of
ArpHandler which manage ARP packets. Ultimately, the
connection between hosts is disconnected. Since this fuzz value
causes the disconnection of hosts, the AM determines this case
as a newly found attack scenario.

Before

org.opendaylight.controller.arphandler
{org.opendaylight.controller.sal.core.IContainerAware}={service.1i
d=158}
{org.opendaylight.controller.hosttracker.hostAware.IHostFinder, o
rg.opendaylight.controller.sal.packet.IListenDataPacket, org.open
daylight.controller.clustering.services.ICacheUpdateAware}={cache
names=[arphandler.arpRequestReplyEvent], containerName=default, s
allListenerName=arphandler, service.id=270}

After

org.opendaylight.controller.arphandler

[Appagent] : unregister service
{org.opendaylight.controller.sal.core.IContainerA
d=158} Y

are}={service.i

Fig. 12: Results of the Service-Unregistration attack experiment

Based on the log file, we can backtrack this attack scenario.
As shown in Figure 12, the ArpHandler initially registered
three kinds of services: IHostFinder, IListenDataPacket, and
ICacheUpdateAware (Before in Figure 12). After the fuzzing
modules unregister the services, the network loses its func-
tionality, since ARP packets play a critical role as during the
initiation of network communications (After in Figure 12).
Therefore, two hosts that are connected to the switch cannot
communicate with each other (i.e., criterion (vi): inter-host
communication disconnection).

Flow-Rule-Obstruction Attack: In the implementation of
ONOS, some applications may have configuration properties.
For example, if an application declares a specific variable as a
configuration property, the network administrator can change
the variable dynamically. In addition to manually changing the
properties, ONOS provides ComponentConfigService,
which tracks and changes configuration properties for its appli-
cations. While the service allows applications to dynamically
change the configuration of each component, it can also change
unnecessary configurations.

A previously unknown attack scenario was discovered
by targeting DELTA to the intra-controller flows. The value
fuzzer in the application agent chooses ComponentConfigSer-
vice among available services for randomizing input val-
ues. When the value fuzzer randomizes certain properties of
ReactiveForwarding, the default application to send flow
rules to the switch, the AM detects noticeable performance
degradation of the switch. More specifically, the fuzzing
module randomizes the Packet_Out_Only property of the
ReactiveForwarding service (default: false, after fuzzing: true),

and the ReactiveForwarding service sends no FLOW_MOD
messages to the switch.

Before

64 bytes from 10.0.0.2: icmp_seq=11 ttl=64|time=1.05 ms
64 bytes from 10.0.0.2: icmp_seq=12 ttl=64|time=1.00 ms
64 bytes from 10.0.0.2: icmp_seq=13 ttl=64|time=1.00 ms
64 bytes from 10.0.0.2: icmp_seq=14 ttl=64|time=1.02 ms
64 bytes from 10.0.0.2: icmp_seq=15 ttl=64|time=1.01 ms
After

64 bytes from 10.0.0.2: icmp_seq=11 ttl=64|time=4.42 ms
64 bytes from 10.0.0.2: icmp_seq=12 ttl=64|time=4.28 ms
64 bytes from 10.0.0.2: icmp_seq=13 ttl=64|time=4.57 ms
64 bytes from 10.0.0.2: icmp_seq=14 ttl=64|time=3.98 ms
64 bytes from 10.0.0.2: icmp_seq=15 ttl=64|time=4.78 ms

Fig. 13: Results of the Flow-Rule-Obstruction attack experiment

With the log file, we can verify the feasibility of this attack.
Figure 13 shows the difference of the latencies before and
after the attack. Since the ReactiveForwarding service does
not send FLOW_MOD messages to the switch, every new flow
arriving at the switch keeps generating PACKET_IN messages
to the controller. Thus, the average of latencies becomes slower
(about 4 ms in Figure 13 bottom) than the average before
the attack (about 1 ms in Figure 13 top) as the workload of
the controller increases (i.e., criterion (v): switch performance
downgrade).

Host-Tracking-Neutralization Attack: ONOS keeps track
of the location of each end-host connected to switches
through the HostLocationProvider, which maintains
host-related information (e.g., an IP address, a MAC address, a
VLAN ID, end a connected port). Thus, if an end-host attaches
to a switch and the service notices and updates the information
of the end-host. As mentioned in the previous unknown attack
scenario, ComponentConfigService can also change some con-
figuration properties belonging to the HostLocationProvider
service.

An operator can aim DELTA at the intra-controller flows
for input value fuzzing (not flow sequence), then the Com-
ponentConfigService service is selected by the value fuzzer
in the application agent for input-value randomization. While
the value fuzzer works, the controller receives error messages
from the switch. Since the switch sending error messages to
the controller matches one of the seven vulnerability detection
criteria, the AM logs information that the fuzzing module
randomized the hostRemovalEnabled property of the
HostLocationProvider (default: true, after fuzzing: false). This
change effectively prevents the tracking of end-host locations.
For example, if a host is disconnected from the switch, the
controller does not detect this disconnection.

To verify this unknown attack scenario, we analyzed the
log information and backtracked the attack. Figure 14 shows
the outputs from a packet capture tool [6] in the channel
agent. The channel agent senses the error messages from the
switch, which means that the controller for the flow rules is
not available due to the invalid host. However, although the
communication ends, error messages are sent to the controller
every 10 seconds until the controller shuts down (i.e., criterion
(vii): error-packet generation).

12

101 13.77953100(10.0.0.201
106 13.786028100(10.0.0.201
109 13.78089200(10.0.0.252
139 16.20165600(10.0.0.201
140 16.202119600(10.0.0.252

10.0.0.253
10.0.0.252
10.0.0.201
10.0.0.252
10.0.0.201

OFP
OFP
OFP
OFP
OFP

146 Flow Mod (CSM) (86B)
146 Flow Mod (CSM) (86B)
142 Error (SM) (76B)
146 Flow Mod (CSM) (86B)
142 Error (SM) (76B)

v OpenFlow Protocol
> Header
v Error Message
Type: Error in action description (2)
Code: Problem validating output action (4)

Fig. 14: Results of the Host-Tracking-Neutralization attack experi-
ment

Link-Discovery-Neutralization Attack: Floodlight also
provides diverse network services in the controller core
for use by applications. Among these services, the
LinkDiscoveryService offers a way of managing the
link information by sending LLDP packet to other applications.
For example, an application can read what link is connected
to a specific switch, or send LLDP packets to other switches
using this service.

We found that an application can prevent the controller
from sending LLLDP packets to all switches that are connected
to the controller. This misleads the controller about tracking
the link information. For the discovery, an operator selects
intra-controller control flows as the target to be manipulated
by the value fuzzer module in the application agent (not in
the channel agent). The value fuzzer module feeds all switch
information to an API provided by the LinkDiscoverService,
which suppresses the sending of LLDP packets.

Before After

00:0a:f0:92:1¢:21:5d:80 0.0.0.0 08:62:66:7d:4f:c8

00:0a:f0:92:1¢:21:3d:c0
10.0.0.2 44:8a:5b:f3:1

0a:f0:92:1¢:21:5d:80
-

-
S 00:0a:f0:92:1¢:21:3d:c0

10.0.0.1 08:62:66:7d:4f.c8

Switch

10.0.0.2 44:8a:5b:13:1a:13 Host

Fig. 15: Results of the Link-Discovery-Neutralization attack exper-
iment. A red circle (before) represents a live link between two
switches, and a red dotted line (after) represents a failed link.

As a result of this attack, the controller is forced to
misinterpret the link-state information. Using a post-mortem
analysis of the log information, we can reproduce this attack
scenario to check if this attack really violates the criteria (i.e.,
criterion (iii) internal-storage poisoning). As shown in Figure
15, the controller web Ul displays the correct network topology
information (Before in Figure 15). However, after the attack is
conducted, the topology information is changed, although the
real topology as not been altered (After in Figure 15).

B. Use Case 2: Reproducing Known Attacks

Since the procedures and outputs of known attack scenarios
are pre-specified, each agent needs to follow the steps and
sequences of those scenarios with the pre-defined parameters.
In the case of reproducing the known attack scenarios, we
will illustrate two example cases: Man-In-The-Middle attack
and Application Eviction attack.

Man-In-The-Middle Attack: As presented in Section IV,
most commercial switches do not support the encryption of
control messages between the control plane and the data plane
(i.e., plain TCP channel) due to the performance issue. Thus,
an attacker can freely sniff control messages and manipulate
them, which can result in serious problems (e.g., network
failures). In the implementation of the channel agent, we
embeded the rule-modification function that can change an
original OpenFlow action to a crafted action in a FLOW_MOD
message, which is used to enforce a flow rule to a switch, into
the attack simulator.

[pP] - Print all known attacks
[cC] - Print configuration info
(1)I [kK] - Replaying known attack(s)
[uUl] - Finding an unknown attack
[aQ] - Quit Scanner
Command> k
2
Enter the attack code (replay all, enter the 'A'): B-2-A

Packet Capture: Before
Y ARTTION

Packet Capture: After
¥ Action

Type: Output to switch port (0 Type: Output to switch port
lopn. 2

Iﬁ\- 8
Output port: 15 | | Output port: 19
05535 5 5

of Actions: 1 # of Actions| 1

\

ARply
Agjjons

output:19 fn/a n/

(0]

Floodlight Web Ul: Installed Flow Rules

Write Ci

Cookie Table Priority Match Actions A

9007199254740992 0x2 1 in_port=13
eth_src=44:8a:5b:ec:4e:0c]
eth_dst=44:8a:5b:ec:51:ed

Fig. 17: Results of the MITM attack experiment

unload an application running on the controller (briefly men-
tioned in Section IV). However, due to no restriction on
using the mechanism, an application can arbitrarily unload
other applications. Here, we demonstrate an attack against the

To0% T commercial Brocade Vyatta SDN controller [3], which is based
on OpenDaylight.
06:58:38.183 - [B-2-A] - [B-2-A] Man-In-The-Middle
(3) NC.C0.20 10D ro 2 A7 r. ' 11 bk
YU 7. FJ3. 27 — [D-c~AJ - UCIUImiETAYETTU STUrt MU= XIm— ITeE=MIuuT >bundle: List I grep flownanager
06:59:48.248 - [B-2-A] - HostAgent generates flows 264 | Active | 80 | 2.0.0 | Com. IN——_ --app--mode_l
. 265 | Active | 80 | 2.0.0 | com. I B e e - app - [REILELEEE - provider
209.51.254 - [B-2-A] - Gethering result from HostAgent | >bundle:list | grep delta

(4)||06:59:51.255 - [B-2-A] - B-2-A, Success
Running Time: 8749

Press ENTER key to continue..|]

Fig. 16: Steps of the MITM attack experiment

The following four steps elaborate the procedure of this
attack conducted against the Floodlight controller presented
in Figure 16. (1) Upon the initialization of DELTA, each
agent connects to the agent manager (AM). Then, the AM
first shows the initial available commands. Here, we selected
‘Replaying known attacks’. (2) The AM requests an attack
scenario code, or an operator can select all. Here, we selected
attack code 'B-2-A’ denoting the MITM attack, whose code is
determined based on the classification presented in [35]. (3)
The AM organizes the actions of each agent based on the
steps of the attack. During the attack, the AM also shows
the attack process. Internally, the channel agent starts to
intercept FLOW_MOD messages, and the attack simulator in
the channel agent changes the action field of the messages
defined in the configuration file. (4) The AM retrieves the
output of the attack from the agents and indicates on the screen
whether the attack was successful or failed.

To verify if the attack process is successful, we monitor
packets on the control channel and observe the message
changes through the Floodlight Web UI. Figure 17 shows
the results of the attack. While the output port was 15 at
the beginning (see Packet Capture (Before) in Figure 17), the
output port has been changed to 19 (see Packet Capture (After)
in Figure 17). The crafted FLOW_MOD messages have been
installed into the switch (Figure 17 bottom). Thus, flows would
be redirected to a wrong port after the attack.

Application Eviction Attack: Most controllers adopt a
mechanism that can allow users to dynamically load and

13

| EIES. appagent (A)
>[DELTA-APPAGENT] Application Eviction Attack!

[DELTA-APPAGENT] STOP 264:Com. NS M. 4 8 - app - Flownanager -model

[DELTA-APPAGENT] STOP 265:com. IS M 4 W - app - Flowmanager - provider

(d
342 | Active
(d

| 80 | 0.4.0.SNAPSHOT
>

>bundle:list | grep flowmanager
264 | Resolved | 80 | 2.0.0
265 | Resolved | 80 | 2.0.0

g ool

| Com. I u—apprrmodel (B)

| com. I B - 2pp - [AEILENEE - provider

Fig. 18: Results of the Application Eviction attack experiment

Once the target controller has been initialized, as shown in
Figure 18 (A), the application agent and the target application
to evict are up and running (both are in ACTIVE state). Here,
we attempt to evict the flowmanager application, which plays
a critical role in managing flow rules on the switches. Then,
once the target is confirmed, the agent executes the attack to
stop the target application. As a result, one can see that the
flowmanager application is no longer in an ACTIVE state after
the attack (Figure 18 (B)).

From the attack case, we can consider that many commer-
cial and open source controllers can be tested by DELTA. Thus,
we are planning to test the vulnerabilities of those controllers
in the near future.

C. Performance

1) Finding Unknown Attacks: For finding unknown attack
cases, DELTA serially executes fuzz modules in each agent.
Upon completion of each fuzz test cycle, the analyzer in AM
checks if the attack was successful. Table IV shows the amount
of time taken to complete one fuzz test cycle. The asymmetric
control flow takes the longest average time, because the case
uses all fuzzing modules in the application and the channel
agent.

2) Reproducing Known Attacks: Table V describes the
execution time for reproducing each known attack scenario. In
the case of ONOS, the Event-Listener-Unsubscription attack
is not possible since ONOS does not provide APIs to access

Control Flow Type Average Running Time
Asymmetric Control Flow 82.5 sec
Symmetric Control Flow 80.4 sec
Intra-controller Control Flow 75.2 sec

TABLE IV: Finding unknown attack microbenchmark

event listeners. In the case of Floodlight, it is not possible to re-
produce the Application-Eviction attack because the controller
does not support a dynamic mechanism that loads/unloads
other applications. Besides those attack scenarios, we excluded
the Switch Table Flooding attack from the total execution time
since it takes more than 90 minutes to fill up 2GB of memory
of a Floodlight controller [11].

As shown in Table V, most of the attacks can be reproduced
within a minute. The System-Command-Execution attack (NF-
1) shows the shortest execution time (less than a second).
It takes only five minutes to reproduce all of the aforemen-
tioned attacks, with the exception of the Switch-Table-Flooding
attack. These results serve to underscore the flexibility and
usability of DELTA. Specifically, it enables network operators
to efficiently reproduce attacks and easily conduct systematic
security assessments of OpenFlow networks. In the absence of
such a framework, it would be significantly more challenging
to create test environments for varying and complex SDN
attack scenarios.

Controller
Attack Code ONOS OpenDaylight Floodlight
SF-1 - - 5400 sec
SE-2 16.09 sec 16.34 sec 15.96 sec
SE-3 21.5 sec 12.33 sec 11.99 sec
SF-4 28.1 sec 19.27 sec 18.6 sec
AF-1 12.55 sec 8.47 sec 3.13 sec
AF-2 3.38 sec 8.12 sec 3.21 sec
AF-3 12.59 sec 17.79 sec 11.96 sec
AF-4 43.65 sec 23.28 sec 43.2 sec
AF-5 40.43 sec 40.24 sec 20.35 sec
AF-6 20.52 sec 20.25 sec 20.2 sec
AF-7 20.6 sec 20.32 sec 20.17 sec
AF-8 33.62 sec 33.18 sec 33.14 sec
AF-9 17.8 sec 17.19 sec 7.88 sec
CF-1 2.6 sec 3.14 sec 2.14 sec
CE-2 22.57 sec 13.33 sec N/A
CE-3 N/A 13.22 sec 13.11 sec
NE-1 0.028 sec 0.095 sec 0.127 sec
NF-2 23.54 sec 23.2 sec 23.16 sec
NE-3 23.43 sec 23.36 sec 23.35 sec
NF-4 3.39 sec 4.86 sec 3.17 sec
Total 346.38 sec 317.98 sec 274.84 sec

TABLE V: Reproducing known attacks microbenchmark: Attack
Code is referenced by Table I

VIIL

LIMITATION AND DISCUSSION

Like other research work, our system also has some limi-

tations. First, some testing cases require installing a specified
agent (i.e., Application Agent) to an SDN controller. For
example, to reproduce the Internal Storage Misuse attack in
each controller requires the installation of our Agent Manager
for each controller. This limitation may slow the adaptation of

14

our tool to diverse control platforms. However, currently our
framework covers most well-known open source controllers,
and we will provide an interface module for other control
platforms to easily integrate or extend our framework.

Second, some operations require human involvement. We
have tried to minimize the amount of human interaction, and
our framework can be operated with simple configurations.
However, some cases, such as adding new attack scenarios,
require manual modifications to some parts of the framework.
This situation happens when our framework discovers a new
type of attack through the fuzzing module. In this case, we
can understand an attack scenario through the log information,
but this may require a new way to handle SDN control
flows or messages. We will revise this in the near future to
automatically handle all (or most) operations.

IX. CONCLUSION

This paper describes an important first step toward devel-
oping a systematic methodology for automatically exploring
the critical data flow exchanges that occur among SDN com-
ponents in search of known and potentially unknown vulner-
abilities. To our knowledge, this framework, called DELTA,
represents the first and only SDN-focused security assessment
tool available today. It has been designed for OpenFlow-
enabled networks and has been extended to work with the
most popular OpenFlow controllers currently available. We
also presented a generalizable SDN-specific blackbox fuzz
testing algorithm that is integrated into DELTA. This fuzz
testing algorithm enables the operator to conduct in-depth
testing of the data input handling logic of a range of OpenFlow
component interfaces. We demonstrate the effectiveness of this
fuzz testing algorithm by presenting seven previously unknown
attack scenarios that were detected by this tool.

ACKNOWLEDGMENT

This material includes work supported by the National
Science Foundation under Grant No. 1547206. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily
reflect the views of the National Science Foundation. This
work is also supported by Institute for Information & Com-
munications Technology Promotion (IITP) grant funded by
the Korean government (MSIP) (No. B0126-16-1026, Devel-
opment of Core Technologies for SDN-based Moving Target
Defense).

REFERENCES

[1] K. Benton, L. J. Camp, and C. Small. Openflow vulnerability assess-
ment. In Proceedings of the second ACM SIGCOMM workshop on Hot
topics in software defined networking (HotSDN’13). ACM, 2013.

[2] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide,
B. Lantz, B. O’Connor, P. Radoslavov, W. Snow, et al. Onos: towards
an open, distributed sdn os. In Proceedings of the third workshop on
Hot topics in software defined networking (HotSDN’14). ACM, 2014.

[3] Brocade. Brocade SDN Controller, 2016. http://www.brocade.com/
en/products-services/software-networking/sdn-controllers-applications/
sdn-controller.html/.

[4] S. K. Cha, M. Woo, and D. Brumley. Program-adaptive mutational
fuzzing. In Proc. of the IEEE Symposium on Security and Privacy,
May 2015.

[5]

[6]

[7]

[8]

(10]

[11]

(12]

[13]
[14]

[15]
[16]

[17]

[18]

[19]
[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]
[28]
[29]

(30]

B. Chandrasekaran and T. Benson. Tolerating sdn application failures
with legosdn. In Proceedings of the 13th ACM Workshop on Hot Topics
in Networks (HotNets’14). ACM, 2014.

G. Combs et al. Wireshark-network protocol analyzer. Version 0.99, 5,
2008.

W. Cui, M. Peinado, H. J. Wang, and M. E. Locasto. Shieldgen: Auto-
matic data patch generation for unknown vulnerabilities with informed
probing. In Security and Privacy, 2007. SP’07. IEEE Symposium on,
pages 252-266. IEEE, 2007.

A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and
S. Banerjee. Devoflow: scaling flow management for high-performance
networks. In ACM SIGCOMM Computer Communication Review,
volume 41, pages 254-265. ACM, 2011.

M. Dhawan, R. Poddar, K. Mahajan, and V. Mann. Sphinx: Detecting
security attacks in software-defined networks. In NDSS, 2015.

J. M. Dover. A denial of service attack against the open floodlight sdn
controller, 2013.

J. M. Dover. A switch table vulnerability in the open floodlight sdn
controller, 2014.

O. N. Foundation. Security Working Group.
opennetworking.org/technical-communities/areas/services.

https://www.

Fyodor. Nmap security scanner. http://www.nmap.org.

P. Godefroid, M. Y. Levin, and D. A. Molnar. Automated whitebox
fuzz testing. In NDSS, volume 8, pages 151-166, 2008.

S. Hocevar. zzuf. https://github.com/samhocevar/zzuf.

C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nan-
duri, and R. Wattenhofer. Achieving high utilization with software-
driven wan. In ACM SIGCOMM Computer Communication Review,
volume 43, pages 15-26. ACM, 2013.

K. Hong, L. Xu, H. Wang, and G. Gu. Poisoning network visibility
in software-defined networks: New attacks and countermeasures. In
Proceedings of the 22nd Annual Network and Distributed System
Security Symposium (NDSS’15), February 2015.

A. D. Householder and J. M. Foote. Probability-based parameter
selection for black-box fuzz testing. Technical report, 2012. CERT
Technical Report.

HP. HP SDN App Store. https://marketplace.saas.hpe.com/sdn.

S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu, et al. B4: Experience with a
globally-deployed software defined wan. In ACM SIGCOMM Computer
Communication Review, volume 43, pages 3—14. ACM, 2013.

D. Kotani and Y. Okabe. A packet-in message filtering mechanism for
protection of control plane in openflow networks. In Proceedings of
the Tenth ACM/IEEE Symposium on Architectures for Networking and
Communications Systems, ANCS 14, pages 2940, New York, NY,
USA, 2014. ACM.

D. Kreutz, F. M. Ramos, P. Verissimo, C. E. Rothenberg, S. Azodol-
molky, and S. Uhlig. Software-defined networking: A comprehensive
survey. proceedings of the IEEE, 103(1):14-76, 2015.

D. Kreutz, F. M. V. Ramos, and P. Verissimo. Towards secure
and dependable software-defined networks. In Proceedings of ACM
SIGCOMM Workshop on Hot Topics in Software Defined Networking
(HotSDN’13), August 2013.

D. Maynor. Metasploit toolkit for penetration testing, exploit develop-
ment, and vulnerability research. Elsevier, 2011.

J. Medved, R. Varga, A. Tkacik, and K. Gray. Opendaylight: Towards
a model-driven sdn controller architecture. In 2014 IEEE 15th Interna-
tional Symposium on, pages 1-6. IEEE, 2014.

B. P. Miller, L. Fredriksen, and B. So. An empirical study of the
reliability of unix utilities. Communications of ACM, 1990.

B. S. Networks. Floodlight. http://www.projectfloodlight.org/floodlight/.
Open Networking Foundation. https://www.opennetworking.org/.

OpenFlow. OpenFlow Specification version 1.0.0. Technical report,
2009. http://archive.openflow.org/documents/openflow-spec-v1.0.0.pdf.

OpenFlow. OpenFlow Specification version 1.3.0. Technical re-
port, 2011. https://www.opennetworking.org/images/stories/downloads/
sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.0.pdf.

15

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

P. Porras, S. Shin, V. Yegneswaran, M. Fong, M. Tyson, and G. Gu. A
security enforcement kernel for openflow networks. In Proceedings
of the first workshop on Hot topics in software defined networks
(HotSDN’12), 2012.

C. Ropke and T. Holz. Sdn rootkits: Subverting network operating sys-
tems of software-defined networks. In Research in Attacks, Intrusions,
and Defenses, pages 339-356. Springer, 2015.

S. Lee, and C. Yoon, and S. Shin and S. Scott-Hayward. DELTA: SDN
SECURITY EVALUATION FRAMEWORK. http://opensourcesdn.org/
projects/project-delta-sdn-security-evaluation-framework.

C. Scott, A. Wundsam, B. Raghavan, A. Panda, A. Or, J. Lai, E. Huang,
Z. Liu, A. El-Hassany, S. Whitlock, et al. Troubleshooting blackbox
sdn control software with minimal causal sequences. In Proceedings
of the 2014 ACM Conference on SIGCOMM, pages 395-406. ACM,
2014.

SDNSecurity.org. SDN Security Vulnerabilities Genome Project. http:
//sdnsecurity.org/project_SDN- Security- Vulnerbility-attack-list.html.

T. N. Security. Nessus.
nessus-vulnerability-scanner.

A. Shalimov, D. Zuikov, D. Zimarina, V. Pashkov, and R. Smeliansky.
Advanced study of sdn/openflow controllers. In Proceedings of the
9th Central & Eastern European Software Engineering Conference in
Russia, CEE-SECR 13, pages 1:1-1:6, New York, NY, USA, 2013.
ACM.

S. Shin and G. Gu. Attacking software-defined networks: A first
feasibility study (short paper). In Proceedings of ACM SIGCOMM
Workshop on Hot Topics in Software Defined Networking (HotSDN’13),
August 2013.

S. Shin, Y. Song, T. Lee, S. Lee, J. Chung, P. Porras, V. Yegneswaran,
J. Noh, and B. B. Kang. Rosemary: A robust, secure, and high-
performance network operating system. In Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security
(CCS’14), November 2014.

S. Shin, V. Yegneswaran, P. Porras, and G. Gu. Avant-guard: Scalable
and vigilant switch flow management in software-defined networks. In
Proceedings of the 20th ACM Conference on Computer and Communi-
cations Security (CCS’13), November 2013.

A. Takanen, J. D. Demott, and C. Miller. Fuzzing for Software Security
Testing and Quality Assurance. http://www.mcafee.com/us/products/
network-security-platform.aspx.

http://www.tenable.com/products/

A. Turner and M. Bing. Tcpreplay: Pcap editing and replay tools for*
nix. online], http://tcpreplay. sourceforge. net, 2005.

X. Wang, Z. Li, J. Xu, M. K. Reiter, C. Kil, and J. Y. Choi. Packet
vaccine: Black-box exploit detection and signature generation. In Pro-
ceedings of the 13th ACM conference on Computer and communications
security, pages 37-46. ACM, 2006.

J. Yao, Z. Wang, X. Yin, X. Shiyz, and J. Wu. Formal modeling and
systematic black-box testing of sdn data plane. In Network Protocols
(ICNP), 2014 IEEE 22nd International Conference on, pages 179-190.
IEEE, 2014.

M. Yu, J. Rexford, M. J. Freedman, and J. Wang. Scalable flow-based
networking with difane. ACM SIGCOMM Computer Communication
Review, 40(4):351-362, 2010.

M. Zalewski. American Fuzzy Lop. Icamtuf.coredump.cx/afl/.

