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ABSTRACT
AI techniques play an important role in automated malware clas-
sification. Several machine-learning methods have been applied to
classify or cluster malware into families, based on different fea-
tures derived from dynamic review of the malware. While these
approaches demonstrate promise, they are themselves subject to a
growing array of countermeasures that increase the cost of captur-
ing these binary features. Further, feature extraction requires a time
investment per binary that does not scale well to the daily volume
of binary instances being reported by those who diligently collect
malware. Recently, a new type of feature extraction, used by a clas-
sification approach called binary-texture analysis, was introduced
in [16]. We compare this approach to existing malware classifica-
tion approaches previously published. We find that, while binary-
texture analysis is capable of providing comparable classification
accuracy to that of contemporary dynamic techniques, it can de-
liver these results 4000 times faster than dynamic techniques. Also
surprisingly, the texture-based approach seems resilient to contem-
porary packing strategies, and can robustly classify a large corpus
of malware with both packed and unpacked samples. We present
our experimental results from three independent malware corpora,
comprised of over 100 thousand malware samples. These results
suggest that binary-texture analysis could be a useful and efficient
complement to dynamic analysis.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Invasive Software (viruses, worms,
trojan horses); I.4 [Image Processing and Computer Vision]: Ap-
plications
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1. INTRODUCTION
Malware binary classification is the problem of discovering whether

a newly acquired binary sample is a representative of a family of
binaries that is known (and has ideally been previously analyzed
and understood) or whether it represents a new discovery (requir-
ing deeper inspection). Perhaps the most daunting challenge in bi-
nary classification is simply the sheer volume of binaries that must
reviewed on a daily basis. In 2010, Symantec reported its 2010
corpus at over 286 million [23].

In order to deal with such a huge volume, it is necessary to de-
velop systems that are capable of automated malware analysis. AI
techniques, in particular machine-learning-based techniques play
an important role in such analysis. Often a set of features are
extracted from malware and then unsupervised learning may be
applied to discover different malware groups/families [21] or su-
pervised learning may be applied to label future unknown mal-
ware [21, 31]. In both cases, designing a set of features that capture
the intrinsic properties of the malware is the most critical step for
AI techniques to be effective, because analysis based on features
that can be randomized via simple obfuscation methods will not
generate meaningful results.

There are two main types of features that are commonly used in
automated malware analysis: static features based on the malware
binary and dynamic features based on the runtime behavior of the
malware. One challenge faced by static-feature analysis techniques
is wide-spread introduction of binary obfuscation techniques that
are near-universally adopted by today’s malware publishers. Binary
obfuscation, particularly in the form of binary packing, transforms
the binary from its native representation of the original source code,
into a self-compressed and uniquely structured binary file, such that
naive bindiff-style analyses across packed instances simply do not
work. Packing further wraps the original code into a protective
shell of logic that is designed to resist reverse engineering, making
our best efforts at unpacking and static analysis an expensive, and
sometimes unreliable, investment.

Dynamic features based on behavioral analysis techniques of-
fer an alternate approach to malware classification. For example,
sandnets may be used to build a classification of binaries based
on runtime system call traces [30], or one may conduct classifica-
tion through host and network forensic analyses of the malware as
it operates [32]. Such techniques have been studied as a possible



solution, but they may be challenged by a variety of countermea-
sures designed to produce unreliable results [22]. Dynamic analy-
sis has also been noted to be less than robust when exposed to large
dataset [14]. Consider an average dynamic analysis of a malware
binary, in which the binary is executed, allowed to unpack, pro-
vided time to execute its program logic, and (in the worst case) is
subject to full path exploration to enumerate its calling sequence,
and finally terminated and its virtual machine recycled. The dy-
namic analysis of a single binary sample may take on the order
of 3 to 5 minutes [30] to extract the attributes used for classifica-
tion. Even if such a procedure can be streamlined to 30 seconds
per binary, the Symantec 2010 corpus would take over 254 years of
machine time to process.

Recently, a new type of feature has been introduced in [16] for
malware classification. The approach borrows techniques from the
image processing community to cast the structure of packed binary
samples into two-dimensional grey scale images, and then uses fea-
tures of this image for classification. In this paper, we compare two
different feature-design strategies for malware analysis, i.e., a strat-
egy based on image-processing with dynamically derived features.
What we confirm is that the binary packing systems we have ana-
lyzed perform a monotonic transformation of the binaries that fails
to to conceal common structures (byte patterns) that were present
in the original binaries. We provide experiments which illustrate
that the binary-texture-based strategy can produce clustering results
roughly equivalent to the results produced by competing dynamic
analysis techniques, but at 1/4000 the amount of time per binary
(from roughly 3 minutes to approximately 50ms).

The image-based approach is not subject to anti-tracing, anti-
reverse engineering logic, or many common code obfuscation strate-
gies now incorporated into packed binaries. However, it is subject
to the coupling of the binary to the packing software. That is, a
stream of packed samples from a single common malware will pro-
duce a unique cluster per packer (e.g., mydoom-UPX, mydoom-
ASPack, mydoom-PEncrypt, etc.). We believe this is quite a fair
tradeoff.

In section 2 we discuss the binary-texture approach to casting
a binary sample into a 2D image format. In section 3 we discuss
dynamic analysis for generating malware classification features. In
section 4, we conduct experiments in which we compare different
strategies for malware classification. Section 5 discusses our obser-
vations for why and how packers do not destroy the observed struc-
tures, the limitations, and possible countermeasures to the image-
processing based technique. Section 6 presents related work, and
Section 7 summarizes our results.

2. BINARY TEXTURE ANALYSIS
An image texture is a block of pixels which contains variations

of intensities arising from repeated patterns. Texture based fea-
tures are commonly used in many applications such as medical im-
age analysis, image classification and large-scale image search, to
name a few. Recently, image texture-based classification was used
to classify malware [16]. A malware binary is first converted to an
image representation on which texture based features are obtained.
In this paper, we use this technique for malware classification and
compare it with current dynamic analysis based malware classifica-
tion techniques. First, we briefly review the image based malware
classification.

2.1 Image Representation of Malware
To extract image-based features, a malware binary has to be

transformed to an image. A given malware binary is read as a 1D
array (vector) of 8 bit unsigned integers and then organized into
a 2D array (matrix). The width of the matrix is fixed depending
on the file size and the height varies according to the file size[16].
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Figure 1: Block diagram to convert malware binary to an im-
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Figure 2: Block diagram to compute texture feature on an im-
age

The matrix is then saved as an image and the process is shown in
Figure 1.

2.2 Texture Feature Extraction
Once the malware binary is converted to an image, a texture

based feature is computed on the image to characterize the mal-
ware. The texture feature that we use is the GIST feature [18],
which is commonly used in image recognition systems such as
scene classification and object recognition [25] and large scale im-
age search[8]. We will briefly review the computation of the GIST
feature vector. A more detailed explanation can be found in [25,
18]. Figure 2 shows the block diagram to obtain the GIST feature.
Every image location is represented by the output of filters tuned to
different orientations and scales. A steerable pyramid with 4 scales
and 8 orientations is used. The local representation of an image is
then given by: V L(x) = Vk(x)k=1..N where N = 20 is the number
of sub-bands. In order to capture the global image properties while
retaining some local information, the mean value of the magnitude
of the local features is computed and averaged over large spatial
regions: m(x) =

P
x′ |V (x′)|W (x′ − x) where W (x) is the av-

eraging window. The resulting representation is downsampled to
have a spatial resolution of M×M pixels (here we use M=4). Thus
the feature vector obtained is of size M×M×N = 320. The steps to
compute the texture feature are as follows:

1. Read every byte of a binary and store it in a numeric 1D array
(range 0-255).

2. Convert the 1D array to a 2D array to obtain a grayscale im-
age. The width of the image is fixed based on the file size of
the binary[16].

3. Reshape the image to a constant sized square image of size
64 × 64.

4. Compute a 16-dimensional texture feature across for N = 20
sub-bands.

5. Concatenate all the features to obtain a 320-dimensional fea-
ture vector.

2.3 Texture based Image Classification
Texture based image features are well known in classification

of image categories. For example, in [25] GIST features are used
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Figure 3: Sample images of 6 variants of: (a)Allaple, (b)Ejik, (c)Mydoom, (d)Tibs, (e)Udr, (f)Virut

to classify outdoor scene categories. Their classification was per-
formed using a k-nearest neighbors (k-NN) classifier, where a database
of labeled scenes with the corresponding category called the train-
ing set is used to classify unlabeled scenes. Given a new scene,
the k nearest neighbors are computed and these correspond to k
scenes from the training set with the smallest distance to the test
scene. Then the new scene is assigned the label of the scene cat-
egory that is most represented within the k nearest neighbors. We
use a similar approach, except that instead of outdoor scene cate-
gories, out categories correspond to malware families. The training
set contains families of known malware. Each family further con-
tain several malware variants. The 320-dimensional GIST features
are computed for all the binaries in the training set. The following
algorithm is used to classify a new unknown malware:

1. The 320-dimensional GIST feature vector is computed on the
unknown malware binary.

2. The Euclidean Distance is computed with all feature vectors
in the training set.

3. The nearest neighbors are the top k malware in the training
set that have the smallest distance to the unknown.

4. The unknown malware is assigned a label that matches a ma-
jority returned by the k labels.

3. DYNAMIC FEATURE EXTRACTION
In dynamic analysis, the behavior of the malware is traced by

running the malware executable in a sandbox environment for sev-
eral minutes. Based on the sandbox system under consideration,
the type and granularity of data that is recorded might be different.

In this paper, we evaluate two different dynamic analysis ap-
proaches. The first and commonly used appraoch is system-call
level monitoring which might be implemented using API hooking
or VM introspection. The system generates a sequential report of
the monitored behavior for each binary, based on the performed op-
erations and actions. The report typically includes all system calls
and their arguments stored in a representation specifically tailored
to behavior-based analysis.

Table 1: Malware datasets

Dataset Num Binaries Num Families
Host-Rx Reference Dataset 393 6

Host-Rx Application Dataset 2,140 -
Malhuer Reference Dataset 3,131 24

Malheur Application Dataset 33,698 -
VXHeavens Dataset 63,002 531

The second approach, which we call forensic snapshot compar-
ison relies on a combination of features that are based on compar-
ing the pre-infection and post-infection system snapshots. Some
of the key features collected include AUTORUN ENTRIES, CON-
NECTION PORTS, DNS RECORDS, DROP FILES, PROCESS
CHANGES, MUTEXES, THREAD COUNTS, and REGISTRY
MODS. A whitelisting process is used to weigh down certain com-
monly occurring attribute values for filenames and DNS entries. A
key difference between system-call monitoring and forensic com-
parison, is that the latter approach does not capture the temporal
ordering of forensic events. The advantage is that it is simpler to
implement and prioritize events that are deemed to be most inter-
esting. To identify deterministic and non-deterministic features,
each malware is executed three different times on different virtual
machines and a JSON object is generated describing the malware
behavior in each execution [32]. Depending on the presence of the
key features, a binary feature vector is generated from the JSON
object. If a key feature is present in the JSON object, then corre-
sponding component in the feature vector is 1; otherwise the com-
ponent is 0. The size of the feature vector depends on the diversity
of the behavior of the malware corpus, but various between 600-
2000 for datasets used in this paper.

4. EXPERIMENTS
In this section we present several experiments that compare the

results of the binary texture analysis strategy against datasets an-
alyzed in three separate malware binary classification efforts. In
each experiment, every malware binary is characterized by a feature
vector. We then use k-nearest neighbors (k-NN) with Euclidean
distance measure for classification. The feature vectors are com-



puted for all binaries in the datasets and are divided into a training
set and a testing set. For every feature vector in the testing set, the
k-nearest neighbors in the training set are obtained. Then the vector
is classified to the class which is the mode of its k-nearest neigh-
bors. For all tests, we do a 10-fold cross validation, where under
each test, a random subset of a class is used for training and testing.
For each iteration, this test randomly selects 90% data from a class
for training and 10% for testing.

We summarize our datasets in Table 1. In the first experiment,
Section 4.1, we compare binary texture analysis against a 2140
sample dataset. Out of this 2140, we downselected 393 binaries
that have consistent labels and sufficient membership. We call this
subset the Host-Rx reference dataset which was classified using a
dynamic analysis technique where the binaries are clustered based
on their observed forensic impacts on the host [32]. These clusters
are also examined against antivirus labels, and the minimum family
sample size is 20. We employed both image analysis and dynamic
analysis on the Host-Rx dataset, recomputing the dynamic features
and comparing the classification performance, since clustering is
mainly focused in [32]. The average classification accuracy is 98%
and 95% for dynamic and image analysis, respectively. Thus, we
find the binary texture technique achieves comparable success but
is able to complete its feature analysis in approximately 1/4000 the
time required per binary.

In the second experiment, we examine the Malhuer dataset, which
was originally classified based on features derived by dynamic sys-
tem call interception, as presented in [21]. These execution traces
were converted to a Malware Instruction Set (MIST) format, from
which feature vectors were extracted to effectively characterize the
binaries. Since [21] already reports the results of a malware classi-
fication based on these features, we do not repeat the dynamic anal-
ysis. In Section 4.2, we present a comparative assessment of the
Malheur dataset, which includes both a reference data set of 3131
malware binaries comprising 24 unique malware families, and an
application dataset of roughly 33 thousand binaries that range from
malicious, to unknown, to known benign. Using these datasets, we
found that binary-texture classification produced comparable accu-
racies in both datasets, ranging from 97% for the reference set, to
86% accuracy for the application set.

Finally, we present a larger experiment using a VX Heavens dataset
consisting of a corpus of over 63 thousand malicious binaries com-
prising 531 unique families (as labeled by the Microsoft Security
Essentials tool suite). Section 4.3 presents our results from the VX
Heavens corpus, which was previously classified using the results
from antivirus labels. Here the binary-texturing analysis produced a
72% match with the original Microsoft AV labels. However, while
this result may appear lower than the previous experiments, we dis-
cuss issues in the labeling and our conservative interpretation of our
binary-texture results, which we believe account for these results.

4.1 Experiment 1: Binary Texture Analysis vs
Host-Rx Dynamic Analysis Dataset

In this experiment, we compute the feature vectors for binary-
texture analysis and forensic dump-based dynamic analysis. We
use the Host-RX dataset [32], for this comparison.

The following process was used to select malware instances with
reliable labels. The initial malware corpus consisted of 2140 mal-
ware binaries. The AV labels for these binaries were obtained from
Virustotal.com [3]. Six AV vendors were used: AVG, AntiVir, Bit-
Defender, Ikarus, Kaspersky and Microsoft. We attribute a label
to a malware instance if at least 2 AV vendors share similar labels.
Out of 2140 instances, only 450 malware samples had consistent
labels. However, some malware families had very few samples.
To conduct a meaningful (representative) analysis of the features
collected, each family should have a large enough group of exem-

Table 2: Family/packer summary: Host-Rx reference dataset

Family Total Packed Packer
Allaple 81 3 UPX

Ejik 30 11 10 PeC, 1 nsPack
Mydoom 151 124 UPX

Tibs 31 0 -
Udr 34 34 AsPack
Virut 66 3 UPX
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Figure 5: Lower dimensional visualization of dynamic features
on Host-Rx dataset

plars from which to derive consistent features. For consistency with
previous classification research ([21]) that is compared in the next
section, we chose to remove families with less than 20 samples, and
compiled a final collection of 393 malware binaries. These binaries
(shown in Table 2) represented 6 malware families. We also check
if these malware are packed or not using PeID and report the labels
in Table 2. However, some of the malware that PeID did not detect
could also be packed. Some images of the variants of the 6 families
are shown in Figure 3

4.1.1 Dynamic Analysis Features
The dynamic analysis features are obtained from the forensic

memory dumps and then converted to a vectorial form to produce
a 651 dimensional vector for every malware instance, as shown in
Figure 4. The result is a binary matrix, where 1 refers to the pres-
ence of a corresponding feature. The first 81 samples belong to Al-
laple and most of their features are between 75 and 219 (Figure 4).
Similarly, we observe that other families like Ejik, Mydoom, Tibs,
Udr and Virut have features concentrated in different sections of
the feature matrix. For better visualization, these 651 dimensional
features are projected to a lower dimensional space using multidi-
mensional scaling [2]. As shown in Figure 5, the 6 families cluster
well.

To further validate the dynamic features, we classify the malware
using a k-NN based classification across a 10-fold cross validation.
For k=3, we obtain an average classification accuracy of 0.9822. As
shown in Table 3, 387 out of 394 samples get classified correctly.
Four samples of Virut are misclassified as Allaple due to feature
similarity with that of Allaple (Figure 4).

4.1.2 Binary Image Features
Every malware binary is converted to an image and the GIST

feature is computed. Hence every malware is characterized as a
320 dimensional vector which is based on the texture of the mal-
ware image. Figure 6 illustrates a lower dimensional visualization
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Table 3: Confusion matrix for dynamic features on Host-Rx
dataset

Allaple Ejik Mydoom Tibs Udr Virut
Allaple 81 0 0 0 0 4

Ejik 0 30 1 1 0 1
Mydoom 0 0 150 0 0 0

Tibs 0 0 0 30 0 0
Udr 0 0 0 0 34 0
Virut 0 0 0 0 0 61

Table 4: Confusion matrix for binary image features on Host-
Rx dataset

Allaple Ejik Mydoom Tibs Udr Virut
Allaple 74 0 0 0 0 4

Ejik 0 30 0 0 0 2
Mydoom 0 0 151 0 0 2

Tibs 0 0 0 30 0 4
Udr 0 0 0 0 34 0
Virut 7 0 0 1 0 54

of the static features. Some malware families, such as Ejik, Allaple,
Udr and Tibs, are tightly clustered. Mydoom exhibits an interest-
ing pattern, where three sub-clusters emerge, and each is tightly
formed. We manually analyzed each sub-cluster of Mydoom and
found that the first sub-cluster had 124 samples, all of which were
packed using UPX. The second and third sub-clusters had 15 and
12 members, respectively, but the images inside these sub-clusters
appeared similar among themselves but different from the images
of other sub-clusters. In contrast to the other families, the Virut
family was not tightly clustered, as most images of the Virut family
were found to be dissimilar.

Similar to dynamic analysis, we performed a k-NN based clas-
sification across a 10-fold cross validation using the image based
features. For k=3, we obtained an average classification accuracy
of 0.9514. The confusion matrix is shown in Table 4. Except for
Allaple and Virut families, almost all samples of the other four fam-
ilies were accurately classified.

4.1.3 Performance
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Figure 6: Lower dimensional visualization of binary texture
features on Host-Rx dataset

Size of training set: We evaluate static and dynamic analysis by
varying the number of training samples. We fix k = 3. The test is
repeated three times and the average classification accuracy is ob-
tained for each test, and then average again. Figure 7(a) illustrates
that the dynamic features outperform the static features when the
number of training samples are fewer (10%, 30%). Using 50% -
90% training samples, the difference is only marginal.
Varying k: Next, we fix the percentage of training samples at 50%
per family and explore the impact of varying k. Similar to the pre-
vious test, the dynamic features are better at higher values of k
(Figure 7(b), but there is only a marginal difference at lower val-
ues of k. This is also evident from Figure 5, where we see that the
dynamic features are more tightly clustered when compared to the
static features (Figure 6).
Computation Time: The primary advantage of binary image fea-
tures is the computation time. Since, our texture-based features are
a direct abstraction of the raw binaries and do not require disassem-
bly, the time to compute these features are considerably lower. We
used an unoptimized Matlab implementation to compute the GIST
features ([1]) on an Intel(R) Core(TM) i7 CPU running Windows 7
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Figure 7: Comparing classification accuracies of texture-based features and dynamic analysis features by varying: (a) number of
training samples, (b) k nearest neighbors on Host-Rx Dataset

Table 5: Average computation time

Dynamic Feature Static Feature
4 mins 60 ms

operating system. The average time to convert a malware binary to
an image and compute the GIST features was 60 ms. In contrast,
the average time required to obtain dynamic features from the same
binary was 4 minutes. As shown in Table 5, the texture features are
about 4000 times faster.

4.2 Experiment 2: Binary Texture Analysis vs
Malheur Dynamic Analysis Dataset

For further validation, we compare binary-texture analysis to an-
other dynamic analysis technique that derives its features from sys-
tem call intercepts [21]. Here, we employ the Malheur dataset,
which includes both a reference dataset and an application dataset.
We obtained both dataset and classification results from the re-
searchers who performed a dynamic analysis using this corpus [21].
We do not repeat their dynamic analysis here, but rather focus on
performing a binary-texture analysis on this dataset, and then com-
pare results from both methods.

The Malheur [21] reference dataset consists of 3131 malware
binaries from instances of 24 malware families. The malware bi-
naries were labeled such that a majority amongst six different an-
tivirus products shared similar labels. Further, in order to com-
pensate for skewed distribution of samples per family, the authors
of [21] discarded families less than 20 samples, and restricted the
maximum samples per family to 300. The exact number of sam-
ples per family and the number of malware packed are given in
Table 6. Once again we identify the packers using PeID. Although
it is known that PeID could sometimes miss some packers, we still
go with these labels.

For the binary-texture analysis, we repeated the experiments by
converting these malware to images, computing the image features
and then classifying them using k-NN based classification. Ini-
tially, we do a 10-fold cross validation: the confusion matrix is
shown in Figure 8(a). We obtained an average classification accu-
racy of 0.9757. In [21], the authors obtained similar results using
dynamic analysis. From Table 6, we see that many families are
packed, and some families such as Adultbrowser, Casino, Mag-

(a) (b) (c) (d)

Figure 9: Images of malware binaries packed with UPX
belonging to (a)Adultbrowser, (b)Casino, (c)Flystudio,
(d)Magiccasino

iccasino and Podnhua, are all packed using the same packer, viz.
UPX.

A popular misconception is that if two binaries belonging to dif-
ferent families are packed using the same packer, then the two bina-
ries are going to appear similar. In Figure 9, we can see that the im-
ages of malware binaries belonging to different families but packed
with the same packer are indeed different. Instead of doing 10-fold
cross validation, we randomly chose 10% of the samples from each
family for training and the rest for testing. This was repeated mul-
tiple times. The average classification accuracy only dropped to
0.9130 and the confusion matrix is shown in Figure 8(b).

4.2.1 Malheur Application Dataset
The Malheur application dataset consists of unknown binaries

obtained over a period of seven consecutive days from AV vendor
Sunbelt Software. We received a total of 33,698 binaries. However,
the authors of [21] labeled these using Kaspersky Antivirus. Out
of 33,698 binaries, 7612 were labeled as ’unknown’. The authors
mention that these are a set of benign executables.

In performing binary-texture analysis on the Application Dataset,
we retained the same labels given by the authors of [21]. Fig-
ure 10(a) shows the confusion matrix we obtained. The row with
maximum confusion corresponds to the set of Nothing Found as
mentioned in [21]. This set consisted of 7,622 binaries and were la-
beled as being “benign” in [21]. However, when we scanned these
binaries using Microsoft Security Essentials, 3,393 binaries were
flagged as malicious (our experiments also confirm this). We then
repeated the experiment by not considering this mixed set. We ob-
tained an average classification accuracy of 0.8615 (Figure 10(b)).
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Figure 8: Confusion matrix obtained on Malheur Reference dataset using: (a) 10-fold cross validation, (b) 10% training sample
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Figure 10: Confusion matrix on the: (a)Malheur Application data, (b)Malheur Application data without “benign” executables.

Table 6: Family/packer summary: Malheur Reference dataset

Family Total Packed Packer
Adultbrowser 262 262 UPX

Allaple 300 0 -
Bancos 48 0 -
Casino 140 140 UPX
Dorfdo 65 0 -

Ejik 168 168 PECompact
Flystudio 32 2 UPX
Ldpinch 43 0 -
Looper 209 209 Aspack

Magiccasino 174 174 UPX
Podnhua 300 300 UPX
Poison 26 25 PEncrypt

Porndialer 97 0 -
Rbot 101 0 -

Rotator 300 0 -
Sality 84 0 -

Spygames 139 0 -
Swizzor 78 0 -
Vapsup 45 0 -

Viking_dll 158 0 -
Viking_dz 58 58 FSG

Virut 202 0 -
Woikoiner 50 0 -
Zhelatin 41 0 -

4.3 Large Scale Analysis on VX-Heavens Ap-
plication Dataset

We performed a binary-texture analysis on a larger corpus, con-
sisting of 63,002 malware from 531 families (as labeled by Mi-
crosoft Security Essentials). These malware were obtained from
VX-Heavens [4]. The results are shown in Figure 11. The average
classification accuracy we obtained was 0.728. 33 families were
classified with an accuracy of 1. Some of these include Skintrim.N,
Yuner.A, Rootkit.AFE, Autorun.K, Adrotator. A total of 105 fam-
ilies fell above 90% accuracy, including Vake.H, Lolyda.AT, Sei-
mon.D, Swizzor.gen!I, Azero.A, Allaple.A, Alueron.d, Instantac-
cess, Dialplatform, Jhee.V, Startpage.DE, to name a few. The fam-
ilies with high classification accuracies are those for which the
variants appear visually similar. However, there are also families
with low classification accuracies. 23 families had classification
less than 0.1. These comprised a total of 1061 binaries (about
1.6% of the dataset). Some example families include Orsam.RTS,
Koutodoor.A, Adrotator.A, Startpage, Kerproc.RTS.

The lower accuracy in certain families arises mainly due to two
reasons. The first is due to the visual dissimilarity of images in fam-
ilies such as Orsam.RTS, Kerproc.RTS. This dissimilarity could be
due to a disparity of the labeling scheme (unlike our other experi-
ments, our labels here are derived from one AV source). The second
reason is because some families such as Startpage were classified
as Starpage.DE or Startpage.E, which presumably imply that are
variants derived from the same family). This is not completely
incorrect since there is only a misclassification in the subscript
and not on the family name. However, for completeness we still
present these discrepancies as misclassification in our results, as we
treat Microsoft’s labels Startpage, Startpage.DE, and Startpage.E as
three separate families under our analysis.

4.4 Large Scale Analysis on Anubis Dataset
We also performed texture analysis on 685,490 malware binaries

which we obtained from the authors of [6]. These malware were
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Figure 11: Large scale analysis with confusion matrix for
63,002 malware comprising 531 families

further clustered into 1441 behavioral clusters using the clustering
technique proposed in [6] and we were given the cluster labels. We
used these labels as the ground truth and performed k-NN based
supervised classification with 10-fold cross validation to obtain a
classification accuracy of 0.718. In other words, close to 500,000
malware inside the behavioral clusters are visually similar. This
further reinforces that binary texture analysis is comparable with
dynamic analysis even on a large malware corpus. 1

5. DISCUSSION
In this section, we explore reasons behind why binary texture

analysis provides useful results for classification despite the preva-
lence of packers and other obfuscators. Binary texture analysis
leverages the fact that variants belonging to a common family have
visual similarity (Figure 3). Binary packing systems do indeed
change the structure of a binary, causing some amount of disruption
to the visual similarity between the original packed and unpacked
binary. However, we find that packed variants belonging to a com-
mon malware family continue to exhibit visual similarity with one
another. We discuss some of our observations below:

Observation 1: While packers do their best to increase to com-
putational effort required to reverse engineer the original source
object code, they are currently not designed to produce fully non-
deterministic binary restructuring across the packed binary. Rather,
a given packer conducts binary transformations that may in some
cases be easily observable across a common source binary (e.g, out-
put file size, number of code and data sections, and their respective
sizes), as well as some transformations that are not as obvious. For
example, the use of fixed size encryption keys (e.g., XOR keys)
commonly used by many packers result in predictable repeating
patterns as they transform the original object code. This explains
why malware belonging to different families are still distinguish-
able (Figure 9), even after being repeatedly packed by the same
packer.

Observation 2: From our datasets, we find that a single mal-
ware family is rarely packed with more than one or two packers
(Table 2, Table 6). Since we used supervised learning and clas-
sification, our technique can accurately deal with scenarios where
the same malware is packed with multiple packers. As long as the
packers used in the testing set are also present in the training set to
obfuscate the malware family, we may remain agnostic to whether
or not a malware distributor chooses to employ multiple packers.

Observation 3: The use of a specific version of a packer and a
1This experiment was not included in the original paper due to
shortage of time

set of options by itself helps to narrow down a malware sample to a
handful of families. We can further narrow common samples down
based on their packed file size and other attributes such as sizes
of respective sections. Many malware families implement custom
encryption or obfuscation schemes which makes their identification
easier.

Observation 4: Finally, in any malware corpus, there is a frac-
tion of malware that is unpacked.

Notwithstanding the above observations, the texture-based clas-
sification scheme is still vulnerable to knowledgeable adversaries
who explicitly obfuscate their malware to defeat texture analysis.
Regardless, our experimental results suggest it could be a very use-
ful technique in dealing with contemporary malware. When com-
bined with sampling and dynamic analysis, texture-based classifi-
cation could prove to dramatically accelerate the efficiency of auto-
mated malware classification systems for a wide-range of malware
samples.

6. RELATED WORK
Malware classification is an important problem that has attracted

considerable attention. Several techniques have been proposed on
malware clustering [6, 5, 31, 21, 14, 10, 29], classification [13,
20, 21, 9, 12, 19] and similarity [11, 27, 7, 28]. We review some
of them below.

Dynamic analysis-based classification techniques. Of particu-
lar relevance are recent efforts that have tried to develop models for
classifying malware based on dynamic analysis. Several tools exist
for sandboxed execution of malware including CWSandbox [30],
Norman Sandbox [17], and TTanalyze [26]. While CWSandbox
and TTanalyze leverage API hooking, Norman Sandbox implements
a simulated Windows environment for analyzing malware. A com-
plementary analysis is proposed in [15], where a layered archi-
tecture is proposed for building abstract models based on run-time
system call monitoring of programs.

Bailey et al. were among the first to point out inconsistencies in
labeling by popular AV vendors and present an automated classifi-
cation system as a solution for robustly classifying malware bina-
ries through offline behavioral analysis [5]. Another related work is
from Kolbitsch et al. [12], where dynamic analysis is used to build
models of malware programs based on information flow between
system calls. Similarly, Bayer et al. [6] propose an unsupervised
learning system to automatically cluster malware based on their be-
havioral profile. From a random sample of 14,212 malware, they
selected samples for which the majority of six different antivirus
scanners reported the same family to result in a total of 2,658 sam-
ples comprising 84 families. They obtained a surprisingly high pre-
cision and recall on those samples and also showed great improve-
ments in time when compared to previous approaches. However,
Li et al., in a recent paper [14] showed that the high precision and
recall of the above technique is due to selection bias in generating
their ground truth.

Rieck et al. propose a supervised learning approach to behavior-
based malware classification [20]. They use a labeled dataset of
10,072 malware samples comprising 14 families. The behavior of
the samples is monitored in a sandbox environment from which
behavioral reports are generated. From every report, they gener-
ate feature vectors based on the frequency of some specific strings.
Finally, they use a Support Vector Machines for classification. In
[21], they extend this technique and build a system which combines
both classification and clustering. Our motivation and approach is
most similar to their work, with the key exception that we rely on
statically-derived features, i.e., binary texture for our classification.
Our results on their dataset show that we can generate comparable
results by simply relying on image based features.

Static feature-based classification techniques. Our work is not



the first to attempt static feature-based malware classification. Prior
work has looked at classification based on graph structures on dis-
assemblies as well as visible structures from PE header and binary
strings. Karim et al. examine the problem of developing phylo-
genetic models for detecting malware that evolves through code
permutations [11, 27]. Carrera et al. develop a taxonomy of mal-
ware using graph-based representation and comparison techniques
for malware [7]. In [19], Park et al. classify malware based on de-
tecting the maximal common sub-graph in a behavioral graph and
demonstrate their results on a corpus of 300 malware comprising
6 families. Tian et al. [24] use printable strings in the malware
for classification. Our work differs from prior attempts on static-
feature based classification in our use of binary texture analysis as
a means for malware classification.

7. CONCLUSIONS
Our paper provides a comparitive assessement of automated behavior-

based classification techniques with a newly proposed static tech-
nique for binary classification that is based on image texture analy-
sis. We compare the two classification strategies based on two dif-
ferent datasets: Host-Rx dataset and Malheur dataset. We find that
supervised classification technique based on simple texture analysis
can be performed highly scalably and is comparable to contempo-
rary dynamic analysis in its accuracy (over 97% on dataset with
consistent labeling). Surprisingly, this approach also seems to be
resilient to contemporary packing strategies and can robustly clas-
sify large corpus of malware with both packed and unpacked sam-
ples. Finally, we validate the texture-based classification scheme
on a large scale dataset of over 60K binaries where we find over
72% consistency when compared with labels from one AV vendor
and also on a larger corpus of over 685K malware where we are
close to 72% consistent with the behavioral cluster labels.

Our results demonstrate that static classification techniques, such
as texture analysis, could be a useful complement to dynamic anal-
ysis and an effective preprocessing step in a scalable next-generation
malware classification system.
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