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Abstract We present a new procedure for testing satisfiability (over the
reals) of a conjunction of polynomial equations. There are three possible
return values for our procedure: it either returns a model for the input
formula, or it says that the input is unsatisfiable, or it fails because the
applicability condition for the procedure, called the eigen-condition, is
violated. For the class of constraints where the eigen-condition holds, our
procedure is a decision procedure. We describe satisfiability-preserving
transformations that can potentially convert problems into a form where
eigen-condition holds. We experimentally evaluate the procedure and
discuss applicability.

1 Introduction

Satisfiability problems in nonlinear real arithmetic arise in several applications,
including formal verification and synthesis of software programs, control systems,
and cyber-physical systems. In this paper, we consider the problem of checking
satisfiability of a conjunction of multilinear polynomial equations over the reals.

There has been significant progress recently on solving nonlinear real arith-
metic constraints [12,13,9,10,16,4,1,7]. Our main interest is identifying efficiently
decidable nonlinear arithmetic fragments that arise in formal verification and
synthesis, and developing procedures for those fragments that easily integrate
with and complement existing techniques in SMT [8]. We present here a proce-
dure that is tailored for a subclass of nonlinear problems that have finitely-many
(maybe zero) models over an algebraically closed field (complex numbers). Our
procedure can be viewed as inspired by SAT solvers: we search for a model by
finding the finitely-many values a variable can potentially take in any model,
and then nondeterministically guessing the right value. Whereas in SAT, each
variable is known a priori to take one of two values, in our setting, we have to
do some work to determine if there is a variable that takes only finitely-many
values. We describe the procedure and report preliminary experimental results.

Why restrict to conjunction of equations? Consider a simple loop that com-
putes the product of two input natural numbers x0, y0:

s := 0; y := y0 ; while (y > 0) { s := s + x0; y := y-1 }
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Suppose we want to find a loop invariant of the form s = ax0y0 + bx0y (we
could pick a general degree 2 polynomial over x0, y0, y here, but just to keep
expressions small we picked a restricted template here). We want to know if

∃a, b∀s, x0, y0, y, s1, y1 : s = ax0y0+bx0y∧s1 = s+x0∧y1 = y−1⇒ s1 = ax0y0+bx0y1

We can answer the above by checking if the right-hand side polynomial can be
written as a sum of (multiples of) the polynomials on the left. Again picking
just the minimal template for the multipliers for ease of presentation, we get

∃a, b, u, v, w : ∀s, x0, y0, y, s1, y1 :

s1 − ax0y0 − bx0y1 = u(s− ax0y0 − bx0y) + v(s1 − s− x0) + wx0(y1 − y + 1)

Equating the coefficients of the monomials over the ∀ variables, we get

∃a, b, u, v, w : 1 = v∧−a = −ua∧−b = w∧0 = u−v∧0 = −ub−w∧0 = −v+w

which is a conjunction of polynomial equations; see also [15,23,21,27,11,22,25].

A Running Example. We illustrate the main idea in the new procedure for
satisfiability testing of nonlinear equations using a small example. Consider the
conjunction of the following three equations:

x1x2 − x1x3 = −2x2 x1x2 = x3 x2x3 = 1

The first two equations can be written in matrix notation as(
x2 − x3

x2

)
x1 =

(
−2x2

x3

)
Here, it is possible to write the right-hand side vector, (−2x2;x3), as a linear
combination of the vector, (x2 − x3;x2), on the left-hand side. Doing so, we get(

x2 − x3

x2

)
x1 =

(
0 −2
−1 1

)(
x2 − x3

x2

)
This constraint can be true iff either x1 is an eigenvalue of the 2 × 2 matrix or
the vector (x2−x3;x2) is identically zero. The two eigenvalues of the matrix are
−1 and 2.

Let us branch on the three cases. In the first branch, x1 = −1. The original
three equations simplify to x2 + x3 = 0, x2x3 = 1. Recursively applying the
same analysis, we find that these two equations can be written as(

1
x3

)
x2 =

(
−x3

1

)
=

(
0 −1
1 0

)(
1
x3

)
Hence, the value of x2 should be an eigenvalue of the matrix (0,−1; 1, 0) or
the vector (1;x3) should be identically zero. There are no real eigenvalues of
this matrix and the vector (1;x3) can never be equal to 0. Hence, we get a
contradiction in each subcase, and we backtrack.



In the second branch, x1 = 2. The original three equations simplify to 2x2 =
x3, x2x3 = 1. Again, we rewrite the two equations in matrix notation as(

2
x3

)
x2 =

(
x3

1

)
=

(
0 1

0.5 0

)(
2
x3

)
Hence, the value of x2 should be an eigenvalue of the matrix (0, 1; 0.5, 0) or the
vector (2;x3) should be identically zero. The matrix has two real eigenvalues,
namely ±

√
2/2. If we pick x2 =

√
2/2, and continue, we find that we find a value√

2 for x3 and thus get a model for the original three constraints.

2 Search-based Procedure

In this section, we formally describe our satisfiability checking procedure for
nonlinear equations.

We first fix some notation. Let X be a finite set of variables. Elements of X
are denoted by x, y with possible subscripts. We use Q, IR and C to denote the
set of rationals, (algebraic) reals and complex numbers respectively, and we use
c, d with subscripts to denote elements of these sets. The set of polynomials over
X with coefficients in IR is denoted by IR[X], and its elements are denoted by p, q
with possible subscripts. Let us assume that we can represent and compute over
algebraic numbers. Our description of the procedure will represent and compute
using constants in IR, but all these constants will be algebraic.

A (partial) model M is simply a set of assignments x 7→ c where x is a
variable and c is an algebraic real number from IR. Each variable x occurs at
most once in M .

The input to our procedure is a set S := {p1 = 0, . . . , pn = 0} of polynomial
equations where every pi ∈ Q[X]. The output is either a model M binding every
variable occurring in an input polynomial to a constant, or a string “Unsatisfi-
able” or a string “Condition Failed”.

We describe our search procedure using inference rules that operate over the
state (S′,M ′) consisting of the set S′ of equations, and partial model M ′. The
initial state is (S, ∅), where S is the input equations. The procedure works by
applying one of the inference rules in Figure 1. The Split inference rule makes
a non-deterministic guess. Starting from the initial state, if we are able to reach
a state (∅,M) using the inference rules, then we output the model M (Rule
Success). If every derivation starting from (M, ∅) (irrespective of the guesses)
reaches a contradiction ⊥, then we output the string “Unsatisfiable”. In all other
cases, we output the string “Condition Failed”.

Among the inference rules in Figure 1, the rules Fail, Delete, and Success

are self explanatory. The rule Unit Prop checks to see if there is an equation of
the form x = c in S, and if so, it adds it to the model M and replaces x by c in
S (the result is denoted by S[x 7→ c]). We assume expressions are normalized to
polynomial forms with leading coeffient 1.

The rule Split first checks if the set S satisfies the eigen-condition.



Split:
(S ∪ {Av = xv},M)

(S ∪ {x = λ1},M) | . . . | (S ∪ {x = λk},M) | (S ∪ {v = 0},M)
where λ1, . . . , λk are all the real eigenvalues of A.

Unit Prop:
(S ∪ {x = c},M)

(S[x 7→ c],M ∪ {x 7→ c}) Success:
(∅,M)

output model M

Delete:
(S ∪ {0 = 0},M)

(S,M)
Fail:

(S ∪ {1 = 0},M)

⊥

Figure1. Inference rules describing the satisfiability checking procedure.

Definition 1 (eigen-condition). A set S satisfies the eigen-condition if there
exists a variable x such that some subset S1 ⊆ S of k equations can written in
the form xv = Av for some (k × 1)-vector v of polynomials in IR[X − {x}] and

some constant (k × k)-matrix A in IR(k×k).

If the set S satisfies the eigen-condition and A, x,v are the corresponding
witnesses, then the inference rule Split non-deterministically picks either a real
eigenvalue of A as the value of x, or sets v to 0. Note that if A has no real
eigenvalues, then setting v to 0 is the only option. Figure 2 in the appendix
illustrates the inference rules on the running example.

The eigen-condition can be efficiently tested using a greatest fixpoint pro-
cedure: we start with a set T = {pix = qi | pi, qi ∈ IR[X − {x}], i = 1, 2, . . .}
containing all polynomials in S that are linear in x. In each iteration, we remove
one element, say pix = qi, from T if qi is not in the linear subspace spanned by
all the pj ’s (i.e., if qi can not be written as a linear combination of pj ’s) in the
monomial basis. If the fixpoint is nonempty, the eigen-condition holds for S. If
the fixpoint is empty for all choices of x, the eigen-condition is violated for S.

The monomial basis of polynomials and eigenvalues of matrices have been
used for discovering (formal power series) invariants for nonlinear (hybrid) sys-
tems [17,20]. Our work uses similar ideas, but to more generally find models for
nonlinear polynomial equations.

The soundness of the procedure is straight-forward. We state it without proof
here.

Theorem 1 (Soundness). Let S := {p1 = 0, . . . , pn = 0} be a set of poly-
nomial equations where each pi ∈ Q[X]. Starting from the state (S, ∅), if there
is a derivation that reaches (∅,M), then M is a model for S in the theory IR
of reals. Starting from (S, ∅), if every derivation reaches the state ⊥, then S is
unsatisfiable in the theory IR of reals.

The procedure can fail on certain inputs. We provide some examples below
where the procedure fails. These examples will motivate some “pre-processing”
steps that will make the procedure “fail” less often, and also lead to a charac-
terization of the class of problems for which the procedure will not fail.



Example 1. Consider the set Squad = {x2 + 2x + 2 = 0}, the set Sgb = {x =
2y, x = 3y}, and the set Sinf = {x = y}. None of these sets satisfy the eigen-
condition. None of the inference rules is applicable on the state (S, ∅), where S
is one of the above sets, and hence, our procedure “fails” on each of them.

A polynomial is called multilinear if every variable has degree at most one in
every monomial in that polynomial. Note that x2 + 2x + 2 is not multilinear,
whereas xy + 2x + 2 is multilinear.

3 Transformations: Toward Completeness

In this section, we describe satisfiability-preserving transformations, and also
characterize the class of problems where our procedure will not fail.

The first transformation, called multilinear transformation, turns a non-
multilinear polynomial equations (such as x2 + 2x + 2 = 0) into a multilinear
equations by introducing new clone variables. Instead of defining it formally, we
just illustrate it on the example Squad. The multilinear transformation transforms
Squad into the equi-satisfiable set S′quad = {x = xclone, xxclone + 2x+ 2 = 0}. The
set S′quad, which can be written as (1;xclone + 2)x = (−2, 1;−2, 0)(1;xclone + 2),
satisfies the eigen-condition and our procedure can detect that it is unsatisfi-
able. Note that if p is a polynomial over a single variable, then the multilinear
transformation transforms p = 0 into a equation set xv = Av such that p is the
characteristic polynomial of A.

The second transformation, called Gröbner basis (GB) transformation, ap-
plies the inference rules for computing Gröbner basis [3,2] to the polynomi-
als in S. If these GB computation rules are exhaustively applied, then {p1 =
0, . . . , pn = 0} is replaced by the equi-satisfiable {q1 = 0, . . . , qk = 0} where
{q1, . . . , qk} is a Gröbner basis of {p1, . . . , pn}. Again, we just illustrate the GB
transformation by an example. Using the GB transformation, the set Sgb is trans-
formed into the set S′gb = {x = 2y, y = 0}, which can be deduced to be satisfiable
by our procedure using two applications of the Unit Prop inference rule.

Finally, consider the third example, Sinf = {x = y}, on which our procedure
fails. If our procedure does not fail on a set S, then it implies that the set S has
finitely many (maybe zero) models. The set Sinf = {x = y} has infinitely-many
models, and hence our procedure necessarily fails on it; moreover, any simple
“model count preserving” transformation will not help.

We will refer to the procedure based on the original inference rules plus the
inference rules for computing multilinear transformations and Gröbner bases, as
the extended procedure.

Theorem 2 (Completeness). Let S be the class of polynomial equation sets
that have finitely-many (maybe zero) models over the complex numbers. If S ∈ S,
then the extended procedure will never fail on S.

Proof (Sketch). If S is unsatisfiable over the complex numbers, then by Hilbert’s
Nullstellensatz, the Gröbner basis of S will be {1 = 0}, which will be detected as



“unsatisfiable” by the Fail rule. Note that we only need the GB rules and the
Fail rule in this case. If S is satisfiable and has finitely many models over the
complex numbers, let c1, . . . , cm be all the (complex) values that some specific
variable, say x, takes in all the models. Consider the polynomial p := (x−c1)(x−
c2) · · · (x − cm) in C[x]. Since S contains polynomials in Q[X], the polynomial
p is in IR[x]. If we compute GB using a purely lexicographic ordering where
x has the least precedence, then pk will belong to the GB (for some k > 0,
by Hilbert’s Nullstellensatz). Using the multilinear transformation, the single
variable equation, pk = 0, can be transformed into a set of equations where eigen-
condition holds and the real values among c1, . . . , cm can be computed using the
Split rule. The argument is then recursively applied to prove completeness. ut

While the main completeness result is likely to be of only theoretical interest,
it suggests that we can improve applicability by lazily applying GB transforma-
tion steps. Our model searching procedure complements the GB procedure that
detects unsatisfiability (over complex numbers). In analogy to SAT solving, GB
procedure is similar to a resolution-based procedure, whereas our procedure is
similar to the DPLL algorithm [6] (for nonlinear arithmetic).

4 Experiments

Boolean SAT problems can be encoded as nonlinear real arithmetic problems:
for e.g., the clause ¬x ∨ y ∨ z can be encoded as x(1 − y)(1 − z) = 0. These
nonlinear problems satisfy the eigen-condition and our base procedure never
fails on them. It performs DPLL-style search for a model on these examples.
In fact, optimizations that have been developed for SAT (conflict-driven clause
learning) can be adapted and incorporated into our nonlinear procedure.

Our procedure also works well on problems coming from template-based ver-
ification and synthesis [23,15] (see some nonlinear benchmark examples in [14])
and hybrid systems [21,27,11,22,25]. In fact, using a preliminary (and rather
naive) implementation of our procedure (in Python, using floats and not using
algebraic numbers) with some heuristics for handling cases where eigen-condition
fails, we were able to solve all the nonlinear examples in [14] in time competitive
with Z3 [13,18] (and faster than Z3 on a couple of problems). On the nonlinear
encodings of SAT benchmarks, we are competitive with Z3’s nonlinear solver on
small problems, but much worse when problem size is larger – this is perhaps
because our implementation does not learn from conflicts.

General nonlinear satisfiability problems, as well as ∃∀ nonlinear problems [5],
can both be turned into a conjunction of polynomial equations using the Posi-
tivstellensatz [24,19,26], and our procedure was partly motivated by these prob-
lems. For example, ∀(x, y) : (x ≥ 0 ∧ y ≥ 0⇒ xy ≥ −x) can be turned into

∃(a, b, c, d) : ∀(x, y) : (xy + x = (ax + b)(cy + d)∧ a ≥ 0∧ b ≥ 0∧ c ≥ 0∧ d ≥ 0),

which is equivalent to the conjunction of equations: ∃(a, b, c, u, v, w, t) : (ac =
1 ∧ ad = 1 ∧ bc = 0 ∧ bd = 0 ∧ a = u2 ∧ b = v2 ∧ c = w2 ∧ d = t2). If we are



careful and introduce the ∃ variables so that there are only finitely-many choices
(such as, by having a = 1), then our procedure can usually solve such problems
very quickly. Note that the number of variables becomes large very quickly in
template-based approaches, and hence the need for dedicated procedures.

5 Conclusion

We presented a backtracking-based search procedure for checking satisfiability
of polynomial equations over the reals, which is complete for a subclass of non-
linear problems that have finitely-many (maybe zero) models over the complex
numbers. Our procedure can be viewed as a generalization of DPLL-style SAT
solving to nonlinear arithmetic. Preliminary results indicate it is effective on a
wide range of (exists-forall) nonlinear real arithmetic problems that arise during
analysis and synthesis of programs and cyber-physical systems. In future, we
plan to improve it using conflict-driven learning and extensively evaluate it.
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Split:
({x1x2 − x1x3 + 2x2 = 0, x1x2 − x3 = 0, x2x3 − 1 = 0}, ∅)

({x1x2 − x1x3 + 2x2 = 0, x1x2 − x3 = 0, x2x3 − 1 = 0, x1 = 2}, ∅)
Unit Prop:

({2x2 − x3 = 0, x2x3 − 1 = 0}, {x1 7→ 2})
Split:

({2x2 − x3 = 0, x2x3 − 1 = 0, x2 = 1/
√

2}, {x1 7→ 2})
Unit Prop:

({2/
√

2− x3 = 0}, {x2 7→ 1/
√

2, x1 7→ 2})
Unit Prop:

(∅, {x3 7→
√

2, x2 7→ 1/
√

2, x1 7→ 2})
Success:

output model x3 7→
√

2, x2 7→ 1/
√

2, x1 7→ 2

Figure2. Running example using inference rules.
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