
Computer Science Laboratory, SRI International

Synthesis Using EF-SMT Solvers

Ashish Tiwari
SRI International

Collaborators

Bruno Dutertre (SRI) Adrià Gascón (SRI)
Sumit Gulwani (MSR) Dejan Jovanovic (SRI)
Vijay Anand Korthikanti (UIUC) Susmit Jha (Intel)
Jan Leike (Australia)
Sharad Malik (Princeton) Sanjit Seshia (UC Berkeley)
Thomas Sturm (Munich) Pramod Subramanyan (Princeton)
Ankur Taly (Google) Ramarathnam Venkatesan (MSR)

1

EF-SMT or ∃∀-SMT

∃~a : ∀~x : φ(~a, ~x)
Important factor: theory of φ

Many synthesis problems can be transformed into ∃∀φ problems

Sat/SMT is to veri�cation as QBF/EF-SMT is to synthesis

2

Synthesis

Veri�cation: Given M,φ, determine if M |= φ

Synthesis: Given partial model M(?) and φ, determine if there exists a
completion M of M(?) s.t. M |= φ

Value: Applications where completing M(?) is not intuitive/easy
Philosophy: Lift formal veri�cation techniques to synthesis

3

Synthesis as ∃∀φ: Version 1

Take inspiration from bounded model checking:

M(~c, ~u) |= φ
⇑

M(~c, ~u) |= φk , for some k
⇑

∃~c : ∀ ~x0, ~x1, . . . , ~xk : ∃ ~u0, . . . , ~uk : quanti�er-free FO formula

⇑
∃~a, ~c : ∀~x : ∃~u : quanti�er-free FO formula

4

Synthesis as ∃∀φ: Version 2

Take inspiration from induction- and abstraction-based veri�cation:

M(~c, ~u) |= φ
⇑

∃Φ, ~c, ~u : ((M(~c, ~u) |= Φ) ∧ (Φ⇒ φ))
⇑

∃Φ, ~c : ∀~x : ∃~u : quanti�er-free FO formula

⇑
∃~a, ~c : ∀~x : ∃~u : quanti�er-free FO formula

The last step is performed by choosing a template for Φ
5

Veri�cation :: Synthesis

Veri�cation : ∃∀
does there exist a certi�cate that proves the property for the system?

Synthesis: ∃∀∃
synthesis variables that are independent of the state go inside the �rst ∃
synthesis variables that are dependent on the state go inside the second ∃

Usually link veri�cation to one and synthesis to two quanti�ers

Note: Not just parameter synthesis, the synthesis variables could encode how
subsystems are composed...

6

Synthesis Challenge

Automated synthesis is di�cult

• Search space for models is very large
domain of �rst ∃ quanti�er large

• For each potential model, we have to solve a veri�cation problem
inner ∀ problem di�cult

7

Overcoming the Synthesis Challenge

• Reduce outer ∃ complexity:

◦ Use templates to reduce synthesis search space

◦ Bound all synthesis variables

• Reduce inner ∀ complexity:

◦ consider domains where veri�cation is easy (for e.g., straight-line
programs)

◦ Replace �veri�cation� check by a weaker check (as in BMC)

◦ Search for small (strong) veri�cation proofs

8

Syn1: Straight-line Program Synthesis

Problem: Given library functions fi's, and a desired f , �nd a way to compose fi's
to generate f .

∃P : ∀x : f (x) = P(x), P a straight-line program composing fi's
⇓

∃π : ∀x : Fspec(x) = fπ(1)(fπ(2)(fπ(3)(x)))
Reduce synthesis search space:

• �x length of program

• �x upper bound on number of each fi

Veri�cation problem: Straight-line program equivalence
9

Syn1 Example

Speci�cation: Turn-o� rightmost contiguous 1 bits

Example: 010101100 7→ 010100000
Budget: two addition, at most four bitwise Boolean operators, constant 1, -1

Synthesized Program:

1. o1 := x + (−1);
2. o2 := o1|x;
3. o3 := o2 + 1;
4. return o3&x;
Correctness on sample input:010101100 7→ 010101011 7→ 010101111 7→ 010110000 7→ 010100000

Other examples: Bitvector tricks from Hacker's delight

Synthesis: ∃∀ bit-vector theory

10

Syn1.1: Loop-free Program Synthesis

Problem: Given library functions fi's including an if-then-else, and a desired f ,
�nd a way to compose fi's to generate f .

Step to feasibility: As in Syn1.

11

Syn1.1 Example

Speci�cation: Obfuscated code

Example: We are given

if (h(x))

if (x*(x+1)% 2 == 1) y := f(x) else y := g(x)

else y := f(g(x))

Components Budget: f, g, h, if-then-else

Synthesized Program:

o := g(x);

if (h(x)) y := o; else y := f(o);

Correctness: Equivalence of the two loop-free programs
12

Syn2: Loop Synthesis

Problem: Given incomplete loop body and desired post, �nd a way to complete
the loop body so that correctness holds.

procedure product(x0, y0):
s := 0;
y := y0;
while (y 6= 0):

s := c1x0 + c2y0 + c3y+ c4s+ c5;
y := y− 1;

return s; [s = x0 ∗ y0]

13

Syn2: Synthesize Code and Correctness

Let loop invariant be an arbitrary degree 2 polynomial

a0x20 + a1y20 + a2y2 + a3s2 + a4x0y0 + . . .+ a14
Now the synthesis formula is:

∃c1, . . . , c5 :
∃a0, . . . , a14 :
∀x0, y0, s, y :

loop-invariant is indeed a loop invariant

loop-invariant and negation of condition implies post

∃∀ theory of reals

14

Syn3: Fault-tolerant Distributed Algorithms

A set of m (communicating) machines arranged in some topology want to satisfy
a given temporal property. Given the state space of the machines, �nd the state
update function for the m machines.

Do so assuming some f are faulty

Fault assumptions can be malicious, asymmetric, transient.

Both the synthesis search space, and the veri�cation problem need to be
simpli�ed

15

Syn3 Example

Each machine has a private Boolean value vi
Each machine has a vector of Boolean values � its knowledge about the private
value of all the other machines � consistency vector

Interactive consistency: n processes, out of which at most f can be faulty, satisfy
interactive consistency if the consistency vectors of some n− f processes are
identical

Desired property: FG(interactive consistency)
Each machiine updates its vi by fi(v ′1, . . . , v ′m), where v ′j is the value it receives
from j-th machine (may not equal vj if j is faulty)

∃fi : S1|| . . . ||Sm |= FG(interactive-consistency)
16

Syn3 Example: Simplifying Veri�cation

Typically also want algorithms to be self-stabilizing

I.e., initial state can be arbitrary

In this case, FGφ is implied by, say, XXXXφ
Thus, for a �xed m, we get an 2-QBF formula

We can synthesize Pease, Shostak, and Lamport's algorithm for interactive
consistency that works in presence of permanent, malicious and asymmetric
(Byzantine) faults

Other examples: Dijkstra's self-stabilizing mutual exclusion algorithm, interactive
consistency for transient Byzantine faults

17

Syn4: Circuit Understanding

Goal: Discover high-level description of a given combinational circuit (verilog
netlist)

Permutation Independent Equivalence Checking: Is circuit equivalent to, say an
adder, for some permutation of the input and output signals

Permutation Independent Conditional Equivalence Checking: Is circuit equivalent
to, say an adder, for some permutation of the input and output signals and some
setting of the control input signals

18

Syn4: Simpli�cations

Real challenge for large netlists

Reducing the synthesis search space

• templates � user can specify subsets of input signals whose permutation may
be one input word; same for control and output signals

• signatures � necessary conditions on the synthesis variables obtained from
analyzing the target function
some over-approximation of QE of ∀φ
type constraints that eliminate solutions (that will not work)

19

Syn4: Examples

Flattened netlists generated using Synopsys Design Compiler

From high-level behavioral verilog collected from ISCAS'85 benchmarks, ALU
from a academic processor implementation, etc.

Template library contains adders, subtracters, shifters, multipliers, counters of
varying bitwidths

Equal number of positive and negative synthesis instances used

Successfully solved 37/40 instances with QBF preprocessor Bloqqer and EF-Yices

20

Syn5: Security Schemes

Goal: Automatically synthesize encryption schemes, message exchange protocols,
etc.

Similar to straight-line program synthesis

Typical protocols are 10-20 line programs

Requirement: Meet some security level

21

A Template Language

A class of straight-line programs with na+ nb+ 4 lines:

(library
(G 1) (H 1) (oplusr 2) (oplus 2) (identity 1))

(blocks
(lm 1 ((input m::(bool-to-bv false false false false true))))
(lr 1 ((input r::(bool-to-bv false false false true false))))
(l1 na ((oplusr (lm -) (lr -)) (G (lr -)) (H (lm -))))
(l2 2 ((identity (l1))))
(l3 nb ((oplus (l2 -) (l2)) (H (l2)) (G (-)))))

22

Template Language Features

• broad in its range: from writing concrete program to arbitrary program of
length l

• hence, can restrict the synthesis search space

• length of program (blocks) can be left parametric

• Each variable is associated to two entities � its value and its type

• Can include type restrictions to further restrict synthesis search space, and
also describe properties

• Is internally compiled into EF-Yices: can use arbitrary yices expressions too

23

Syn5: Example

Synthesizing OEAP encryption scheme

Using the part template shown above

Interpret messages over bitvectors, and all operations mapped to bitvector
operations

De�ne a type that conservatively tracks which terms are essentially random

Requirement: Output terms are 'random' and there is an e�cient decryption
algorithm

24

Syn5: Examples of Synthesized Schemes

• f (G(r)||m+ G(r))
• f (r||m+ G(r))
• f (r + H(m)||m+ G(r + H(m)))
• f (G(r + H(m))||r + G(r + H(m)))
• f (m+ G(r)||H(m+ G(r)) + r)

Why?

• padding with zero not modeled

• and the resulting security issues

25

Syn6: Controller Synthesis for Safety

Φ = (Global) Control inductive invariant

Unsafe

(Control) inductive invariant Inv

Exists(Inv):Forall(x):

 x
Safety

Envelope

∃(control inductive invariant that implies safety)
∃(set) : (set is a control inductive invariant) and (set implies safety)

∃(V (~x) ≥ 0) : ∀~x : ∃u : (V (~x) = 0 ⇒ V (F (~x, u, 0+)) ≥ 0)
∧(V (~x) ≥ 0⇒ Safe(~x))

26

Syn6: Controller Synthesis for Safety

Two things:

• Safe controller will be a fallback controller, so as well make it �bang-bang�:

∃~a, ~c : ∀~x : ∃~u : φ
⇑

∃~a, ~c : ∀~x : (φ(umin) ∨ φ(umax))
• Rewrite V (F (~x, u, 0+)) ≥ 0 to eliminate F

27

Syn6: Controller Synthesis for X

Can be similarly converted to an ∃∀∃ and if domain of u is �nite, then to an ∃∀
problem

Applications:

• switching logic synthesis

• adaptive cruise controller

28

How to Solve ∃∀ Problems?

29

EF Solving

learn from

failure

update abstrn(P)

return

unsatisfiable

return

unsatisfiable

learn from failure

update abstrn(ForAll(y):P)

query SMT solver

to verify if x0

works forall y

return

satisfiable x0

return

satisfiable x0

Constraint Solving Using Abstraction Refinement

Guided by Learning via Counter Examples

verify if

P(x0) is true

no

found x0

yes

Exists(x):P(x)

SMT Solver

query SMT solver to select x0 s.t. Q(x0) holds

where Q = abstrn(ForAll(y):P(x,y))

no such x0 found

found x0
yes

no

Exists(x)ForAll(y):P(x,y)

EF SMT Solver

query SAT solver to select x0 s.t. Q(x0) holds

where Q = abstrn(P)

no such x0 found

30

EF Solving: Learning

∃x : E (x) ∧ ∀y : B(x, y)⇒ C (x, y)
Find a s.t. E (a); if none, then return Unsat

Find b s.t. B(a, b) ∧ ¬C (a, b); if none, return Sat

Update E := E ∪ {B(x, b)⇒ C (x, b)}
Convergence can be slow

perform approximate quanti�er elimination on ∀y : B(x, y)⇒ C (x, y) to get
constraints on x
E.g., equality resolution

Terminates for �nite domains
31

EF Solving: Arithmetic Domains

Several di�erent approaches:

• dedicated QE procedures

• Use duality theorems to replace ∀ by ∃
• Some combination of simpli�cation, QE, simulation,

32

EF Solving: Simulation Guided Synthesis

∃~a : ∀~x : (V ≥ 0⇒ gap ≥ 0) ∧ (V = 0⇒ dV /dt > 0)
1. S := Sample the reachable state space

• simulation/trace data

• constraint solving on guard for ∀
2. Solve ∃~a : ∧

~x∈S : V ≥ 0
• Find a suitably large safety envelope that contains all points

• Using the SMT solver Yices � note linear

3. Shrink the safety envelope minimalistically to guarantee safety

• All but one ∃ variables is �xed

• Constant term d is the only ∃ variable remaining

• Use quanti�er elimination

33

EF Solving: NRA Fragment

φ: Nonlinear real arithmetic

∃~a : ∀~x : φ(~a, ~x)
⇑

∃~a, ~p : ∀~x : ∧
i qi(~p, ~a, ~x) = 0
⇑

∃~a, ~b : ∀~x : ∧
i ri(~a, ~b, ~x) = 0
⇑

∃~a, ~b : ∧
i si(~a, ~b) = 0

So problem reduces to ∃~a : φ(~a)
34

EF-NRA 7→ E-NRA: Example

∃a, b, u, v, w∀s, x0, y0, y, s1, y1 :
s = ax0y0 + bx0y ∧ s1 = s+ x0 ∧ y1 = y− 1⇒ s1 = ax0y0 + bx0y1

⇑
s1 − ax0y0 − bx0y1 = u(s− ax0y0 − bx0y) + v (s1 − s− x0) +wx0(y1 − y+ 1)

⇑1 = v ∧ −a = −ua ∧ −b = w ∧ 0 = u− v ∧ 0 = −ub−w ∧ 0 = −v +w

35

Other Approaches for EF Solving

From �input-output examples�:

Finite synthesis:

∃∀φ
∃

∧
i
φ

Distinguishing input technique:

∃∀φ
∃c∃c′ : ∧

i
φ(c) ∧ φ(c′) ∧ c 6= c′

36

Conclusion

• convert synthesis problem to ∃∀ problem

EF-SMT:

• integrate various di�erent approaches

• into an e�ective strategy for EF-SMT solving

37

