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EF-SMT or ∃∀-SMT

∃~a : ∀~x : φ(~a, ~x)
Important factor: theory of φ

Many synthesis problems can be transformed into ∃∀φ problems

Sat/SMT is to veri�cation as QBF/EF-SMT is to synthesis
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Synthesis

Veri�cation: Given M,φ, determine if M |= φ

Synthesis: Given partial model M(?) and φ, determine if there exists a
completion M of M(?) s.t. M |= φ

Value: Applications where completing M(?) is not intuitive/easy
Philosophy: Lift formal veri�cation techniques to synthesis
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Synthesis as ∃∀φ: Version 1

Take inspiration from bounded model checking:

M(~c, ~u) |= φ
⇑

M(~c, ~u) |= φk , for some k
⇑

∃~c : ∀ ~x0, ~x1, . . . , ~xk : ∃ ~u0, . . . , ~uk : quanti�er-free FO formula

⇑
∃~a, ~c : ∀~x : ∃~u : quanti�er-free FO formula
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Synthesis as ∃∀φ: Version 2

Take inspiration from induction- and abstraction-based veri�cation:

M(~c, ~u) |= φ
⇑

∃Φ, ~c, ~u : ((M(~c, ~u) |= Φ) ∧ (Φ⇒ φ))
⇑

∃Φ, ~c : ∀~x : ∃~u : quanti�er-free FO formula

⇑
∃~a, ~c : ∀~x : ∃~u : quanti�er-free FO formula

The last step is performed by choosing a template for Φ
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Veri�cation :: Synthesis

Veri�cation : ∃∀
does there exist a certi�cate that proves the property for the system?

Synthesis: ∃∀∃
synthesis variables that are independent of the state go inside the �rst ∃
synthesis variables that are dependent on the state go inside the second ∃

Usually link veri�cation to one and synthesis to two quanti�ers

Note: Not just parameter synthesis, the synthesis variables could encode how
subsystems are composed...
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Synthesis Challenge

Automated synthesis is di�cult

• Search space for models is very large
domain of �rst ∃ quanti�er large

• For each potential model, we have to solve a veri�cation problem
inner ∀ problem di�cult
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Overcoming the Synthesis Challenge

• Reduce outer ∃ complexity:

◦ Use templates to reduce synthesis search space

◦ Bound all synthesis variables

• Reduce inner ∀ complexity:

◦ consider domains where veri�cation is easy (for e.g., straight-line
programs)

◦ Replace �veri�cation� check by a weaker check (as in BMC)

◦ Search for small (strong) veri�cation proofs
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Syn1: Straight-line Program Synthesis

Problem: Given library functions fi's, and a desired f , �nd a way to compose fi's
to generate f .

∃P : ∀x : f (x) = P(x), P a straight-line program composing fi's
⇓

∃π : ∀x : Fspec(x) = fπ(1)(fπ(2)(fπ(3)(x)))
Reduce synthesis search space:

• �x length of program

• �x upper bound on number of each fi

Veri�cation problem: Straight-line program equivalence
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Syn1 Example

Speci�cation: Turn-o� rightmost contiguous 1 bits

Example: 010101100 7→ 010100000
Budget: two addition, at most four bitwise Boolean operators, constant 1, -1

Synthesized Program:

1. o1 := x + (−1);
2. o2 := o1|x;
3. o3 := o2 + 1;
4. return o3&x;
Correctness on sample input:010101100 7→ 010101011 7→ 010101111 7→ 010110000 7→ 010100000



Other examples: Bitvector tricks from Hacker's delight

Synthesis: ∃∀ bit-vector theory
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Syn1.1: Loop-free Program Synthesis

Problem: Given library functions fi's including an if-then-else, and a desired f ,
�nd a way to compose fi's to generate f .

Step to feasibility: As in Syn1.
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Syn1.1 Example

Speci�cation: Obfuscated code

Example: We are given

if (h(x))

if (x*(x+1)% 2 == 1) y := f(x) else y := g(x)

else y := f(g(x))

Components Budget: f, g, h, if-then-else

Synthesized Program:

o := g(x);

if (h(x)) y := o; else y := f(o);

Correctness: Equivalence of the two loop-free programs
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Syn2: Loop Synthesis

Problem: Given incomplete loop body and desired post, �nd a way to complete
the loop body so that correctness holds.

procedure product(x0, y0):
s := 0;
y := y0;
while (y 6= 0):

s := c1x0 + c2y0 + c3y+ c4s+ c5;
y := y− 1;

return s; [s = x0 ∗ y0]
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Syn2: Synthesize Code and Correctness

Let loop invariant be an arbitrary degree 2 polynomial

a0x20 + a1y20 + a2y2 + a3s2 + a4x0y0 + . . .+ a14
Now the synthesis formula is:

∃c1, . . . , c5 :
∃a0, . . . , a14 :
∀x0, y0, s, y :

loop-invariant is indeed a loop invariant

loop-invariant and negation of condition implies post

∃∀ theory of reals
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Syn3: Fault-tolerant Distributed Algorithms

A set of m (communicating) machines arranged in some topology want to satisfy
a given temporal property. Given the state space of the machines, �nd the state
update function for the m machines.

Do so assuming some f are faulty

Fault assumptions can be malicious, asymmetric, transient.

Both the synthesis search space, and the veri�cation problem need to be
simpli�ed
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Syn3 Example

Each machine has a private Boolean value vi
Each machine has a vector of Boolean values � its knowledge about the private
value of all the other machines � consistency vector

Interactive consistency: n processes, out of which at most f can be faulty, satisfy
interactive consistency if the consistency vectors of some n− f processes are
identical

Desired property: FG(interactive consistency)
Each machiine updates its vi by fi(v ′1, . . . , v ′m), where v ′j is the value it receives
from j-th machine (may not equal vj if j is faulty)

∃fi : S1|| . . . ||Sm |= FG(interactive-consistency)
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Syn3 Example: Simplifying Veri�cation

Typically also want algorithms to be self-stabilizing

I.e., initial state can be arbitrary

In this case, FGφ is implied by, say, XXXXφ
Thus, for a �xed m, we get an 2-QBF formula

We can synthesize Pease, Shostak, and Lamport's algorithm for interactive
consistency that works in presence of permanent, malicious and asymmetric
(Byzantine) faults

Other examples: Dijkstra's self-stabilizing mutual exclusion algorithm, interactive
consistency for transient Byzantine faults
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Syn4: Circuit Understanding

Goal: Discover high-level description of a given combinational circuit (verilog
netlist)

Permutation Independent Equivalence Checking: Is circuit equivalent to, say an
adder, for some permutation of the input and output signals

Permutation Independent Conditional Equivalence Checking: Is circuit equivalent
to, say an adder, for some permutation of the input and output signals and some
setting of the control input signals
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Syn4: Simpli�cations

Real challenge for large netlists

Reducing the synthesis search space

• templates � user can specify subsets of input signals whose permutation may
be one input word; same for control and output signals

• signatures � necessary conditions on the synthesis variables obtained from
analyzing the target function
some over-approximation of QE of ∀φ
type constraints that eliminate solutions (that will not work)
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Syn4: Examples

Flattened netlists generated using Synopsys Design Compiler

From high-level behavioral verilog collected from ISCAS'85 benchmarks, ALU
from a academic processor implementation, etc.

Template library contains adders, subtracters, shifters, multipliers, counters of
varying bitwidths

Equal number of positive and negative synthesis instances used

Successfully solved 37/40 instances with QBF preprocessor Bloqqer and EF-Yices
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Syn5: Security Schemes

Goal: Automatically synthesize encryption schemes, message exchange protocols,
etc.

Similar to straight-line program synthesis

Typical protocols are 10-20 line programs

Requirement: Meet some security level
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A Template Language

A class of straight-line programs with na+ nb+ 4 lines:

(library
(G 1) (H 1) (oplusr 2) (oplus 2) (identity 1))

(blocks
(lm 1 ((input m::(bool-to-bv false false false false true))))
(lr 1 ((input r::(bool-to-bv false false false true false))))
(l1 na ( (oplusr (lm -) (lr -)) (G (lr -)) (H (lm -))))
(l2 2 ( (identity (l1) ) ))
(l3 nb ( (oplus (l2 -) (l2)) (H (l2)) (G (-)) )))
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Template Language Features

• broad in its range: from writing concrete program to arbitrary program of
length l

• hence, can restrict the synthesis search space

• length of program (blocks) can be left parametric

• Each variable is associated to two entities � its value and its type

• Can include type restrictions to further restrict synthesis search space, and
also describe properties

• Is internally compiled into EF-Yices: can use arbitrary yices expressions too
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Syn5: Example

Synthesizing OEAP encryption scheme

Using the part template shown above

Interpret messages over bitvectors, and all operations mapped to bitvector
operations

De�ne a type that conservatively tracks which terms are essentially random

Requirement: Output terms are 'random' and there is an e�cient decryption
algorithm
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Syn5: Examples of Synthesized Schemes

• f (G(r)||m+ G(r))
• f (r||m+ G(r))
• f (r + H(m)||m+ G(r + H(m)))
• f (G(r + H(m))||r + G(r + H(m)))
• f (m+ G(r)||H(m+ G(r)) + r)

Why?

• padding with zero not modeled

• and the resulting security issues
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Syn6: Controller Synthesis for Safety

Φ = (Global) Control inductive invariant

Unsafe

(Control) inductive invariant Inv

Exists(Inv):Forall(x):

  x
Safety

Envelope

∃(control inductive invariant that implies safety)
∃(set) : (set is a control inductive invariant) and (set implies safety)

∃(V (~x) ≥ 0) : ∀~x : ∃u : (V (~x) = 0 ⇒ V (F (~x, u, 0+)) ≥ 0)
∧(V (~x) ≥ 0⇒ Safe(~x))
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Syn6: Controller Synthesis for Safety

Two things:

• Safe controller will be a fallback controller, so as well make it �bang-bang�:

∃~a, ~c : ∀~x : ∃~u : φ
⇑

∃~a, ~c : ∀~x : (φ(umin) ∨ φ(umax))
• Rewrite V (F (~x, u, 0+)) ≥ 0 to eliminate F
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Syn6: Controller Synthesis for X

Can be similarly converted to an ∃∀∃ and if domain of u is �nite, then to an ∃∀
problem

Applications:

• switching logic synthesis

• adaptive cruise controller

28



How to Solve ∃∀ Problems?
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EF Solving

learn from

failure

update abstrn(P)

return

unsatisfiable

return

unsatisfiable

learn from failure

update abstrn(ForAll(y):P)

query SMT solver

to verify if x0

works forall y

return 

satisfiable x0

return 

satisfiable x0

Constraint Solving Using Abstraction Refinement

Guided by Learning via Counter Examples

verify if

P(x0) is true

no

found x0

yes

Exists(x):P(x)

SMT Solver

query SMT solver to select x0 s.t. Q(x0) holds

where Q = abstrn(ForAll(y):P(x,y))

no such x0 found

found x0
yes

no

Exists(x)ForAll(y):P(x,y)

EF SMT Solver

query SAT solver to select x0 s.t. Q(x0) holds

where Q = abstrn(P)

no such x0 found
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EF Solving: Learning

∃x : E (x) ∧ ∀y : B(x, y)⇒ C (x, y)
Find a s.t. E (a); if none, then return Unsat

Find b s.t. B(a, b) ∧ ¬C (a, b); if none, return Sat

Update E := E ∪ {B(x, b)⇒ C (x, b)}
Convergence can be slow

perform approximate quanti�er elimination on ∀y : B(x, y)⇒ C (x, y) to get
constraints on x
E.g., equality resolution

Terminates for �nite domains
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EF Solving: Arithmetic Domains

Several di�erent approaches:

• dedicated QE procedures

• Use duality theorems to replace ∀ by ∃
• Some combination of simpli�cation, QE, simulation,
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EF Solving: Simulation Guided Synthesis

∃~a : ∀~x : (V ≥ 0⇒ gap ≥ 0) ∧ (V = 0⇒ dV /dt > 0)
1. S := Sample the reachable state space

• simulation/trace data

• constraint solving on guard for ∀
2. Solve ∃~a : ∧

~x∈S : V ≥ 0
• Find a suitably large safety envelope that contains all points

• Using the SMT solver Yices � note linear

3. Shrink the safety envelope minimalistically to guarantee safety

• All but one ∃ variables is �xed

• Constant term d is the only ∃ variable remaining



• Use quanti�er elimination
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EF Solving: NRA Fragment

φ: Nonlinear real arithmetic

∃~a : ∀~x : φ(~a, ~x)
⇑

∃~a, ~p : ∀~x : ∧
i qi(~p, ~a, ~x) = 0
⇑

∃~a, ~b : ∀~x : ∧
i ri(~a, ~b, ~x) = 0
⇑

∃~a, ~b : ∧
i si(~a, ~b) = 0

So problem reduces to ∃~a : φ(~a)
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EF-NRA 7→ E-NRA: Example

∃a, b, u, v, w∀s, x0, y0, y, s1, y1 :
s = ax0y0 + bx0y ∧ s1 = s+ x0 ∧ y1 = y− 1⇒ s1 = ax0y0 + bx0y1

⇑
s1 − ax0y0 − bx0y1 = u(s− ax0y0 − bx0y) + v (s1 − s− x0) +wx0(y1 − y+ 1)

⇑1 = v ∧ −a = −ua ∧ −b = w ∧ 0 = u− v ∧ 0 = −ub−w ∧ 0 = −v +w
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Other Approaches for EF Solving

From �input-output examples�:

Finite synthesis:

∃∀φ
∃

∧
i
φ

Distinguishing input technique:

∃∀φ
∃c∃c′ : ∧

i
φ(c) ∧ φ(c′) ∧ c 6= c′
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Conclusion

• convert synthesis problem to ∃∀ problem

EF-SMT:

• integrate various di�erent approaches

• into an e�ective strategy for EF-SMT solving
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