Automation in Cryptology

Ashish Tiwari

Abstract

Inspired by the recent work on sketching-based synthesis of pro-
grams [SLRBE05, SLTBT06], we have developed a language for speci-
fying sketches, or partially specified programs. We have also developed
a tool that automatically completes the sketch so that the complete
program satisfies some desired post-condition. We used the language
and the tool to synthesize several padding-based encryption schemes.
In this report, we describe the language, the synthesis technique, and
the case study of synthesizing padding-based schemes.

Terms: Synthesis, Sketching, Encryption, SMT solving, Exists-
Forall constraint solving

1 Background

The goal of the project is to develop new verification and synthesis
techniques for programs that model cryptographic protocols. In the
first year, verification approaches based on abstract interpretation and
constraint solving were explored. Incomplete, but fast, procedures
for proving and falsifying security are important for creating effective
synthesis tools.

In the second year, we have focused on the synthesis of crypto-
graphic protocols. Inspired by the recent work on sketching-based
synthesis of programs [SLRBE05, SLTBT06], we have developed a lan-
guage for specifying sketches that are automatically completed by our
tool to satisfy some desired post-condition. We used the language and
the tool to synthesize several padding-based encryption schemes. Our
results here are reminiscent of the results obtained by the synthesis
tool Zoocrypt. The main challenge is encoding security properties as
post-conditions. We discuss this further in the report below. We also
used the tool to explore the possibility of synthesizing oblivious trans-
fer protocols.

We report on the language for specifying sketches, the tool for com-
pleting the sketches, and the case studies below.

2 A Language for Specifying Sketches

A sketch is an incomplete program. In this section, we describe a
language for specifying sketches. In particular, the language allows for
encoding problems where the goal is to synthesize a program given a
library of pre-defined functions [GJTV11].

Our language is designed so that it can be used to write a concrete
program, as well as, a completely unknown program constructed using
a library of pre-defined functions.

A program sketch Prgm_sketch has the following syntax:

Prgm sketch == (program_name Comment * Declarations
Library Parameters Blocks Post)
The terminal program_name is just a string. A comment, comment is

of the form (comment string). The remaining blocks of the language
are described below.

e The library block. This takes the form
(library [(function_name arity)] *)

The final synthesized program should be constructed using only
the functions in the library.

e The declarations block. The declarations block defines the library
functions and the type of the data elements in the program. It
takes the following form:

(decls [yices_definition]x*)

where yices_definition is a valid definition (of a function or
type) in the SMT solver Yices [SRI].

e Parameter Declarations. Parameters that are used to specify the
sketch are also explicitly listed using the syntax:

(parameters [parameter_name] *)

where parameter_name is simply a string.

e Program Sketch Block. Program sketch is a collection of single
blocks and it is specified using the following syntax:

(blocks [single_block]*)

where single_block specifies the sketch corresponding to a block
of straight-line code using the following syntax:

(label param_ or num (rhs_option:*))

where

(a) label is a string that names the straight-line code block,

(b) param or_num is a parameter name or a number that repre-
sents the number of lines of code in the block, and

(c) rhs_option represents a possible choice of the function name
(from the library) and arguments that can occur on the right-
hand side expression on each line in the block. The syntax for
rhs_option is as follows:

(func_name block_label list +)

where func_name is a string naming a function from the library
followed by finite number (equal to the arity of the function) of
lists of block-labels. A block_label_list is simply a list of block
labels:

([block_label | —]+)

For example, (f (L1) (L2)) is a possible rhs_option, and its
meaning is that (one possibility for) the rhs-expression of this
block is an expression of the form f(z,y) where z is the value
computed on some line in block L1 and y is the value computed
on some line in block L2. The meaning of (f (L1 —) (L2))
would be that the first argument of f can be a value computed
in block L1 or any value computed in the current block prior to
this line.

For example, a block specified by

(L1 na ((oplus (Im Ir) (=) (G (Ir =))))

corresponds to straight-line program of length na, where each of
the na lines has an expression of the form oplus(z,y) or G(z),
where z is some value computed in block im or block Ir, y is some
value computed in this block prior to current line, and z is some
value computed in block Ir or in current block prior to current
line.

Inputs to a program are assigned a line in the program. Hence,
we can also have (input m) as a possible rhs_option.

The Post block. A postcondition for the program can be specified
in the post block as follows:

(ensure yices_formula)

where yices_formula is a quantifier-free Yices formula over pro-
gram variables, where a program variable is specified as follows:

(output block_label param or num)

which denotes the program variable assigned on line specified by
the line number in the specified block.

A concrete straight-line program can be written using blocks of
length 1 in which there is just one option for the right-hand side ex-
pression. An arbitrary straight-line program of length n can be written
as

(L1 n ((f1 (=) (=) (/2 (=) (=) (fn (=) (=)

When performing synthesis, finding one program from the set of all n
line programs can be difficult. The language above allows the user to
constrain the class of programs.

Types. To further constrain the class of valid programs conforming
to a sketch, we introduced a notion of types in the sketching language.
Each program variable in the sketch is assigned two values — its usual
data value, and another value that we call the “type” value. Each li-
brary function f has two instances: one instance specifies how it mod-
ifies the data values of the variables, and the second instance specifies
a constraint on the types of the inputs and outputs of the function.
We will illustrate the use of types in the case study section below.

3 From Sketch to 3V Formula

The existence of a program that conforms to a given sketch and that
satisfies the given post condition can be formulates as an 3V formula.
The 3V formula says that there is a well-formed program such that
forall values of the inputs, the output of the program satisfies the post
condition.

We have developed a tool that parses a given sketch and creates
a 3V Yices formula. Furthermore, the tool then calls the 3V solver of
Yices to solve the formula. If there is a solution, the tool outputs the
model for the exists variables, which can be used to obtain the concrete
program. Additionally, the tool can also search for alternate solutions
for the same sketch.

4 Padding-based Encryption Schemes

Inspired by the success of the tool Zoocrypt in synthesizing padding-
based encryption schemes, we used our synthesis tool for exploring the
same space.

The sketch in Figure 1 shows the sketch we used. The library for
constructing the padding scheme consists of two unary hash functions,
G and H, a binary xor function (called oplus in Figure 1), a slight
variant of xzor called oplusr, and the identity function. Padding with

(oaep_sketch

(decls ...)

(parameters na nb)

(1ibrary (G 1) (H 1) (oplusr 2) (oplus 2) (identity 1))

(blocks

(Im 1 ((input m::(bool-to-bv false false false false true))))
(1r 1 ((input r::(bool-to-bv false false false true false))))
(11 na ((oplusr (Im 1r) (-)) (G (1r -)) (H (Im -))))

(12 2 ((identity (11 1r))))

(13 nb ((oplus (12 -) (12 -)) (H (12 -)) (G (12 -)))))

(ensure (and (= (output 1m 1) (output 13 nb))
(isrand (type 12 1)) (isrand (type 12 2))))

Figure 1: Sketch used for synthesizing various padding-based encryption
schemes. Declarations are shown in Figure 2.

0 is not modeled explicitly. It is added as a post-processing step to
make the hash functions applicable on its arguments.

The sketch in Figure 1 has two inputs — the message m in block Im
line 1, and a random number r in block [r line 1. This is followed by
a straight-line code block /1 of length na that constructs the padding
scheme. It is allowed to use the hash functions and the zor function.
Two of the values computed in block {1 (including the random number
r) are picked in block (2 to be concatenated, encrypted and sent onb
the network. The block (3 decodes the messages received from block [2.
Thee decoding block is of length nb and it can use the hash functions
and the xor function.

The main challenge in applying program synthesis techniques to
cryptography lies in encoding the security conditions. Here, we use
types to capture desired properties of a padding-based encryption scheme.

With each data value, we associate an independent “type” value.
In the example in Figure 1, the “type” associated to a data value is a
bitvector of length 5:

(a) The first bit keeps information about the size of the data value —

since we have hash functions mapping bitvectors of one size to another,
we keep a bit to store the size of the data value.
(b) The second bit is set if the data value is essentially the same as
a random value in its domain. It is difficult to carry forward this
information precisely, so we use conservative typing rules to update
the value of the second type-bit during each operation.
(¢) The third bit is set if the top function application is the hash
function . This information is used to update the “isrand” second
bit of the type.
(d) The fourth bit is set if the top function application is the hash
function H. It is used for the same purpose as the previous bit.
(e) The fifth bit is set if the top function application is the zor function.
Again, this information is used for the same purpose as the previous
two type-bits.

Using the data value and the type value, we state the desired post
condition as shown in the ensure formula; namely,
(a) the result of decoding (written as (output 13 nb), the value on
line nb in block 13) should be equal to the message m (written as
(output 1lm 1), the value on line 1 in block 1m), and
(b) the two values that are transmitted, namely the value on lines 1
and 2 in block 12, should essentially be random — that is, the second
bit of their respective type values should be set. The type value of line
1 in block 12 is written as (type 12 1)..

The declarations part of the sketch in Figure 1 is shown in Figure 2.
The declarations include
(a) the domain of data value of the variables; in this example, we use
bitvectors of length 5 as the domain of messages, etc. The choice of
length is arbitrary: larger bitlengths would mean more computational
resources would be required to solve the synthesis problem, but smaller
bitlengths could lead to synthesis of schemes that do not work for ar-
bitrary sizes.
(b) the domain of type value of the variables; in this example, we again
use bitvectors of length 5 as the domain of the “type” value of program
variables. The meaning of the 5 bits was explained before.
(¢) the concrete function definitions that update the data value of the
variables; in this example, we have used bitwise exclusive-or as the
definition of oplus and oplusr, bitvector rotate right by 2 as the def-
inition of G and bitvector rotate left by 3 as the definition of H.
(d) the type constraints induced by function applications; in this ex-
ample, the definitions tG, tH, toplus, toplusr, and tidentity list the
constraints on the types of the inputs and outputs of the five functions
in the library.

All declarations are written in valid Yices syntax. Currently, the
3V solver for Yices works well on Boolean and bitvectors, and hence
all data values are bitvectors and functions are mapped to functions

(decls

(define-
(define-

(define
(define
(define
(define
(define
(define
(define
(define
(define
(define
(define
(define

type typ (bitvector 5))

type word (bitvector 5))

fG::(-> word word) (lambda (x::word) (bv-rotate-right x 2)))

fH:: (-> word word) (lambda (x::word) (bv-rotate-left x 3)))
foplus:: (-> word word word) (lambda (x::word y::word) (bv-xor x y)))
foplusr::(-> word word word) (lambda (x::word y::word) (bv-xor x y)))
fidentity::(-> word word) (lambda (x::word) x))

ism::(-> typ bool) (lambda (x::typ) (bit x 0)))

isr::(-> typ bool) (lambda (x::typ) (mot (bit x 0))))

isrand::(-> typ bool) (lambda (x::typ) (bit x 1)))

istopg::(-> typ bool) (lambda (x::typ) (bit x 2)))

istoph::(-> typ bool) (lambda (x::typ) (bit x 3)))

istopx::(=> typ bool) (lambda (x::typ) (bit x 4)))

tG::(-> typ typ bool) (lambda (x::typ y::typ)

(and (isr x) (ism y) (<=> (isrand x) (isrand y)) (not (istoph x))
(istopg y) (not (istoph y)) (mot (istopx y)))))

(define

tH:: (-> typ typ bool) (lambda (x::typ y::typ)

(and (ism x) (isr y) (<=> (isrand x) (isrand y)) (not (istopg x))
(istoph y) (not (istopg y)) (not (istopx y)))))

(define

toplusr::(-> typ typ typ bool) (lambda (x::typ y::typ z::typ)

(and (or (and (ism x) (ism y) (ism z)) (and (isr x) (isr y) (isr z)))

(not

(istopg z)) (not (istoph z)) (istopx z) (nmot (istopx y))

(or (istopg x) (istoph x) (istopg y) (istoph y)) (not (istopx x))

(<=>
(define

(and (or (isrand x) (isrand y)) (/= x y)) (isrand z)))))
toplus::(-> typ typ typ bool) (lambda (x::typ y::typ z::typ)

(and (or (and (ism x) (ism y) (ism z)) (and (isr x) (isr y) (isr z)))
(not (istopg z)) (not (istoph z)) (istopx z)

(or

(istopg x) (istoph x) (istopg y) (istoph y))

(<=> (and (or (isrand x) (isrand y)) (/= x y)) (isrand z)))))

(define

)

tidentity::(-> typ typ bool) (lambda (x::typ y::typ) (= x y)))

Figure 2: Declarations used in the sketch for synthesizing various padding-
based encryption schemes.

FG)(G(r) @ m))
flrl(G(r) ©m))
f(G(r o Hm))[(G(r & H(m)) & m))
f((r & Hm)|[(G(r & H(m)) & m))
F(G(r) @m)[|(H(G(r) & m) & 7))

Figure 3: Some automatically synthesized padding-based encryption
schemes.

on bitvectors. Note that program synthesis is done using the specified
type and function declarations. These interpretations should be picked
carefully so that they satisfy (exactly) the algebraic relations the actual
functions satisfy. This may not be possible always, in which case one
can choose interpretations that are likely to lead to general solutions.

Synthesized encryption schemes

We can now use our tool to synthesize different padding schemes using
different values for the two parameters na and nb. We can use the tool
to generate different solutions for the same values of the parameters.

Some example synthesized schemes are shown in Figure 3. Again,
we do not show the padding with 0 that is required to make ar-
guments reach the required bitvector length. Note that the OAEP
scheme [BR94] is also generated using na = 4 and nb = 4 and is shown
in Figure 3 as the last scheme. But smaller padding-based schemes
were also found by the tool. We could potentially run the tool for
larger values of na and nb to obtain more such secure schemes.

5 Summary

We presented an approach for synthesizing secure cryptographic proto-
cols. We first defined a sketching language that can be used to specify
library functions from which a scheme needs to be generated. The
language allows features that can be used to further prune the search
space of all valid programs. We translate the synthesis problem in
the sketching language to an 3V Yices formula, and use the yices IV
SMT solver to solve the constraint and obtain a possible program. We
used our language and the accompanying synthesis tool to synthesize
various padding-based encryption schemes.

Our plan is to apply the approach to synthesize more complicated

protocols, such as the protocols for oblivious transfer. Synthesis re-
sults similar to the ones reported here have also been obtained using
Zoocrypt [BCKT13]. We also plan to release the tool, the sketches,
and the synthesized schemes on a public webpage in the near future.

References

[BCK*13]

[BRO4]

[GIJTV11]

[SLRBEO5]

[SLTB+06]

[SRI]

G. Barthe, J. M. Crespo, C. Kunz, B. Schmidt, B. Gre-
goire, Y. Lakhnech, and S. Zanella-Beguelin. Fully auto-
mated analysis of padding-based encryption in the com-
putational model, 2013. http://www.easycrypt.info/
zoocrypt/.

M. Bellare and P. Rogaway. Optimal asymmetric encryp-
tion. In Advances in Cryptology, EUROCRYPT, volume
LNCS 950, 1994.

S. Gulwani, S. Jha, A. Tiwari, and R. Venkatesan. Syn-
thesis of loop-free programs. In Proc. PLDI, 2011.

Armando Solar-Lezama, Rodric M. Rabbah, Rastislav
Bodik, and Kemal Ebcioglu. Programming by sketching
for bit-streaming programs. In PLDI, 2005.

Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik,
Vijay Saraswat, and Sanjit Seshia. Combinatorial sketch-
ing for finite programs. In ASPLOS, 2006.

SRI International. Yices: An SMT solver. http://yices.
csl.sri.com/.

