
Automation in Cryptology

Final Report

Ashish Tiwari
Report Date: Oct 15, 2015

Subcontract no. 60106452-107484-C
Prime award no. N00014-12-1-0914

1 Executive Summary

The goal of the project was to develop new verification and synthesis tech-
niques for programs that model cryptographic protocols. In this document,
we report our main accomplishments.

We developed a new approach for synthesis that we used to successfully
synthesize a variety of security schemes. The most significant accomplish-
ments that led to the development of the new synthesis approach are as
follows:

Dual interpretations in programs: We used dual interpretations to de-
fine type-based constraints on programs. Primal interpretations cor-
respond to the usual semantics of programs, and specify how values
are computed and propagated through a program. Dual interpreta-
tions map to constraints and can be used to specify user-defined typ-
ing rules. Dual interpretations are especially useful for cryptographic
schemes since often it is possible to design a special type system that
can capture properties related to security.

Program synthesis using multiple interpretations: We introduced the
idea of assigning multiple, potentially mutually incomparable, inter-
pretations to a single program. The different interpretations can be
used to capture different correctness criteria for a program. For ex-
ample, functional correctness can be specified in one interpretation,
whereas resource constraints and security requirements could be spec-
ified in a second and third interpretation.

1

The Synudic tool: We built a program synthesis tool that support mul-
tiple interpretations, each of which can be a primal or a dual inter-
pretation. We used to tool to synthesize several known algorithms
for padding-based encryption, block cipher modes of operation, and
oblivious transfer. The tool is available online (www.csl.sri.com/
~tiwari/softwares/auto-crypto/).

The Yices2 tool: We introduced several new features and optimizations in
our widely-used Satisfiability Modulo Theory (SMT) solver, Yices2,
with the goal of better supporting our synthesis tool, Synudic. For
example, one significant new feature in the latest release of Yices2 is
the ability to check satisfiability of ∃∀ formulas.

Program analysis-based optimizations for multiparty computation:
We developed optimizations that can be used to improve efficiency of
oblivious RAM-based multiparty computation.

We describe these key contributions in the subsequent sections. Further
details about the technical work, including software, published papers and
forthcoming papers, can be found on the website:

http://www.csl.sri.com/~tiwari/softwares/auto-crypto/

2 Dual interpretations in programs

Programs work with two kinds of entities: values and types. Values are
manipulated during program executions, and users can program these ma-
nipulations in a flexible way. For example, users can define new functions
and compose these functions to define more complex value manipulation
routines. This is not the case for the other entity, namely types. Program-
ming languages usually have a predefined set of base types, and even though
a user can build more complex types, such as records, arrays, and lists, using
the base types, there is still less flexibility available than for values; for ex-
ample, a user typically cannot define rules (programs) for the manipulation
of types.

We have developed a small domain-specific language, called Synudic,
where users can define and manipulate type-like entities in conjunction with
regular values. What is the behavior of Synudic programs? It has been
pointed out by Cousot [Cou97] that there is a certain duality between values
and types: specifically, there is a Galois connection between properties (on

2

values) and types where, for example, set union in one lattice corresponds
to set intersection in the other. More intuitively and less formally, a variable
that has more types can take on fewer values and vice versa. For example, a
variable that has types even and pos int (union of types) can only be a pos-
itive even integer (intersection on values). In order to perform computation
on type-like entities, we would need to perform dual operations: rather than
union at control flow join points (that we do for values), we would perform
intersection, and rather than least fixpoint computation in loops (that we do
for values), we would perform greatest fixpoit computation. Our programs,
semantically, perform unions at control flow join points for certain values,
and simultaneously, semantically, perform intersection at control flow join
points for certain other “type” values.

Types and values in traditional programming languages are strongly re-
lated to each other: a type represents a set of concrete values. Synudic
goes beyond this standard notion and allows user to specify arbitrary user-
defined entities that behave like types do, but that need not be related in
any way to the concrete semantics of the program. Let us call this more
general notion attributes. In Synudic, a program variable is mapped to not
only a value, as in the usual semantics of programs, but also simultaneously
to an attribute (or a set of attributes). A user can not only program how
values are updated in a program, but also program the rules that govern
the update of attributes. Thus, Synudic enables programming with primal
and dual semantics.

The obvious question to ask here is why should one be interested in
programmable attributes and the dual semantics that govern their behavior.
There are several reasons.

Using types in program synthesis. The primary motivation comes from
the field of program synthesis. Suppose we are interested in synthesiz-
ing a 10 line program that meets some specification. Even for a rela-
tively small expression language, the number of 10 line programs that
can be constructed using that langauge will be huge. However, the
number of well-typed programs could be significantly smaller. This
point was also made in recent work on synthesis of functional pro-
grams [OZ15]. So, how to impose type constraints on a yet-to-be syn-
thesized program? If x := f(y) is the form of assignment statement
on, say, line 3, where f is some unknown function symbol that needs to
be chosen from the expression language, then a priori we do not know
the types of x and y. However, if every value variable x can carry with
it a type attribute (say, x.0 is the value and x.1 is the type), then we

3

can encode typing constraints on the program by constraining the at-
tributes x.1 and y.1 (the constraint will involve f). As a result, when
solving the synthesis problem, we now synthesize both the program
and a type correct annotation for it. Thus, we can use attributes and
dual semantics to impose typing constraints on “program sketches”.
The dual semantics on the “type” attributes help prune the search
space of possible programs.

Nonfunctional program properties. Since programs are assigned one
concrete semantics that specifies the functional behavior of the pro-
gram, we can easily state properties that relate to functional correct-
ness of programs. Moreover, by using abstractions of the concrete
semantics [CC77a], we can reason about the concrete semantics and
perhaps prove functional correctness. However, we are interested in
nonfunctional properties of programs – properties of programs that
are not directly related to its concrete semantics. One example class
of nonfunctional properties consists of properties related to security,
such as, secure information flow [DD77]. Since these are nonfunc-
tional properties, it is then no surprise that dedicated “type systems”
that are unrelated to the concrete program are developed for reason-
ing about them [Smi01, MKG14]. The development of attributes and
dual semantics enables programming of such nonstandard type sys-
tems in a general-purpose language, and potentially increase utility of
programming languages in general.

Theoretical interest. We note an asymmetry in the complexity of asser-
tion checking for imperative programs: for a polynomial time (PTime)
program, the problem of checking if an assertion is valid is in co-NP: if
the assertion is violated, then there is some input that causes assertion
failure, and hence one could (nondeterministically) guess that input
and check that the assertion is violated in PTime. For the same pro-
gram, under reasonable assumptions, checking if an assertion on the
dual semantics is valid happens to be in NP: we just need to guess the
attribute for each variable and check that the guesses satisfy the rules
defining the dual semantics.

2.1 Primal and Dual Semantics of Straight-line Programs

We consider straight-line programs, where each statement is of the form
x := f(~x), where f is a symbol (representing a function or a constant) taken
from a fixed signature Σ with arity n, x is a program variable, and ~x is a

4

vector of n program variables. Note that f can be a constant with arity
n = 0. Let us use Terms(Σ, Vars) to denote all terms constructed using
the signature Σ and free variables Vars. A straight-line program is just a
(sequentially composed) sequence of statements of the form above.

2.1.1 Primal Semantics of Straight-line Programs

In the primal semantics, the meaning of a term is given by a structure
(Dom, Int) where the domain Dom is a nonempty set, and the interpretation
Int maps
(a) every constant c ∈ Σ to an element cInt ∈ Dom, and
(b) every function symbol f ∈ Σ with arity n to a concrete function fInt :
Domn 7→ Dom.

For example, Dom could be the set of integers, or machine integers, or
length n bitvectors. If Dom consists of bitvectors, Int could map a symbol
⊕ in Σ to the bitwise xor operator.

The mapping Int is extended to a mapping over all ground terms Terms(Σ, ∅)
in the usual way: specifically, if f is a arity n function symbol, then f(t1, . . . , tn)Int

is defined as fInt(tInt1 , . . . , tIntn) recursively. Intuitively, the primal meaning
of any term in Terms(Σ, ∅) is just its evaluation (to a value in Dom) in the
underlying structure (Dom, Int). We will treat applications of function f ∈ Σ
as “library” calls.

We now fix Vars to be the set of all program variables. A (primal) state
of a program is simply a mapping from the set Vars of program variables to
values in Dom.

Program states σ : Vars 7→ Dom

We use the symbol σ, possibly with subscripts or superscripts, to denote a
program state. We note that a program state is just a substitution.

Note that Int defines the meaning of all ground expressions in Terms(Σ, ∅).
A program state gives meaning to variables in Vars, and thus, a program
state, together with the structure (Dom, Int), provides meaning to any ex-
pression in Terms(Σ, Vars).

Let P denote the single assignment statement x := f(x1, . . . , xk). The
meaning of P in the primal semantics is defined by the strongest postcon-
dition operation as expected:

Sem(P)(S) = {σ | ∃σ1 ∈ S :
σ(x) = fInt(σ1(x1), . . . , σ1(xk)),
σ(y) = σ1(y) forall y 6= x}

5

x := 0;
y := 1.0;
z := y ∗ x;
x := 1 + z;

Σ = {+, ∗, 0, 1.0, . . .}
Dom = Z ∪Q
Int ∼ arithmetic

Sem ∼ finally x=1

Σ = {+, ∗, 0, 1.0, . . .}
DomB = {zero, int, float}
IntB = see text
SemB ∼ finally x : int

(a) Program (b) Primal Semantics (c) Dual Semantics

Figure 1: Illustrating primal and dual semantics on the same straight-line
program. Assertion x = 1 holds at the end of the program in the primal
semantics, whereas assertion x : int (and the assertion x : float) holds at
the end of the program in the dual semantics.

The meaning of a sequential composition P ;Q of two programs is also as
expected:

Sem(P ;Q)(S) = Sem(Q)(Sem(P)(S))

Thus, we get the (usual) primal semantics of straight-line programs.

2.1.2 Dual Semantics of Straight-line Programs

For defining the primal semantics, we started with a structure (Dom, Int)
that provides meaning to the underlying expression language Σ. Just as
in the primal case, the basic elements for the dual semantics is a pair
(DomB, IntB).

Let (DomB, IntB) be such that

• IntB maps a constant c ∈ Σ to a subset cIntB ∈ 2DomB, and

• IntB maps a function f ∈ Σ of arity n to a function fIntB : DomBn 7→
2DomB

Note that cIntB is not an element of DomB, but a subset of it. Similarly, fIntB

is not a function over DomB, but really a relation. Once we have such a IntB,
we can use it to give meaning to an assignment x := f(~x) as follows:

• the semantics (x := f(x1, . . . , xk))IntB of an assignment statement x :=
f(x1, . . . , xk) is a set of program states, θ : Vars 7→ DomB, “consistent”
with that assignment; that is,

(x := f(x1, . . . , xk))IntB

= {θ | θ(x) ∈ fIntB(θ(x1), . . . , θ(xk))} (1)

6

Intuitively, an assignment statement is a (constraint on the) set of (allowable
dual) states.

Let P denote the single assignment statement x := f(x1, . . . , xk). The
meaning of P in the dual semantics is given as follows:

SemB(P)(S) = S ∩ (x := f(x1, . . . , xk))IntB

where the dual meaning (x := f(x1, . . . , xk))IntB of the assignment statement
is given in Equation 1.

In the dual semantics, the sequential composition operator is given mean-
ing as in the primal case. As a result, note that the sequential composition
operator behaves as a logical conjunction in the dual semantics.

2.2 Example: Straight-Line Program

Consider the simple four line program in Figure 1. The expressions used
in the program are constructed using symbols from the signature Σ =
{+, ∗, 0, 1.0, . . .}. It is possible to give this program both a primal and a
dual semantics. The primal semantics is the natural one: the symbols in Σ
are interpreted over the domain Dom of integers (Z) and floats (Q) in the
natural way. An assertion that is true (in the primal semantics) at the end
of the program is x = 1.

We now give a second dual semantics to this same program. In particular,
in the dual semantics, the symbols in Σ are interpreted over the new domain
DomB consisting of just three elements, zero, int, and float. We have
to now interpret the symbols in Σ over this new domain. One possible
interpretation IntB is as follows:

IntB(0) = {zero, int, float}
IntB(1) = {int, float}

IntB(1.0) = {float}
IntB(+) = {(e, zero) 7→ {e}, · · · }
IntB(∗) = {(e, zero) 7→ {zero, int, float}, · · · }

where e denotes an arbitrary element of DomB. Note that the constant 0 is
not interpreted as a constant from DomB, but as a subset of DomB. Similarly,
the function + is interpreted as a function from DomB×DomB to 2DomB. In this
example, the interpretations are just abstractions of the primal semantics.

So, in the dual semantics,
(1) x is constrained to take a (nondeterministically chosen) value in DomB in

7

Line 1,
(2) y is constrained to take value float in Line 2,
(3) z is constrained to take a (nondeterministically chosen) value in DomB in
Line 3, and finally,
(4) x is additionally constrained to take a value in the set {int, float} in
Line 4.
Apart from the nondeterministic interpretation of constants and functions
in the dual semantics, a second key difference is in the interpretation of
nondeterminism. It is treated in an angelic manner. Hence, at the end of
the program, the assertion x : int is true in the dual semantic – because
there is (at least) one assignment of variables to dual values consistent with
all the four constraints and in which x is assigned int. Due to the angelic
nature of nondeterminism, the assertion x : float also holds at the end of
the program. This is the reason for using the notation x : e when a variable
takes a value e in the dual semantics.

2.3 Duality in the Assertion Checking Problem

We can define the assertion checking problem on the two semantics.

Definition 1 (Assertion checking problem) Given a program P and a
primal assertion x = c, where x is a program variable and c ∈ Dom is a
constant, the primal assertion checking problem seeks to determine if σ(x) =
c for all program states σ in Sem(P)(U).

Given a program P and a dual assertion x : c, where x is a program
variable and c ∈ DomB is a constant, the dual assertion checking problem
seeks to determine if σ(x) = c for some program state σ in Sem(P)(U).

The duality between the primal and the dual interpretations is exhibited
in the following result.

Proposition 1 If the primal interpretation structure (Dom, Int) is polynomial-
time computable, then the primal assertion checking problem for straight-line
programs is co-NP complete.

If the dual interpretation structure (DomB, IntB) is polynomial-time com-
putable, then the dual assertion checking problem for straight-line programs
is NP complete.

For details and proofs, the reader is referred to the article on the webpage
mentioned above.

8

3 Program synthesis using multiple interpretations

One of the key insights underlying Synudic is that we can constrain the syn-
thesis search space using multiple, possibly unrelated, interpretations. Each
interpretation can be used to specify some requirement. Each interpretation
can be primal or dual.

As we describe in Section 4, synthesis in presence of a primal inter-
pretation results in an ∃∀ formula, whereas synthesis in presence of a dual
interpretation results in an ∃ formula. If a Synudic sketch has requirements
that are specified using both primal and dual interpretations, then we need
to solve an ∃∀ formula to synthesize the desired program.

However, in many cases – and certainly in the security schemes dis-
cussed in this report – it is possible to trade a primal requirement with a
dual requirement. This is a form of duality, akin to Farkas lemma in arith-
metic [Ber01], but for assertion checking in programs. This is very beneficial,
since it enables us to use a solver for ∃ formulas, rather than one for an ∃∀
formulas, to perform program synthesis. Synudic supports the use of this
duality principle for performing synthesis.

4 The Synudic tool

We have developed a tool, also called Synudic, for synthesizing straight-line
programs using multiple interpretations, where each interpretation can be a
primal interpreation or a dual interpretation.

Synudic (Synthesis using dual interpretation on components) consists
of (a) a language for specifying program synthesis problems with multiple
requirements, (b) a compiler that converts the synthesis problem into an ∃∀
constraint, and (c) invocation to the solver Yices2 to get a solution of the
∃∀ problem. We briefly describe the step (b) in this section.

Consider the problem of synthesizing a straight-line program P with N
lines. We assume we have two requirements: one functional and one non-
functional requirement. The functional correctness requirement states that
on input x0, the program P computes fspec(x0) for some given function fspec.
We assume that we are given a signature Σ with a primal interpretation Int

over some domain Dom, and fspec is a unary function on Dom.
The nonfunctional requirement states that the output variable can be

assigned a value e ∈ DomB, given a dual interpretation (DomB, IntB) for Σ.
We assume that the length N of the program is a given constant. For no-

tational convenience, fix N = 9. The form of the program we wish to synthe-

9

size is shown in Figure 2. Without loss of generality, we have assumed that
all function symbols in Σ have arity 2. Synthesizing the program amounts
to finding values for the 9 variables f1, . . . , f9 from the set Σ, and values for
the 18 variables a11, a12, . . . , a91, a92 from the set {0, 1, . . . , 9}. The meaning
of variables aij is given as follows: if aij = k, then the j-th argument of the
function call on Line i is equal to xk.

We have the following well-formedness constraint on the aij variables.

φ1 =
∧

i∈1..9

(ai1 < i ∧ ai2 < i)

The constraint above says that a value should be defined (on Line ai1 and
on Line ai2) before it is used (on Line i). With each left-hand side variable
x1, . . . , x9 in the program sketch in Figure 2, we associate two first-order
variables:
(a) vxi is the value in Dom of xi in the primal semantics, and
(b) txi is the value in DomB of xi in the dual semantics.

The following constraint imposes consistency of vxi values with respect
to the primary semantics.

φ2 =
∧

i∈1..9
j,k∈1..9
f∈Σ

(ai1 = j ∧ ai2 = k ∧ fi = f ⇒
vxi = fInt(vxj , vxk))

The constraint above says that if the first argument of the functional call
on Line i comes from Line j, the second argument comes from Line k, and
the function on Line i is f ∈ Σ, then the value vxi is fInt(vxj , vxk).

The following constraint imposes consistency of attributes with respect
to the dual semantics.

φ3 =
∧

i∈1..9
j,k∈1..9
f∈Σ

(ai1 = j ∧ ai2 = k ∧ fi = f ⇒
txi ∈ fIntB(txj , txk))

If we ignore the nonfunctional requirement, then satisfiability of the follow-
ing ∃∀ formula will indicate existence of a program of the form in Figure 2
that satisfies the functional requirement.

∃f1, . . . , f9 ∈ Σ ∃a11, . . . , a92 ∈ [0..8] (φ1 ∧
∀vx0, . . . , vx9 ∈ Dom (φ2 ⇒ vx9 = fspec(vx0)))

The Synudic tool generates the above ∃∀ formula and solves it to syn-
thesize straight-line programs. However, it can do more. Let us now con-
sider the nonfunctional requirements. We need to include the constraint φ3

10

l0 : x0 := input

l1 : x1 := f1(a11, a12);
l2 : x2 := f2(a21, a22);

...
l9 : x9 := f9(a91, a92);

Variables: Domain

f1, . . . , f9 : Σ
a11, . . . , a92 : 0..9
vx0, . . . , vx9 : Dom
tx0, . . . , tx9 : DomB

Figure 2: An arbitrary straight-line program with 9 lines. To synthesize
such a program, we need to find values for the 9 variables f1, . . . , f9 from
the set Σ, and find values for the 18 variables a11, a12, . . . , a91, a92 from the
set L = {0, . . . , 9}. The meaning of a41 is as follows: if a41 is 2, then the
first argument of f4 is x2.

induced by the dual semantics on the txi variables.

∃f1, . . . , f9 ∈ Σ ∃a11, . . . , a92 ∈ [0..8]

∃tx0, . . . , tx9 ∈ DomB (φ1 ∧ φ3 ∧ tx9 = e ∧
∀vx0, . . . , vx9 ∈ Dom (φ2 ⇒ vx9 = fspec(vx0)))

The main point to note here is that the variables tx0, tx1, . . . are all
existentially quantified, whereas vx0, vx1, . . . are universally quantified. The
constraint φ3 and the nonfunctional requirement tx9 = e are outside the
scope of the ∀ quantifier, and hence, they prune the search space of valid
programs, just like constraint φ1.

The tool Synudic starts with a sketch, generates an ∃∀ formula and uses
the solver Yices2 to solve that formula. The input language for specifying
the sketch allows the user to provide multiple primal, and multiple dual,
interpretations for the program, and add requirements (postconditions) for
each interpretation.

4.1 Synthesizing padding-based schemes.

In public key cryptography, padding is the process of preparing a message for
encryption. A modern form of padding is OAEP, which is often paired with
RSA public key encryption. Padding schemes, and in particular OAEP,
satisfy the goals of (1) converting a deterministic encryption scheme, e.g.
RSA, into a probabilistic one, and (2) ensuring that a portion of the en-
crypted message cannot be decrypted without being able to invert the full
encryption.

11

f(G(r)||(G(r)⊕m))

f(r||(G(r)⊕m))

f(G(r ⊕H(m))||(G(r ⊕H(m))⊕m))

f((r ⊕H(m))||(G(r ⊕H(m))⊕m))

f((G(r)⊕m)||(H(G(r)⊕m)⊕ r))

Figure 3: Some automatically synthesized padding-based encryption schemes:

Here H,G are two unary Hash functions, ⊕ is the xor operator, || denotes pairing

operator, m denotes the input message, r denotes a random input, and finally f is

the one-way encryption function that is applied to the “padded” message m.

We used Synudic to synthesize several padding-based encryption schemes,
which are shown in Figure 3. Our results are reminiscent of the results ob-
tained by the synthesis tool Zoocrypt [BCK+13]. For the Synudic sketch
used to synthesize the six schemes shown in Figure 3, the reader should
consult the project webpage.

The key observation here is that we use a primal interpretation to ensure
that any synthesized encryption scheme is decryptable: that is, we synthe-
size both an encryption scheme and a decryption scheme, and the functional
requirement is that the result of applying encryption, followed by decryp-
tion, to an input message returns the same message. We use a second, dual,
interpretation to encode the requirement that the result of applying encryp-
tion to a message m is something that is essentially “random”. For this, we
design a special-purpose type system that carries information on whether a
value is essentially “random” or not.

4.2 Synthesizing Block Ciphers Modes of Operation

A mode of operation is a pair of algorithms that features the use of a symmet-
ric block cipher algorithm (F, F−), e.g. AES, to encrypt/decrypt amounts
of data larger than a block. A secure mode of operation must provide the
same level of security as its associated block cipher. For example, the en-
cryption algorithm of the popular Cipher Block Chaining (CBC) mode is
depicted in Figure 4. CBC, when equipped with a secure block cipher,
provides IND$-CPA security, i.e. an attacker cannot distinguish its output
from an uniformly random string with significant probability (under certain
constraints on the computational power of the attacker). Note that CBC

12

IV + + . . . +

B1 B2 Bn

Fk Fk Fk

c1 c2 cnIV

Figure 4: The CBC mode of operation for the encryption of an n-block mes-

sage. The dotted boxes correspond to the multiple copies of the block processing

procedure.

encryption consists of an initialization algorithm, where a random initial-
ization vector IV is produced, followed by n copies of a block processing
algorithm, while exactly one value is fed from one copy to the next one.
This structure is common to many of the popular modes of operation.

Using our tool we could synthesize the well-known modes ECB, OFB,
CFB, CBC, and PCBC, also automatically found in [MKG14], as well as
some variants of those. When using our tool, we need to specify the number
of lines in the protocol to synthesize. These values are presented by giving
values to certain parameters that are used in Synudic sketch. The tables of
Figure 5 show the size parameters needed to obtain each of the modes listed
above. The reported times corresponds to a complete exploration of the
search space that correspond to the parameters. For example, the second
row of the first table means that, with parameters na = 2, nb = 6, nc = 3,
it took our tool 6.07 seconds to conclude that exactly two instances of the
sketch are secure and decryptable modes of operation. The parameter na
is the number of lines in the initialization step, nb is the number of lines
used in the block step, and nc is the number of lines used in the decryption
routine. The modes marked with an asterisk (*) correspond to redundant
variants of the corresponding mode.

Again, as in the case of padding-based schemes, the key observation be-
hind using Synudic to synthesize modes of operation is as follows: we use
a primal interpretation to ensure that any synthesized modes of operation
are decryptable: that is, we synthesize both an encryption function and a
decryption function, and the functional requirement is that the result of

13

Parameters
Modes

Time
na nb nc (s)

2 4 3 CBC 3.3

2 6 3
CBC*
OFB*

6.1

2 6 4 CBC* 22.9

2 6 5
CBC
OFB*
CFB

5.8

Parameters
Modes

Time
na nb nc (s)

2 7 6
OFB variant
CBC variant

6.3

2 8 5
CBC*
OFB*
CFB*

39.5

2 9 5
PCBC

OFB variant
109.8

Figure 5: Results of the synthesis of block cipher modes of operation using Synudic.

applying encryption, followed by decryption, to an input message returns
the same message. We use a second, dual, interpretation to encode the
requirement that the result of applying encryption to a message m is some-
thing that is essentially “random”. We used the type system developed in
[MKG14] for this purpose: The main contribution in [MKG14] is a type
system T that guarantees that type correct modes of operation are secure.
Instead of separately filtering modes of operation that are not decryptable
as done in [MKG14], we encoded the existence of a decoding algorithm as a
functional requirement. This has the advantage that encryption algorithms
are synthesized together with their corresponding decryption procedure.

4.3 Synthesizing Oblivious Transfer Protocols

We used Synudic to synthesize two different ways to perform oblivious
transfer. Both these protocols are known. We are currently using our tool
to explore more of the space of protocols to discover new protocols.

The security of both protocols is based on the DDH assumption. In
oblivious transfer, there are two parties, a Sender and a Chooser. The
Sender has two messages m0 and m1, and the Chooser can chooose to get
one of those two messages, but the Chooser does not wish to reveal his choice
to the Sender, and the Sender does not want the Chooser to learn contents
of both messages.

The primitives given to the synthesis procedure are: (1) each party can
pick some random numbers; (2) each party can compute gx, xy, x∗y and x/y
if they have access to x and y, where g is the generator of the cyclic group;
(3) the Chooser is allowed access to an if-then-else statement, to enable him
to make a choice.

The first protocol we synthesize, which was also recently reported in [?],

14

is as follows:

• Sender picks random r and sends gr to the Chooser.

• Chooser picks random a. Chooser makes a choice i ∈ {0, 1}.
If i = 0, then the Chooser sends gr ∗ ga to the Sender.
If i = 1, then the Chooser sends ga to the Sender.

• Let x be the value received by Sender. Sender encrypts m0 with key
k0 = (x

gr)r, and encrypts m1 with key k1 = xr.

• Let me
0,m

e
1 denote the encrypted values received by Chooser. Chooser

generates key k = (gr)a and retrieves message mi using that key. Note
that k will be equal to ki.

The second protocol we synthesized is the Naor-Pinkas oblivious transfer
protocol [NP01].

• Chooser picks random a, b, c.
Chooser makes a choice i ∈ {0, 1}.
If i = 0, Chooser sends 〈ga, gb, gab, gc〉.
If i = 1, Chooser sends 〈ga, gb, gc, gab〉.

• Let 〈x, y, z, w〉 be the tuple received by the Sender.
Sender picks random r, s.
Sender encrypts m0 with key k0 = zr ∗ (gb)s

Sender encrypts m1 with key k1 = wr ∗ (gb)s

Sender computes helper key k = xr ∗ gs.
Sender sends 〈k,me

0,m
e
1〉

• Chooser retrieves messagemi by decryptingme
i using the key kb (which

will be equal to ki).

One of the challenges in synthesizing oblivious transfer is capturing the
requirements of the protocol. It is easy to capture the requirement that
the Chooser is able to decrypt the message mi, depending on the choice i;
but it is difficult to capture the requirement that the Chooser be unable to
decrypt the other message m1−i; and that the Sender does not learn the
choice i made by the Chooser. For the requirements that were difficult to
capture accurately in Synudic, we used “approximations” that were enough
to invalidate several “obviously wrong” protocols, but were not guaranteed
to pick only the “truly secure” protocols.

15

Because of the approximations involved in capturing the security prop-
erty in some cases, in our applications of Synudic to security, there is often
an a posteriori need for establishing security of the synthesized scheme using
other dedicated verification tools; such as, Easycrypt [BDG+14].

5 The Yices2 tool

The Synudic synthesis tool uses the Yices2 Satisfiability Modulo Theory
(SMT) solver as its backend engine. Yices2 is an SMT solver that decides
the satisfiability of formulas containing uninterpreted function symbols with
equality, linear real and integer arithmetic, bitvectors, scalar types, and
tuples.

One of the key features in Yices2 developed to support Synudic is
the ∃∀ solver, which decides satisfiability of formulas of the form ∃~x : ∀~y :
φ(~x, ~y). As we observed before, synthesis problems are naturally mapped
into ∃∀ formulas.

Yices2 is a widely-used SMT solver, and its current version 2.4.1 was
released in August 2015. More information can be found at http://yices.
csl.sri.com/.

6 Optimizations for ORAM-based secure Multi-
party Computation

Oblivious Random Access Memories (ORAMs), introduced by Goldreich
and Ostrovsky [GO96], allow a client to outsource its data to a server while
preserving privacy. A crucial observation is that encrypting the outsourced
data is not enough to maintain privacy, since access patterns may reveal
information and hence must be kept hidden from the server and an eaves-
dropping adversary.

Another use of ORAMs is to speed up generic approaches to Secure Mul-
tiparty Computation (MPC). Frameworks for compiling general programs
into an ORAM-based MPC computation framework are already available
(see, for example [LHS+14]). Our work focuses in this application area.
More concretely, we use static analysis and compiler optimization techniques
to (i) learn memory access patterns of a given program to obtain a more
efficient ORAM-based secure multiparty implementation, and (ii) apply pro-
gram transformation that are suited for MPC.

16

6.1 A compiler for Multiparty secure computation in the
RAM model

In secure Two-party Computation, two parties A and B jointly compute the
value of a function f over their inputs while keeping the inputs private. A
common restriction on f is that it must have finite domain, and hence A
and B must fix a bound on the size of their inputs. Moreover, A and B
must of course agree on a particular formalism to describe the function f .

In our work, f is described as a program in the C programming language,
augmented with a type system to qualify every variable of a given program as
public or secret. To avoid information leakage between the parties, our type
system also enforces that loop conditions do not depend on secret variables
(neither directly nor indirectly). Moreover, procedure calls are not allowed.

Our system can be seen as a compiler for Two-party computation that,
given a C program P , produces an efficient implementation of P into a
protocol for secure two-party computation (in the semi-honest adversary
model). Our focus is in efficiency in terms of running time.

Many generic protocols for secure MPC rely on a program representation
whose execution is data-agnostic (or data-oblivious), in the sense that the
control flow of the program does not depend on the parties’ private data.
This is the case for both Boolean and arithmetic circuits.

We are interested in ORAM-based secure computation: protocols for se-
cure computation that leverage Oblivious Random Access Memories (ORAMs)
to emulate the RAM model of computation in a secure (and distributed) way.
The main advantage of this approach is that the execution does not need to
be data-agnostic, since it involves a random access memory. This has two
implications, one from the control flow perspective and another for the data
access perspective:

• In a given execution, not every instruction of the program needs to
be evaluated, as opposed to protocols that represent programs exclu-
sively as circuits (such as garbled circuits or protocols based on fully
homomorphic encryption), where partial evaluation of the circuit is
not possible. In contrast, it has been already shown that ORAMs
can be used to construct protocols with sublinear (amortized) running
time [GKK+12].

• An access into an array T [i], where i is qualified as secret, must be
implemented in linear time in a completely data-agnostic manner,
whereas efficient ORAMs implement dynamic access with polyloga-
rithmic cost (in an amortized notion).

17

6.2 Program representation

Our compiler implements several program transformations and analysis that
operate on LLVM bitcode which, roughly speaking, corresponds to a Single
Static Assignment (SSA) representation of the input program. The SSA
form is a well-understood standard intermediate representation in compiler
design. Hence, our compiler for Secure MPC can benefit from existing gen-
eral static analysis techniques such as abstract interpretation [CC77b], sym-
bolic Execution [CGK+11], and data-flow analysis (see [NNH99]), as well as
optimizing program transformations [BGS94] to produce an efficient imple-
mentation of ORAM-based MPC protocol.

The main interesting property of ORAMs is that they provide dynamic
access with polylogarithmic cost, as mentioned above, while not revealing
any information of the access pattern across several accesses. Hence, intu-
itively, for any sequence of accesses into an oblivious RAM M , M hides from
the parties involved in the computation (1) what position is being accessed
each time and (2) how many times is a position accessed. However, if we
could infer from the program description that every position in M is never
accessed twice, then the condition (2) above can be ignored, which enables
a more efficient implementation.

6.3 Monotone accesses

secret int T[n][n];

int i = n;

int j = n;

for(int x = 0; n ; ++i){

v = T[i][j];

if(v == 1) { --i; --j; ...

} else if(v == 2){ --i; ...

} else { --j; ... }

}

Note that the instruction v = T [i][j] in the example program above will
never be executed with the same values of i and j across all executions of the
loop, and hence it satisfies the property mentioned above. Hence, having
the parties involved in the computation shuffle T suffices to guarantee that
the access T [i][j] is oblivious. In other words, we do not need the full power
of ORAMs.

It is not difficult to see that checking this property is undecidable in
general, but in many practical cases that arise, for example, in dynamic

18

programming algorithms, it can be done practically. This fact is partially
due to the enormous recent advance in constraint solving technology, and in
particular Satisfiability Modulo Theories (SMT). To implement this analysis,
we leverage symbolic execution techniques enabled by efficient SMT solvers.
More concretely, we encode the semantics of the program as a logic formula
so that the property that the value of the pair of indexes (i, j) strictly
increases (decreases) at every iteration of the loop (in absence of integer
overflows) is equivalent to validity of a formula φ. Whether φ is valid is
then checked using an SMT solver such as Yices [Dut14]. Thanks to the
SSA representation this process, including the extraction of loops in the
original program can be fully automated in our compiler.

6.4 Data compaction

A simple program transformation that leads to a running time optimization
in Secure MPC is data compaction. Let us introduce this transformation
by means of an example. Consider the following piece of code. By “some
secret condition” we mean an expression over variables qualified as secret
whose evaluation must be kept hidden to all the parties involved in the
computation.

j=0;

for(i=0 to n-1)

{ // ...compute x...

if(some secret condition) result[j++] = x;

// more code

}

In essence, the code above corresponds to a push-only stack. It is a com-
mon construct in dynamic programming algorithms, specially in the result
extraction phase (consider, for example, the classic dynamic programming
approach to the shortest common subsequence problem). The goal of the
data compaction transformation is to rewrite the above code into something
like the following.

j=0;

for(i=0 to n-1)

{ // ...

temp[j]=x;

condition[j]=(some secret condition);

// ...

19

++j;

}

result = obliviousDataCompaction(temp, condition)

}

The oblivious obliviousDataCompaction function returns the array

[temp[j] | condition[j], 0 ≤ j < n]

and hence the transformation is correct. Moreover, the call

obliviousDataCompaction(temp, condition)

can be implemented obliviously in O(nlogn) time using oblivious sorting
implemented using a sorting network. This gives a speed up with respect
to the cost of n oblivious memory lookups of index j, which would have a
polylogarithmic cost.

6.5 Value analysis and instruction alignment

As mentioned above, state of the art ORAM implementations add a polylog-
arithmic overhead, with respect to the size of the ORAM, to every memory
lookup. Recall that in our system we use ORAMs to implement the RAM
model of computation (also known as Von Neumann architecture). In that
model, both data and instructions reside in memory, and hence we incur
in such overhead not only every time an array is accessed in a program,
but also when the next instruction, indicated by a global variable “program
counter”, is retrieved from memory.

6.5.1 Instruction alignment

Note that the reason for which memory accesses must remain oblivious to
all parties involved in the computation even for the instructions memory is
that, when executing a program that branches on secret conditions, exposing
which instruction is being executed may leak information about secret inputs.
However, using an easy structural analysis on the SSA graph representing
the computation we can easily compute the set of instructions that might be
executed at a given execution step, for some input. That analysis leads to a
partition of the set of instruction that represents which program instruction
must be indistinguishable from each other. Hence, instead of having all
instructions reside in a single ORAM, me can have multiple ORAMs “banks”
containing such instructions. This transformation may result in a running

20

time speed up for some programs, since the polylogarithmic cost of retrieving
an ORAM bank depends on its size. For small enough banks a single scan
of the whole bank might be more efficient than an ORAM lookup and hence
it can be implemented as regular memory. Additionaly, we have to take
into account also the cost of retrieving what bank must be accessed at each
execution step, but this information is public.

Tipically, instruction scheduling in compiler optimization is used to im-
prove instruction-level parallelism, which improves performance on machines
with instruction pipelines. We are implementing instruction reordering (and
dummy instruction insertion) in our compiler as well, but with the goal of ob-
taining a “good” partition of the instruction ORAM into banks that results
in a speed-up in the task of retrieving the next instruction of the execution.

Obtaining a good partition of the instruction memory of the program
has further implications than the one stated above. Note that, once an in-
struction has been retrieved from memory, it still has to be executed. In our
setting, such execution usually boilds down to running an instance of Yao’s
garbled circuit protocol, which involves representing the program to be exe-
cuted as a Boolean circuit. Note that, to maintain obliviousness with respect
to which instruction in a given bank is executed, such circuit must describe
all instructions in the bank. For example, if instructions v3 = add v1 v2
and v6 = sub v4 v5 form a bank, for some variables of the program vi,
whenever v3 = add v1 v2 has to be executed, the protocol will have to
run Yao’s protocol on a circuit implementing both addition and subtraction.
This fact is specially relevant for memory access instructions, since they are
significantly more costly than, for example, logic operations. Hence, a pri-
mary goal of our instruction alignment heuristics is to enforce that memory
access intructions are assign to the same memory bank whenever that is
possible.

6.5.2 Value analysis of index variables

Using a similar argument than the one used for instruction memory, data
memory can be safely partitioned if we can statically determine that certain
memory locations, for every possible execution, will never be accessed at
the same execution step. For example, in the ith execution step of a binary
search on an array v of length n, only indexes in teh set {j | j ≡ 0 mod d n

2i
e}

might be accessed, inducing a partition v into several memory “banks” as
in the previous section.

This kind of analysis boilds down to value analysis of index variables
on, for example, arrays. A lot of effort has been devoted to this task in

21

program analysis, with the different goal of identifying buffer overflows and
null pointers. A prominent technique in that setting is abstract interpreta-
tion [CC77b]. Specific constraints of secure MPC, such as the fact that the
execution time is known for every execution, may allow us to use variants
of these kind of techniques that are easier to automate in a general setting.

7 Conclusion

Our key technical contribution consisted of the idea of performing program
synthesis using multiple interpretations, where each interpretation can be a
primal or a dual interpretation. The main outcomes include the software
Synudic and the new version of the SMT solver Yices2, along with the
Synudic sketches for the cryptographic schemes that were used to synthe-
size encryption schemes, modes of operation, and oblivious transfer proto-
cols.

In the future, we plan to continue to build upon the work above, and
explore synthesis techniques on more examples, as well as continue work
on optimizing secure multiparty computation using program analysis tech-
niques.

References

[BCK+13] G. Barthe, J. M. Crespo, C. Kunz, B. Schmidt, B. Gregoire,
Y. Lakhnech, and S. Zanella-Beguelin. Fully automated analysis
of padding-based encryption in the computational model, 2013.
http://www.easycrypt.info/zoocrypt/.

[BDG+14] G. Barthe, F. Dupressoir, B. Gregoire, C. Kunz, B. Schmidt,
and P. Strub. Easycrypt: a tutorial. In Foundations of security
analysis and design vii, volume 8604 of Lecture notes in computer
science, page 146166. Springer, 2014.

[Ber01] Leonard D. Berkovitz. Convexity and Optimization in Rn. John
Wiley & Sons, 2001.

[BGS94] David F. Bacon, Susan L. Graham, and Oliver J. Sharp. Com-
piler transformations for high-performance computing. ACM
Comput. Surv., 26(4):345–420, 1994.

[CC77a] P. Cousot and R. Cousot. Abstract interpretation: A unified
lattice model for static analysis of programs by construction or

22

approximation of fixpoints. In 4th ACM Symp. on Principles of
Programming Languages, POPL, pages 238–252, 1977.

[CC77b] Patrick Cousot and Radhia Cousot. Abstract interpretation:
A unified lattice model for static analysis of programs by con-
struction or approximation of fixpoints. In Conference Record
of the Fourth ACM Symposium on Principles of Programming
Languages, Los Angeles, California, USA, January 1977, pages
238–252, 1977.

[CGK+11] Cristian Cadar, Patrice Godefroid, Sarfraz Khurshid, Corina S.
Pasareanu, Koushik Sen, Nikolai Tillmann, and Willem Visser.
Symbolic execution for software testing in practice: preliminary
assessment. In Proceedings of the 33rd International Conference
on Software Engineering, ICSE 2011, Waikiki, Honolulu , HI,
USA, May 21-28, 2011, pages 1066–1071, 2011.

[CO15] Tung Chou and Claudio Orlandi. The simplest protocol for
oblivious transfer. Cryptology ePrint Archive, Report 2015/267,
2015. http://eprint.iacr.org/.

[Cou97] P. Cousot. Types as abstract interpretations. In Proc 24th ACM
Symp. Principles of Programming Languages, POPL, pages 316–
331, 1997.

[DD77] Dorothy E. Denning and Peter J. Denning. Certification of pro-
grams for secure information flow. Commun. ACM, 20(7):504–
513, 1977.

[Dut14] B. Dutertre. Yices 2.2. In Armin Biere and Roderick Bloem,
editors, Computer-Aided Verification (CAV’2014), volume 8559
of Lecture Notes in Computer Science, pages 737–744. Springer,
July 2014.

[GKK+12] S. Dov Gordon, Jonathan Katz, Vladimir Kolesnikov, Fernando
Krell, Tal Malkin, Mariana Raykova, and Yevgeniy Vahlis. Se-
cure two-party computation in sublinear (amortized) time. In
the ACM Conference on Computer and Communications Secu-
rity, CCS’12, Raleigh, NC, USA, October 16-18, 2012, pages
513–524, 2012.

[GO96] Oded Goldreich and Rafail Ostrovsky. Software protection and
simulation on oblivious rams. J. ACM, 43(3):431–473, 1996.

23

[LHS+14] Chang Liu, Yan Huang, Elaine Shi, Jonathan Katz, and
Michael W. Hicks. Automating efficient ram-model secure com-
putation. In 2014 IEEE Symposium on Security and Privacy,
SP 2014, Berkeley, CA, USA, May 18-21, 2014, pages 623–638,
2014.

[MKG14] Alex J. Malozemoff, Jonathan Katz, and Matthew D. Green. Au-
tomated analysis and synthesis of block-cipher modes of opera-
tion. In IEEE 27th Computer Security Foundations Symposium,
CSF, pages 140–152. IEEE, 2014.

[NNH99] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Prin-
ciples of program analysis. Springer, 1999.

[NP01] M. Naor and B. Pinkas. Efficient oblivious transfer protocols. In
Proc. 12th ACM-SIAM Symp. on Discrete Algorithms, SODA,
pages 448–457, 2001.

[OZ15] Peter-Michael Osera and Steve Zdancewic. Type-and-example-
directed program synthesis. In Proc. 36th ACM SIGPLAN Conf
on Programming Language Design and Implementation, pages
619–630, 2015.

[Smi01] Geoffrey Smith. A new type system for secure information
flow. In 14th IEEE Computer Security Foundations Workshop
(CSFW-14), pages 115–125. IEEE Computer Society, 2001.

24

