— Computer Science Laboratory, SRI International

Formal Techniques for Analyzing Hybrid Systems
Ashish Tiwari

Representing Dynamical Systems

How to solve the model checking problem S |= ¢ 7

Crucially depends on how we represent S

Recall that S = (X, F, Init)

We need to represent the state space, the initial set Init, and the set of
trajectories

Representing Systems: State Space

State space X

e State space can be defined as the set of all valuations of a set of variables

e We just need to declare variables X and their types

The initial states |nit

e This is just a subset of the state space

e Can be represented by a formula over X

Representing Systems: Trajectories
The set of all possible trajectories is usually represented by local rules
That specify the next state(s) given the current state (and input, if any)
The notion of next is dependent on the time domain T

When T = N, next is just (current time 4+ 1)

From continuous time to discrete-time

When T = R29, there is a popular way to map itto T = N
s — s’ if thereexists a t’' > tst. s = F(t') and s = F(t)

From my current state s, the system can nondeterministically transition any
state reachable in any future time instance

For example, if % = 1 is a clock, its discrete time semantics is:
x = X if x> x

This is time oblivious

If we want to keep track of time elapsed, we can add a new state variable t and
have

(x,t) > (X, it x" >xand X' —x =t/ —t

Representing Systems: Trajectories

Let us focus on time domain N, and consider ways to specify a single step
s — s’ state transition

This can be given as a formula over a pair of state variables: ¢(x, x’)
For open systems, this formula can depend on the input variables

For continuous time systems, the rule is a formula over (x, x)

Representing Systems: Modularly

We can represent dynamical systems succinctly by describing them as a
composition of two or more smaller dynamical systems:

state
— ! \

local

input output

local _ |
output input |

We need to think about open systems first

Open Dynamical Systems

Systems with inputs

Inputs do not change the state space of the system
state space still defined by the local and output variables

Inputs can influence the possible trajectories
Hence, rule ¢(s, i, s’) can depend on the input variables i

s — s’ if there exists an input i € | : ¢(s, 1, 5')

Representing Systems: Modularly

State space of the composition = cross product of the two state spaces
= valuations of L1 U O1 U LU Oy

Trajectories of the composition = 77
depends on the compositional framework

Two Compositional Frameworks

Synchronous:

® (51,52) = (s7,55) if s1 = s, AND s, — &,

e Both subsystems make a transition simultaneously
Asynchronous:

® (s1,5) = (s),55) if s1 > s}, =5, 0R s, = 55,57 =59

e One of the two subsystems makes a transition

If the two subsystems are wired to each other, the transitions on the subsystems
should be consistent with the inputs (generated by the other subsystem)

Modeling in SAL

Discrete-time hybrid-space dynamical systems can be modeled in SAL

Every SAL MODULE describes a dynamical (sub)system

collatz: MODULE =
BEGIN
OUTPUT x: NATURAL
INITIALIZATION x IN {v: NATURAL | True};

TRANSITION

[

x MOD 2 =0 --> x’ = x/2;
[]

else --> x’ = 3*xx+1;
]

END;

10

As Two Subsystems

collatzEven: MODULE = BEGIN

INPUT x: NATURAL

OUTPUT y: NATURAL

TRANSITION

[xMOD 2 =0 -->y’ =x/2; [1] yMOD 2 =0 -->y’ = y/2;]
END;

collatz0dd: MODULE = BEGIN
INPUT y: NATURAL

OUTPUT x: NATURAL

TRANSITION

[y MOD 2 = 1 --> x’ = 3%y+1;]
END;

11

... Composed Together

collatz: MODULE = collatzEven [] collatz0dd ;

Input and Output match up by name here; could apply outer rename operator to

a module o.w.

All modules can be put within a context (file) collatz.sal:

collatz: CONTEXT = BEGIN
collatzEven: MODULE = ...
collatz0dd: MODULE = ...
collatz: MODULE = ...

END

12

Temporal Properties in SAL
The open problem:

am_I true: THEOREM
collatz |- F(x =1);

13

Modeling Exercise
Discrete-time discrete-space dynamical system modeling a vending machine

e User can start with dollar amount in the range [0, .. ., o]
e User can buy a cake for $1

e User can buy an apple for $0.75

The state space is given by the
(1) amount of money remaining,
(2) number of cakes bought, and
(3) number of apples bought

14

SAL Example: Modeling

% Vending machine in SAL
vm: CONTEXT =
BEGIN

DollarAmount: TYPE = [0..5];
QuarterAmount: TYPE = [0..20];
CakeAmount: TYPE = [0..5];
AppleAmount: TYPE = [0..10];

15

SAL Example: Modeling

machine: MODULE =
BEGIN
OUTPUT
d: DollarAmount, q: QuarterAmount, c: CakeAmount, a: AppleAmount
INITIALIZATION
d IN {v: DollarAmount | v <= 4};
q=0;, c¢c=0; a=0;

16

SAL Example: Modeling Contd

TRANSITION
I
get_c: d > 1 -->d’ =d-1; ¢’ = c+l
[]
get_a: d > 1 -->d’ =d-1; a’ = atl; q’ = g+l
L]
change: q >= 4 --> d’ = d+1; q’ = g-4
[]

else -->

]
END;

SAL Example: Modeling Contd

prop: THEOREM
machine |- NOT (U(q <= 4, a >= 5));

prop2: THEOREM

machine |- G (NOT (a >= 3 AND ¢ >= 2));
END

Exercise: Is prop valid or false?

Exercise: |s prop2 valid or false?

18

SAL Example: Analysis

One can use the sal symbolic model checker to model check the two properties

sal-smc vm prop
sal-smc vm prop2

The first gives a counter-example:
start with 4 dollar bills, change when you have 4 quarters

The second says "proved".

19

SAL Modeling: Other Aspects

e Modules can be composed:

Module = Module [] Module;
Module = Module || Module;

e Modules can be parameterized: Module(i: Index) = ...

e And composed:

Module = ([] (i: Index) Modulel[i]) || Observer

e Modules can use "helper’ functions, datatypes as ARRAYS of ARRAYS of ...

20

Unsoundness?

dead: CONTEXT =
BEGIN

dead: MODULE =
BEGIN
LOCAL x:NATURAL
INITIALIZATION x = 0 ;
TRANSITION [
Xx <4 -->x”=x+1;
]
END ;
wrong: THEOREM dead |- G(x < 3) ;
END

21

Unsoundess? Continued...

Now, let us try to prove the properties:
sal-inf-bmc -d 5 -1 dead wrong
This is proved!

sal-inf-bmc -d 3 -1 dead wrong

You get a counter-example

Why?

22

SAL Analysis: Other Aspects

Sal Tools

e sal-smc: symbolic model checker

e sal-bmc: bounded model checker (converts to SAT)
e sal-inf-bmc: infinite bounded model checker (SMT)
e sal-path-finder: for simulating

e sal-bmc -i, sal-inf-bmc -i: prove by k-induction

e sal-emc: explicit state model checker

e sal-deadlock-checker: check for deadlocked states

e your script: sal-atg: Automated test generator

23

