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Introduction

• Biological data and models arelarge

• Meta-data onbiological knowledgeis huge

• Whenwe have all theinformationrequired, for sayrisk assessment, how

will we processthisexponentially largeinformation?

• Needefficient scalable algorithmictechniques to help us
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Representing Information: Reaction Networks

• Biological processes are often described as a collection of“ reactions”

• Signaling pathways, metabolic pathways, regulatory pathways,. . ., internet

• Building a full kinetic model requires filling in theseveral unknown

parameters, such as the reaction rates

• Goal: Analyze networks without complete specification of all its

parameters, just based on itsqualitative structure
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Sporulation Initiation in B.Subtilis
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EGF induced Erk Activation Pathway
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Generic Reaction Network

SpeciesS:

• molecule, ion, protein, enzyme, ligand, receptor, complex, modified form of

protein

• web pages, threat sources, situational descriptors, events

ReactionsR:

s1, s2
m1,m2

−→ p1, p2

reactants
modifiers
−→ products

Anything thatminimalisticallycaptures thedynamicsover thespecies
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Traditional Kinetic Model

Ordinary differential equationsextracted from thereaction network

Large number ofunknown parameters

Parameters estimatedso as tofit experimental data

Oftenlow faith in the values of parameters and themodelthus obtained
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Goal and Approach

Goal: Analyzegeneric reaction networks, without complete specification of

all its parameters, just based on itsqualitative structure

Approach: Two novel ideas –

1. Define a notion of aRANK – based on a Markovian interpretation of

reaction networks – of each species;

Computerankof each species using fast algorithms

2. Use thedual model– wherereactionsare thestate variablesand compute

steady-stateson thedual model

Ashish Tiwari, SRI Stochastic modeling and analysis of biological networks: 8



'

&

$

%

Stochastic Petrinet Semantics

For each speciessi, Xi denotes the number of molecules ofsi

State-space: ~X = [X1, . . . , Xn] is an-dimensional vector of natural numbers

A reaction networkdefines aMarkov processover thisstate space:

• From a state~X, one of the reactionrj ∈ R fires with probability

Pr(rj | ~X)

~X
Pr(rj | ~X)

7→ ~X + ~νj

where the probability is given by

Pr(rj | ~X) =
1

α( ~X)
prop(rj | ~X)

Ashish Tiwari, SRI Part I: Pathway Ranks: 9



'

&

$

%

The Chemical Master Equation

Assuming that

prop(rj | ~X)dt : the probability that, in the state~X , reactionrj will

occur once, somewhere inside the fixed volume, in the next infinitesimal

time interval[t, t + dt).

Time evolution ofP ( ~X, t | ~X0, t0) is

∂

∂t
P ( ~X, t | ~X0, t0) =

∑

rj∈R

P ( ~X − ~vj , t | ~X0, t0)prop(rj | ~X − ~vj)

−prop(rj | ~X)P ( ~X, t | ~X0, t0)

Our Markov process is the time abstract version.
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Space-Partitioning Based Analysis

Yi : probability that there isonemolecule of speciessi in some small volume

Given ~Y (t), we can compute~Y (t + 1) as follows:

Yi(t + 1) =
∑

rj :si 6∈(P∪R)(rj)

Pr(rj | ~Y (t)) × Yi(t) +

∑

rj :si∈P (rj)

Pr(rj | ~Y (t)) × 1

Assuminghomogeneity, ~Y provides a good estimate for~X
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Pathway Rank

Starting with aninitial probability distribition~Y , the analysis procedure

attempts to compute thesteady-statedistribution

Can be understood as defining therankof the species in reaction networks

Advantages:

• System isnever divergentfor any choiceof thepropensity function; it is

alwaysstable or oscillatory

• Enzymatic reactions handlednaturally; ODE approach requires tweaking

• Scalable approach
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EGF Receptor Signal Transduction Cascade
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EGFR Signal Transduction: Results
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EGF Receptor Signal Transduction Cascade −− Pathway Rank
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Using the samepropensityfunction for all reactions
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EGFR Signal Transduction: Kinetic Model
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Sporulation Initiation in B. Subtilis
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B. Subtilis Stress Response: Sporulation Initiation Network
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Part II: The Dual Approach

Fast Analysis Using Boolean SAT Approach

Ashish Tiwari, SRI Part II: The Dual Approach: 19
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Reaction Networks – A Dual Approach

Reactions, and notspecies, define thestate space

A reactioncan beonor off

The reaction network is interpreted using the two basic rules:

• if a reaction is “off”, but its reactants and modifiers are present, then the

reaction is turned “on”

• if a reaction is “on”, but one of its reactants or modifiers is not present, then

the reaction is turned “off”

A species ispresentif it is the product of some “on” reaction and not the

reactant of any “on” reaction
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Reaction Networks To Boolean SAT

Thesteady-statein this model is a

set of reactions that can be consistently on

Steady-state configurations can be efficiently detected using modern SAT

solvers

Specific / desired steady-state configurations can be detected usingweighted

MaxSAT solvers
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EGF Stimulation Network

Being developed inPathway Logic Project

Model of EGF stimulation bycuratingreactions involved inmammalian cell

signaling

For model validation,

• Started with 400 reactions

• Added initial species in the dish

• Specified a set of target species that are experimentally observed in

response to EGF stimulation
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EGF Stimulation Network: Results

Analysisresults:

• No solution without violating a competitive inhibition constraint in the

MaxSAT instance

• Several syntactic errors in the model detected and corrected

• (Frap1:Lst8)-CLc identified as the conflict causing species

• This leads to two hypotheses

◦ (Frap1:Lst8)-CLc splits into twopopulationsone for each of the two

competing reactions;

◦ there is a feedback loop that can reset the state of (Frap1:Lst8)-CLc and

the system oscillates between the two pathways.

Experiments are ongoing to test these hypotheses.
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MAPK Signaling Network

Mitogen-Activated Protein kinase(MAPK) network regulates several cellular

processes, including thecell cycle machinery

Model fromBhallaRamIyeger, Science 2002andBhallaIyenger, Chaos 2001

Analysis findstwo stable sets of behavior:

• Thepositive feedback loopis active:

Grb2 , Sos1 ,PKC∗ 7→ Ras 7→ Raf ∗ 7→ Mek∗ 7→ Erk∗ 7→ AA∗ 7→ PKC∗

• Thenegative feedback loopsare active:PP2A dephosphorylates both Raf*

and Mek*, and MKP dephosphorylates Erk*. MKP is created by

transcription ofMKP gene, and this is promoted by Erk*.

Overall system behavior is a result of the interaction between the positive and

negative cycles.
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Sporulation Initiation in B. Subtilis
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Analysis of Sporulation Initiation Network

The tool finds3 different behaviors:

• sporulation initiated:

◦ SinI produced

◦ SinI binds to SinR

◦ Preventing SinR from repressingspo0A

◦ RapA converted to RapAPep5,

◦ Preventing RapA from dephosphorylating Spo0A-P

◦ Presence of stress signals prevent KipI from inhibiting KinA from

self-kinasing

◦ Self-kinasing of KinA triggers the phosphorelay

◦ Leads to production of Spo0A-P
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Analysis of Sporulation Initiation Network

• Not enough cell-density:

◦ RapA dephosphorylates Spo0F-P

◦ Breaking the phosphorelay chain

◦ Resulting in no production of Spo0A-P.

• The third stable state scenario is similar to the first, except that Spo0E

dephosphorylates the produced Spo0A-P, thus using up the produced

Spo0A-P.

The three stable scenarios each make different assumptionsabout the

environment.
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Summary

• Genericreaction networksis used commonly to representbiological

knowledge, and it can be used to representmeta-knowledge

• To get detailedkinetic modelsrequiresestimatingthe large number of

unknown parameters

• We presented twoscalableapproaches for analyzinggeneric reaction

networksusing itsstructural information

• These can be used toqualitativelyunderstand hypothesized models, even in

the detailed parameter information
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Thank You!

For publications, visit:

http://www.csl.sri.com/˜tiwari/
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