
Decision Procedures in Automated Deduction

a dissertation presented

by

Ashish Tiwari

to

The Graduate School

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

in

computer science

State University of New York

at Stony Brook

August 2000

Copyright by

Ashish Tiwari

2008

Abstract of the Dissertation

Decision Procedures in Automated Deduction

by

Ashish Tiwari

Doctor of Philosphy

in

Computer Science

State University of New York at Stony Brook

2008

We present a practical variant of the Nelson-Oppen abstract combination result

which can be used for combining decision procedures based on completion. We suit-

ably instantiate this general theorem to obtain combinations of a class of congruence

closure algorithms, procedures for deciding the word problem in ground AC-theories

(generalization of the word problem for commutative semigroups), and algorithms

for polynomial ideals over general rings. The combination result can also be used to

integrate several other theories.

Our description of abstract congruence closure suitably captures the logical essence

of most of the conventional algorithms for congruence closure. Additionally, it can be

used to obtain new efficient implementations. Experimental results are presented to

illustrate the relative efficiency and explain differences in performance of these various

algorithms. The transition rules for computation of abstract congruence closure are

obtained from rules for standard completion enhanced with an extension rule that

enlarges a given signature by new constants.

We use our general combination result to define the notion of an associative-

commutative congruence closure and give a complete set of transition rules for con-

struction of such closures. This solves the word problem for ground AC-theories

without the need for AC-simplification orderings total on ground terms. Associative-

commutative congruence closure provides a novel way to construct a convergent

rewrite system for a ground AC-theory. The concept of an abstract congruence closure

also helps to clarify and generalize procedures that are based on congruence closure,

for example construction of convergent rewrite systems, non-oblivious normalization,

and the problem of rigid E-unification.

iii

Finally, we describe the Gröbner bases based decision procedure for polynomial

ideals using completion-like transition rules, which is a generalization of the theory

of Gröbner bases for polynomial ideals over fields to polynomials over commutative

Noetherian rings. In the same spirit as what Gröbner bases do for polynomials over

fields, we can use the new generalization to solve several problems in the theory of

multivariate polynomials over rings.

iv

Dedicated to the cause of all complexity in this world and man’s quest for simplicity

underlying it all.

Contents

List of Tables ix

List of Figures x

Acknowledgements xi

1 Introduction 1

1.1 Outline . 2

2 Preliminaries 7

2.1 Terms and Substitutions . 7

2.2 Equations, Rewrite Systems and Theories 8

2.3 Term Rewriting . 9

2.4 Algebra and Unification . 10

2.5 Word Problem . 10

3 Abstract Combination Methods 12

3.1 The Nelson and Oppen Combination Method 12

3.2 Shostak’s Combination Method . 14

3.2.1 Abstract Presentation of Shostaks Method 15

3.3 A Constructive Combination Result 16

3.3.1 Conditions on the theories . 17

3.3.2 The combination result . 18

3.3.3 Correctness . 19

3.4 Specific Instantiations of the Abstract Result 21

4 Abstract Congruence Closure 22

4.1 Abstract Congruence Closure . 23

vi

4.2 Construction of Congruence Closures 25

4.3 Correctness . 27

4.4 Removing Redundant Constants . 29

4.5 Related Work . 31

4.6 Summary . 32

5 Congruence Closure Stategies 33

5.1 Shostak’s Method . 35

5.2 The Downey-Sethi-Tarjan Algorithm 35

5.3 The Nelson-Oppen Procedure . 37

5.4 Finite Equivalence Classes . 38

5.5 Experimental Results . 40

5.6 Related Work and Other Remarks . 44

6 Congruence Closure Modulo Associativity and Commutativity 45

6.1 Preliminaries . 46

6.2 Associative-Commutative Rules . 46

6.3 Construction of Congruence Closures 48

6.3.1 Abstraction . 49

6.3.2 Deduction . 49

6.3.3 Orientation . 50

6.3.4 Simplification . 50

6.4 Termination and Correctness . 51

6.4.1 Proof ordering . 52

6.5 Optimizations . 55

6.6 Construction of Ground Convergent Systems 56

6.6.1 Transition Rules . 56

6.6.2 Rewriting with sequence extensions modulo permutation con-

gruence . 58

6.6.3 Correctness . 58

6.7 Conclusion . 60

7 Applications of Congruence Closure 64

7.1 Normalization via Rewrite Closures 64

7.1.1 Incremental Congruence Closure 66

7.1.2 Normalization Using Congruence Closure 67

vii

7.1.3 Rewrite Closure . 72

7.1.4 Optimized Normalization and Special Cases 76

7.1.5 Conclusion . 82

7.2 Rigid E-Unification . 83

7.2.1 Substitutions as Congruences 84

7.2.2 Rigid E-unification . 87

7.2.3 Correctness . 90

7.2.4 Specialization to syntactic unification 98

7.2.5 Summary . 99

7.3 Shostak’s Combination Method Revisited 101

7.3.1 Correctness . 102

7.3.2 Summary . 103

8 Gröbner Basis Methods 104

8.1 Polynomials . 105

8.1.1 Coefficients . 106

8.1.2 Polynomial expressions . 106

8.1.3 Constraints . 107

8.1.4 Polynomials . 108

8.2 Polynomial Rules and Equations . 109

8.2.1 Computations on Coefficients 111

8.3 Polynomial Completion . 112

8.3.1 Orientation . 112

8.3.2 Deduction . 113

8.3.3 Constraint Manipulation . 115

8.3.4 Simplification . 117

8.3.5 Correctness . 118

8.4 Weak Gröbner bases . 119

8.4.1 Reduction ordering on sums of monomials 120

8.4.2 Proof ordering . 121

8.5 Gröbner Bases . 125

8.5.1 Additional assumption on coefficient domain 126

8.5.2 Reduction ordering on sums of monomials 126

8.5.3 Correctness proof for construction of Gröbner bases 128

8.6 Other Approaches for Computing Gröbner Bases 129

viii

8.7 A note on the minimality of assumptions 132

8.8 Lifting of assumptions from B to B[X] 134

8.9 Summary . 141

9 Conclusions 142

Bibliography 145

ix

List of Tables

1 Example: Intermediate states in a derivation illustrating the abstract

congruence closure construction transition rules. 27

2 Example: Intermediate states in a derivation illustrating Shostak’s dy-

namic congruence closure algorithm. 36

3 Example: Intermediate states in a derivation illustrating the congru-

ence closure algorithm proposed by Downey, Sethi and Tarjan. 37

4 Example: Intermediate states in a derivation illustrating Nelson and

Oppen’s congruence closure algorithm. 38

5 Comparison between congruence closure algorithms in terms of the

total running time (in milliseconds) on small examples. 42

6 Comparison between congruence closure algorithms in terms of the

total running time (in seconds) on large randomly generated examples. 42

7 Comparison between congruence closure algorithms in terms of the

running time (in seconds) assuming input is in a dag form. 43

8 Example: Intermediate states in a derivation illustrating congruence

closure modulo associativity and commutativity. 51

9 Example: Intermediate states in a derivation illustrating the congru-

ence closure modulo associativity and commutativity transition rules. 55

10 Example: Intermediate states in a derivation illustrating a naive con-

gruence closure based normalization algorithm. 70

11 Example: Intermediate states in a derivation illustrating the abstract

rewrite closure construction transition rules. 75

12 Example: Intermediate states in a derivation illustrating the rigid E-

unification transition rules. 90

13 Example: Intermediate states in a derivation illustrating the Shostak’s

combination approach. 102

14 Convergent rewrite system presenting the theory of polynomials. . . . 109

x

List of Figures

1 Dependency graph for chapters in this thesis. 6

2 A term dag and a relation on its vertices 34

3 Correctness of Incremental Congruence Closure. 66

xi

Acknowledgements

I am grateful to my advisor Prof. Leo Bachmair for providing the necessary support

and technical inputs that made this thesis possible. The work presented here is

highly influenced by some of his research. I am also highly indebted to Prof. I. V.

Ramakrishnan for suitably guiding me through my doctoral program at Stony Brook.

Significant contributions from my other co-authors—Prof. C. R. Ramakrishnan, Prof.

Laurent Vigneron and Dr. Harald Ruess—is also sincerely acknowledged.

I have also been lucky to have had the oppurtunity to discuss some of my re-

search work with various researchers whose inputs have helped a lot. I thank Dr.

D. Cyrluk (SRI, Menlo Park), Prof. N. Dershowitz (Tel Aviv University, Tel Aviv),

Prof. H. Ganzinger (MPI, Saarbrücken), Prof. D. Kapur (Univ. of New Mexico,

Albuquerque), Dr. N. Kumar (SPIC Mathematical Institute, Chennai), Dr. P. Lin-

coln (SRI, Menlo Park), Prof. C. Lynch (Clarkson University, Potsdam), Prof. K.

Madlener (Universitat Kaiserslautern, Kaiserslautern), Dr. J. Rushby (SRI, Menlo

Park), Dr. N. Shankar (SRI, Menlo Park), Dr. J. Sifakis (Verimag, Gieres), and Prof.

D. Warren (SUNY, Stony Brook) for the same. Dr. Ta Chen and Dr. Prasad Rao

provided me an oppurtunity to spend a summer at Bellcore (Morristown), and Dr. N.

Shankar and SRI gave me a chance to work with them at Menlo Park during another

summer.

Finally, several people have inspired and motivated me through the years, most

notable amongst them being Prof. G.K. Dubey, Dr. Gaurav Khanna, my grandfather

Sh. M.P. Tiwari, my parents, and the rest of my family. Diksha, Sarah, and music

were a source of renewed vitality. Many other friends from IIT-Kanpur and Stony

Brook have helped in variously different ways.

The research described in this thesis was supported in part by the National Science

Foundation under grants CCR-9510072, CCR-9711386, CCR-9712383, EIA-9705998,

CCR-9902031, and by DARPA AO D855 under US Air Force Rome Laboratory con-

tract F30602-96-C-0204.

Chapter 1

Introduction

Formal logic is a means of expressing declarative knowledge. Deduction is the mech-

anism used to infer more facts from such knowledge. Theorem provers are systems

that automate this process to various degrees. Such systems have been used—both

independently and under human assistance—to verify complex programs and system

designs, derive or prove many mathematical theorems, deduce properties of compu-

tational systems, synthesize provably correct programs, etc. Deduction is also part

of several AI systems and database systems, amongst others.

Decision procedures, on the other hand, are specialized theorem proving meth-

ods designed for subclass of formulas from a particular domain. These are faster,

predictable and more efficient than general purpose deduction systems. Examples

include model checking algorithms, the large class of mathematical procedures that

are usually part of a computer algebra system, etc.

Integration of specialized decision procedures into larger general purpose deduc-

tion systems is crucial for various applications. There are several distinct lines of

investigation in this broad area.

One area of research focus has been the combination of computer algebra with

theorem proving. A number of different architectures have been proposed in the

literature for achieving this combination. For instance, there are attempts and pro-

posals to embed a computer algebra system within a theorem prover [31, 32, 27]. In

contrast, there are also proposals to embed a reasoning system within a computer al-

gebra system, for example, by using the type system of the computer algebra system

to represent a logic [69]. The third kind of architecture for integration involves an

independent theorem prover communicating with an independent computer algebra

system.

1

CHAPTER 1. INTRODUCTION 2

There have also been attempts at integrating certain specific decision procedures—

for linear arithmetic, theory of arrays, theory of lists, theory of bit vectors, etc—with

general purpose theorem provers. A pioneering work in this direction is that of Boyer

and Moore who considered a “black-box” integration for decision procedures in their

prover [21, 23]. However, they realized that this open architecture based approach did

not work due to several complications involved in defining the interface [22]. Some

other attempts have tried for a tighter integration, as in the PVS system [73] and the

Stanford Pascal Verifier [63].

Nelson and Oppen integrate decision procedures with the Stanford Pascal Verifier

by first combining all the decision procedures into a single decision procedure. This

combination has been later studied and abstractly presented [71, 78]. Integration of

decision procedures in PVS is based on Shostak’s method [75], where any theory with

a canonizer and a solver can be embedded into the prover. The formal semantics and

correctness of Shostak’s method form a continuing strand of research [35, 51].

1.1 Outline

In this thesis, we present a formal grounding of some of the aspects of integration.

Our starting point is the Nelson and Oppen combination result for certain first-

order theories. The Nelson and Oppen combination procedure is one of the central

results in the theory of combination of decision procedures. We present a suitable

“constructive” version of this theorem in the form of an abstract combination result

for decision procedures in Chapter 3. A large part of the remaining thesis concerns

itself with illustrations of the abstract result via suitable instantiations that give us

decision procedures for combinations of several different theories.

Broadly speaking, consider a signature Σ which is a disjoint union of signatures

Σi’s, where certain of these signatures Σi’s could contain “interpreted” symbols (i.e.

we are interested in certain specific theories over that signature). To fix notation,

let Ei denote the set of (first-order) axioms over the signature Σi for the theory of

interest. Let us assume that we are given algorithms that can construct a convergent

system (modulo Ei) for a set Ei of ground equations over Σi (allowing for additional

constants). Now, if we are given a set of equations E over the signature Σ, we show

how (and under what conditions) one can construct a convergent system (modulo

∪Ei) for a conservative extension of the equational theory E.

CHAPTER 1. INTRODUCTION 3

A powerful technique we use to achieve the above result is that of variable abstrac-

tion. Variable abstraction is also at the core of the Nelson and Oppen combination

result. It refers to the simple idea of introducing new names to “purify” mixed terms.

For example, an equation f(a) ≈ g(a) containing three different function symbols

a, f and g, can be split into the equations a ≈ c1, f(c1) ≈ c2 and g(c1) ≈ c2 each

containing exactly one of the symbols a, f or g. Using extensions of signatures (rather

than just the original signature) gives more flexibility (in terms of ordering on terms),

and also helps in avoiding repeated work (due to structure sharing).

The simplest application of our abstract combination result is to the ground theory

of equality where each set Ei is empty. In this case, we are led to the concept of an

abstract congruence closure. In Chapter 4 we define this concept and study the

problem of construction of congruence closure in detail. Intuitively speaking, a finite

set of a ground equations over a signature Σ can be thought of as a set of ground

equations over a combined signature Σ = ∪iΣi where each Σi is singleton. Thus,

we introduce new constants (a lá variable abstraction) to “purify” equations in E

and obtain a presentation of a new ground equational theory that is a conservative

extension of the original theory. Informally, an abstract congruence closure is a

convergent rewrite system for this conservative extension.

Construction of an abstract congruence closure can be presented by suitably mod-

ifying the abstract transition rules for completion as presented by Bachmair and Der-

showitz [7]. The main difference is that we additionally have rules for extending the

signature. Extensions allow us to dispense with term orderings in this case. The

correctness is fairly simple and is not based on proof transformation techniques.

Semantically, the new constants can be interpreted in a number of different ways.

They can be thought of as names of vertices in a term directed acyclic graph. This

simple but crucial observation leads us to abstractly capture the notion of “sharing”.

In the example above, the terms f(a) and g(a) both share the subterm a. By intro-

ducing a new name c1 for a, we now share the constant c1. (If a is replaced by a

really large term, then the new presentation using c1 will be more compact.) This in-

terpretation allows us to cast the various well-known graph based congruence closure

algorithms in the language of an abstract congruence closure. Chapter 5 is devoted

to this aspect of abstract congruence closure.

Not only do the transition rules for constructing an abstract congruence closure

provide a logical description of the well-known algorithms, they can themselves be

CHAPTER 1. INTRODUCTION 4

used to obtain fairly efficient implementations—essentially using the fairly well under-

stood notions of indexing and redundancy that have been used to speed up rewrite

based engines. Experimental results comparing the performance of the traditional

graph-based algorithms with the new completion-based algorithm turned out to be

interesting, and demonstrated various shortcomings and inefficiencies of certain algo-

rithms. Details about this comparison can be found in Section 5.5 of Chapter 5.

After a comprehensive treatment of congruence closure, we turn to a second ap-

plication of the abstract combination result. We again consider ground equational

theories over some signature Σ, but now we allow for certain function symbols in Σ

to be associative and commutative. Thus, now the individual theories over singleton

signatures Σi are either (i) the pure theory of equality as before, or (ii) the theory of

commutative semigroups, i.e. the set Ei contains the associativity and commutativity

axiom of some binary function symbol. The choice of going into the details of this

combination and not many others (like commutative monoids, commutative theories,

commutative semigroups with idempotence etc.) is pragmatic. Associativity and

commutativity are important and useful properties satisfied by a variety of symbols.

Moreover, details for most of the other theories can be worked out in a manner similar

to what is done for AC-theories.

The completion procedure obtained for ground AC-theories can be seen as an

extension of the one for abstract congruence closure, and hence we call it “congruence

closure modulo associativity and commutativity”, see Chapter 6. The result allows

us to naturally arrive at decidability of ground AC-theories using the decidability

result for commutative semigroups. As before, one of the distinct advantages of our

approach is that it allows us to dispense with complicated term orderings. A naive

completion of a set of ground AC equations requires an AC-compatible simplification

ordering total on ground terms. Proving the existence of one such ordering was a

challenge [62, 72].

Is it possible to get rid of the constants introduced as a result of variable abstrac-

tion after an (AC) congruence closure has been computed? We discuss this interesting

question in Chapter 6 and obtain an intriguing answer for the AC case.

Chapter 7 is a slight digress and discusses some applications of abstract congru-

ence closure: efficient normalization, rigid E-unification and Shostak’s combination

method. Congruence closure is a crucial component in procedures for all of these

problems. The problem of non-oblivious normalization is natural: given a set of

rewrite rules E , we are interested in finding an E-normal form for a given term t

CHAPTER 1. INTRODUCTION 5

without repeating any reduction steps. For instance, if a term s can be reduced to t

in n steps, then we would like to rewrite f(s, s) to f(t, t) in n + 1 steps (and not in

2n steps). This is achieved by maintaining a rewrite closure, a suitable extension of

the concept of an abstract congruence closure, of all the rules used in the reduction

sequence. Our results generalize previous results on congruence closure-based nor-

malization methods. The description of known methods within our formalism also

allows for a better understanding of these procedures.

Rigid E-unification is a restricted version of the problem of unification modulo an

equational theory. It arises naturally when tableaux based procedures for first-order

theorem proving are extended to handle equality. We present a sound and complete

set of abstract transformation rules for rigid E-unification. Abstract congruence clo-

sure, syntactic unification and paramodulation are the three main components of the

proposed method. The method obviates the need for using any complicated term

orderings and easily incorporates suitable optimization rules. A novel feature in the

correctness argument is the use of a characterization of substitutions as congruences,

which allows for a comparatively simple proof of completeness using proof transforma-

tions. When specialized to syntactic unification, we obtain a set of abstract transition

rules that describe a class of efficient syntactic unification algorithms. This again il-

lustrates how extended signatures can be used to abstractly capture the notion of

structure sharing.

With a clear understanding of congruence closure and its interaction with syntactic

unification, we present in Section 7.3 a detailed presentation of Shostak’s procedure

for combining congruence closure with E-unification procedures.

The final part of this thesis instantiates the abstract combination result by a

non-trivial equational theory, the theory of polynomial ideals over Noetherian rings.

The theory of polynomial ideals is clearly a generalization of the theory of com-

mutative semigroups discussed in Chapter 6. In fact, in the case of commutative

semigroups, every ground equation in the theory of commutative semigroups is of the

form f(ci1 , ci2 , . . . , cik) ≈ f(cj1 , cj2 , . . . , cjk
). This equation can be thought of as a

polynomial equation Xi1Xi2 · · ·Xik ≈ Xj1Xj2 · · ·Xjl
.

The Gröbner basis algorithm provides a decision procedure for the word prob-

lem in this equational theory. The theory of polynomials can be presented by set

of rewrite rules that are ground convergent modulo AC. Our combination result

extends the Gröbner basis algorithm to additionally handle function symbols that

are not part of the signature of polynomial rings. Since this extension follows in a

CHAPTER 1. INTRODUCTION 6

straight-forward manner, we focus our attention to the theory of polynomial rings

(allowing for arbitrary number of constants in the signature, as is required by our

combination result). Chapter 8 defines two distinct kinds of Gröbner bases: weak

and strong Gröbner bases. We first focus on weak bases, and present a completion-

like procedure for constructing weak basis for polynomial ideals over commutative

Noetherian rings with unit. This is a generalization of all the known algorithms for

computing Gröbner bases for polynomial ideals over various different coefficient do-

mains. The coefficient domain is incorporated using constraints. Constraints allow us

to describe an optimized procedure for computing Gröbner bases. The optimization

restricts the number of superpositions that need to be considered.

Subsequently, we define strong Gröbner bases and show that weak bases can be

extended to strong bases under an additional ordering assumption on the coefficient

domain. The conditions on the coefficient domain are the weakest possible and are

shown to carry over from ring B to B[X], thus giving a hierarchic algorithm for

construction of Gröbner bases. Correctness of the procedure is established through

proof simplification techniques.

Figure 1 gives a dependency between the various chapters. A dashed line indicates

that the main results of the following chapter can be proved independently of the

results in the former chapter, but the results from the former chapter help to put

the latter results in a larger context. We begin by fixing the notation for the rest of

this thesis and recall the basic concepts from theorem proving and term rewriting in

Chapter 2.

Chap 1, 2

Chap 3

Chap 4

Chap 6 Chap 7Chap 5

Chap 8

Sec7.1 Sec7.2 Sec7.3

Figure 1: Dependency graph for chapters in this thesis.

Chapter 2

Preliminaries

In this chapter we discuss the basic concepts that will be used in the rest of the thesis.

The intent here is not to provide a comprehensive treatment of the concepts, but just

to set the notation and terminology for future use. The notation is consistent with

that in [38]. For a complete treatment of the theory of term rewriting the reader

should consult [38, 54, 2]. The notion of proof orderings and proof transformations

appears in [5]. There are several good references on unification, see [4, 49].

2.1 Terms and Substitutions

Given a set Σ = ∪nΣn and a disjoint (denumerable) set V , we define T (Σ,V) as the

smallest set containing V and such that f(t1, . . . , tn) ∈ T (Σ,V) whenever f ∈ Σn

and t1, . . . , tn ∈ T (Σ,V). The elements of the sets Σ, V and T (Σ,V) are respectively

called function symbols, variables and (first-order) terms (over Σ and V). The set Σ is

called a signature and the index n of the set Σn to which a function symbol f belongs

is called the arity of the symbol f . Elements of arity 0 are called constants. By T (Σ)

we denote the set T (Σ, ∅) of all variable-free, or ground terms. The symbols s, t, u, . . .

are used to denote terms; f, g, . . ., function symbols; and x, y, z, . . ., variables.

A term t ∈ T (Σ,V) can be viewed as a finite ordered tree in which nodes are

labeled by a symbol in Σ∪V and have an outdegree equal to the arity of this symbol.

Nodes labeled by a variable have outdegree zero. Terms represented by the various

nodes in this tree are called subterms of t. The position of a subterm within a term t

may be represented—in Dewey decimal notation—as a sequence of positive integers,

describing the path from the root of the tree to the node of the subterm. A subterm

7

CHAPTER 2. PRELIMINARIES 8

of a term t is called proper if it is distinct from t.

We write t[s] to indicate that a term t contains s as a subterm and (ambiguously)

denote by t[u] the result of replacing a particular occurrence of s by u.

A substitution is a mapping from variables V to terms T (Σ,V) such that xσ = x

for all but finitely many variables x ∈ V . We use post-fix notation for application

of substitutions and use the letters σ, θ, . . . to denote substitutions. A substitution σ

can be extended to the set T (Σ,V) by defining f(t1, . . . , tn)σ = f(t1σ, . . . , tnσ). The

domain Dom(σ) of a substitution σ is defined as the set {x ∈ V : xσ 6= x}; and the

range Ran(σ) as the set of terms {xσ : x ∈ Dom(σ)}. A substitution σ is idempotent

if σσ = σ1.

We usually represent a substitution σ with domain {x1, . . . , xn} as a set of vari-

able “bindings” {x1 7→ t1, . . . , xn 7→ tn}, where ti = xiσ. By a triangular form

representation of a substitution σ we mean a sequence of bindings,

[x1 7→ t1 ; x2 7→ t2 ; . . . ; xn 7→ tn],

such that σ is the composition σ1σ2 . . . σn of individual substitutions σi = {xi 7→ ti}.

2.2 Equations, Rewrite Systems and Theories

An equation is a pair of terms, written s ≈ t. The replacement relation →Eg induced

by a set of equations E is defined by: u[l]→Eg u[r] if, and only if, l ≈ r is in E . The

rewrite relation →E induced by a set of equations E is defined by: u[lσ] →E u[rσ]

if, and only if, l ≈ r is in E and σ is some substitution. In other words, the rewrite

relation induced by E is the replacement relation induced by ∪σEσ, where Eσ is the

set {sσ ≈ tσ : s ≈ t ∈ E}.
If → is a binary relation, then ← denotes its inverse, ↔ its symmetric closure,

→+ its transitive closure and →∗ its reflexive-transitive closure. Thus, ↔∗
Eg denotes

the congruence relation2 induced by E . The equational theory of a set E of equations

is defined as the relation ↔∗
E . Equations are often called rewrite rules, and a set E a

rewrite system, if one is interested particularly in the rewrite relation→∗
E rather than

the equational theory ↔∗
E .

1We use juxtaposition στ to denote function composition, i.e., x(στ) = (xσ)τ .
2A congruence relation is a reflexive, symmetric and transitive relation on terms that is also a

replacement relation.

CHAPTER 2. PRELIMINARIES 9

A (equational) proof of s ≈ t (in E) is a finite sequence s = s0 ↔E s1, s1 ↔E

s2, · · · , sk−1 ↔E sk = t(k ≥ 0), which is usually written in abbreviated form as

s = s0 ↔E s1 ↔E · · · ↔E sk = t(k ≥ 0).

The pure theory of equality is obtained when the set E is empty. On the other

hand, if ΣAC ⊂ Σ is a finite set of binary function symbols, and the set E contains

the identities

f(x, y) ≈ f(y, x) f(f(x, y), z) ≈ f(x, f(y, z))

for each symbol f ∈ ΣAC , then, what we obtain is an associative-commutative (AC)

theory.

A multiset over a set S is a mapping M from S to the natural numbers. Any

ordering � on a set S can be extended to an ordering �mult on multisets over S

as follows: M �mult N if, and only if, M 6= N and whenever N(x) > M(x) then

M(y) > N(y), for some y � x. The multiset ordering �mult (on finite multisets) is

well founded if the ordering � is well founded [39]. Multiset inclusion is defined as

M ⊆ N if M(x) ≤ N(x) for all x ∈ S.

2.3 Term Rewriting

Rewriting methods have been successful for equational theorem proving. The basic

idea is that of completion which utilizes an ordering on terms to perform forward

reasoning on the axioms and simplification of equations. In terms of proof-orderings,

completion attempts to deduce enough consequences so that an arbitrary proof can

be transformed to a normal-form proof. In other words, the intent of completion is

to obtain a set of equations which define the same equational theory as before, but

with respect to which every term has a unique normal form, as defined next.

A subterm of u at which the equational replacement takes place is called a redex.

A term t is irreducible, or in normal form, if it has no redex, i.e. a term t is in normal

form with respect to a rewrite system R, or in R-normal form, if there is no term u,

such that t→R u. We write s→!
R t to indicate that t is a R-normal form of s.

A rewrite system R is said to be (ground) confluent if for any pair s, s′ of (ground)

terms, if there exists a (ground) term t such that s ←∗
R t →∗

R s′, then, there also

exists a (ground) term t′ such that s→∗
R t′ ←∗

R s′. If a rewrite system R is (ground)

confluent, then every (ground) term t has at most one normal form. A rewrite system

R is terminating if there exists no infinite reduction sequence s0 →R s1 →R s2 · · · of

CHAPTER 2. PRELIMINARIES 10

terms. If R is terminating then every term has at least one R-normal form. Rewrite

systems that are (ground) confluent and terminating are called (ground) convergent.

Equational axioms, such as commutativity, that can not be oriented into a rewrite

rule without compromising the termination characteristics of the relation are handled

using extensions of rules and the rewriting relation modulo the equational axioms.

For our purposes, it suffices to consider the associativity and commutativity axioms,

denoted by AC. By AC\R we denote the rewrite system consisting of all rules u→ v

such that u↔∗
AC u′σ and v = v′σ, for some rule u′ → v′ inR and some substitution σ.

We say that AC\R is confluent modulo AC if for all terms s, t such that s↔∗
R∪AC t,

there exist terms w and w′ such that s →∗
AC\R w ↔∗

AC w′ ←∗
AC\R t. We speak of

ground confluence if this condition is true for all ground terms s and t. The other

definitions are analogous.

Part of the condition for confluence modulo AC can be satisfied by the inclusion

of so-called extensions of rules [67]. Given an AC-operator f and a rewrite rule

ρ : f(c1, c2) → c, we consider its extension ρe : f(f(c1, c2), x) → f(c, x). Given a

set of rewrite rules R, by Re we denote the set R plus extensions of rules in R.

Extensions have to be used for rewriting terms and computing critical pairs when

working with AC-symbols. The key property of extended rules is that whenever an

expression e is AC-reducible by Re and e↔∗
AC e′, then e′ is also AC-reducible by Re.

The rewrite relation induced by S\R is different from the rewriting relation defined

by R on congruence classes induced by S. More specifically, we define s →R/S t if

s↔∗
S u[lσ] and t↔∗

S u[rσ] for some rule l→ r in R and some substitution σ.

2.4 Algebra and Unification

Let Σ = ∪nΣn be a signature. An Σ-algebra A = (A, ΣA) consists of a set A and

a family of functions ΣA such that for each f ∈ Σn there exists a n-ary function

fA ∈ ΣA that maps An to A. An algebra A is a model of a set of equations E if for

every equation s ≈ t ∈ E , and every assignment of values in A to variables in V , the

interpretation of s and t are the same in A. An E-algebra is any algebra that is a

model of the set E of equations.

The quotient algebra T (Σ,V)/↔∗
E is the E-free algebra with generators V . E-

unification is the solving of equations in the E-free algebra T (Σ,V)/ ↔∗
E . More

precisely, a unification problem is a pair of terms s, t, and an E-unifier of the problem

is a substitution σ such that sσ ↔∗
E tσ. The set of all E-unifiers of s, t will be denoted

CHAPTER 2. PRELIMINARIES 11

by UE(s, t). Let ≤ be a quasi-order on substitutions (usually the E-instantiation

ordering). A complete set cUE(s, t) of E-unifiers of s and t with respect to ≤ is

characterized by, (i) cUE(s, t) ⊆ UE(s, t), and (ii) for all σ ∈ UE(s, t) there exists

θ ∈ cUE(s, t) such that θ ≤ σ.

An E-unification algorithm decides if a pair s, t of terms is unifiable, and if the

answer is yes, it computes a (finite) complete set of E-unifiers. Any such algorithm

can be easily extended to give an algorithm to compute a complete set of E-unifiers

for any finitely many pairs si, ti of terms.

Given a Σ-structure M, by Th(M) we denote the (first-order) complete theory

defined by all first-order sentences that are true inM.

2.5 Word Problem

Let E be a set of equations. By the word problem for the theory presented by E
we mean: given a set of ground equations E and a ground equation s ≈ t, decide if

s↔∗
E∪E t. The class of all E-algebras (over the signature Σ) is usually called a variety

of algebras. Examples include the varieties of groups, semigroups, abelian groups,

rings, commutative rings and lattices. With a set of ground equations E (over the

signature Σ∪K) we can associate an E-algebra T (Σ∪K)/↔∗
E∪E in the variety. The

set K is usually also called the set of generators and the above E-algebra is said to

be presented by the set E. In this terminology, the word problem for E-algebras asks

if given an E-algebra finitely presented by E and two terms in this algebra, are the

two terms equal.

Suppose that the word problem for E1-algebras and E2-algebras is decidable. Under

what conditions can we obtain decidability of the word problem for E1 ∪ E2-algebras,

using the decision procedures for the word problem for E1- and E2-algebras? We con-

sider this general problem in the next chapter. Note that in case the set E1 is empty,

congruence closure provides an efficient decision procedure for the word problem. For

the case when E1 consists of the AC axioms, we introduce a corresponding notion of

a AC-congruence closure.

Chapter 3

Abstract Combination Methods

We consider the problem of combining decision procedures to obtain a single decision

procedure for the combined theory. In the first part we shall study the Nelson and

Oppen’s combination procedure which combines satisfiability procedures for a class of

first-order theories. Thereafter, we shall present a constructive version of this method

for combining procedures for the word problem for different equational theories.

We give only an abstract description of the Nelson and Oppen’s combination result

here, and refer the reader to the original papers [63, 65], and the recently published

more abstract descriptions [78, 71] for more details and proof of correctness.

3.1 The Nelson and Oppen Combination Method

The combination problem can be stated in a general form as follows: Given two first-

order (equational) theories specified by set of first-order axioms (equations) E1 and

E2, respectively over the signature Σ1 and Σ2, how is it possible to build a decision

algorithm for deciding satisfiability of arbitrary first-order formulas φ over Σ1∪Σ2, in

the theory specified by E1 ∪ E2, using the decision procedures for individual theories?

We can consider several cases of this problem depending on the choice of the signatures

Σi, axioms of theories Ei and formulas φ. For our purposes, we are mainly interested

in the equational case, i.e. when Σi contains only function symbols and constants

(and no predicates), and Ei is a set of equational axioms.

Nelson and Oppen give a method to solve this problem for the case when the

signatures are allowed to be arbitrary disjoint first-order signatures Σ1 and Σ2, and

the individual theories are stably infinite.

12

CHAPTER 3. ABSTRACT COMBINATION METHODS 13

We formulate Nelson and Oppen’s combination procedure in terms of transition

rules. Since we are interested only in the special case of equational theories, the state

is given by a formula of the form,

s1 ≈ t1 ∧ s2 ≈ t2 ∧ . . . ∧ sk ≈ tk ∧ s′1 6≈ t′1 ∧ . . . ∧ s′l 6≈ t′l

which is just a conjunction of equations and disequations. The first step is that of

variable abstraction, which can be formulated as follows:

Var Abstraction:
φ[t(s)]

φ[t(x)] ∧ x ≈ s

where x 6∈ V(φ[t(s)]). In practice, it is useful to apply this rule only when s is an alien

subterm of the term t, or when s is the term at the top of an equation or disequation.

Using the above transition rules, we can transform any formula φ over a combined

signature Σ1 ∪Σ2, into a conjunction of pure formulas φ1 (over Σ1 ∪ V) and φ2 (over

Σ2 ∪ V).

The next phase involves guessing a suitable equivalence relation on the set of

variables that occur in both φ1 and φ2.

Guess:
φ1 ∧ φ2

φ1 ∧ φ2 ∧ φe

where e is an equivalence relation on the set of all variables in φ1 and φ2; and,

φe =
∧

(x,y)∈e(x ≈ y) ∧ ∧
(x,y) 6∈e(x 6≈ y) is the conjunction of all equations and

disequations that are true of this equivalence e.

The final phase involves a test for satisfiability in individual theories.

Check:
φ1 ∧ φ2 ∧ φe

true

if φ1 ∧ φe is satisfiable in the theory presented by E1, and φ2 ∧ φe is satisfiable in

theory presented by E2.
We shall skip the proof of correctness and refer the reader to [78, 71, 65].

Proposition 1 (Soundness) Let φ1 and φ2 be first-order formulas over Σ1∪Σ2 (and

variables V) such that φ2 can be derived from φ1 using one of the above mentioned

transition rules. If φ2 is satisfiable, then φ1 is satisfiable too assuming that the theories

E1 and E2 are stably infinite.

Proposition 2 (Completeness) Let φ be satisfiable in the theory defines by E1∪E2.
Then, there exists a derivation starting from φ with final state true.

CHAPTER 3. ABSTRACT COMBINATION METHODS 14

3.2 Shostak’s Combination Method

In sharp contrast to the Nelson and Oppen’s combination result, obtaining a formal

description and proof of correctness of Shostak’s combination method [75] has been

challenging [35, 51]. In this chapter, we shall fill this gap partially, and present

Shostak’s combination method abstractly as a special case of the more general result of

Nelson and Oppen. The abstract description here will be refined further in Section 7.3.

However, none of the remaining parts of the thesis depend on the results contained

in this section.

Assume that we are given (i) a finitary Ei-unification algorithm, and (ii) a pro-

cedure that decides validity of equations in Ei. If this is the case, then given a

conjunction φ = φ≈ ∧ φ6≈ of equation and disequations over T (Σi,V), we can

(i) first compute a complete set cUEi
(φ≈) of Ei-unifiers for the equations φ≈ in φ, and

(ii) if for some unifier σ ∈ cUEi
(φ≈), it is the case that for each conjunct siσ 6≈ tiσ in

the conjunction φ6≈σ, siσ ≈ tiσ is not valid in Ei, then return true. If not, then we

return false.

Clearly, this procedure decides satisfiability of the (existential closure of) formula

φ in the theory Th(T (Σ,V)/↔∗
E). If there exists a function canonizer(t) that re-

turns a unique representative of the term t in its congruence class (modulo Ei), then

decidability of the validity of equations in Ei follows.

Shostak’s combination procedure also deals with the pure theory of equality, i.e., a

theory defined by the empty set of axioms. Satisfiability in the pure theory of equality

can be decided using a congruence closure algorithm. We construct a congruence

closure of all equation in the formula, and then check to see if the terms in the

disequations are distinct in the closure. If this is true for every disequation, then

the formula is satisfiable, otherwise it is not. We remark here that this satisfiability

algorithm checks for satisfiability in the pure theory of equality, and not in the specific

model T (Σ0,V). We would get the latter if we used a unification algorithm to get the

most-general unifier for the equations and tested the disequations after applying the

unifier to them. Consequently, Shostak’s combination method can be thought of as

combining complete theories (defined by models) with the pure theory of equality. In

other words, Shostak’s method combines Ei-unification algorithms with congruence

closure.

Thus we have the pure theory E0 = φ of equality over signature Σ0, and (complete)

equational theories Thi = Th(T (Σi,V)/↔∗
Ei

) over signatures Σi. The signatures Σi

CHAPTER 3. ABSTRACT COMBINATION METHODS 15

are assumed to be disjoint. For the sake of uniformity, we define Th0 as Th(T (Σ0,V)).

Thus, Shostak’s procedure decides satisfiability of conjunction of equations and dis-

equations over the combined signature Σ0 ∪ Σ1 ∪ · · · ∪ Σk in the combined theory

presented by Th1 ∪ Th2 ∪ · · · ∪ Thk.

3.2.1 Abstract Presentation of Shostaks Method

Having thus formulated the problem of combination, we find that we can use Nelson

and Oppen’s general procedure to obtain a decision procedure for the above problem.

Each equational theory Thi, for i = 0, 1, . . . , k, is stably infinite. Furthermore, the

signatures Σi are all mutually disjoint. However, we can avoid the non-deterministic

guess in the Nelson and Oppen procedure and deduce all equations that need to be

exchanged between the different individual theories using the unification algorithm

and the validity checking procedure.

The rule for variable abstraction remains the same. From now on, we assume

that we are working with three theories: Th0, the pure theory of equality, and, two

equational theories Th1 and Th2 as described before, respectively over the mutually

disjoint signatures Σ0, Σ1 and Σ2. Thus, using variable abstraction, we obtain a

conjunction φ0 ∧ φ1 ∧ φ2 ∧ φ3, where φ3 contains equations and disequations over

variables; and φ0, φ1 and φ2 respectively contain the remaining pure formulae over

Σ0 ∪ V , Σ1 ∪ V and Σ2 ∪ V respectively.

We get rid of the non-deterministic guess, and replace it by solve.

Solve:
φ0 ∧ φ1 ∧ φ2 ∧ φ3

φ0 ∧ φ1 ∧ φ2 ∧ φ3 ∧ x ≈ y

where x ≈ y is an equation between variables deduced by, either, (i) the congruence

closure procedure, using the equations in φ0 ∧ φ3; or, (ii) the unification and equality

checker for theory Thi, using the equations in φi ∧ φ3, for i = 1, 2.

The exact way in which these equations are deduced is abstracted away in this

description and will be discussed in Sections 5.1 and 7.3. Here we simply assume

(to prove correctness) that if an equation between variables can be deduced from

the individual theories, then we can always apply the solve rule that introduces that

equation.

CHAPTER 3. ABSTRACT COMBINATION METHODS 16

A derivation can be terminated if we deduce an inconsistency.

Terminate:
φ0 ∧ φ1 ∧ φ2 ∧ φ3 ∧ x ≈ y ∧ x 6≈ y

false

Using the correctness of Nelson and Oppen’s combination method, we obtain the

following.

Proposition 3 Let Th0, Th1 and Th2 be theories defined as above over signatures

Σ0, Σ1 and Σ2 respectively. A formula φ (over signature Σ0∪Σ1∪Σ2) is unsatisfiable

in the theory presented by Th1∪Th2 if, and only if, there is a derivation φ ` · · · ` false.

Example 1 Consider the formula

φ ≡ z ≈ f(x− y) ∧ x ≈ z + y ∧ −y 6≈ −(x− ffz)

The individual theories under consideration here are the pure theory of equality E0
over signature Σ0 = {f}, and the theory of real linear arithmetic over the signature

Σ1 = {+,−,R}, where R denotes all the reals.

Variable abstraction step introduces four new variables say z0, z1, z2 and z3 to give

the separated form φ ≡ phi0 ∧ φ1 ∧ φ2, where:

φ0 ≡ z ≈ fz0 ∧ ffz ≈ z1

φ1 ≡ z0 ≈ x− y ∧ x ≈ z + y ∧ −y ≈ z2 ∧ −(x− z1) ≈ z3

φ2 ≡ z2 6≈ z3

Using a solver (unifier) and canonizer for real linear theory of arithmetic, we infer

the equation z ≈ z0 from the formula φ1. Adding this equation, we get

φ0 ≡ z ≈ fz0 ∧ ffz ≈ z1

φ1 ≡ z0 ≈ x− y ∧ x = z + y ∧ −y ≈ z2 ∧ −(x− z1) ≈ z3

φ2 ≡ z2 6≈ z3 ∧ z0 ≈ z

Now, φ0 ∧ φ2 can be used to deduce (via congruence closure algorithm) the equation

z1 ≈ z. Using this new equation and φ1 ∧ φ2, the real arithmetic equality decision

procedure deduces the equation z2 ≈ z3, which leads to a contradiction. Hence the

original formula is unsatisfiable.

CHAPTER 3. ABSTRACT COMBINATION METHODS 17

3.3 A Constructive Combination Result

We note that a decision procedure for testing satisfiability of conjunction of equations

and disequations in a theory presented by Ei yields a decision procedure for the word

problem for Ei-algebras. One aspect about the Nelson and Oppen description is the

non-deterministic guess of an equivalence relation on the shared variables. In practice

(and as described by Nelson and Oppen originally), equations between variables are

deduced by individual theories which are then shared across the different deduction

engines.

In an equational framework, completion provides a convenient way to deduce

equations—and if we are interested in equations between certain constants (or vari-

ables), we just need to make sure that these constants (or variables) are minimal in

the ordering with respect to which we perform completion.

Therefore, we address the following combination scenario: Let E1 and E2 be

equational specifications for two theories of interest. We assume that are given a

completion-based procedure that can transform any finitely presented Ei-algebra into

a convergent presentation (under an ordering that satisfies some conditions). Can

we obtain a completion-like procedure to construct a convergent presentation of any

given E1 ∪ E2-algebra?

One crucial difference with most of the other studies in the area of modularity in

term rewriting systems is that we allow for extensions of signatures. In other words,

when performing completion of a set of equations over the union Σ1∪Σ2 of signatures,

rather than working over the signature Σ1 ∪Σ2, we work over an extended signature

Σ1 ∪ Σ2 ∪K where K is a new set of constant symbols.

3.3.1 Conditions on the theories

Let E1 ∪R1 be a finite set of equations and rules over a signature Σ1 ∪ V , where V is

a set of variables. We assume that

Condition 1 The set of rules R1 is ground convergent modulo E1.

Therefore, we have,

s ↔∗
E1∪R1

t iff s →∗
E1\R

e1
1
◦ ↔∗

E1 ◦ ←
∗
E1\R

e1
1

t,

for all ground terms s, t ∈ T (Σ). The notation Re1
1 denotes the extension of the

rewrite system R1, which is needed when the set E1 encodes certain axioms as asso-

ciativity and commutativity.

CHAPTER 3. ABSTRACT COMBINATION METHODS 18

We can specify many first-order equational theories in the formulation specified

above. We consider some examples below.

Example 2 In the special case when both the sets E1 and R1 are empty, we get the

pure theory of equality. In this case, we can assume Σ1 to be any arbitrary set of

constants and function symbols.

Example 3 Let Σ1 = {f (2), c1, . . . , ck} consist of a single binary function symbol f

and finitely many constants. The theory of free commutative semigroup (over the

generators c1, . . . , ck) is obtained by choosing the set R1 to be empty, and E1 to be the

set of following AC axioms:

f(x, y) ≈ f(y, x) f(f(x, y), z) ≈ f(x, f(y, z)).

Example 4 To the theory of commutative semigroups specified in example 3, if we

additionally add a distinguished constant 1 in the signature Σ1, and the identity axiom

f(x, 1) ≈ x

is taken as the set R1, then we get the theory of commutative monoids.

Example 5 If the signature Σ1 contains a finite set of binary function symbols, and

E1 is the set of AC axioms (for each binary symbol in Σ1), we obtain associative-

commutative theories.

Example 6 Commutative theories are given by choosing E1 = {f(x, y) = f(y, x)},
R = ∅ and f ∈ Σ1.

Example 7 Let Σ1 = {Ω, I, X1, X2, . . . , Xn, ·,⊕,	,⊗, B, M}. Let E1 be the set of

AC axioms for the binary operations ⊕,⊗ and ·. Then, we can specify the equational

theory of polynomial rings (with coefficients from the domain B, and indeterminates

X1, X2, . . . , Xn) using a set of rewrite rules R, which is ground convergent modulo E1
(see Chapter 8).

We further assume that

Condition 2 Corresponding to any finite set E1 of ground equations over an ex-

tended signature Σ1 ∪ K where K is a set of constants, and any given total

ordering �K on the set K, there exists a finite set R1 of rewrite rules, such

CHAPTER 3. ABSTRACT COMBINATION METHODS 19

that,

(i) for all s, t ∈ T (Σ1 ∪K),

s ↔∗
E1∪R1∪E1 t iff s →∗

E1\R
e1
1 ∪Re1

1
◦ ↔∗

E1 ◦ ←
∗
E1\R

e1
1 ∪Re1

1
t;

(ii) the system Re1
1 ∪ Re1

1 is reducing with respect to an ordering which is an

extension of the ordering �K on K, and in which the only terms smaller than

any constant in K are (possibly) other constant in K.

Let Com be a functor that maps a given set E1 and ordering �K to the set R1

specified in the above condition, i.e., Com(E1,�K) = R1.

3.3.2 The combination result

We formally state the abstract result now.

Theorem 1 Let E1 ∪R1 and E2 ∪R2 be two theories over disjoint signatures Σ1 and

Σ2 respectively, satisfying the conditions 1 and 2 mentioned in Section 3.3.1. If E is a

finite set of ground equations over Σ1∪Σ2, then, there exists a finite set R = R1∪R2

of rewrite rules over the signature Σ1 ∪ Σ2 ∪K, such that for any s, t ∈ T (Σ1 ∪ Σ2),

s ↔∗
E,R1,E1,R2,E2 t iff s →∗

E1,E2\Re,Re1
1 ,Re2

2
◦ ↔∗

E1,E2 ◦ ←
∗
E1,E2\Re,Re1

1 ,Re2
2

t;

where R1 is over the signature Σ1 ∪ K, R2 is over Σ2 ∪ K, and Re = Re1 ∪ Re2.

Additionally, the rewrite system E1, E2\Re,Re1
1 ,Re2

2 is terminating.

The statement of theorem 1 can be generalized from considering two disjoint

theories to considering a finite number of them. The general result can be proved by

suitably generalizing the proof of the above case.

3.3.3 Correctness

We shall prove theorem 1 now. Our proof is constructive, and a crucial component is

the process of variable abstraction. Variable abstraction is useful to get “pure” terms

from mixed terms. More specifically, if s[t] is a term over Σ1 ∪ Σ2, and t is a term

over, say Σ1, then we can replace t by a new constant c. Eventually we would obtain

a term over either Σ1 ∪ K, or, Σ2 ∪ K where K is a set of constants. If E is a set

CHAPTER 3. ABSTRACT COMBINATION METHODS 20

of equations over Σ1 ∪ Σ2 as specified in the theorem, we start with state (∅, E) and

apply the following transition rule,

Var Abstraction:
(K, E ∪ {s[t] ≈ t′}

(K ∪ {c}, E ∪ {s[c] ≈ t′, c ≈ t}

where c 6∈ Σ∪K. In practice, it is useful to apply this rule when t is an alien subterm

of the term s[t].

Repeated application of the above rule will lead to a state (K, E1 ∪E2) where E1

is a set of equations over Σ1 ∪K and E2 is a set of equations over Σ2 ∪K.

Lemma 1 Let E be a set of ground equations over Σ1∪Σ2. Then there exists a finite

derivation (∅, E) ` · · · ` (K, E1 ∪ E2) using only the Variable-Abstraction rule such

that the sets E1 and E2 are respectively over the signatures Σ1 ∪K and Σ2 ∪K; and

furthermore, for all terms s, t ∈ T (Σ1 ∪ Σ2),

s ↔∗
E t iff s ↔∗

E1∪E2
t

Given set E as specified in the statement of the theorem, we use variable abstrac-

tion steps to decompose the set into two sets E1 and E2 as stated in lemma 1. The

set K of new constants is finite, since the number of variable abstraction steps needed

is finite. We choose any total ordering �K on the finite set K.

By condition 2, let R1 = Com(E1,�K) and R2 = Com(E2,�K).

Define the C-component of the set Ri as CRi
= {c→ d ∈ Ri : c, d ∈ K}. Two sets

C1 and C2 of C-rules are said to be equivalent if they define the same equivalence on

the set K.

We define two sequences of sets R
(j)
1 and R

(j)
2 as follows:

R
(j+1)
i =

 Ri if j = 0

Com(Ei ∪ C
R

(j)
1
∪ C

R
(j)
2

,�K) if j > 0

where i = 1, 2. We assume that if↔∗
C=↔∗

C′ , then Com(E ∪C,�) = Com(E ∪C ′,�).

Lemma 2 The sequences 〈R(j)
1 〉 and 〈R(j)

2 〉 are both eventually constant sequences,

i.e., there exists a k such that R
(j)
i = R

(k)
i for all j ≥ k.

Proof. Define the measure associated with a set R
(j)
i to be the number of different

equivalence classes on K modulo the set R
(j)
i . Our first claim is that both sequences

CHAPTER 3. ABSTRACT COMBINATION METHODS 21

are non-increasing in this measure. Since the > ordering on natural numbers is well-

founded, there exists a k such that the measure of R
(j)
i remains unchanged for j ≥ k.

Because of the assumption on Com, each set R
(k+1)
i will be equal to the set R

(k)
i .

In order to prove the claim we note that if c↔∗
R

(j)
i

d for any i, j and c, d ∈ K, then,

c ↔∗
C

R
(j)
i

d since R
(j)
i is convergent, and the only rules that can reduce a constant in

K can be a C-rule (see condition 2). Since R
(j+1)
i is obtained from Ei ∪C

R
(j)
1
∪C

R
(j)
2

,

therefore,

↔∗
C

R
(j)
1

⊂ ↔∗
C

R
(j+1)
i

↔∗
C

R
(j)
2

⊂ ↔∗
C

R
(j+1)
i

.

This implies that the sequences are non-increasing in the measure, and hence the

claim is established.

Lemma 3 (Soundness and Completeness) Let R1 and R2 be the sets to which

the above two sequences converge. For s, t ∈ T (Σ1 ∪ Σ2),

s ↔∗
R1∪R2∪R1∪R2∪E1∪E2 t

if and only if,

s ↔∗
E∪R1∪R2∪E1∪E2 t.

Proof. This is a simple consequence of lemma 1 and condition 2.

Lemma 4 (Convergence) The rewriting system E1 ∪ E2\Re1
1 ∪ Re2

2 ∪ R1 ∪ R2 is

convergent.

Proof. Let c ∈ K be the largest constant in K in the ordering �K . To any ground

term t ∈ T (Σ1 ∪ Σ2 ∪K), we assign a measure, m(t), defined recursively as follows:

m(t) =



({t}, ∅) if t ∈ T (Σ1 ∪K)

(∅, {t}) if t ∈ T (Σ1 ∪K)

m(t1) ∪m(C[f(. . . , c, . . .)]) if t = C[f(. . . , t1, . . .)], f ∈ Σ2,

t1 ∈ τ(Σ1 ∪K)

m(t1) ∪m(C[f(. . . , c, . . .)]) if t = C[f(. . . , t1, . . .)], f ∈ Σ1,

t1 ∈ τ(Σ2 ∪K)

CHAPTER 3. ABSTRACT COMBINATION METHODS 22

where ∪ denotes component-wise multiset union. The above measure is clearly well-

defined. Two terms are compared by comparing their measures using the lexico-

graphic combination of the multiset extensions of the orderings �1 and �2 respec-

tively, where �i is the reduction ordering with respect to which the rewrite system

Ei\Re
i ∪ Re

i is reducing. The set of rules in Re
1 ∪ Re

2 are each reducing with respect

to this new ordering on terms. This ordering is also well-founded as it is the multiset

combination of well-founded orderings.

To establish confluence, we need to show that peaks and cliffs have rewrite proofs.

Since Σ1 ∩ Σ2 = ∅, there are no cliffs arising from proper overlaps. The only non-

trivial peaks arise from overlap between C-rules. But such peaks are easily observed

to have rewrite proofs.

This concludes the proof of Theorem 1.

3.4 Specific Instantiations of the Abstract Result

Research activity related to the combination and integration of systems in the ar-

eas of logic and automated deduction has been diverse, see [53] for recent trends.

There is also a large literature on modularity of term rewriting systems [48]. The

crucial difference with most of this work is that we allow for extension of signature.

Techniques such as variable abstraction have also been used in obtaining unification

algorithms in the union of theories [3, 4]. Bjorner proposes a framework for the in-

tegration of decision procedures in his thesis [20] which is a constraint-based version

of Shostak’s integration method. The framework outlines an interface that various

decision procedures should provide which is obtained via suitable generalization of

Shostak’s canonizer and solver requirements. However, this framework “is intended

to approach concrete problems in verification” and “does not provide deep new the-

oretical results”. Bjorner mentions that Shostak’s method can be seen as a specific

application of Nelson and Oppen’s general result. The fact that Nelson and Oppen’s

result can be used to obtain satisfiability testing algorithms for certain combination

of model generated equational theories was pointed out by Ringeissen [71].

We have presented a result that combines completion algorithms for finitely pre-

sented Ei ∪ Ri-algebras satisfying certain conditions. Informally, we require that (i)

the class of Ei∪Ri-algebras should itself be presented by a convergent rewrite system

(i.e. the rewrite system Ri modulo Ei should be convergent), and (ii) there should

exist algorithms that can obtain a convergent representation for any finitely presented

CHAPTER 3. ABSTRACT COMBINATION METHODS 23

Ei ∪Ri-algebra over a signature extended by a finite set of constants under some or-

dering restrictions. The rest of this thesis discusses in detail several instantiations of

this general result.

For any particular class of algebras under consideration, we need to satisfy the

two conditions above. In the subsequent chapters, we first start off with the most

simple E1∪R1-algebras—viz where E1∪R1 = ∅—and gradually move to more complex

algebras.

Chapter 4

Abstract Congruence Closure

We first consider the simplest possible application of the combination result presented

in Chapter 3. Consider the case when the set of equational axioms is empty, and hence

the theory under consideration is that of the pure theory of equality, which has also

been referred to as the theory of equality with uninterpreted function symbols in the

literature.

We are interested in the word problem for this theory. Congruence closure algo-

rithms provide a decision procedure for the word problem in this case. In other words,

congruence closure algorithms can be used to decide if an equality s ≈ t logically fol-

lows from a set of equalities E = {s1 ≈ t1, s2 ≈ t2, · · · , sk ≈ tk}, where all terms

are constructed from uninterpreted or free function symbols and constants. They

also provide a decision procedure for validity problem in the quantifier-free theory of

equality (with uninterpreted function symbols) [64].

Algorithms to compute “congruence closure” have typically been described in

terms of directed acyclic graphs (dags) representing a set of terms, and a union-find

data structure storing an equivalence relation on the vertices of this graph. In this

chapter, we use the abstract theorem discussed in Chapter 3 to obtain an abstract

procedure to decide the word problem.

On closer inspection, we shall find that the set of inference rules obtained by us

essentially constitute an abstract description of congruence closure. In particular,

the description, called abstract congruence closure c.f. [10, 11], can be used to capture

abstractly some of the well-known graph-based congruence closure algorithms while

still maintaining the “sharing” and “efficiency” offered by the data structures used by

these algorithms [13]. In Chapter 5 we shall provide a formulation of logical aspects

of the graph-based congruence closure algorithms using the concept of an abstract

24

CHAPTER 4. ABSTRACT CONGRUENCE CLOSURE 25

congruence closure. Additionally, the abstract congruence closure rules can be used to

obtain specific implementations, and in Section 5.5 we describe experimental results

comparing these implementations with those of the graph-based congruence closure

algorithms.

4.1 Abstract Congruence Closure

Let Σ be a signature, and E a set of ground equations over Σ. The set Σ can be

written as a disjoint union of singleton sets Σi’s where each Σi contains exactly one

function symbol from Σ. The equations in the set E can be considered to be over

the combined signature ∪iΣi, and hence our first step would be to “purify” them.

We introduce constants to name impure subterms and specify the correspondence

between the new constants and the original terms by rewrite rules. One can insist

that every “pure” equation be either a simple D-rule or a C-rule.

Definition 1 Let Σ be a signature and K be a set of constants disjoint from Σ. By

a simple D-rule (with respect to Σ and K) we mean a rewrite rule of the form

f(c1, . . . , ck) → c0

where f ∈ Σ and c1, . . . , ck are constants in K.

An equation c → d, where c and d are constants in K, is called a C-rule (with

respect to K).

Clearly each simple D-rule is over exactly one signature Σi ∪ K, whereas each

C-rule is over every signature Σi ∪K. The Com functor corresponds to a completion

procedure that works only on equations over the signature Σi ∪K.

For example, let Σ consist of three function symbols, a, b and f , and let E0 be a

set of two equations a ≈ b and ffa ≈ fb. We can choose to represent each different

subterm in E0 by a new constant and get the following set of simple D-rules,

D0 = {a→ c0, b→ c1, fc0 → c2, fc2 → c3, fc1 → c4}.

We can simplify the original equations in E0 using these D-rules to obtain a set C0

of two C-equations, c0 ≈ c1 and c3 ≈ c4.

For certain applications of congruence closure that we describe later, a more gen-

eral definition of D-rules is useful.

CHAPTER 4. ABSTRACT CONGRUENCE CLOSURE 26

Definition 2 By a D-rule (with respect to Σ and K) we mean a rewrite rule of the

form

t → c0

where t ∈ T (Σ, K)−K and c0 is a constant in K.

Simple D-rules are also D-rules, and hence in the rest of the chapter we shall consider

D-rules in this generality.

The constants in K can be interpreted in various ways. Each constant can be

thought of as the name of a vertex in the directed acyclic graph representing all

terms in E0. For instance, in the above example, we have introduced exactly one

new constant for each subterm. A different choice would be to introduce different

constants for different occurrences of the same term, which would obviously result in

more D-rule and would correspond to representation of the set of terms as trees.

The constants in the set K can also be thought of as names for equivalence classes

of terms. In this interpretation, a simple D-rule f(c1, . . . , ck)→ c0 can be semantically

understood as saying that a term with top symbol f and with arguments in the

equivalence classes c1, . . . , ck belongs to the equivalence class c0. Thus, a set of simple

D-rules defines a transition relation of a bottom-up tree automaton [34].

Definition 3 Let R be a set of D-rules and C-rules (with respect to Σ and K). We

say that a constant c in K represents a term t in T (Σ ∪K) (via the rewrite system

R) if t↔∗
R c. A term t is also said to be represented by R if it is represented by some

constant via R.

For example, the constant c2 represents the term fa via D0.

Definition 4 Let Σ be a signature and K be a set of constants disjoint from Σ. A

ground rewrite system R = D∪C is said to be an (abstract) congruence closure (with

respect to Σ and K) if

(i) D is a set of D-rules, C is a set of C-rules, and every constant c in K represents

at least one term t ∈ T (Σ) via R, and

(ii) R is ground convergent.

If E is a set of ground equations over T (Σ ∪K) and in addition R is such that,

(iii) for all terms s and t in T (Σ), then s↔∗
E t if, and only if, s→∗

R ◦ ←∗
R t,

then R will be called an (abstract) congruence closure for E.

CHAPTER 4. ABSTRACT CONGRUENCE CLOSURE 27

Condition (i) essentially states that the rewrite system R is an abstract representation

of a data structure called a “signature table” (see Chapter 5) and that no superfluous

constants are introduced; condition (ii) ensures that equivalent terms have the same

representative; and condition (iii) implies that R is a conservative extension of the

equational theory induced by E over T (Σ).

For instance, the rewrite system R0 = D0 ∪ {c0 → c1, c3 → c4} above is not

a congruence closure for E0, as it is not a ground convergent rewrite system. But

we can transform R0 into a suitable rewrite system, using a completion-like process

described in more detail in the next section, to obtain a congruence closure,

R1 = {a→ c1, b→ c1, fc1 → c3, fc3 → c3, c0 → c1, c2 → c3, c4 → c2},

that provides a more compact representation of E0. Note that the constant c3 repre-

sents infinitely many terms via R1, as we have fna→∗
R1

c3, for all n ≥ 1.

4.2 Construction of Congruence Closures

We next present a general method for construction of congruence closures. Our

description is fairly abstract, in terms of transition rules that manipulate triples

(K, E,R), where K is the set of constants that extend the original fixed signature Σ,

E is the set of ground equations (over Σ∪K) yet to be processed; and R is the set of

C-rules and D-rules that have been derived so far. Triples represent possible states

in the process of constructing a congruence closure. Construction starts from initial

state (∅, E, ∅), where E is a given set of ground equations.

As outlined above, an abstract congruence closure finds and implicitly stores the

equivalence relation between terms, defined by the equations E, through a rewrite

relation R over an extended signature Σ∪K. The transition rules can be derived from

those for standard completion as described in [7], with some differences. In particular,

in our case (i) application of the transition rules is guaranteed to terminate, and (ii)

a convergent system is constructed over an extended signature.

The transition rules do not require any reduction ordering1 on terms in T (Σ), but

only only a simple ordering � on terms in T (Σ ∪ U) (terms in T (Σ) may not be

comparable by �), where U is an infinite set of constants disjoint from Σ and from

which new constants K ⊂ U are chosen. In particular, we assume �U is any ordering

1An ordering is any irreflexive and transitive relation on terms. A reduction ordering is an
ordering that is also a well-founded replacement relation.

CHAPTER 4. ABSTRACT CONGRUENCE CLOSURE 28

on the set U , and define � by: c � d if c �U d and t � c if t → c is a D-rule. For

simplicity we take the set U to be {c0, c1, c2, . . .}, and assume that ci �U cj whenever

i < j.

A key transformation rule introduces new constants as names for subterms.

Extension:
(K, E[t], R)

(K ∪ {c}, E[c], R ∪ {t→ c})

where t→ c is a D-rule, t is a term occurring in (some equation in) E, and c ∈ U−K.

The following three rules are suitable specializations to the ground case of the

corresponding rules for standard completion.

Simplification:
(K, E[t], R ∪ {t→ c})

(K,E[c], R ∪ {t→ c})

where t occurs in some equation in E.

It is fairly easy to see that by repeated application of extension and simplification,

any equation in E can be reduced to an equation that can be oriented by the ordering

�.

Orientation:
(K ∪ {c}, E ∪ {t ≈ c}, R)

(K ∪ {c}, E, R ∪ {t→ c})
if t � c.

Trivial equations may be deleted.

Deletion:
(K,E ∪ {t ≈ t}, R)

(K, E,R)

In the case of completion of ground equations, deduction steps can all be replaced

by suitable simplification steps, in particular, by collapse steps. However, in order to

guarantee termination, we formulate collapse using two separate transition rules. The

usual side condition in the collapse rule, which refers to the encompassment ordering,

can also be suitably simplified.

Deduction:
(K, E,R ∪ {t→ c, t→ d})

(K,E ∪ {c ≈ d}, R ∪ {t→ d})

Collapse:
(K, E,R ∪ {s[t]→ d, t→ c})

(K,E,R ∪ {s[c]→ d, t→ c})

CHAPTER 4. ABSTRACT CONGRUENCE CLOSURE 29

if t is a proper subterm of s.

As in standard completion the simplification of right-hand sides of rules in R by

other rules is optional and not necessary for correctness. The right-hand side term in

any rule in R is always a constant.

Composition:
(K, E,R ∪ {t→ c, c→ d})

(K,E,R ∪ {t→ d, c→ d})

The core logical aspects of various known congruence closure algorithms can be

conveniently described in terms of specific strategies over the above transition rules.

We shall elaborate more on this subsequently in Chapter 5, All the above transition

rules with the exception of the composition rule, constitute the mandatory set of

transition rules.

We illustrate by an example the process of constructing a congruence closure for

the set of equations E0 using these transition rules.

Example 8 Consider the set of equations E0 = {a ≈ b, ffa ≈ fb}. An abstract

congruence closure for E0 can be derived from the initial state (K0, E0, R0) = (∅, E0, ∅)
as depicted in Table 1. The rewrite system R6 in this table is the required congruence

closure.

i Constants Ki Equations Ei Rules Ri Transition Rule

0 ∅ E0 ∅
1 {c0} {c0 ≈ b, ffa ≈ fb} {a→ c0} Ext
2 {c0} {ffa ≈ fb} {a→ c0, b→ c0} Ori
3 {c0} {ffc0 ≈ fc0} {a→ c0, b→ c0} Sim (twice)
4 {c0, c1} {fc1 ≈ fc0} R3 ∪ {fc0 → c1} Ext
5 {c0, c1} {fc1 ≈ c1} R3 ∪ {fc0 → c1} Sim
6 K5 {} R5 ∪ {fc1 → c1} Ori

Table 1: Example: Intermediate states in a derivation illustrating the abstract con-
gruence closure construction transition rules.

4.3 Correctness

We show that the transition rules presented above compute an abstract congruence

closure. We use the symbol `CC (or, ` in short) to denote the one-step transition

CHAPTER 4. ABSTRACT CONGRUENCE CLOSURE 30

relation on states induced by the above transition rules. A derivation is a sequence

of states (K0, E0, R0) ` (K1, E1, R1) ` · · · related by the transition relation.

Theorem 2 (Soundness) If (K0, E0, R0) ` (K1, E1, R1), then, for all terms s and

s′ in T (Σ ∪K0), s↔∗
E1∪R1

s′ iff s↔∗
E0∪R0

s′.

Proof. For simplification, orientation, deletion and composition, the claim follows

from correctness result for the standard completion transition rules [7]. We can also

easily verify the claim for the specialized collapse and deduction rules.

Finally, suppose (K1, E1, R1) is obtained from (K0, E0, R0) by extension that intro-

duces the rule t→ c. For s, s′ ∈ T (Σ ∪K0), if s↔E0∪R0 s′, then clearly s↔∗
E1∪R1

s′.

Conversely, if s ↔E1∪R1 s′, then, sσ ↔E1σ∪R1σ s′σ, where σ is (homomorphic exten-

sion of) the mapping 〈c 7→ t〉. But sσ = s and s′σ = s′ as c does not occur in s and s′

(see side condition of extension). Furthermore, E1σ = E0, and R1σ = R0 ∪ {t → t}.
Therefore, s = sσ ↔∗

E0∪R0
s′σ = s′.

Lemma 5 Let K0 be a finite set of constants (disjoint from Σ), E0 a finite set of

equations (over Σ ∪ K) and R0 a finite set of D-rules and C-rules such that for

every C-rule c → d ∈ R0, we have c �U d. Then, each derivation starting from the

state (K0, E0, R0) is finite. Furthermore, if (K0, E0, R0) `∗ (Km, Em, Rm), then Rm

is terminating.

Proof. We first define a measure on a state (K, E,R) to be the number of occurrences

of Σ-symbols in E. Two states are compared by comparing their measures using the

usual “greater-than” ordering on natural numbers. It can be easily verified that each

transformation rule either reduces this measure, or leaves it unchanged. Specifically,

extension always reduces this measure.

Any such derivation starting from the state (K0, E0, R0) can be written as

(K0, E0, R0) `∗ (Kn, En, Rn) ` (Kn+1, En+1, Rn+1) ` · · ·

where the derivation (Kn, En, Rn) ` (Kn+1, En+1, Rn+1) ` · · · contains no applications

of extension, and hence, the set Kn = Kn+1 = · · · is finite. Therefore, �Kn , defined

as the restriction of �U on the set Kn, is well-founded.

Next we prove that the derivation (Kn, En, Rn) ` (Kn+1, En+1, Rn+1) ` · · · is

finite. Assign a weight w(c) to each symbol c in Kn so that w(c) > w(d) iff c �Kn d.

Since Kn is finite, assign w(f) = max{w(c) : c ∈ Kn} + 1, for each f ∈ Σ. Let �

CHAPTER 4. ABSTRACT CONGRUENCE CLOSURE 31

be the Knuth-Bendix ordering using these weights. Define a secondary measure on a

state (K, E,R) to be the set {{{s, t}} : s ≈ t ∈ E} ∪ {{{s}, {t}} : s→ t ∈ R}. Two

states are compared by comparing their secondary measures using a two-fold multiset

extension2 of the ordering � on terms. It is straight-forward to see that application

of any transition rule reduces to a state reduces its secondary measure. Therefore,

the above derivation is finite. Moreover, every rule in Rj is reducing in the reduction

ordering �, and hence each Rj is terminating.

The following lemma says that extension introduces no superfluous constants.

Lemma 6 Suppose (K0, E0, R0) ` (K1, E1, R1). If every constant c in K0 represents

some term t in T (Σ) (via E0∪R0), then every constant d in K1 represents some term

t′ in T (Σ) via E1 ∪R1.

Proof. If d ∈ K1 also belongs to the set K0, then the claim follows from Theorem 2.

Otherwise let d ∈ K1−K0. The only non-trivial case is when (K1, E1, R1) is obtained

using extension. Let s[c1, . . . , ck] → d be the rule introduced by extension, where

c1, . . . , ck are all the constants that occur in s. Since c1, . . . , ck ∈ K0, therefore there

are terms s1, . . . , sk ∈ T (Σ) such that si ↔∗
E0∪R0

ci, and hence, using Theorem 2,

si ↔∗
E1∪R1

ci. The term s[s1, . . . , sk] is the required term.

We call a state (K,E,R) final if no mandatory transition rule is applicable. We

now prove that in a final state, the third component is a congruence closure.

Theorem 3 Let Σ be a signature and K1 a finite set of constants disjoint from Σ.

Let E1 be a finite set of equations over Σ ∪ K1 and R1 be a finite set of D-rules

and C-rules such that every c ∈ K1 represents some term t ∈ T (Σ) via E1 ∪ R1,

and c �U d for every C-rule c → d in R1. If (Kn, En, Rn) is a final state such that

(K1, E1, R1) `∗ (Kn, En, Rn), then En = ∅ and Rn is an abstract congruence closure

for E1 ∪R1 (over Σ and Kn).

Proof. By Lemma 5, we know that Kn, En and Rn are all finite sets. If En 6= ∅,
then either extension or orientation will be applicable. Since (Kn, En, Rn) is a final

state, En = ∅.
In order to show that Rn is an abstract congruence closure for E1 ∪ R1, we need

to prove the three conditions in Definition 4.

2A multiset over a set S is a mapping M from S to the natural numbers. Any ordering � on a
set S can be extended to an ordering �m on multisets over S as follows: M �m N iff M 6= N and
whenever N(x) > M(x) then M(y) > N(y), for some y � x. The multiset ordering �m (on finite
multisets) is well founded if the ordering � is well founded [39].

CHAPTER 4. ABSTRACT CONGRUENCE CLOSURE 32

(i) Lemma 6 implies that every c ∈ Kn represents some term t ∈ T (Σ) via Rn.

(ii) To prove that Rn is convergent, we first note that Rn is terminating (Lemma 5).

Furthermore, since (Kn, En, Rn) is a final state, Rn is left-reduced. By the critical

pair lemma [5], therefore, Rn is confluent.

(iii) Finally, Theorem 2 establishes that if s ↔∗
E1∪R1

t for some s, t ∈ T (Σ), then

s↔∗
En∪Rn

t. Since En = ∅ and Rn is convergent, s→∗
Rn
◦ ←∗

Rn
t.

4.4 Removing Redundant Constants

To summarize, we have presented an abstract notion of congruence closure and given

a method to construct such an abstract congruence closure for a given set of ground

equations. The only parameters required by the procedure are a denumerable set U

of constants (disjoint from Σ) and an ordering (irreflexive and transitive relation) on

this set. It might appear that the abstract congruence closure obtained depends on

the ordering �U used. In this section, we show that we can construct an abstract

congruence closure that is independent of the ordering on constants.

In the process of construction of an abstract congruence closure, we may deduce

an equality between two constants in K, and we require an ordering �U to deal with

such equations. Since constants act as “names” for equivalence classes, it is redundant

to have two different names for the same equivalence class. Hence, one such constant

can be eliminated, and thus the ordering dependence is eliminated.

Definition 5 Any constant c ∈ K that occurs as a left-hand side of a C-rule in R

will be called a redundant constant.

If R is the third component of a state in construction of an abstract congruence

closure, then all constants on left-hand sides of the C rules in R are redundant,

and they can be removed after all possible composition and collapse steps using the

C-rules have been done.

Compression:
(K ∪ {c, d}, E, R ∪ {c→ d})

(K ∪ {d}, E[c 7→ d], R[c 7→ d])

if no other C-rule in R has c as the left-hand side term.

Correctness of the new enhanced set of transition rules for construction of con-

gruence closure can be established in the same way as done before.

CHAPTER 4. ABSTRACT CONGRUENCE CLOSURE 33

Theorem 4 Let Σ be a signature and K1 a finite set of constants disjoint from Σ.

Let E1 be a finite set of equations over Σ∪K1 and R1 = D1 ∪C1 be a finite set of D-

rules and C-rules such that every c ∈ K1 represents some term t ∈ T (Σ) via E1∪R1,

and the rewrite system C1 is terminating. Then, there exists an abstract congruence

closure Dn for E1 ∪R1 (over Σ and K1) consisting only of D-rules. Additionally, the

set Dn ∪ C1 is also an abstract congruence closure for E1 ∪R1.

Proof. Let (K1, E1, R1) `∗ (Kn, En, Rn) such that none of the mandatory transition

rules nor compression is applicable to the state (Kn, En, Rn).

We observe that the following version of soundness (Theorem 2) is still true:

if (Ki, Ei, Ri) ` (Kj, Ej, Rj), then, for all terms s and t in T (Σ), s ↔∗
Ej∪Rj

t iff

s↔∗
Ei∪Ri

t. Additionally, Lemma 5 and Lemma 6 continue to hold with the new set of

transition rules, and the proofs remain essentially unchanged. This establishes that we

can use Theorem 3 in this new setting to conclude that Rn is an abstract congruence

closure. Moreover, since none of the mandatory rules (including compression) is

applicable, there can be no C-rules in Rn.

The above result states that we can compute an abstract congruence closure that

imposes no ordering restrictions (whatsoever) on the set of constants K. This will be

useful for applications to rigid E-unification.

A second observation is regarding the definition of D-rules and simple D-rules.

The graph-based congruence closure algorithms that have been studied in the lit-

erature can be described using only simple D-rules. However, this corresponds to

completely “flattening” out the terms and leads to a complete loss of term structure,

which could harm certain applications.

A key idea of abstract congruence closure is the use of new constants as names for

subterms which yields a concise and simplified term representation. Consequently,

complicated term orderings are no longer necessary or even applicable. There usually

is a trade-off between the simplicity of terms thus obtained and the loss of term

structure. If we insist of having only simple D-rules, we are on the extreme that

favors simplicity of terms, and if we allow for equalities between arbitrary terms (in

theR-component), then we keep the complete term-structure but require complicated

orderings. The definition of D-rules gets a middle ground where we keep the term

structure as much as possible while eliminating all term ordering requirements.

In fact, we can have an additional rule that eliminates constants which name

equivalence classes containing only one “signature”, i.e. it undoes the effect of ex-

tension and attempts to put back more term-structure into the presentation of the

CHAPTER 4. ABSTRACT CONGRUENCE CLOSURE 34

equational theory via the D- and C-rules.

Projection:
(K ∪ {d}, ∅, R ∪ {t→ d})

(K, ∅, R[d 7→ t])

if (i) R ∪ {t → d} is a left-reduced abstract congruence closure, and (ii) d does not

occur as the left- or right-hand side term in any rule in R.

If R is a left-reduced abstract congruence closure for E, then R′ obtained using

projection is also a left-reduced abstract congruence closure for E. The proof is similar

to the case above involving addition of compression.

4.5 Related Work

The fact that names are introduced for all given terms and subterms is a key charac-

teristic of congruence closure algorithms was also pointed out by Kapur [51]. Kapur

describes Shostak’s congruence closure using completion with extensions. He uses

rewrite rules of the form of simple D-rules and C-rules to describe the procedure.

Our description is more general and abstract—and thus allows us to capture other

algorithms as well. We shall discuss these aspects further in the next chapter.

Some of the earliest mention of using new constants and reducing a set of ground

equations to a set consisting of only D-rules and C-rules appears in the work of

Evans [42, 43, 44]. In [42], Evans considers the problem of deciding if two terms are

equal in the algebra A defined over the set T (Σ)/(↔∗
E∪E), where E is a set of axioms

for the class of algebras, and E is a set of ground equations (a finite presentation of the

particular E-algebra). It is shown that one can always generate a finite presentation

consisting of simple D-rules, of an algebra isomorphic to the algebra A, where the

finite presentation satisfies certain additional conditions. In case E = ∅, the procedure

corresponds to application of deduction, collapse and compression in a specific way.

In the general case (i.e. when E 6= ∅), the new presentation is obtained by the same

process enhanced with an additional rule that introduces certain instances of the

axioms in E . Evan’s paper also contains a characterization for decidability of the word

problem for such finitely presented algebras—but decidability of the characterization

is equivalent to the decidability of the word problem itself [43].

There are some similarities between these transformation rules and the “calculus of

rewriting with sharing” designed by Sherman [74]. This calculus operates on relations

that can be described by D-rules and C-rules, and employs several transformations

CHAPTER 4. ABSTRACT CONGRUENCE CLOSURE 35

rules, most of which can be derived from transformations used in completion. The

calculus contains a rule similar to deduction, though surprisingly, its application is

not obligatory. This may reflect the fact that Sherman uses his calculus to provide an

equational semantics for an implementation of a symbolic computation system, but

does not address issues such as termination or completeness.

Using names or constants for subterms also captures the notion of sharing, which

is fairly well studied. This idea is similar to the idea of using caching techniques for

logic programming (also referred to as memoing), and the idea of SOUR graphs [57].

4.6 Summary

In this chapter, we presented an abstract definition of congruence closure—as a ground

convergent system over an extended signature; and we also presented completion-like

transition rules to construct such a closure. The abstract description is obtained using

the framework of Nelson and Oppen’s combination method, suitably modified to the

context of completion.

In the subsequent chapters, we shall argue for the usefulness of this description.

As is obvious, this framework is ideal for adding in theories and we shall concentrate

on a specific extension to incorporate associative and commutative function symbols

in Chapter 6, see also [11]. We do not describe in detail combination with theories

other than associativity and commutativity, as the basic idea remains the same.

We shall also provide a rule-based abstract description of the logical aspects of the

various published congruence closure algorithms and that would justify the terminol-

ogy (abstract congruence closure). Additionally, using the abstract rules, we can also

get efficient implementation of completion based congruence closure procedure—one

can effectively utilize the theory of redundancy to figure out and eliminate inferences

which are not necessary, and moreover also use knowledge about efficient indexing

mechanisms. These aspects will be discussed in Chapter 5.

The concept of an abstract congruence closure is also relevant for describing ap-

plications that use congruence closure algorithms. Some of these applications include

efficient normalization by rewrite systems [30, 10], computing a complete set of rigid

E-unifiers [79] and combination of congruence closure and E-unification algorithms—

all of which are discussed in Chapter 7,

The concept of an abstract congruence closure as detailed here and the rules for

computation open up new frontiers too. For example, the transition rules presented

CHAPTER 4. ABSTRACT CONGRUENCE CLOSURE 36

in Section 4.1 can be naturally implemented in MAUDE [33]. Moreover, specific

strategies, such as the ones presented in Chapter 5 can be encoded easily too. This

might provide a basis for automatically verifying the correctness of congruence closure

algorithms3.

3Personal communication with Manuel Clavel.

Chapter 5

Congruence Closure Stategies

In this chapter we substantiate our claim that the description of congruence closure

given in Chapter 4 is indeed an abstract description. This we do by casting the logical

aspects of various congruence closure algorithms that appear in the literature in our

general framework. In particular, we discuss the algorithms proposed by Downey,

Sethi and Tarjan [41], Nelson and Oppen [64] and Shostak [75] as specific variants of

our general abstract description. That is, we provide a description of these algorithms

(modulo some implementation details) using abstract congruence closure transition

rules.

Term directed acyclic graphs (dags) is a common data structure used to implement

algorithms that work with terms over some signature—such as the congruence closure

algorithm. In fact, many algorithms that have been described for congruence closure

assume that the input is an equivalence relation on vertices of a given dag, and the

desired output is an equivalence on the same dag that is defined by the congruence

relation.

Figure 2 illustrates how a given term dag is (abstractly) represented using D-

rules. The solid lines represent subterm edges, and the dashed lines represent a binary

relation on the vertices. We have a D-rule corresponding to each vertex, and a C-rule

for each dashed edge. Note that the D-rules corresponding to a conventional term dag

representation are all simple D-rulesas defined in Section 4.1. The definition of D-

rules is more general, and allows for arbitrary terms on the left-hand sides. In a sense

this corresponds to storing contexts, rather than just symbols from Σ, in each node (of

the term dag). This is an attempt to keep as much of the term structure information

as possible and still get advantages offered by a simplified term representation via

extensions.

37

CHAPTER 5. CONGRUENCE CLOSURE STATEGIES 38

f f

g gh

ha b c

d

D-rules representing the term dag:

a → c1 gc1c1 → c2 fc1c2 → c3

b → c4 hc4 → c5 c → c6

d → c7 hc7 → c8 gc6c8 → c9

fc5c9 → c10

C-rules representing the relation on vertices:

c1 ≈ c5 c2 ≈ c9 c3 ≈ c10

c4 ≈ c7 c6 ≈ c5 c5 ≈ c8

Figure 2: A term dag and a relation on its vertices

Before we start discussing specific congruence closure algorithms, we need to spec-

ify a set U and an ordering �U on this set. Since elements of U serve only as names,

we can choose U to be any countable set of symbols. An ordering �U need not

be specified a-priori but can be defined on-the-fly as the derivation proceeds. (The

ordering has to be extended so that the irreflexivity and transitivity properties are

preserved).

Traditional congruence closure algorithms employ data structures such as the fol-

lowing:

(i) Input dag: Starting from the state (∅, E0, ∅), if we apply extension and sim-

plification to create simple D-rules using the strategy (Ext ◦ Sim∗)∗, we finally

get to a state (K1, E1, D1) where all equations in E1 are of the form c ≈ d, for

c, d ∈ K1. The set D1, then, represents the input dag and E1 represents the (in-

put) equivalence on the vertices of this dag. Note that due to eager simplification,

we obtain representation of a dag with maximum possible sharing. For example, if

E0 = {a ≈ b, ffa ≈ fb}, then K1 = {c0, c1, c2, c3, c4}, E1 = {c0 ≈ c1, c3 ≈ c4} and

R1 = {a→ c0, b→ c1, fc0 → c2, fc2 → c3, fc1 → c4}.
(ii) Signature table: The signature table (indexed by vertices of the input dag) stores

a signature1 for some or all vertices. Clearly, the signatures are fully left-reduced

simple D-rules.

(iii) Use table: The use table (also called predecessor list) is a mapping from the

constant c to the set of all vertices whose signature contains c. This translates, in our

presentation, to a method of indexing the set of D-rules.

1The signature of a term f(t1, . . . , tk) is defined as f(c1, . . . , ck) where ci is the name of the
equivalence class containing term ti.

CHAPTER 5. CONGRUENCE CLOSURE STATEGIES 39

(iv) Union Find: The union-find data structure that maintains equivalence classes on

the set of vertices is represented by the set of C rules. If we apply orientation and sim-

plification to the state (K1, E1, D1) described above, using the strategy (Ori◦Sim∗)∗,

we obtain a state (K1, ∅, D1 ∪ C1). The set C1 is a representation of the Union-Find

structure capturing the input equivalence on vertices. Continuing with the same

example, C1 would be the set {c0 → c1, c3 → c4}.
We note that, D-rules serve a two-fold purpose: they represent the input term

dag, and also a signature table. We shall also note that composition is used only

implicitly in the various algorithms via path-compression on the union-find structure.

5.1 Shostak’s Method

Shostak’s congruence closure procedure was first described using simple D-rules and

C-rules by Kapur [51]. We show here that Shostak’s congruence closure procedure

is a specific strategy over the general transition rules for abstract congruence closure

presented in Section 4.2.

Shostak’s congruence closure is dynamic: it can accept new equations after it has

processed some equations, and can incrementally take care of the new equation. Its

input state is (∅, E0, ∅). Shostak’s procedure can be described (at a fairly abstract

level) as:

Shos = ((Sim∗ ◦ Ext∗)∗ ◦ (Del ∪Ori) ◦ (Col ◦Ded∗)∗)∗

which is implemented as (i) pick an equation s ≈ t from the E-component, (ii) use

simplification to normalize the term s to a term s′ (iii) use extension to create simple

D-rules for subterms of s′ until s′ reduces to a constant, say c, whence extension is

no longer applicable. Perform steps (ii) and (iii) on the other term t as well to get a

constant d. (iv) if c and d are identical then apply deletion (and continue with (i)),

and if not, create a C-rule using orientation. (v) Once we have a new C-rule, perform

all possible collapse step by this new rule, where each collapse step is followed by all

the resulting deduction steps arising out of that collapse. The whole process is now

repeated starting from step (i).

Shostak’s procedure uses indexing based on the idea of the use() list. This use()

based indexing is used to identify all possible applications of collapse.

If the E-component of the state is empty while attempting to apply step (i),

Shostak’s procedure halts. It is fairly easy to observe that Shostak’s procedure halts

CHAPTER 5. CONGRUENCE CLOSURE STATEGIES 40

in a final state. Hence, Theorem 3 establishes that the R-component of Shostak’s

halting state contains a convergent system and is an abstract congruence closure.

Example 9 We use the set E0 used in Example 8 of Section 4.1 to illustrate Shostak’s

method. We show some of the important intermediate steps of a Shostak derivation

in Table 2.

i Constants Ki Equations Ei Rules Ri Transition

0 ∅ E0 ∅
1 {c0, c1} {ffa ≈ fb} {a→ c0, b→ c1} Ext2 ◦Ori
2 {c0, c1} {ffc1 ≈ fb} {a→ c0, b→ c1, c0 → c1} Sim
3 {c0, . . . , c3} {c3 ≈ fb} R2 ∪ {fc1 → c2, fc2 → c3} Ext2

4 {c0, . . . , c3} {c3 ≈ c2} R3 Sim2

5 {c0, . . . , c3} ∅ R4 ∪ {c3 → c2} Ori

Table 2: Example: Intermediate states in a derivation illustrating Shostak’s dynamic
congruence closure algorithm.

5.2 The Downey-Sethi-Tarjan Algorithm

The Downey, Sethi and Tarjan [41] procedures assumes that the input is a dag and an

equivalence relation on its vertices, which, in our language, means that the starting

state for this procedures is (K1, ∅, D1 ∪ C1), where D1 represents the input dag and

C1 represents the initial equivalence. It can be succinctly abstracted as:

DST = ((Col ◦ (Ded ∪ {ε}))∗ ◦ (Sim∗ ◦ (Del ∪Ori))∗)∗

where ε is the null transition rule. This strategy is implemented as follows (i) if

a collapse rule is applicable, it is applied and any resulting new deduction steps

are also done. This is repeated until no more collapse steps are possible. (ii) if

no collapse steps are possible, then each C-equation in the E-component is picked

up sequentially, fully-simplified (simplification) and then either deleted (deletion) or

oriented (orientation).

Although the above description captures the essence of the Downey, Sethi and

Tarjan procedure, a few implementation details need to be pointed out. Firstly,

the Downey, Sethi and Tarjan procedure keeps the original dag (represented by D1)

CHAPTER 5. CONGRUENCE CLOSURE STATEGIES 41

intact2, but changes signatures in a signature table. Hence, in the actual implemen-

tation described in [41], the (Col ◦ (Ded ∪ {ε}))∗ strategy is applied by: (i) deleting

all signatures that will be changed, i.e., deleting all D-rules which can be collapsed;

(ii) computing new signatures using the original copy of the signatures stored in the

form of the dag D1; and, finally, (iii) inserting the newly computed signatures into the

signature table and checking for possible deduction steps. Our description achieves

the same end result, but, by doing fewer inferences.

Secondly, in the Downey, Sethi and Tarjan procedure, for efficiency, an equation

c ≈ d is oriented to c→ d if the constant c occurs fewer times than d in the signature

table. This is done to minimize the number of collapse steps. Additionally, indexing

based on the use() tables is used for efficiently implementing the specific strategy.

Let (K1, ∅, D1 ∪C1) `! (Kn, En, Dn ∪Cn) be a derivation using the DST strategy.

Then, it is easily seen that the state (Kn, En, Dn ∪Cn) is a final state, and hence the

set Dn ∪ Cn is convergent, and also an abstract congruence closure. We remark here

that Dn holds the information that is contained in the signature table, and Cn holds

information in the union-find structure. The set Cn is usually considered the output

of the Downey, Sethi and Tarjan procedure.

Example 10 We illustrate the Downey-Sethi-Tarjan algorithm by using the same set

of equations E0, used in Example 8 of Section 4.1. The start state is (K1, ∅, D1 ∪C1)

where K = {c0, . . . , c4}, D1 = {a → c0, b → c1, fc0 → c2, fc2 → c3, fc1 → c4},
and, C1 = {c0 → c1, c3 → c4}. We show some of the important intermediate stages

in Table 3. Note that c4 ≈ c2 is oriented in a way that no further collapses are needed

thereafter.

i Consts Ki Eqns Ei Rules Ri Transition

1 K1 ∅ D1 ∪ C1

2 K1 ∅ {a→ c0, b→ c1, fc1 → c2, Col
fc2 → c3, fc1 → c4} ∪ C1

3 K1 {c2 ≈ c4} R2 Ded
4 K1 ∅ R3 − {fc1 → c2} ∪ {c4 → c2} Ori

Table 3: Example: Intermediate states in a derivation illustrating the congruence
closure algorithm proposed by Downey, Sethi and Tarjan.

2We could make a copy of the original D1 rules and not change them, while keeping a separate
copy as the signatures.

CHAPTER 5. CONGRUENCE CLOSURE STATEGIES 42

5.3 The Nelson-Oppen Procedure

The Nelson-Oppen procedure is not exactly a completion procedure and it does not

generate a congruence closure in our sense. The initial state of the Nelson-Oppen

procedure is given by the tuple (K1, E1, D1), where D1 is the input dag, and E1 rep-

resents an equivalence on vertices of this dag. The sets K1 and D1 remain unchanged

in the Nelson-Oppen procedure. In particular, the inference rule used for deduction

is different from the conventional deduction rule3.

NODeduction:
(K, E,D ∪ C)

(K,E ∪ {c ≈ d}, D ∪ C)

if there exist two D-rules f(c1, . . . , ck)→ c, and, f(d1, . . . , dk)→ d in the set D; and,

ci →!
C ◦ ←!

C di, for i = 1, . . . , k.

The Nelson-Oppen procedure can now (at a certain abstract level) be represented

as:

NO = (Sim∗ ◦ (Ori ∪Del) ◦NODed∗)∗

which is applied in the following sense: (i) select a C-equation c ≈ d from the E-

component, (ii) simplify the terms c and d using simplification steps until the terms

can’t be simplified any more, (iii) either delete, or orient the simplified C-equation,

(iv) apply the NODeduction rule until there are no more non-redundant applications

of this rule, (v) if the E-component is empty, then we stop, otherwise continue with

step (i).

Certain details like the fact that newly added equations to the set E are chosen

before the old ones in an application of orientation and indexing based on the use() ta-

ble, are abstracted away in this description. Additionally, indexing is used to identify

which possible D-rules should be considered for NOCongruence applications.

Assume that the derivation (K1, E1, D1) `∗NO (Kn, En, Dn ∪Cn). is obtained using

the Nelson-Oppen strategy. One consequence of using a non-standard deduction rule,

NODeduction, is that the resulting set Dn ∪ Cn = D1 ∪ Cn need not necessarily be

convergent, although the the rewrite relation Dn/Cn [38] is convergent.

3This rule performs deduction modulo C-equations, i.e., we compute critical pairs between D-
rules modulo the congruence induced by C-equations. Hence, the Nelson-Oppen procedure can
be described as an extended completion [38] (or completion modulo C-equations) method over an
extended signature.

CHAPTER 5. CONGRUENCE CLOSURE STATEGIES 43

Example 11 Using the same set E0 as equations, we illustrate the Nelson-Oppen

procedure. The initial state is given by (K1, E1, D1) where K1 = {c0, c1, c2, c3, c4};
E1 = {c0 ≈ c1, c3 ≈ c4}; and, D1 = {a → c0, b → c1, fc0 → c2, fc2 → c3, fc1 →
c4}. We summarize the details in Table 4.

i Constants Ki Equations Ei Rules Ri Transition

1 K1 E1 D1

2 K1 {c3 ≈ c4} D1 ∪ {c0 → c1} Ori
3 K1 {c2 ≈ c4, c3 ≈ c4} R2 NODed
4 K1 {c3 ≈ c4} R2 ∪ {c2 → c4} Ori
5 K1 ∅ R4 ∪ {c3 → c4} Ori

Table 4: Example: Intermediate states in a derivation illustrating Nelson and Oppen’s
congruence closure algorithm.

Consider deciding the equality fa ≈ ffb. Even though fa↔∗
E0

ffb, the terms fa

and ffb have distinct normal forms with respect to R5. But equivalent terms in the

original term universe have identical normal forms.

5.4 Finite Equivalence Classes

In certain special cases, we can get an almost linear time algorithm for computing the

congruence closure for a given set of equations. Let us assume that the signature Σ is

finite, and that the set E is finite and is such that every congruence class defined by E

(over terms T (Σ)) is of finite cardinality. This condition is easily seen to be equivalent

to the acyclicity condition on the graph formed from the initial term universe dag by

contracting vertices that are in the same congruence class. The acyclicity condition

is mentioned in [41].

Lemma 7 Let E be a finite set of ground equations over the signature Σ. Let G be a

subterm (directed) graph representing all terms that occur in E. Let G′ be the graph

obtained from G by collapsing vertices representing terms related by the congruence

induced by E into a single vertex. Then, G′ is acyclic, if and only if, every congruence

class induced by E is finite.

Proof. If there is a cycle in G′, then clearly some equivalence class has infinitely

many terms.

CHAPTER 5. CONGRUENCE CLOSURE STATEGIES 44

To prove the converse we need the correctness of graph-based congruence closure

algorithms. Let c1, . . . , cm denote vertices of the graph G′. For each term f(t1, . . . , tk)

that occurs in E, introduce a rule f(c′1, . . . , c
′
k)→ c′ where c′i is the equivalence class

of term ti, and c′ is the class of f(t1, . . . , tk). Let R denote the set of all such rules.

From correctness of, say Downey, Sethi and Tarjan algorithm, we know that s↔∗
E t

iff s→!
R ◦ ←!

R t for all terms s, t ∈ T (Σ).

Since G′ is acyclic, the vertices of G′ can be (reverse) topologically ordered, say c1,-

c2, . . . , cm is this order. By an induction on i we can conclude that the set {t : t→!
R ci}

is finite. Additionally, by an induction on the subterm relation we can conclude that

for any term t′ in R-normal form, the set {t : t→!
R t′} is finite.

Under the above mentioned condition, we can get an almost linear time imple-

mentation of the following strategy to compute a congruence closure for a set of

equations:

Fin = (Ori∗ ◦NOCon∗)∗

An immediate and useful consequence of this acyclicity condition is that we can

define an ordering on the constants K, as follows: if f(c1, . . . , ck) → c ∈ D1, then

c � ci, for each i. It can be easily verified that � defines a partial order on K which

is also compatible with the congruence relation on the vertices.

The trick is to restrict the application of orientation to certain C-equations only.

Specifically, we identify a minimal (with respect to �) equivalence class, and only

equations over constants in that equivalence class are oriented. Let us call all such

constants, that are equivalent to constants that have been chosen by orientation,

fixed. Now, the application of the NOCongruence rules is restricted to those rules

which have only the fixed constants on their left-hand sides.

The question of how to efficiently perform orientation and NOCongruence remains

to be discussed. In order to identify minimal constants for orientation without ever

repeating work, we can do a depth-first search on the dag D1 (defining the order �)

enhanced with edges representing the equations in E ∪ C.

In order to efficiently apply NOCongruence, rather than keeping complete signa-

tures of vertices, we can just group the D1 rules so that all potentially overlapping

rules would be in the same group of the partition. This is a kind of indexing different

from the one based on use() list.

If we start with the Downey, Sethi and Tarjan’s procedure’s start state (K1, ∅, D1∪
C1), we can obtain a linear time implementation for computing congruence closure

under the acyclicity condition. This is obtained by suitable choices of data-structures,

CHAPTER 5. CONGRUENCE CLOSURE STATEGIES 45

see [41] for details.

However, using concepts similar to the ones used above, we can also get an equally

efficient implementation of a slightly different strategy, namely,

SFin = (Ori∗ ◦ (Col ◦ (Ded ∪ {ε}))∗)∗

The basic idea is to reduce the number of applications of collapse (which correspond

to updating of the signatures) to O(m). In an application of collapse, we replace

some constant c by its C-normal form c∗ only when we are sure that the equivalence

class of c∗ has been completely determined (i.e. no other terms need to be added to

it) and hence, c∗ will not have to be collapsed to any other constant later. The fixed

equivalence classes can be identified as they will appear in the set C (because we

restrict orientation to minimal constants as before). Again, we can restrict deduction

so that we consider overlaps only on signatures in which every constant that appears

has been fixed.

Note that if the assumption that all congruence classes are finite is violated, then

� will not be a partial order, and orientation (subject to the minimality condition)

will fail.

Example 12 If we try to construct a congruence closure for the set of equations E0

(from example 8), then we will note that we get stuck. This is because the equivalence

class containing fa is not finite - it contains fna, for all n ≥ 1. In the following, we

give some of the important intermediate stages (using Fin):

i Constants Ki Equations Ei Rules Ri

1 K1 {c0 ≈ c1, c3 ≈ c4} D1

2 K1 {c3 ≈ c4} D1 ∪ {c0 → c1}
3 K1 {c2 ≈ c4, c3 ≈ c4} R2

We get stuck at this last stage as we are unable to perform orientation since there is

no minimal equivalence class in E (actually there is only one equivalence class, that

of, say, c2, but, c4 � c2.)

5.5 Experimental Results

We have implemented five congruence closure algorithms, including those proposed by

Nelson and Oppen (NO) [64], Downey, Sethi and Tarjan (DST) [41], and Shostak [75],

CHAPTER 5. CONGRUENCE CLOSURE STATEGIES 46

and two algorithms based on completion—one with an indexing mechanism (IND) and

the other without (COM). The implementations of the first three procedures are based

on the representation of terms by directed acyclic graphs and the representation of

equivalence classes by a union-find data structure. The completion procedure COM

uses the following strategy:

((Sim∗ ◦ Ext∗)∗ ◦ (Del ∪Ori) ◦ (Com ◦Col)∗ ◦Ded∗)∗.

The indexed variant IND uses a slightly different strategy

((Sim∗ ◦ Ext∗)∗ ◦ (Del ∪Ori) ◦ (Col ◦Com ◦Ded)∗)∗.

Indexing in the case of completion refers to the use of suitable data structures to

efficiently identify which D-rules contain specified constants.

In a first set of experiments, we assume that the input is a set of equations

presented as pairs of trees (representing terms). We added a preprocessing step to

the NO and DST algorithms to convert the given input terms into a dag and initialize

the other required data-structures. The other three algorithms interleave construction

of a dag with deduction steps. The published descriptions DST and NO do not address

the construction of a dag. Our implementation maintains the list of terms that have

been represented in the dag in a hash table and creates a new node for each term not

yet represented. We present below a sample of our results to illustrate some of the

differences between the various algorithms.

The input set of equations E can be classified based on: (i) the size of the input

and the number of equations, (ii) the number of equivalence classes on terms and

subterms of E, and, (iii) the size of the use lists. The first set of examples are

relatively simple and developed by hand to highlight strengths and weaknesses of

the various algorithms. Example (a)4 contains five equations that induce a single

equivalence class. Example (b) is the same as (a), except that it contains five copies

of all the equations. Example (c)5 requires slightly larger use lists. Finally, example

(d)6 consists of equations that are oriented in the “wrong” way.

In Table 5 we compare the different algorithms by their total running time, in-

cluding the preprocessing time. The times shown are the averages of several runs on

4The equation set is {f2(a) ≈ a, f10(a) ≈ f15(b), b ≈ f5(b), a ≈ f3(a), f5(b) ≈ b}.
5The equation set is {g(a, a, b) ≈ f(a, b), gabb ≈ fba, gaab ≈ gbaa, gbab ≈ gabb, gbba ≈

gbab, gaaa ≈ faa, a ≈ c, c ≈ d, d ≈ e, b ≈ c1, c1 ≈ d1, d1 ≈ e1}.
6The set is {g(f i(a), h10(b)) ≈ g(a, b), i = {1, · · · , 25}, h47(b) ≈ b, b ≈ h29(b), h(b) ≈ c0, c0 ≈

c1, c1 ≈ c2, c2 ≈ c3, c3 ≈ c4, c4 ≈ a, a ≈ f(a)}.

CHAPTER 5. CONGRUENCE CLOSURE STATEGIES 47

a Sun Ultra workstation under similar load conditions. The time was computed using

the gettimeofday system call. In Table 5 Eqns refers to the number of equations; Vert

to the number of vertices in the initial dag; and Class to the number of equivalence

classes induced on the dag.

Eqns Vert Class DST NO SHO COM IND
Ex.a 5 27 1 1.286 1.640 0.281 0.606 0.409
Ex.b 20 27 1 2.912 2.772 0.794 1.858 0.901
Ex.c 12 20 6 1.255 0.733 0.515 0.325 0.323
Ex.d 34 105 2 10.556 22.488 7.275 12.077 4.416

Table 5: Comparison between congruence closure algorithms in terms of the total
running time (in milliseconds) on small examples.

Table 6 contains similar comparisons for considerably larger examples consisting

of randomly generated equations over a specified signature. Again we show total

running time, including preprocessing time7. The column Σi denotes the number of

function symbols of arity i in the signature and d denotes the maximum term depth.

Eqns Vert Σ0 Σ1 Σ2 d Cla ss DST NO SHO IND
Ex.1 10000 17604 2 0 2 3 7472 11.1 3.2 10.2 13.0
Ex.2 5000 4163 2 1 1 3 3 2.3 306.2 3.1 0.8
Ex.3 5000 7869 3 0 1 3 2745 2.4 1.4 3.5 4.0
Ex.4 6000 8885 3 0 1 3 9 3.6 1152.7 52.4 7.1
Ex.5 7000 9818 3 0 1 3 1 4.6 1682.8 47.8 5.5
Ex.6 5000 645 4 2 0 23 77 1.2 1.6 0.4 0.4
Ex.7 5000 1438 10 2 0 23 290 1.5 3.7 0.4 0.4

Table 6: Comparison between congruence closure algorithms in terms of the total
running time (in seconds) on large randomly generated examples.

In Table 7 we show the time for computing a congruence closure assuming terms

are already represented by a dag. In other words, we do not include the time it

takes to create a dag. Note that we include no comparison with Shostak’s method,

7Times for COM are not included as indexing is indispensable for larger examples.

CHAPTER 5. CONGRUENCE CLOSURE STATEGIES 48

as the dynamic construction of a dag from given term equations is inherent in this

procedure. However, a comparison with a suitable strategy (in which all extension

steps are applied before any deduction steps) of IND is possible. We denote by IND*

indexed completion based on a strategy that first constructs a dag. The examples are

the same as in Table 6.

DST NO IND*
Ex1 0.919 0.296 0.076
Ex2 0.309 319.112 1.971
Ex3 0.241 0.166 0.030
Ex4 0.776 1117.239 7.301

DST NO IND*
Ex5 0.958 1614.961 9.770
Ex6 0.026 0.781 0.060
Ex7 0.048 2.470 0.176

Table 7: Comparison between congruence closure algorithms in terms of the running
time (in seconds) assuming input is in a dag form.

Several observations can be drawn from these results. First, the Nelson-Oppen

procedure NO is competitive only when few deduction steps are performed and the

number of equivalence classes is large. This is because it uses a non-standard de-

duction rule, which forces the procedure to unnecessarily repeat the same deductions

many times over in a single execution. Not surprisingly, straight-forward completion

without indexing is also inefficient when many deduction steps are necessary. Index-

ing is of course a standard technique employed in all practical implementations of

completion.

The running time of the DST procedure critically depends on the size of the hash

table that contains the signatures of all vertices. If the hash table size is large, enough

potential deductions can be detected in (almost) constant time. If the hash table size

is reduced, to say 100, then the running times increased by a factor of up to 50. A

hash table with 1000 entries was sufficient for our examples (which contained fewer

than 10000 vertices). Larger tables did not improve the running times.

Indexed Completion, DST and Shostak’s method are roughly comparable in per-

formance, though Shostak’s algorithm has some drawbacks. For instance, equations

are always oriented from left to right. In contrast, Indexed Completion always orients

equations in a way so as to minimize the number of applications of the collapse rule,

an idea that is implicit in Downey, Sethi and Tarjan’s algorithm. Example (b) illus-

trates this fact. More crucially, the manipulation of the use lists in Shostak’s method

is done in a convoluted manner due to which redundant inferences may be done when

CHAPTER 5. CONGRUENCE CLOSURE STATEGIES 49

searching for the correct non-redundant ones8. As a consequence, Shostak’s algorithm

performs poorly on instances where use lists are large and deduction steps are many

such as in Examples (c), 4 and 5.

Finally, we note that the indexing used in our implementation of completion is

simple—with every constant c we associate a list of D-rules that contain c as a

subterm. On the other hand DST maintains at least two different ways of indexing the

signatures, which makes it more efficient when the examples are large and deduction

steps are plenty. On small examples, the overhead to maintain the data structures

dominates. This also suggests that the use of more sophisticated indexing schemes

for indexed completion might improve its performance.

5.6 Related Work and Other Remarks

Kapur [51] considered the problem of casting Shostak’s congruence closure [75] algo-

rithm in the framework of ground completion on rewrite rules. Our work has been

motivated by the goal of formalizing not just one, but several congruence closure

algorithms, so as to be able to better compare and analyze them.

We have suggested that, abstractly, congruence closure can be defined as a ground

convergent system; and that this definition does not restrict the applicability of con-

gruence closure. The rule-based abstract description of the logical aspects of the

various published congruence closure algorithms leads to a better understanding of

these methods. It explains the observed behaviour of implementations and also allows

one to identify weaknesses in specific algorithms.

The paper also illustrates the use of an extended signature as a formalism to

model and subsequently reason about data structures like the term dags, which are

based on the idea of structure sharing. Term dag representations are also crucial for

obtaining efficient syntactic unification algorithms. Hence this formalism can be used

to describe some of these unification algorithms too [14]. In Section 7.2.4 we shall

elaborate more on this.

8The description in Section 5.1 accurately reflects the logical aspects of Shostak’s algorithm, but
does not provide details on data structures like the use lists.

Chapter 6

Congruence Closure Modulo

Associativity and Commutativity

We next generalize the inference rules presented in section 4.2 for computing a con-

gruence closure to the case when certain function symbols are known to be associative

and commutative. Associativity and commutativity properties appear in many appli-

cations. Being non-ground, it is not clear how one can incorporate these properties in

the classical description of congruence closure algorithms. Our approach of describing

congruence closure using completion is easily generalized to handle the presence of

AC symbols.

We also consider the problem of constructing a convergent rewrite system (over

the same signature) for a ground AC-theory. However, rather than obtaining a system

R of rules such that→AC\Re is convergent, we construct a set R such that a different

reduction relation, which we denote by→P\Rs is convergent. This new notion is much

simpler than usual rewriting modulo AC. This set is constructed by transforming

the obtained AC-congruence closure, which is a convergent system over an extended

signature, to a set over the original signature, see Section 6.6.

An interesting fall out of this second result is the case when there are no associative

and commutative symbols in the signature. In this special case, the definition of AC-

congruence closure specializes to that of abstract congruence closure defined before.

Additionally, the transformation from a (AC) congruence closure to a convergent

system over the original signature also specializes to a simple method for construction

of ground convergent rewrite systems (with the standard definition of rewriting) for

theories presented by a set of ground equations. This provides a technique, different

from the traditional critical-pair completion (over original signature) approach, for

50

CHAPTER 6. CONGRUENCE CLOSURE MODULO AC 51

obtaining a ground convergent system. The new method is efficient (as it allows for

sharing structure via constants) and does not use any total reduction ordering over

terms in the original signature.

6.1 Preliminaries

Let Σ be a signature consisting of constants and function symbols, and V be a set

of variables. The arity of a symbol f in Σ, denoted by α(f), is a set of natural

numbers. The set of ground terms T (Σ) over Σ is the smallest set containing {c ∈
Σ : α(c) = {0}} and such that f(t1, . . . , tn) ∈ T (Σ) whenever f ∈ Σ, n ∈ α(f) and

t1, . . . , tn ∈ T (Σ).

If ΣAC ⊂ Σ is a finite set of function symbols, we denote by P the identities

f(x1, ... , xk, s, y1, ... , yl, t, z1, ... , zm) ≈ f(x1, ... , xk, t, y1, ... , yl, s, z1, ... , zm)

where f ∈ ΣAC and k + l + m + 2 ∈ α(f); and by F the set of identities

f(x1, . . . , xm, f(y1, . . . , yr), z1, . . . , zn) ≈ f(x1, . . . , xm, y1, . . . , yr, z1, . . . , zn)

where f ∈ ΣAC and {m + n + 1, m + n + r} ⊂ α(f). The congruence induced by

P is called a permutation congruence. Flattening refers to normalizing a term with

respect to the set F (considered as rewrite rules). The set AC = F ∪ P defines an

AC-theory. The symbols in ΣAC are called associative-commutative operators1. We

require that α(f) be singleton for all f ∈ Σ − ΣAC and α(f) = {2, 3, 4, . . .} for all

f ∈ ΣAC .

Rewriting in presence of associative and commutative operators requires exten-

sions of rules [67]. Given an AC-operator f and a rewrite rule ρ : f(c1, . . . , ck) → c,

we define its extension ρe as f(c1, . . . , ck, x) → f(c, x). Given a set of rewrite rules

R, by Re we denote the set R plus extensions of rules in R. In short, when working

with AC-symbols (i) extensions have to be used for rewriting terms and computing

critical pairs, and (ii) syntactic matching and unification is replaced by matching and

unification modulo AC. Reduction modulo AC is defined by s →R\AC t iff there

exists a rule l → r in R and a substitution σ such that s = s[l′], l′ ↔∗
AC lσ, and

t = s[rσ]; see [38] for details.

1The equations F ∪ P define a conservative extension of the theory of associativity and commu-
tativity to varyadic terms. For a fixed arity binary function symbol, the equations f(x, y) ≈ f(y, x)
and f(f(x, y), z) ≈ f(x, f(y, z)) define an AC-theory.

CHAPTER 6. CONGRUENCE CLOSURE MODULO AC 52

6.2 Associative-Commutative Rules

Let Σ be a signature, and E a set of ground equations over Σ. Let ΣAC be some

subset of Σ, containing all the associative-commutative operators and AC be the set

F ∪P as defined above. The set Σ can be written as a disjoint union of singleton sets

Σi’s, where each Σi contains exactly one function symbol in Σ.

We note that apart from the simple D-rules and the C-rules obtained as a result

of variable abstraction, in the presence of AC-symbols, we shall additionally obtain

AC-rules. In other words, the word problem for finitely presented commutative semi-

groups can not be solved by turning all equations to either D- or C-rules; we require

slightly more general rules.

Definition 6 Let Σ be a signature and K be a set of constants disjoint from Σ.

Rewrite rules, which when fully flattened are of the form f(c1, . . . , ck)→ f(d1, . . . , dl),

where f ∈ ΣAC, and c1, · · · , ck, d1, · · · , dl ∈ K, will be called AC-rules.

Note that each simple D- and AC-rule is over exactly one signature Σi ∪K. The

C-rules are equations over every signature Σi ∪K.

For example, let Σ consist of function symbols, a, b, c, f and g, (f is AC) and let

E0 be a set of three equations f(a, c) ≈ a, f(c, g(f(b, c))) ≈ b and g(f(b, c)) ≈ f(b, c).

Viewing Σ as the disjoint union of signatures Σ1 = {a}, Σ2 = {b}, Σ3 = {c}, Σ4 = {f}
and Σ5 = {g}, we can introduce new constants K = {c0, c1, c2, c3, c4} so that each

equation (or rule) is over some Σi ∪K. Therefore, if we let

D1 = {a→ c1, b→ c2, c→ c3, f(c2, c3)→ c4, g(c4)→ c5},

then, using these rules we can simplify the original equations in E0 to obtain the new

set E1 = {f(c1, c3) ≈ c1, f(c3, c5) ≈ c2, c5 ≈ c4}.
We can now generalize all definitions made in the context of an abstract congruence

closure (E = ∅) to the case when E is the set of AC axioms.

Definition 7 Let R be a set of D-rules, C-rules and AC-rules (with respect to Σ

and K). We say that a constant c in K represents a term t in T (Σ ∪ K) (via the

rewrite system R) if t↔∗
AC\Re c. A term t is also said to be represented by R if it is

represented by some constant via R.

For example, the constant c4 represents the term f(c, b) via D1.

CHAPTER 6. CONGRUENCE CLOSURE MODULO AC 53

Definition 8 Let Σ be a signature and K be a set of constants disjoint from Σ. A

ground rewrite system R = ACe ∪ De ∪ C is said to be an associative-commutative

congruence closure (with respect to Σ and K) if

(i) D is a set of D-rules, C is a set of C-rules, AC is a set of AC-rules, and

every constant c ∈ K represents at least one term t ∈ T (Σ) via R, and

(ii) AC\R is a ground convergent modulo AC over T (Σ ∪K).

In addition, if E is a set of ground equations over T (Σ) such that,

(iii) If s and t are terms over T (Σ), then s ↔∗
AC∪E t if, and only if, s →∗

AC\R

◦ ↔∗
AC ◦ ←∗

AC\R t,

then R will be called an associative-commutative congruence closure for E.

When ΣAC is empty this definition specializes to that of an abstract congruence

closure in Definition 4.

For instance, the rewrite system D1∪E1 above is not a congruence closure for E0,

as it is not a ground convergent rewrite system. But we can transform D1 ∪ E1 into

a suitable rewrite system, using a completion-like process described in more detail in

the next section, to obtain a congruence closure (Example 13),

R′ = {a→ c1, b→ c2, c→ c3, fc2c3 → c4, fc3c4 → c2, fc1c3 → c1,

fc2c2 → fc4c4, fc1c2 → fc1c4, gc4 → c4}

that provides a more compact representation of E0. Attempts to replace every

AC-rule by two D-rules (introducing a new constant in the process) leads to non-

terminating derivations.

6.3 Construction of Congruence Closures

The completion procedure is obtained by putting together completion procedures

over individual signatures Σi ∪K. Clearly, there are two distinct cases that need to

be combined: when fi ∈ Σi is AC, and when it is not. The individual completion

procedures working on equations in Σi ∪ K need to exchange equations between

constants in K that are generated during the completion procedure. For this purpose,

we choose an ordering in which the only terms smaller than a constant in K are other

constants in K.

Let U be a set of symbols from which new names (constants) are chosen. We need

a (partial) AC-compatible reduction ordering which orients the D-rules in the right

CHAPTER 6. CONGRUENCE CLOSURE MODULO AC 54

way, and orients all the C- and AC-equations. The precedence-based AC-compatible

ordering � of [72], with any precedence in which f �Σ∪U c, whenever f ∈ Σ and

c ∈ U , serves the purpose. However, much simpler partial orderings would suffice

too, but for convenience we use the ordering in [72]. In our case, this simply means

that, orientation of D-rules is from left to right. Additionally, the orientation of

an AC-rule will be given by: f(c1, . . . , ci) � f(c′1, . . . , c
′
j) iff either i > j, or i = j

and {c1, . . . , ci} �mult {c′1, . . . , c′j}, i.e., if the two terms have the same number of

arguments, we compare the multisets of constants using a multiset extension �mult

of the precedence �Σ∪U , see [39]. Note that we have defined the ordering on fully

flattened terms. Since we work modulo the AC congruence, in the sequel we shall

only consider fully flat terms and equations.

We next present a general method for construction of associative-commutative

congruence closures. Our description is fairly abstract, in terms of transition rules that

operate on triples (K, E,R), where K is a set of new constants that are introduced

(the original signature Σ is fixed); E is a set of ground equations (over Σ ∪ K) yet

to be processed; and R is a set of C-rules, D-rules and AC-rules. Triples represent

possible states in the process of constructing a closure. The initial state is (∅, E, ∅),
where E is the input set of ground equations.

6.3.1 Abstraction

New constants are introduced by the following transition.

Extension:
(K, E[t], R)

(K ∪ {c}, E[c], R ∪ {t→ c})

where t→ c is a D-rule, c 6∈ Σ ∪K; and, t occurs in some equation in E that is not

an AC-equation.

Once a D-rule t→ c has been introduced by extension, it can be used to eliminate

any other occurrence of t using the following rule.

Simplification:
(K, E[s], R)

(K, E[t], R)

where s occurs in some equation in E, and, s→AC\Re t.

We will also use flattening to replace a term in E or R by its corresponding

flattened form.

CHAPTER 6. CONGRUENCE CLOSURE MODULO AC 55

6.3.2 Deduction

It is fairly easy to see that any equation in E can be transformed to a C- or a

AC-equation by suitable extension, flattening and simplification. Once we have ob-

tained rules that contain terms only from a specific signature Σi∪K, we can perform

deduction steps on the separate parts.

In the case when fi ∈ Σi is an AC-symbol we use AC-superposition wherein we

consider overlaps between extensions of AC-rules.

ACSuperposition:
(K,E,R)

(K,E ∪ {f(s, xσ) ≈ f(t, yσ)}, R)

if f ∈ ΣAC , there exist D- or AC-rules f(c1, . . . , ck) → s and f(d1, . . . , dl) → t

in R, substitution σ is a most-general unifier modulo AC of f(c1, . . . , ck, x) and

f(d1, . . . , dl, y)2 and {c1, . . . , ck} ∩ {d1, . . . , dl} 6= ∅.
In the special case when one multiset is contained in the other, we obtain the

AC-collapse rule.

ACCollapse:
(K, E,R ∪ {t→ s})

(K,E ∪ {t′ ≈ s}, R)

if for some u→ v ∈ R, t→AC\{u→v}e t′, and if t↔∗
AC u then s � v.

In case of rules that do not contain AC-symbols at the top, superposition reduces

to simplification, and hence AC-collapse also captures such superpositions. Note that

we do not explicitly add AC extensions of rules to the set R, and so any rule in R

is either a C-rule, or a D-rule, or an AC-rule, and not its extension. We implicitly

work with extensions in AC-superposition.

6.3.3 Orientation

Equations are moved from the E-component of the state to the R-component by

orientation. All rules added to the R-component are either C-rules, D-rules or AC-

rules.

Orientation:
(K, E ∪ {s ≈ t}, R)

(K,E,R ∪ {s→ t})
2For the special case in hand, there is exactly one most general unifier modulo AC, and it is easy

to compute.

CHAPTER 6. CONGRUENCE CLOSURE MODULO AC 56

if s � t, and, s→ t is either a D-rule, or a C-rule, or a AC-rule.

Deletion allows us to delete trivial equations.

Deletion:
(K, E ∪ {s ≈ t}, R)

(K, E,R)

if s↔∗
AC t.

6.3.4 Simplification

We need additional transition rules to incorporate interaction between the individual

completion processes. In particular, C-rules can be used to perform simplifications on

the left- and right-hand sides of other rules. The use of C-rules to simplify left-hand

sides of rules is captured by AC-collapse. The simplification on the right-hand sides

is subsumed by the following generalized composition rule.

Composition:
(K, E,R ∪ {t→ s})

(K,E,R ∪ {t→ s′})

where s→AC\Re s′.

Example 13 Let E0 = {f(a, c) ≈ a, f(c, g(f(b, c))) ≈ b, g(f(b, c)) ≈ f(b, c)}.
Table 8 shows some intermediate stages of a derivation.

i Constants Ki Equations Ei Rules Ri Transitions

0 ∅ E0 ∅
1 {c1, c3} {fcgfbc ≈ b, {a→ c1, c→ c3, Ext2 ◦ Sim◦

gfbc ≈ fbc} fc1c3 → c1} Ori

2 K1 ∪ {c2, c4} {fcgfbc ≈ b} R1 ∪ {b→ c2, Sim2 ◦ Ext2◦
fc2c3 → c4, gc4 → c4} Sim ◦Ori

3 K2 ∅ R2 ∪ {fc3c4 → c2} Sim6 ◦Ori
4 K2 ∅ R3 ∪ {fc1c2 → fc1c4} ACSup ◦Ori
5 K2 ∅ R4 ∪ {fc2c2 → fc4c4} ACSup ◦Ori

Table 8: Example: Intermediate states in a derivation illustrating congruence closure
modulo associativity and commutativity.

The derivation moves equations, one by one, from the E-component of the state to

the R-component through simplification, extension and orientation. It can be verified

CHAPTER 6. CONGRUENCE CLOSURE MODULO AC 57

that the set R5 is an AC congruence closure for E0. Note that the side-condition

in extension disallows breaking of an AC-rule into two D-rules, which is crucial for

termination. We assume that f is AC and ci � cj if i < j.

6.4 Termination and Correctness

Definition 9 We use the symbol ` to denote the one-step transition relation on states

induced by the above transition rules. A derivation is a sequence of states ξ0 ` ξ1 ` · · ·.
A derivation is said to be fair if any transition rule which is continuously enabled is

eventually applied. The set R∞ of persisting rules is defined as ∪i ∩j>i Rj; and

similarly, K∞ = ∪i ∩j>i Kj.

We shall prove that any fair derivation will only generate finitely many persisting

rewrite rules (in the third component) using Dickson’s lemma [17]. Multisets over K∞

can be compared using the multiset inclusion relation. If K∞ is finite, this relation

defines a Dickson partial order.

Lemma 8 Let E be a finite set of ground equations. The set of persisting rules R∞

in any fair derivation starting from state (∅, E, ∅) is finite.

Proof. We first claim that K∞ is finite. To see this, note that new constants are

created by extension. Using finitely many applications of extension, simplification,

flattening and orientation, we can move all rules from the initial second component E

of the state tuple to the third component R. Fairness ensures that this will eventually

happen. Thereafter, any equations ever added to E can be oriented using flattening

and orientation, hence we never apply extension subsequently (see the side condition

of the extension rule). Let K∞ = {c1, . . . , cn}.
Next we claim that R∞ is finite. Suppose, R∞ contains infinitely many rules.

No transition rule (except extension) increases the number of D- and C-rules in

E ∪ R. Therefore, R∞ contains infinitely many AC-rules, and since ΣAC is finite,

one AC-operator, say f ∈ ΣAC , must occur infinitely often on the left-hand sides of

R∞. By Dickson’s lemma, there exists an infinite chain of rules, f(c11, . . . , c1k1) →
s0, f(c21, . . . , c2k2) → s1, . . ., such that {c11, . . . , c1k1} ⊆ {c21, . . . , c2k2} ⊆ · · ·, where

{ci1, . . . , ciki
} denotes a multiset and ⊆ denotes multiset inclusion. But, this contra-

dicts fairness (in application of AC-collapse).

CHAPTER 6. CONGRUENCE CLOSURE MODULO AC 58

6.4.1 Proof ordering

The correctness of the procedure will be established using proof simplification tech-

niques for associative-commutative completion, as described by Bachmair [5] and

Bachmair and Dershowitz [6]. In fact, we can directly use the results and the proof

measure from [6]. However, since all rules in R have a special form, we can choose

a simpler proof ordering. Other differences are (i) we consider AC-symbols to be

varyadic, but since the ordering is compatible modulo AC = P ∪ F , this does not

introduce any technical issues (as AC axioms for fixed arity AC-symbols are con-

tained in P ∪ F); (ii) we do not have explicit transition rules that create extensions

of rules in the R-component. Instead we use extensions of rules for simplification and

computation of superpositions.

Let s = s[uσ] ↔ s[vσ] = t be a proof step using the equation (rule) u ≈ v ∈
AC ∪ E ∪R. The complexity of this proof step is defined by

({s, t},⊥,⊥) if u ≈ v ∈ E ({s},⊥, t) if u ≈ v ∈ AC

({s}, u, t) if u→ v ∈ R ({t}, v, s) if v → u ∈ R

where ⊥ is a new symbol. Tuples are compared lexicographically using the multiset

extension of the reduction ordering � on terms over Σ ∪K∞ in the first component,

and the ordering � in the second and third component. The constant ⊥ is assumed

to be minimum. The complexity of a proof is the multiset of complexities of its

proof steps. The multiset extension of the ordering on tuples yields a proof ordering,

denoted by the symbol �P . The ordering �P on proofs is well founded as it is a

lexicographic combination of well founded orderings.

Lemma 9 Suppose (K, E,R) ` (K ′, E ′, R′). Then, for any two terms s, t ∈ T (Σ),

it is the case that s ↔∗
AC∪E′∪R′ t iff s ↔∗

AC∪E∪R t. Further, if π is a ground proof,

s0 ↔ s1 ↔ · · · ↔ sk, in AC ∪ E ∪R, then there is a proof π′, s0 = s′0 ↔ s′1 ↔ · · · ↔
s′l = sk, in AC ∪ E ′ ∪R′ such that π �P π′.

Proof. (Sketch) The first part of the lemma, which states that the congruence

on T (Σ) remains unchanged, is easily verified by exhaustively checking it for each

transition rule. In fact, except for extension, all the other transition rules are standard

rules for completion modulo a congruence, and hence the result follows. In case

(K, E,R) ` (K ′ = K ∪ {c}, E ′, R′ = R ∪ {t → c}) by extension, then s ↔∗
AC∪E∪R t

clearly implies s ↔∗
AC∪E′∪R′ t. For the other direction, if s ↔∗

AC∪E′∪R′ t, we replace

all occurrences of c in this proof by t to get a proof in AC ∪ E ∪R.

CHAPTER 6. CONGRUENCE CLOSURE MODULO AC 59

For the second part, one needs to check that each equation in (E−E ′)∪ (R−R′)

has a simpler proof in E ′ ∪ R′ ∪ AC for each transition rule application, see [6]. In

detail, we have the following cases:

(i) Extension. The proof s[t] ↔E u is replaced by a proof s[t] →R′ s[c] ↔E′ u

and the new proof is smaller as {s[t], u} �m {v} for v ≡ s[t] and v ≡ s[c], and

{s[t], u} �m {s[c], u}.
(ii) Simplification. The proof r[s]↔E u is replaced by the new proof r[s]↔∗

AC r′ →R′

r[t] ↔E′ u3. Now, {r[s], u} �m {r′′} for every r′′ in r[s] ↔∗
AC r′, and {r[s], u} �m

{r[t], u}.
(iii) ACCollapse. The proof t →R s is transformed to the smaller proof t ↔∗

AC

t′ →{u→v} t′′ ↔E′ s. This new proof is smaller because the rewrite step t →R s is

more complex than (a) all proof steps in t ↔∗
AC t′ (in the second component), (b)

the proof step t′ →{u→v} t′′ in the second component if t 6↔∗
AC u, and in the third

component if t ↔∗
AC u (see side condition in ACCollapse); and, (c) the proof step

t′′ ↔E′ s (in the first component).

(iv) Orientation. In this case, s ↔E t is more complex than the new proof s →R′ t

follows from {s, t} �m {s}.
(v) Deletion. We have s ↔E t more complex than s ↔∗

AC t because {s, t} �m {s′}
for every s′ in s↔∗

AC t.

(vi) Composition. We have the proof t →R s transformed to the smaller proof t →R

s′ ←R′ s′′ ↔∗
AC s. This new proof is smaller because the rewrite step t→R s is more

complex than (a) the rewrite step t→R′ s′ in the third component, (b) all proof steps

in s′′ ↔∗
AC s in the first component, and (c) the rewrite step s′′ →R′ s′ in the first

component.

This completes the proof of the lemma.

Note that when in state (K, E,R), we have proofs over AC ∪ E ∪ R, extensions

of rules are not added explicitly, and hence, they are never deleted either. Once we

converge to R∞, we introduce extensions to take care of cliffs in proofs.

Lemma 10 If R∞ is a set of persisting rules of a fair derivation starting from the

state (∅, E, ∅), then, Re
∞ is a ground convergent (modulo AC) rewrite system. Fur-

thermore, E∞ = ∅.

Proof. (Sketch) Fairness implies that all critical pairs (modulo AC) between rules

3Note that we used extended rule in the specifying simplification, but for purposes of proof
transformations, we only consider the original (non-extended) rules as being present in the R-
component.

CHAPTER 6. CONGRUENCE CLOSURE MODULO AC 60

in Re
∞ are contained in the set ∪iEi. Since a fair derivation is non failing, E∞ = ∅.

Since the proof ordering is well-founded, for every proof in Ei ∪Ri ∪AC, there exists

a minimal proof π in E∞ ∪ R∞ ∪ AC. We argue by contradiction that certain proof

patterns can not occur in the minimal proof π: specifically, there can’t be any peaks

s←Re
∞ u→AC\Re

∞ , non-overlap cliffs or variable overlap cliffs.

(i) Peaks. A peak caused by a non-overlap or a variable overlap s←Re
∞ u→AC\Re

∞

t can be transformed to a simpler proof s →∗
AC\Re

∞
v ←∗

AC\Re
∞

t. The new proof is

simpler because u is bigger than each term in the new proof. Next suppose that

the above pattern is caused by a proper overlap. By the Extended Critical Pair

Lemma (see [6]), s ↔∗
AC s′ ↔CPAC(Re

∞) t′ ↔∗
AC t, call this proof π. Since by fairness

CPAC(Re
∞) ⊆ ∪kEk, there is a proof s ↔∗

AC s′ ↔Ek
t′ ↔∗

AC t for some k ≥ 0. Using

Lemma 9, we may infer that there is a proof π′ in AC ∪ R∞ such that π′ is strictly

smaller than π, a contradiction.

(ii) Cliffs. A non-overlap cliff w[v, s] ↔AC w[u, s] →AC\Re
∞ w[u, t] can be trans-

formed to the following less complex proof: w[v, s] →AC\Re
∞ w[v, t] ↔AC w[u, t].

Clearly, the w[v, s] � w[v, t] and hence the proof w[v, t] ↔AC w[u, t] is smaller

than the proof w[v, s] ↔AC w[u, s] (in the first component). The complexity

of the proof w[u, s] →AC\Re
∞ w[u, t] is identical to the complexity of the proof

w[v, s]→AC\Re
∞ w[v, t].

In case of AC, a variable overlap cliff s ↔AC u →AC\Re
∞ t can be eliminated in

favour of the proof s →AC\Re
∞ t′ ↔AC t. Note that the proof u →AC\Re

∞ t and the

proof s→AC\Re
∞ t′ are of the same complexity, and additionally the proof s↔AC u is

larger than the proof t′ ↔AC t as all terms in the latter proof are smaller than u.

In summary, the proof π can not contain peaks s←Re
∞ u→AC\Re

∞ , or, non-overlap

or variable overlap cliffs s ↔AC u →AC\Re
∞ t. The cliffs arising from proper overlaps

can be replaced by extended rules, as (Re
∞)e = Re

∞. The minimal proof π in R∞∪AC

can, therefore, only be of the form s→∗
AC\Re

∞
s′ ↔∗

AC t′ ←∗
AC\Re

∞
t; which is a rewrite

proof.

Note that we did not define the proof complexities for the extended rules as the

extended rules are introduced only in the end. Hence, the argument given here is not

identical to the one in [6], though it is similar. Using Lemmas 9 and 10, we can easily

prove that:

Proposition 4 Let R∞ be the set of persisting rules of a fair derivation starting from

state (∅, E, ∅). Let s, t ∈ T (Σ). Then s ↔∗
E∪AC t iff s →∗

AC\Re
∞
◦ ↔∗

AC ◦ ←∗
AC\Re

∞
t.

Furthermore, the set Re
∞ is an associative-commutative congruence closure for E.

CHAPTER 6. CONGRUENCE CLOSURE MODULO AC 61

Since R∞ is finite, there exists a k such that R∞ ⊂ Rk. Though there exist non-

terminating fair derivations, we can still identify the finite set of persisting rules if we

eagerly apply AC-collapse before any application of AC-superposition at any point

after stage k.

Example 14 Let us describe one interesting example. Consider the initial set of

equations E0 = { f(a, b) ≈ b, g(b) ≈ f(a, a), f(b, g(f(a, a, b))) ≈ c}. Let f be

an AC-symbol. We show some of the intermediate states of a fair derivation in

Table 9. Note that since we apply AC-superposition in step 3 before simplifying the

last equation in E, we avoid introducing a lot of new names.

i Constants Ki Equations Ei Rules Ri

0 ∅ E0 ∅
1 {c1, c2} {gb ≈ faa, fbgfaab ≈ c} {a→ c1, b→ c2, fc1c2 → c2}
2 {c1, c2, c3} {fbgfaab ≈ c} R1 ∪ {gc2 → c3, fc1c1 → c3}
3 {c1, c2, c3} {fbgfaab ≈ c} R2 ∪ {fc2c3 → c2}
4 {c1, c2, c3} ∅ R3 ∪ {c→ c2}

Table 9: Example: Intermediate states in a derivation illustrating the congruence
closure modulo associativity and commutativity transition rules.

6.5 Optimizations

Certain optimizations can be incorporated into the basic set of transition rules given

above for computation of congruence closures. A lot of inferences can be avoided

if we note that we do not need to consider extensions of all rules that have an AC

symbol on top of their left-hand sides (for the purpose of critical pair computations).

For example, we need not consider extensions of those D-rules that are created by

extension to name a proper subterm in E. This fact can be easily incorporated using

constraints similar to the constraints used in Chapter 8, but we chose not to show it

here for the sake of simplicity and clarity. Rather than formalizing this completely

here, we illustrate this with an example below.

Example 15 Again suppose that the initial set of equations E0 is: {f(a, b) ≈ b,-

g(b) ≈ f(a, a), f(b, g(f(b, g(f(a, a, b))))) ≈ c}. If we choose to first apply extension

CHAPTER 6. CONGRUENCE CLOSURE MODULO AC 62

and simplification until all the initial equations can be oriented using orientation,

then, we will generate the following set of eleven D-rules:

a → c1 b → c2 fc1c2 → c2 fc1c1 → c3

gc2 → c3 fc3c2 → c4 gc4 → c5 fc2c5 → c6

gc6 → c7 fc2c7 → c8 c → c8

Now, note the huge number of possible AC-superpositions. However, we need not

consider all of them. In particular, we need to consider extensions only of three rules:

fc1c2 → c2, fc1c1 → c3, and fc2c7 → c8, and hence, AC-Superpositions between only

these.

Secondly, note that, as in the case of congruence closure discussed in Chapter 4 we

can choose the ordering between two constants in K on-the-fly. As an optimization

we could always choose it in a way so as to minimize the applications of AC-collapse

and composition later. In other words, when we need to choose the orientation for

c ≈ d, we can look at the number of occurrences of c and d in the set of D- and

AC-rules (in the R-component of the state), and the constant with fewer occurrences

is made larger.

6.6 Construction of Ground Convergent Systems

We next discuss the problem of obtaining a ground convergent AC rewrite system

for the given ground AC-theory in the original signature. Hence, now we focus our

attention to the problem of transforming a convergent system over an extended sig-

nature to a convergent system in the original signature. If we can successfully achieve

this goal, it would mean that we can do ground AC-completion without having an

AC-compatible ordering total on ground terms.

The basic idea of transforming back is elimination of constants from the presenta-

tion R as follows: (i) if a constant c is not redundant, then we pick a term t ∈ T (Σ)

that is represented by c, and replace all occurrences of c by t in R; (ii) if a constant c

is redundant (and say c→ d is a C-rule in which c occurs as the left-hand side term),

then c can be replaced by d in R.

In the case when there are no AC-symbols in the signature, the above method

constructs a ground convergent system from any given abstract congruence closure.

This gives an indirect way to construct ground convergent systems equivalent to a

given set of ground equations. However, we run into problems when we use the same

CHAPTER 6. CONGRUENCE CLOSURE MODULO AC 63

method for translation in presence of AC-symbols. Typically, after translating back,

the set of rules one gets is usually non-terminating modulo AC (Example 16). But

if we suitably define the notion of AC-rewriting, the rules are seen to be convergent

in the new definition. This is useful in two ways: (i) the new notion of AC-rewriting

seems to be more practical, in the sense that it involves strictly less work than a

usual Re\AC reduction; and, (ii) it helps to clarify the advantage offered by the use

of extended signatures when dealing with a set of ground AC-equations.

6.6.1 Transition Rules

We describe the process of transforming a rewrite system R over an extended signature

Σ ∪ K to a rewrite system R over the original signature Σ by transformation rules

on states (K, R), where K is the set of constants to be eliminated, and R is a set of

rewrite rules over Σ ∪K to be transformed.

Redundant constants can be easily eliminated by the compression rule.

Compression:
(K ∪ {c}, R ∪ {c→ t})

(K, R[c 7→ t])

The basic idea for eliminating a constant c that is not redundant in R involves

picking a representative term t (over the signature Σ) in the equivalence class of c,

and replacing c by t everywhere in R.

Selection:
(K ∪ {c}, R ∪ {t→ c})

(K, R[c 7→ t] ∪R′)

if (i) c is not redundant in R, (ii) t ∈ T (Σ), and (iii) if t ≡ f(t1, . . . , tk) with f ∈ ΣAC

then R′ = {f(t1, . . . , tk, X)→ f(f(t1, . . . , tk), X)}, otherwise R′ = ∅.
In case ΣAC = ∅, we note that R′ will always be empty. We also require that

terms are not flattened after application of substitution in R[c 7→ t]. The variable X

is a special variable and its role will be be discussed later.

Example 16 Consider the problem of constructing a ground convergent system for

the set E0 of Example 13. A fully-reduced congruence closure for E0 is given by the

set R0

a → c1 b → c2 c → c3 fc2c3 → c4

fc3c4 → c2 fc1c3 → c1 fc2c2 → fc4c4 fc1c2 → fc1c4

gc4 → c4

CHAPTER 6. CONGRUENCE CLOSURE MODULO AC 64

under the ordering c2 � c4 between constants. For the constants c1, c2 and c3 we have

no choice but to choose a, b and c as representatives respectively. Thus after three

applications of selection, we get

fcc4 → b fac → a fbb → fc4c4 fab → fac4

fbc → c4 gc4 → c4

Next we are forced to choose fbc as the representative for the class c4. This gives us

the transformed set R1,

fc(fbc) → b fac → a fbb → f(fbc)(fbc)

fab → fa(fbc) fbcX → f(fbc)X gfbc → fbc

The relation →AC\Re
1

is clearly non-terminating (with the variable X considered as a

regular term variable).

6.6.2 Rewriting with sequence extensions modulo permuta-

tion congruence

Let X denote a variable ranging over sequences of terms. A sequence substitution

σ is a substitution that maps variables to the sequences. If σ is a sequence substi-

tution that maps X to the sequence 〈s′1, . . . , s′m〉, then f(s1, . . . , sk, X)σ is the term

f(t1, . . . , sk, s
′
1, . . . , s

′
m).

Definition 10 Let ρ be a ground rule of the form f(t1, . . . , tk) → g(s1, . . . , sm)

where f ∈ ΣAC. We define the sequence extension ρs of ρ as, f(t1, . . . , tk, X) →
f(s1, . . . , sm, X) if f = g and, f(t1, . . . , tk, X)→ f(g(s1, . . . , sm), X) if f 6= g.

Now we are ready to define the notion of rewriting we use. Recall that P denotes

the equations defining the permutation congruence, and that AC = F ∪ P .

Definition 11 Let R be a set of ground rules. For ground terms s, t ∈ T (Σ), we say

that s →P\Rs t if there exists a rule l → r ∈ Rs and a sequence substitution σ such

that s = C[l′], l′ ↔∗
P lσ and r′ = rσ.

Note that the difference with standard rewriting modulo AC is that instead of

performing matching modulo AC, we do matching modulo P . For example, if ρ is

fac→ a, then the term f(f(a, b), c) is not reducible by→P\ρs , although it is reducible

by →AC\ρe . The term f(f(a, b), c, a) can be rewritten by →P\ρs to f(f(a, b), a).

CHAPTER 6. CONGRUENCE CLOSURE MODULO AC 65

Example 17 Following up on Example 16, we note that the relation P\Rs
1 is con-

vergent. For instance, a normalizing rewrite derivation for the term fabc is,

fabc →P\Rs
1

fa(fbc)c →P\Rs
1

fab →P\Rs
1

fa(fbc).

On closer inspection, we find that we are essentially doing a derivation in the original

rewrite system R0 (over the extended signature).

fabc →P\Rs
0

fc1c2c3 →P\Rs
0

fc1c4c3 →P\Rs
0

fc1c2 →P\Rs
0

fc1c4.

There is a one-to-one bijection between a step using P\Rs
1 and a step using P\Rs

0.

This essentially is at the core of the proof of correctness.

6.6.3 Correctness

We note that any derivation starting in the state (K, R), where R is an AC-congruence

closure over Σ and K, is finite. This is because K is finite, and each application of

compression and selection reduces the cardinality of K by one. Furthermore, in any

intermediate state (K, R), R is always a rewrite system over Σ ∪ K. Hence, in the

final state (K∞, R∞), if K∞ = ∅, then, R∞ is a rewrite system over Σ, the original

signature. We will show that K∞ is actually empty, and that the reduction relation

P\Rs
∞ is terminating on T (Σ) and confluent on fully flattened terms in T (Σ).

Lemma 11 Suppose (K1, R1) is obtained from (K0, R0) via selection or compression.

If R0 is left-reduced and terminating (with respect to P\Rs
0-reduction) then R1 is left-

reduced and terminating (with respect to P\Rs
1-reduction). Additionally, for all flat

terms s, t ∈ T (Σ), s↔∗
P\Rs

0
t, if and only if, s↔∗

P\Rs
1

t.

Proof. First consider the case of compression. Say (K0 = K1 ∪ {c}, R0 = R′
0 ∪ {c→

t}) ` (K1, R1 = R′
0[c 7→ t]). This step has the same effect as a sequence of composition

steps followed by a deletion step. Hence, it preserves termination. The left-hand side

terms do not change, and hence the system continues to remain left-reduced. Note

that R0 and R1 ∪ {c ≈ t} define the same equational theory. But since c does not

occur in R1, the equational theories induced by Rs
0 ∪P and by Rs

1 ∪P over T (Σ) are

identical.

The second case is that of selection. Say (K0 = K1 ∪ {c}, R0 = R′
0 ∪ {t → c}) `

(K1, R1 = R′
0[c 7→ t] ∪ R′

1). Let σ denote the substitution 〈t 7→ c〉 and σ−1 denote

the substitution 〈c 7→ t〉. The crucial observation is that if l1 → r1 is a rule in R1

CHAPTER 6. CONGRUENCE CLOSURE MODULO AC 66

obtained from l0 → r0 in R0, then, for any context C[] and any sequence substitution

σs, we have, (C[l1σ
s])σ = (Cσ)[l1σ(σsσ)] = (Cσ)[l0(σ

sσ)]. If R1 is not left-reduced,

then, by application of σ to the left-hand sides of the overlapping rules we obtain two

rules in R0 that overlap.

Additionally, if C[l1σ
s]→P\Rs

1
C[r1σ

s], then,

(C[l1σ
s])σ = (Cσ)[l0(σ

sσ)]→P\Rs
0

(Cσ)[r0(σ
sσ)]→∗

P\Rs
0

(C[r1σ
s])σ.

Hence, every sequence of n rewrite steps in P\Rs
1 can be projected to n or more steps

in P\Rs
0 (by applying substitution σ to each term in the proof). Hence, if P\Rs

0 is

terminating, so is P\Rs
1.

Finally, since the constant c does not occur in R1 any more, it is easily established

that for all flat terms s, t ∈ T (Σ), s↔∗
P\Rs

0
t, if and only if, s↔∗

P\Rs
1

t.

The second step in the correctness argument involves showing that if Ki 6= φ, then

we can always apply either selection or compression to get to a new state.

Lemma 12 Let (Ki, Ri) be a state in the derivation starting from (K0, R0), where

R0 is a left-reduced associative-commutative congruence closure over the signature

Σ ∪ K0. If Ki 6= φ, then either selection or compression is applicable to the state

(Ki, Ri).

Proof. Since R0 is an AC-congruence closure, every c ∈ K0 represents some term

t ∈ T (Σ) via R0, i.e.,

t ↔∗
AC\Re

0
c.

By convergence (see definition 8 condition (ii) and (iii)),

t →∗
AC\Re

0
c′ ←∗

AC\Re
0

c.

Without loss of generality we can assume that t is a fully flattened term, and hence

we also have

t →∗
P\Rs

0
c′ ←∗

P\Rs
0

c.

Using lemma 11 we have,

t →∗
P\Rs

i
c′ ←∗

P\Rs
i

c.

If c 6= c′ then there exists at least one redundant constant which can be eliminated

by compression. If there are no redundant constants, then c = c′, and hence, if

l→ d ∈ Rs
i is the rule used in the first step of this proof, then we can choose l as the

representative for d and hence selection is applicable.

CHAPTER 6. CONGRUENCE CLOSURE MODULO AC 67

Theorem 5 If (K∞, R∞) is the final state of a maximal derivation starting from

state (K, R), where R is a left-reduced AC-congruence closure, then (i) K∞ = ∅,
(ii) →P\Rs

∞ is ground convergent on all fully flattened terms over Σ, and (iii) the

equivalence over flattened T (Σ) terms defined by this relation is the same as the

equational theory induced by R ∪ AC over flattened T (Σ) terms.

Proof. Statement (i) is a consequence of Lemma 12. The other two statements are

a consequence of Lemma 11.

Note that in the special case when ΣAC is empty, the notion of rewriting corre-

sponds to the standard notion, and hence R∞ is convergent in the standard sense by

this theorem.

6.7 Conclusion

Graph-based congruence closure algorithms have also been used to construct a con-

vergent set of ground rewrite rules in polynomial time by Snyder [76]. Plaisted et.

al. [68] gave a direct method, not based on using congruence closure, for completing

a ground rewrite system in polynomial time. Hence our work completes the missing

link, by showing that congruence closure is nothing but ground completion. Our ap-

proach is different from that of Snyder, and can be used to obtain a more efficient

implementation partly because Snyder’s algorithm needs two passes of the congru-

ence closure algorithm, whereas we would need to compute the abstract congruence

closure just once.

Snyder works with a particular implementation of congruence closure which forces

Snyder to do some processing on the computed congruence closure followed by a run of

congruence closure once again. We, on the other hand, work with abstract congruence

closure and are free to choose any implementation. All the steps of Snyder’s algo-

rithm can be described using our construction of abstract congruence closure steps,

and the final output of Snyder’s algorithm corresponds to an abstract congruence clo-

sure. The rules for translating back in our work, actually correspond to what Snyder

calls printing-out the reduced system and this is not included in the algorithms time

complexity of O(n log(n)) as computed by Snyder. But, as a simple example in Sny-

der’s paper shows, we cannot hope to do better than quadratic time if we explicitly

represent the reduced system.

These facts and differences are also reflected in the observation that Snyder’s

CHAPTER 6. CONGRUENCE CLOSURE MODULO AC 68

algorithm for constructing a ground convergent system cannot use other better im-

plementations of congruence closure, for example, Shostak’s dynamic congruence clo-

sure. Clearly, we can use any implementation. In effect, by using a strategy that does

early simplification, we can remove redundancies from the equational system early

on. This is the source of efficiency in Shostak’s approach and the same can be used

here. Another difference from Snyder’s work is that Snyder solves the problem “by

abandoning rewriting techniques altogether and recasting problem in graph theoretic

terms.” On the other hand, we stick to rewriting over extensions.

Plaisted and Sattler-Klein [68] show that ground term-rewriting systems can be

completed in a polynomial number of rewriting steps by using an appropriate data

structure for terms and processing the rules in a certain way. Our work describes

the construction of ground convergent systems using congruence closure as comple-

tion with extensions, followed by a translating back phase. Plaisted and Sattler-

Klein prove a quadratic time complexity of their completion procedure. However, by

mimicking the Downey, Sethi and Tarjan’s algorithm for example, we can obtain an

O(n log(n)) time complexity for computing the abstract congruence closure. How-

ever, the translating back phase takes time proportional to the size of the reduced

system, which could be exponential in the worst case.

The fact that one can use certain rules backwards (similar to what we did with

t → c rules in selection) and obtain a convergent system after performing some

simplification steps is mentioned in Snyder [76]. But, rather than using this to obtain

a ground convergent system in the original signature, Snyder mentions this to show

how one can go from one ground convergent system over the original signature to

another one (for the same equational theory, but in a different ordering).

The fact that we can construct an AC-congruence closure implies that the word

problem for finitely presented ground AC-theories is decidable, see [59], [62] and

[40]. Note that we arrive at this result without assuming the existence of an AC-

simplification ordering that is total on ground terms. The existence of such AC-

simplification orderings was established in [62], but required a non-trivial proof.

Since we construct a convergent rewrite system, even the problem of determining

whether two finitely presented ground AC-theories are equivalent, is decidable. Since

commutative semigroups are special kinds of AC-theories, where the signature consists

of a single AC-symbol and a finite set of constants, these results carry over to this

special case [60, 56]4.

4The isomorphism problem for commutative semigroups is mentioned as an open problem in [44].

CHAPTER 6. CONGRUENCE CLOSURE MODULO AC 69

We have shown that we can construct an AC-congruence closure for a finite set

E of ground equations (over a signature Σ containing AC-symbols) using procedures

that construct such closures for finitely presented commutative semigroups. In fact

the number of invocations of the latter procedure is bounded above by n|Σ|, where

n denotes the size of set E, and |Σ| denotes the cardinality of the set Σ. This

establishes that the word problem for ground AC-theories is no more difficult (modulo

a polynomial time factor) than the problem of constructing a convergent system for

finitely presented commutative semigroups.

The idea of using variable abstraction to transform a set equations over several

AC-symbols into a set of equations in which each equation contains exactly one AC-

symbol appears in [40]. All equations containing the same AC-symbol are separated

out, and completed into a canonical rewriting system (modulo AC) using the method

proposed in [15]. However, the combination of ground AC-theories with other ground

theories is done differently here. In [40], the ground theory (non-AC part) is handled

using ground completion (and uses a recursive path ordering during completion). We,

on the other hand, use a congruence closure. The usefulness of our approach can also

be seen from the simplicity of the correctness proof and the results we obtain for

transforming a convergent system over an extended signature to one over the original

signature.

The method for completing a finitely presented commutative semigroup (using

what we call AC-rules here) has been described in various forms in the literature,

e.g. [15])5. It is essentially a specialization of Buchberger’s algorithm for polynomial

ideals to the case of binomial ideals (i.e. when the ideal is defined by polynomials

consisting of exactly two monomials with coefficients +1 and −1).

The basic idea behind our construction of associative-commutative congruence

closure is that we consider only certain ground instantiations of the non-ground AC

axioms. If we are interested in the E-algebra presented by E (where E consists of

only AC axioms for some function symbols in the signature Σ in our case, and E is

a set of ground equations), then since E consists of non-ground axioms, one needs to

worry about what instantiations of these axioms to consider. For the case when E
is a set of AC axioms, we show that we need to consider ground instances in which

every variable is replaced by some subterm occurring in E. This observation can

5Actually there is a subtle difference between the proposed method here and the various other
algorithms for deciding the word problem for commutative semigroups too. For example, working
with rule extensions is not the same as working with rules on equivalence classes (under AC) of
terms. Hence, in our method, we can apply certain optimizations as mentioned in Section 6.5.

CHAPTER 6. CONGRUENCE CLOSURE MODULO AC 70

be generalized and one can ask for what choices of E axioms does considering such

restricted instantiations suffice to decide the word problem in E-algebras? Evans [42,

44] gives a characterization in terms of embeddability of partial E-algebras. Apart

from commutative semigroups, this method works for lattices, groupoids, quasigroups,

loops, etc.

Chapter 7

Applications of Congruence

Closure

In this chapter, we illustrate some applications of congruence closure. We show that

the notion of an abstract congruence closure helps in discerning the logical aspects

from the other implementation details, which helps us to suitably generalize some of

the known results.

The first part of this chapter concerns itself with the problem of normalizing a

term with respect to a given rewrite system. The essential idea is that congruence

closure allows a compact way to store normal forms of some terms (w.r.t the given

rewrite system), so that one can look into the saved information to compute the

normal form of a new term. The method uses the concept of a rewrite closure, which

is a generalization of the idea of a congruence closure. Our results generalize previous

results on congruence closure-based normalization methods. The description of known

methods within our formalism also allows a better understanding of these procedures.

The second application addresses the problem of rigid E-unification. We provide

a sound and complete set of abstract transformation rules for rigid E-unification.

Abstract congruence closure forms one of the transition rules.

As a final use of congruence closure, we discuss Shoatak’s combination algorithm

which attempts to combine congruence closure with E-unification procedures. In all

the three problems discussed, congruence closure plays a crucial part.

71

CHAPTER 7. APPLICATIONS OF CONGRUENCE CLOSURE 72

7.1 Normalization via Rewrite Closures

Efficient procedures for normalization of expressions are crucial for the practical per-

formance of rewrite-based systems. A straightforward approach to normalization, by

a “straight-line” sequence of individual reduction steps, each consisting of matching

and subterm replacement, may be expensive if it requires many steps. For instance,

suppose a term f(a) can be rewritten to a normal form a in n reduction steps. Then

the normalization of the term f(f(a)) may require twice as many steps, as f(f(a)) is

first rewritten to f(a) (in n steps) and then to a (in n more steps). Note that the two

subsequences consist essentially of the same reduction steps, though applied to differ-

ent terms. There have been attempts to store the “history” of reductions in a suitable

way so as to avoid repetition of such “equivalent” reduction sequences. The aim is

to generate, once the subterm in f(f(a)) has been reduced to a, the normal form a

from the intermediate term f(a) in a single additional step. Such a “non-oblivious”

normalization method requires n+1 steps in this case, though the individual steps are

usually different from standard matching and subterm replacement. The key ques-

tion is how to store the application of rewrite rules in a way that can be efficiently

exploited for performing future reductions.

Chew [29, 30] had the fundamental insight to adapt techniques developed for con-

gruence closure algorithms (cf., Nelson and Oppen [64]) to normalization with history.

Congruence closure algorithms yield a compact representation of the equational the-

ory induced by a finite sets of variable-free equations. Normalization usually needs

to be done for rewrite systems (i.e., sets of directed equations) with variables, which

may represent infinitely many variable-free equations over the given term domain.

Chew’s method therefore combines a “dynamic” version of congruence closure with

a method for selecting rewrite rule instances needed to normalize a given input term.

Whenever additional rule instances are selected, the congruence closure algorithm is

applied incrementally to update the representation of term equivalences. Once a term

has been rewritten, the congruence closure represents it by its current normal form

and thus effectively stores the history of previous reductions. If no further useful rule

instances can be selected, one either obtains a normal form for the input term or else

detects non-termination of the rewriting process. (Non-terminating rewrite systems

may also cause the selection process to continue indefinitely.)

Chew’s work deals with normalization by orthogonal rewrite systems, but was

extended by Verma [81] to normalization by priority rewrite systems. The description

CHAPTER 7. APPLICATIONS OF CONGRUENCE CLOSURE 73

of these methods is technically involved. We develop a different, more abstract view

of this approach to normalization by formulating it in terms of standard techniques

from term rewriting, such as completion and narrowing. More specifically, the basic

method, and various optimizations, are described in terms of transformation rules in

the style of Bachmair and Dershowitz [7].

We explain application of abstract congruence closure to normalization in Sec-

tion 7.1.2. Optimizations of the basic method by using a modified congruence clo-

sure, called a rewrite closure, are discussed in Section 7.1.3. Finally we outline further

optimizations for the special cases of orthogonal and convergent rewrite systems in

Section 7.1.4.

7.1.1 Incremental Congruence Closure

For purposes of normalization, we use an incremental congruence closure, i.e., given

a (Ki, ∅, Ri) congruence closure final state, we add ground equations Ei over Σ ∪Ki

to obtain the new state (Ki, Ei, Ri). We start a congruence closure derivation again

beginning from this state to finally get (Ki+1, ∅, Ri+1). The R-extension of E is

defined to be the set E↑ρR of all equations sρ → tρ, where s ≈ t is an equation in E

and ρ is a mapping from K to T (Σ), such that c↔∗
R cρ, for all constants c in K. We

denote by E↑R the set {l′ ≈ r′ : l ∈ T (Σ), r ∈ T (Σ), l ≈ r ∈ E, l′ ↔∗
R l, r′ ↔∗

R r}.
Note that E↑ρR⊆ E↑R.

Corollary 1 Let (Ki, Ei, Ri) `∗CC (Ki+1, ∅, Ri+1) for i = 0, 1, 2, . . ., where the states

(Ki, ∅, Ri) are all congruence closure final states, K0 = ∅, R0 = ∅, and, Ei are

equations over Σ ∪Ki. Define Fj = ∪j−1
i=0Ei. Then, for any s, t ∈ T (Σ),

s↔∗
Rj

t iff s↔∗
Fj↑ρ

Rj

t iff s↔∗
Fj↑Rj

t.

Proof. We prove by induction on j that

↔∗
Rj
⊆ ↔∗

Fj↑ρ
Rj

⊆ ↔∗
Fj↑Rj
⊆ ↔∗

Rj
.

The base case j = 1 is established by theorem 3 and by noting that E0↑R1= E0↑ρR1
=

E0.

Let s, t ∈ T (Σ). Suppose s ↔∗
Rj

t. Then, using Theorem 2, s ↔∗
Rj−1∪Ej−1

t. Let

ρ be an arbitrary mapping from Kj−1 to T (Σ) such that c ↔∗
Rj−1

cρ. Since Rj−1

is convergent, we obtain the proof diagram of Figure 3. By induction hypotheses,

CHAPTER 7. APPLICATIONS OF CONGRUENCE CLOSURE 74

s = s0
∗−−−−→

↔Rj−1

s1
∗−−−−→

↔Ej−1

s2
∗−−−−→

↔Rj−1

· · · ∗−−−−→
↔Ej−1

sn = ty= ∗
y↔Rj−1 ∗

y↔Rj−1 ∗
y↔Rj−1

y=

s0
∗−−−−→

↔Rj−1

s1ρ
∗−−−−−−−→

↔
Ej−1↑

ρ
Rj−1

s2ρ
∗−−−−→

↔Rj−1

· · · ∗−−−−−−−→
↔

Ej−1↑
ρ
Rj−1

sn

Figure 3: Correctness of Incremental Congruence Closure.

↔∗
Rj−1

is equivalent to ↔∗
Fj−1↑ρ

Rj−1

. This shows that s↔∗
Fj↑ρ

Rj

t.

The second inclusion is trivial. For the final inclusion, without loss in generality,

consider the one step derivation s ↔Fj↑Rj
t. Therefore s = C[l′] and t = C[r′], and

hence,

s = C[l′]↔∗
Rj

C[l]↔Fj
C[r]↔∗

Rj
C[r′] = t.

Using Theorem 2, C[l]↔∗
Rj

C[r], and this completes the proof.

In the context of this incremental approach, we generalize the definition of an

abstract congruence closure by replacing the condition (iii) by the (stronger) one

mentioned in this corollary.

7.1.2 Normalization Using Congruence Closure

We next outline how to apply congruence closures to the problem of finding, given a

rewrite system E and a ground term t, a normal form of t with respect to E .1 Let us

first consider the simple case when E is a ground rewrite system.

For example, suppose we want to normalize the term f 5a with respect to the

rewrite system E0 = {fa→ fb, ffb→ a, fb→ a}. The set

R4 = {a→ c0, b→ c1, fc0 → c0, fc1 → c0}

is an abstract congruence closure for E0. First we compute the normal form of f 5a by

R4, which is c0. Then we identify an (irreducible) term over the signature Σ that is

represented by c0. The definition of a congruence closure guarantees that such a term

exists, in this example, we get a. Thus, we have f 5a →∗
R4

c0 ←∗
R0

a and conclude

that a is a normal form of f 5a.

1It is sufficient to consider ground terms t, The normal form of a general term u can be easily
obtained from a normal form of the ground term û, where û is obtained from u by replacing each
variable by a new constant.

CHAPTER 7. APPLICATIONS OF CONGRUENCE CLOSURE 75

This approach is simple, but needs to be generalized to rewrite systems with

variables. The basic idea is to select one or more instances lσ → rσ of rules in E that

can be used to reduce (a subterm of) t and to apply congruence closure to them, so

that a normal form t′ of t (with respect to the selected instances) can be identified. If t′

is also in normal form with respect to E , we are done; otherwise, further rule instances

need to be selected to reduce t′. This yields a method that incrementally applies

congruence closure to selected instances of given rewrite rules. Two key issues to be

addressed are selection—how to select instances, and termination—how to efficiently

identify that a term is in E-normal form. Selection, it turns out, can be done by a

simple narrowing process.

7.1.2.1 Narrowing

We say that a term t narrows to a term t′ (with respect to a rewrite system R) if

there exist a non-variable subterm s of t and a rewrite rule l→ r ∈ R, such that (i) s

is unifiable with l and (ii) t′ is obtained from tσ by replacing the subterm sσ by rσ,

where σ is a most general unifier of s and l.

In our context, the term t to be normalized, and all its subterms, are represented by

constants via a congruence closure R. We will present a simple narrowing procedure

to determine whether some left-hand side l of a rule in E can be narrowed to a constant

via R, i.e., whether there exists a substitution σ, such that lσ →∗
R c. Any rule instance

lσ → rσ selected by narrowing in this way will then be used for incremental extension

of the congruence closure R.

We use transformation rules to describe the narrowing process for selection of rule

instances from a rewrite system E = {l1 → r1, . . . , ln → rn}. The transformation

rules operate on states (K, R, S), where K is a set of constants disjoint from Σ, R is

a congruence closure, and S is sequence of n sets 〈L1, . . . , Ln〉. Each set Li consists

of pairs (l′i, σi), where liσi →∗
R l′i. The pairs (l′i, σi) indicate candidates to be selected

among rule instances. Selection of liσ → riσ is possible if a term l′i is a constant. If

a term l′i is not a constant, but can not be reduced further, then the corresponding

candidate pair can be deleted, as selection will be impossible.

The formal transformation rule is as follows.

Narrowing:
(K, R, 〈. . . , Lj ∪ {(s[t], σ)}, . . .〉)

(K, R, 〈. . . , Lj ∪ L′j, . . .〉)

where t is either a constant or a non-variable non-constant subterm of s and either (i)

CHAPTER 7. APPLICATIONS OF CONGRUENCE CLOSURE 76

t can be narrowed by R, in which case L′j is the set of all pairs (s[c]σ1, σσ1) such that

tσ1 = u for some rule u→ c in R, or (ii) t is not a constant and cannot be narrowed,

in which case L′j = ∅.
We write η `S η′ to indicate that a state η can be obtained from η′ by application

of this narrowing rule.

Lemma 13 Any derivation using the relation `S and starting from state (K, R, S)

is finite whenever K, R and each component Li of S is finite.

Proof. We first extend the ordering on ground terms used in the proof of Lemma 5

to an ordering on terms containing variables by treating all variables as equivalent

and being larger than every constant in K, but smaller than every symbol in Σ. Next,

we define the complexity of a state (K,R, 〈L1, . . . , Ln〉) by the multiset {l : (l, σ) ∈
Li for some i}. Two such multisets are compared using the multiset extension of

the ordering in which the set R is reducing. The narrowing transformation rule is

reducing with respect to this well-founded ordering.

The final state of such a derivation is a triple (K, R, 〈L1, . . . , Ln〉) where each set

Li contains only pairs (c, σ), c ∈ K.

7.1.2.2 Normalization

We now have the two main components of a non-oblivious normalization method–the

congruence closure transformation relation `CC and the narrowing transformation

relation `S. We describe normalization by rules operating on tuples (E , t, K, E, R, S),

where E is a rewrite system, t is the term to be normalized, (K, E,R) represents the

current state of a congruence closure computation, and S indicates current candidates

for selection. We define:

(E , t, K, E, R, Λ) `N (E , t, K ′, E ′, R′, Λ)

if (K, E,R) `CC (K ′, E ′, R′), where Λ is a special sequence different from all other;

and

(E , t, K, ∅, R, S) `N (E , t, K, ∅, R, S ′)

if (K, R, S) `S (K, R, S ′) and (K, ∅, R) is a congruence closure final state.

In short, we distinguish between two phases during normalization: congruence

closure rules are applied when no candidates for selection are available, whereas nar-

rowing is only performed in the presence of a (completed) congruence closure.

CHAPTER 7. APPLICATIONS OF CONGRUENCE CLOSURE 77

An initial state for a normalization derivation is a tuple (E , t, {c}, {c ≈ t}, ∅, Λ),

where c is a constant not contained in Σ. The first stage will consist of a congruence

closure computation, which has the effect of representing all subterms of the term t

to be normalized. The following transformation rules are used to connect congruence

closure and narrowing stages and to determine when the normalization process is

done.

Narrowing is initiated as follows.

Initialization:
(E , t, K, ∅, R, Λ)

(E , t, K, ∅, R, 〈{(l1, id)}, . . . , {(ln, id)}〉)

if the state (K, ∅, R) is a congruence closure final state. (The symbol id denotes the

identity mapping.)

If the narrowing phase is successful, further rule instances can be selected.

Selection:
(E , t, K, ∅, R, 〈L1, . . . , Lj ∪ {(c, σ)}, . . . , Ln〉))

(E , t, K, {ljσ → rjσ}, R, Λ)

if c is a constant in K.2

The rule ljσσ′ → rjσσ′ which is moved to the set E in this rule, will be called a

selected, or, processed rule. In general, we can move more than one rule instance to

the E component without affecting any of the subsequent results.

Computation of a congruence closure may change the representation of equiv-

alences. Instead of initiating another narrowing phase, we may check whether a

normal form term is already represented.

Detection:
(E , t, K, ∅, R, Λ)

t∗

if (i) the state (K, ∅, R) is a congruence closure final state, (ii) there is a t∗ ∈ T (Σ)

such that t→!
R c←∗

R t∗, and (iii) t∗ is not further reducible by E .3

Terminating in a state t∗ means that we output t∗ as the normal form of t.

2We assume that R consists only of simple D-rules and C-rules.
3This inference rule can be effectively applied. We simply non-deterministically guess for each

constant d ∈ K, a D rule f(· · ·) → d. Then the required t∗ is one which reduces to c using these
guessed rules, and which satisfies condition (iii).

CHAPTER 7. APPLICATIONS OF CONGRUENCE CLOSURE 78

Example 18 Consider the problem of normalizing the term fa with respect to E =

{a→ b, fx→ gfx, gfb→ c}. The initial state obtained by the initialization rule is

ξ0 = (E , fa, {c0}, {c0 ≈ fa}, ∅, Λ). In Table 10 we show some intermediate steps of

a derivation. Note that in state 10, we identify c as a normal form-term of fa and

terminate using detection. State 9 is reached by applying Initialization, Narrowing

and Selection to state 8.

i Ki Eqns Ei Rules Ri Sequence Si

0 {c0} {c0 ≈ fa} ∅ Λ
1 {c0, c1} ∅ {a→ c0, fc0 → c1} Λ CC
2 K1 ∅ R1 〈{(a, id)}, {(fx, id)},

{(gfb, id)}〉 Init
3 K1 ∅ R1 〈{(c0, id)}, {(fx, id)},

{(gfb, id)}〉 Narr
4 K1 {a ≈ b} R1 Λ Sel
5 K1 ∅ R1 ∪ {b→ c0} Λ CC
6 K1 ∅ R5 〈{(c0, id)},

{(c1, [x 7→ c0])}, Init,
{(gc1, id)}〉 Narr

7 K1 {fc0 ≈ gfc0} R5 Λ Sel
8 K1 ∅ R5 ∪ {gc1 → c1} Λ CC
9 K1 {gfb ≈ c} R8 Λ Narr+

10 K1 ∅ R8 ∪ {c→ c1} Λ CC

Table 10: Example: Intermediate states in a derivation illustrating a naive congruence
closure based normalization algorithm.

We emphasize that the above transformation rules are only correct when the

rewrite system E is confluent. For example, if we attempt to normalize the term gfa

with respect to the non-confluent rewrite system E = {a → b, fa → gfa, gfb → c},
then we could terminate with fb as the normal form of gfa.

7.1.2.3 Soundness and Completeness

Let iK(E) = {lσ → rσ|σ : V 7→ K, l→ r ∈ E}. Corresponding to every derivation we

have a set F ⊂ iK(E) of rules processed during that derivation.

Theorem 6 (Soundness) If a rewrite system E is confluent and a derivation from

(E , t, {c}, {c ≈ t}, ∅, Λ) terminates with t∗, then t∗ is an E-normal form of t.

CHAPTER 7. APPLICATIONS OF CONGRUENCE CLOSURE 79

Proof. The only way we can terminate in state t∗ is by applying the Detection

rule, say to the state (E , t, K, ∅, R, Λ). Therefore, t →!
R c∗ ←∗

R t∗. By correctness

of congruence closure (corollary 1), we get, t ↔∗
F↑ρ

R
t∗ where F ⊆ iK(E) is the set

of processed rule instances of E . Using confluence of E , t →∗
E ◦ ←∗

E t∗. But t∗ is

E-irreducible. Therefore, t∗ is the E-normal form of t.

Corollary 2 Let (E , t, {c}, {c ≈ t}, ∅, Λ) `∗N (E , t, K, ∅, R, Λ) `N t∗ be any derivation

such that F↑ρR is confluent. Then, t∗ is an E-normal form of t.

In order to establish completeness of the procedure, we need to make sure that

some normal form of t is eventually represented. For this, we require fairness condi-

tions.

Definition 12 A rule instance liσ → riσ is said to be selectible with respect to K

and R if liσ →∗
R c where c is some constant in K.

Definition 13 A derivation is said to be fair if (i) the Detection rule is (eventually)

applied if it is ever applicable, or, (ii) every selectible rule instance with respect to

any intermediate sets Ki and Ri of the derivation, is eventually selected.

A fair reduction strategy ensures that enough rule instances are processed so as to

guarantee the representation of normal form term.

Theorem 7 (Completeness) If t ∈ T (Σ) has a E-normal form then a fair derivation

starting from state (E , t, {c}, {c ≈ t}, ∅, Λ) terminates in state t∗, where t∗ is in E-
normal form.

Proof. If a E-normal form term of t ever gets represented via some Ri, then, the

Detection rule will be applicable at the completion of every congruence closure phase

thereafter. Hence, a fair derivation would terminate in a state defined by some normal

form of t (by soundness).

Now say t = t0 →E t1 →E t2 · · · tn−1 →E tn = t∗ is a normalizing sequence. We

claim that in a fair derivation, t∗ is eventually represented. This we prove by an easy

induction on the length n of the reduction sequence.

Initially t0 is represented. Assume that at a certain intermediate step k of the

execution, tj is represented via Rk. Suppose we use the instance liσi → riσi (from

E) to reduce tj to tj+1. Therefore, tj = C[liσi]. Since tj is represented via Rk,

CHAPTER 7. APPLICATIONS OF CONGRUENCE CLOSURE 80

the term liσi is represented via Rk too, and hence the rule instance liσi → riσi is

selectible. By fairness it is eventually selected and processed. Once it is processed,

riσi is represented and hence ti+1 = C[riσi] is represented.

Note that we can ensure condition (ii) of fairness in any derivation by getting to

a narrowing final state before applying the Selection rule. This is a consequence of

the completeness of narrowing procedure for convergent systems.

One difficulty with the inference rules for normalization is that the termination

checks essentially involve a non-deterministic step. To make this more efficient, we

can store some information about which rules to use to find normal form terms in the

congruence closure itself. This will be discussed next.

7.1.3 Rewrite Closure

In order to make the termination checks more efficient and useful, the basic congruence

closure procedure requires additional refinements, so that one can determine whether

a given represented term is in normal form or not. We will achieve this by marking

certain rules, or, in other words, we will partition the set D into two sets: marked

rules X, and unmarked rules N . The idea would be that terms represented by the

left-hand sides of N rules will be F↑ρD-irreducible. Hence while searching for normal

forms in the termination rules, instead of guessing, we will use the N -rules directly.

Definition 14 An abstract congruence closure R = D ∪ C for F is called a rewrite

closure if, the set D can be partitioned into N ∪X such that for all terms t in T (Σ)

represented by D, t is in normal form with respect to F ↑ρR if, and only if, it is

represented by N .

Equivalently, we can also say that a congruence closure D = N ∪X is a rewrite

closure for F if for every t ∈ T (Σ), t is F↑ρR-irreducible, iff, any reduction sequence

starting with t contains only N steps, and no X steps. For example, let F = {ffa→
fffa, fffa → fa}. If we let N0 be the set of two rules, a → c0 and fc0 → c1; and

X0 be a set of one rule, fc1 → c1, then N0 ∪X0 is a rewrite closure for F . Rewrite

closures need not always exist, though. Consider the set of equations F ′ = {fffa→
ffa, fffa → fa}. We cannot get a rewrite closure from the abstract congruence

closure D1 = {a → c0, fc0 → c1, fc1 → c1} for F ′. Since a, fa and ffa are all in

normal forms, we are forced to have all the D-rules in R1 in the set N0.

Note that there are several ways in which the set of D-rules can be partitioned. If

s→ t is a rewrite rule in F , then its left-hand side s is called an F -redex (or simply a

CHAPTER 7. APPLICATIONS OF CONGRUENCE CLOSURE 81

redex). One method is to put all D-rules, whose left-hand sides represent F -redexes,

into the set X. Rules in X are therefore also called redex rules. We write s
n→ t to

indicate that s → t is a rule in N , and s
x→ t to indicate that s → t is a rule in X.

If f(c1, . . . , ck) → c0 is a rule in X, then the term f(c1, . . . , ck) is also called a redex

template. However, as we observed above, using this scheme for marking rules we

may not still get a rewrite closure. We need the additional property of persistence.

Let t[lσ] →R t[rσ] be a (one step) reduction using the rewrite rule l → r ∈ R.

This reduction will be called a non-root reduction, denoted by →nr
R if lσ is a proper

subterm of t; otherwise this is called a root reduction, denoted by →root
R .

Definition 15 Let R be a abstract congruence closure for a set of ground rules F

over T (Σ∪K). The set F is said to have the persistence property with respect to R if

whenever, there exist terms f(t1, · · · , tn), f(t′1, · · · , t′n) ∈ T (Σ) such that, f(t1, · · · , tn)

is F↑ρR-reducible at the top (root) position, and f(t1, · · · , tn) ↔∗,nr
F↑ρ

R
f(t′1, · · · , t′n), it is

always the case that, f(t′1, · · · , t′n) is F↑ρR-reducible.

The idea behind the persistence property is simple. Since we put every redex-template

in the set X, this simply means that we assume that all the terms represented by that

template are reducible. The persistence property is true whenever this is actually the

case. We note the following general result from [76].

Lemma 14 Let R be a fully-reduced ground rewrite system. Then any reduction

sequence t→∗
R s is unique up to a rearrangement of the individual steps.

Using this result, we can easily establish the following.

Lemma 15 Let F be a finite set of equations over T (Σ ∪K). A fully reduced con-

gruence closure R of F can be extended to a rewrite closure if F has the persistence

property with respect to R.

Proof. Suppose R is a fully reduced congruence closure of F such that F has the

persistence property. For every F -redex s, if

s→∗
R t→D c,

then we put the rule t→ c in the set X. All remaining rules are kept in N . We claim

that N ∪X ∪C is now a rewrite closure for F . Let t ∈ T (Σ) be any term represented

by D. If t is not in F↑ρR-normal form, then it is not represented by N . This follows

CHAPTER 7. APPLICATIONS OF CONGRUENCE CLOSURE 82

from the definition of N and lemma 14. Next, suppose t is not represented by N .

Therefore, it has a subterm t′ such that

t′ →∗
R t′′ →X c.

The way we partitioned rules implies that there is an F -redex s such that s→∗
R t′′ →R

c. Since R is a congruence closure, there exists at least one term s′ ∈ T (Σ) such that

s′ →∗
R s→∗

R c

and therefore, s′ ↔∗,nr
R t′, which implies

s′ ↔∗,nr
F↑ρ

R
t′.

By persistence, therefore, t′ is F↑ρR-reducible, and hence, so is t.

The converse of this theorem is however false, as the set F = {a → b, fa →
c, c→ fb} is not persistent (with respect to its abstract congruence closure), but the

congruence closure can be extended to a rewrite closure.

7.1.3.1 Construction of Rewrite Closures

We give a set of transition rules (similar to the ones for congruence closure), that

would compute the rewrite closure for a given F ,assuming that the persistence prop-

erty holds.

The extension inference rule is responsible for creating either N - or X-rules. For

purposes of simplicity, we only introduce simple D-rules.

Extension:
(K, F [t], R)

(K ∪ {c}, F [c], R ∪ {t α→ c})

where t → c is a simple D-rule, t is a term occurring in (some equation in) F ,

c 6∈ Σ ∪K, α is x if t occurs as a left-hand side term in F and α is n otherwise.

Simplification can change marks on D-rules.

Simplification:
(K, F [t], R ∪ {t α1→ c})

(K, F [c], R ∪ {t α2→ c})

where α2 is x if t → c is a D-rule and t occurs as a left-hand side term in F , and

α2 = α1 otherwise.

CHAPTER 7. APPLICATIONS OF CONGRUENCE CLOSURE 83

Orientation always introduces either X-rules or C-rules.

Orientation:
(K, F ∪ {t→ c}, R)

(K, F, R ∪ {t α→ c})

if t � c and α is x if t→ c is a D-rule, and α is empty if t→ c is a C-rule.

Deduction can change markings on rules too.

Deduction:
(K, F, R ∪ {t α1→ c, t

α2→ d})

(K, F ∪ {c→ d}, R ∪ {t α3→ d})

where α3 is x if either α1 or α2 is x; α3 is n if both α1 and α2 are n; in case t ∈ K,

α3 is empty.4

The other rules like deletion, collapse and composition are identical to the respec-

tive transition rules for congruence closure and there are no changes in the markings

of any rules.

The following Table 11 shows some states of a derivation from the initial state

(∅, E0, ∅), where E0 = {fa ≈ fb, ffb ≈ a, fb ≈ a}. The rewrite system R4 is a

rewrite closure for E0.

i Constants Ki Equations Ei Rules Ri

0 ∅ E0 ∅
1 c0, c1, c2 ffb ≈ a, fb ≈ a a

n→ c0, b
n→ c1, fc1

n→ c2, fc0
x→ c2

2 K1 fb ≈ a R1, fc2
x→ c0

3 K2 ∅ R2, fc1
x→ c0

4 K2 ∅ a
n→ c2, b

n→ c1, fc1
x→ c2 fc2

x→ c2 c0 → c2

Table 11: Example: Intermediate states in a derivation illustrating the abstract
rewrite closure construction transition rules.

Using lemma 15 we know that any derivation constructs a rewrite closure whenever

F satisfies the persistence property. We use the symbol `RC to denote the one-step

transformation relation on states induced by the above transformation rules. Final

states are states to which no further transition rules can be applied. Final states are

always of the form (K, ∅, R).

4In other words, t → d is a redex rule in the new state if, and only if, at least one of the two
superposed rules is a redex rule.

CHAPTER 7. APPLICATIONS OF CONGRUENCE CLOSURE 84

7.1.3.2 Normalization via Rewrite Closure

The normalization procedure described earlier, can now be optimized by replacing

the use of congruence-closure by rewrite-closure. The additional marking information

in the rewrite closure can be used to optimize the Detection inference rule: in order

to find a normal form in the equivalence class c, we need to check for only those term

t′ such that t′ →∗
N c.

We just mention those inference rules of the normalization procedure which now

look different. The congruence-closure phase now is replaced by the rewrite-closure

phase. The initialization, and selection rules are the same as in section 7.1.2. The

new Marked-Detection rule uses the unmarked N rules to find a normal form term.

Marked-Detection:
(E , t, K, ∅, R, Λ)

t∗

if (i) (K, ∅, R) is a rewrite closure final state, (ii) there is a t∗ ∈ T (Σ) such that

t→!
R c←∗

N t∗, where R = N ∪X ∪ C and (iii) t∗ is in E-normal form.

The soundness theorem 6 holds under these new rules. As before all we need

for soundness is the confluence of E . To establish completeness, now we need (a)

persistence of the processed set of rules, and (b) a strategy that ensures that the

normal form term is eventually represented. To ensure (b), we still have to use all

the D rules for narrowing (and not just N rules). Fairness then would guarantee (b).

Condition (a) then would ensure that the termination check is “complete”.

Theorem 8 (Completeness) If t ∈ T (Σ) has a E-normal form t∗ then a fair deriva-

tion starting from state (E , t, {c}, {c ≈ t}, ∅, Λ) in which the processed rule instances

F is always (eventually) persistent, terminates in state t∗.

Proof. Similar to previous case. The proof of the fact that t∗ is eventually represented

is the same as before. Now consider the first time we test for termination after t∗ is

represented. By correctness of congruence closure, we would have, t →∗
D c∗ ←∗

D t∗.

Since we have a rewrite closure (under the assumption of persistence), we can conclude

that t∗ →∗
N c∗. This implies that the marked-detection rule is now applicable. Hence

we identify t∗ as being the desired normal-form and terminate.

The conditions of fairness and persistence are complementary. In order to satisfy

persistence, we should process fewer and only particular rules. On the other hand,

to satisfy fairness we are required to process as many rules as possible. For example,

informally, an innermost strategy in choosing instances to process shall always process

CHAPTER 7. APPLICATIONS OF CONGRUENCE CLOSURE 85

sets of instances that are persistent. But, unfortunately, such a strategy may violate

fairness. In the next section, we consider two special cases of rewrite systems E
where we can effectively satisfy both conditions together and introduce additional

optimizations to the normalization transition rules.

7.1.4 Optimized Normalization and Special Cases

It appears wasteful to use all of the simple D-rules in the narrowing process. To

compute normal forms we only need to select rule instances that reduce current

irreducible terms. Intuitively, only simple N -rules should be employed by narrowing,

as they represent irreducible terms.

We redefine the narrowing phase of normalization as follows:

(E , t, K, ∅, N ∪X ∪ C, S) `N (E , t, K, ∅, N ∪X ∪ C, S ′)

if (K, N, S) `S (K, N, S ′) and (K, ∅, N ∪X ∪ C) is a rewrite closure final state.

Now the detection rule can be refined also.

Refined-Detection:
(E , t, K, ∅, R, S)

t∗

if assuming R = N ∪X ∪C, we have (i) (K, N, S) is a narrowing final state, (ii) there

is a t∗ ∈ T (Σ) such that t →!
R c ←∗

N t∗, and (iii) none of the constants in the first

component of elements in the sets in S occur in the derivation t∗ →N c.

Since we are narrowing with a restricted set N , we can also terminate if a nar-

rowing phase produces no candidates for selection.

Termination:
(E , t, K, ∅, R, 〈∅, . . . , ∅〉)

Ω

if assuming R = N ∪X ∪ C we have (i) the state (K, ∅, R) is a rewrite closure final

state, (ii) the state (K, N, 〈∅, . . . , ∅〉) is a narrowing final state, and (iii) Ω = t∗ if

there is a t∗ ∈ T (Σ) such that t→!
R c←∗

N t∗; and Ω = ⊥, otherwise.

Terminating in a state ⊥ means that we output “no normal form of t exists”.

7.1.4.1 Correctness

Even under these restrictions, soundness (Theorem 6) is preserved.

CHAPTER 7. APPLICATIONS OF CONGRUENCE CLOSURE 86

Theorem 9 (Soundness) If a rewrite system E is confluent and a derivation from

(E , t, {c}, {c ≈ t}, ∅, Λ) terminates with t∗, then t∗ is an E-normal form of t.

Proof. We can terminate in state t∗ using Refined-Detection or Termination. Assume

that we got to state t∗ by applying Refined-Detection to the state (E , t, K, ∅, R =

N ∪ X ∪ C, S). Therefore, t →!
R c∗ ←∗

N t∗. Using arguments identical to the proof

of Theorem 6, we conclude that t →∗
E ◦ ←∗

E t∗. We claim that t∗ is E-irreducible.

Suppose not, and let t∗ be reducible by li → ri ∈ E . Since t∗ →∗
N c∗, therefore li

narrows via N to some constant that that occurs in the derivation t∗ →∗
N c∗. By

completeness of narrowing for convergent systems, the set Li contains an element

whose first component is a constant that occurs in the derivation t∗ →∗
N c∗, thus

violating condition (iii) of Refined-Detection.

The argument for Termination is identical.

Completeness, however, is only preserved in under certain strong conditions—

which are satisfied in certain special cases discussed later.

We shall assume that a rewrite closure is always fully reduced set of simple D-rules.

Definition 16 Let F ⊂ iK(E) and let R = D ∪ C be a congruence closure for F .

We say F is overlapping modulo R if there exist rules l1 → r1, l2 → r2 ∈ F such that

l1 ↔∗
R l′2 for some non-constant subterm l′2 of l2.

For nonoverlapping rewrite systems reducibility of terms is preserved in the following

sense.

Lemma 16 Let F be non-overlapping modulo R. Let t be root reducible by some rule

in F↑ρR and also be reducible to t′ at a non-root position by some rule in F↑ρR. Then

t′ is reducible by some rule in F↑ρR.

Proof. Let t be reducible at the root position by rule l1 → r1 ∈ F with substitution

ρ1 : K 7→ T (Σ) so that t = l1ρ1. Furthermore, let t be reducible at a non-root

position by the rule l2 → r2 ∈ F with substitution ρ2 : K 7→ T (Σ). Therefore,

t = l1ρ1 = l1ρ1[l2ρ2], and

l2 ↔∗
R l2ρ2 ↔∗

R l′1ρ1 ↔∗
R l′1.

Since F is nonoverlapping modulo R, the subterm l′1 of l1 is necessarily a constant, say

d. If d occurs more than once in l1, then clearly t′ is reducible by the rule l2ρ2 → r2ρ2.

If d occurs exactly once in l1, say at position p, then the term at position p in t′ is

CHAPTER 7. APPLICATIONS OF CONGRUENCE CLOSURE 87

still represented by d via R. Hence there exists a ρ′ : K 7→ T (Σ) such that t′ = l1ρ
′.

Now, we can obtain one sufficient condition to establish persistence.

Lemma 17 Suppose F is non-overlapping modulo R, where R is a congruence closure

for F . Then, F is persistent with respect to R whenever F↑ρR is confluent.

Proof. Suppose t ∈ T (Σ) is root-reducible by F↑ρR. Let t′ ∈ T (Σ) be any term such

that

t↔nr,∗
F↑ρ

R
t′.

Since F↑ρR is confluent, we have the following

t→nr,∗
F↑ρ

R
◦ ←nr,∗

F↑ρ
R

t′.

If t′ is reducible by F↑ρR, then we are done. In the other case, we have

t→nr,∗
F↑ρ

R
t′.

Now performing induction on the length of this derivation and using lemma 16, we

establish that t′ is reducible.

We can now state a completeness theorem for the new optimized set of transition

rules as follows.

Theorem 10 (Completeness) Suppose t ∈ T (Σ) and E is a set of rules. If there

exists a strategy such that starting from state (E , t, {c}, {c ≈ t}, ∅, Λ) it is the case

that

(i) the processed rule instances Fi is always non-overlapping modulo Ri,

(ii) the set Fi↑ρRi
is confluent, and

(iii) a normal form t∗ of t is eventually represented,

(where (E , t, Kj, ∅, Rj, Sj) are states at the end of the j-th narrowing phase), then

every fair derivation obtained using that strategy terminates in state t∗.

Proof. Suppose t∗ is represented via Rj. We show that the Refined-Detection rule is

applicable at state (E , t, Kk, ∅, Rk, Sk) for k ≥ j. Since t∗ is a E-normal form, therefore

t∗ is irreducible by Fk↑ρRk
.

Using conditions (i) and (ii) and Lemma 17, we know that Fk is persistent with

respect to Rk. Since Fk is persistent, it follows from Lemma 15 that Rk is a rewrite

closure. Therefore, t∗ →∗
Nk

c. Furthermore, since t∗ is in E-normal form, condition (iii)

CHAPTER 7. APPLICATIONS OF CONGRUENCE CLOSURE 88

of Refined-Detection holds too. Therefore, the derivation would terminate in state t∗.

Since we restrict the narrowing phase to use only the unmarked N rules, it is

possible that a fair strategy may not eventually represent normal forms of terms. In

two special cases, we shall argue that the normal form term is eventually represented

if it exists.

7.1.4.2 Normalization in Orthogonal Systems

We first discuss normalization of terms with respect to so-called “orthogonal” rewrite

systems. A rewrite system E is called orthogonal if (i) all its rewrite rules are left-

linear (i.e., contain no multiple occurrences of the same variable in any left-hand side)

and (ii) it is nonoverlapping (i.e., without critical pairs except trivial ones of the form

t ≈ t). We need the following well-known result [54].

Lemma 18 Every orthogonal term rewriting system is confluent.

Theorem 11 If E is an orthogonal rewriting system, then given any term and a fair

strategy, the inference system outlined above finds its normal form with respect to E,
if one exists.

Proof. Lemma 18 and Theorem 9 together imply the soundness of the result. In

order to complete the proof, we need to satisfy conditions (i)–(iii) of Theorem 10.

Using the fact that E is orthogonal, we can establish the confluence of Fj↑ρRj
using

arguments similar to those used in proof of Lemma 18. Since E is non-overlapping,

therefore Fj is non-overlapping modulo Rj (as rules in Fj are identical to rules in E
with constants substituted for variables).

Finally we show that if t∗ is an E-normal form of t, then t∗ is eventually rep-

resented. Suppose that t = t0 → t1 · · · tn−1 → tn = t∗ is a normalizing reduction

sequence. We claim that eventually each term ti is represented. The claim is true

for i = 0. Suppose ti is represented. Therefore, ti →∗
Dj

c for some c ∈ Kj, where

(Kj, ∅, Rj) is a rewrite closure final state. Suppose ti → ti+1 using some ground in-

stance represented by the rule lσ → rσ ∈ iKj
(E). If lσ is reducible to a constant

via Nk for all k ≥ j, then by fairness, this instance is selected and eventually ti+1 is

represented too. For the other case assume lσ is not reducible to a constant via Nj.

Therefore, we have

lσ 6→∗
Nj

d and lσ →∗
Nj∪Xj

d

CHAPTER 7. APPLICATIONS OF CONGRUENCE CLOSURE 89

But we know that Nj ∪Xj ∪Cj is a rewrite closure for Fj. Since E is non-overlapping

the only instance whose processing could have caused the marking of any rule used

in the reduction lσ →∗
Rj

d can be lσ → rσ. Therefore, this rule has been processed

and hence ti+1 is represented. This completes the induction step. Hence eventually

t∗ is represented.

7.1.4.3 Normalization in Convergent Systems

In order to perform normalization of terms with respect to convergent systems, we

need a strategy (to choose instances to select) so that the processed rule instances are

nonoverlapping and their extension confluent. But, if F is non-overlapping modulo

R, then F ↑ρR is locally confluent. Since convergent systems are terminating, F ↑ρR
is also confluent. Using an innermost strategy allows us to make sure that F is

non-overlapping.

Definition 17 Let lσ → rσ and l′σ′ → r′σ′ be two selectible instances (with respect

to only the unmarked rules now). Say lσ →∗
N c and l′σ′ →∗

N c′. An innermost strategy

is one that makes sure that if there exists a term t[c] containing c such that t[c]→∗
N c′,

then the rule lσ → rσ is chosen first.

Innermost strategy is important because of the following.

Lemma 19 Let E be convergent. Let (E , t, Kj, ∅, Rj, Λ) denote the state of any

derivation at the end of the j-th rewrite closure phase, i.e.,

(E , t, {c}, {c ≈ t}, ∅, Λ) `(RC!)
N (E , t, K1, ∅, R1, Λ) `(S)

N (E , t, K1, {ρ1}, R1, Λ)

`(RC!)
N (E , t, K2, ∅, R2, Λ) `(S)

N · · ·

where the instances ρi, defined as liσi → riσi, added to the closure in the (i + 1)-

th rewrite closure phase (j ≥ 1) is selected using an innermost strategy. Let Fj =

{lkσk → rkσk : 0 < k < j}. Then the following statements are true, for all j ≥ 1 :

1. The set Fj is non-overlapping modulo Rj.

2. For every u ∈ T (Σ∪Kj) in Dj∪Cj-normal form, there exists a term tu ∈ T (Σ)

such that t→∗
Nj

u. This t is unique.

3. The innermost strategy to select the next instance to process after the end of the

rewrite closure phase j is well-defined, i.e., is unambiguous.

CHAPTER 7. APPLICATIONS OF CONGRUENCE CLOSURE 90

4. If u is a proper subterm of ljσj and u →!
N u!, then the term tu

!
as specified in

property 2 is in E-normal form.

5. The set Fj+1 is non-overlapping modulo Rj+1.

Proof. We shall prove the implications (1) ⇒ (2), (2) ⇒ (3), (3) ⇒ (4), and (4) ⇒
(5) in that order. As the base case we note that each of the statements 1—4 are true

for j = 0. Initially N1 contains the rules needed to represent the term t and F1 = ∅.
Since F1 = ∅, therefore statements 4 and 1 are vacuously true. Statements 2 and 3

are true because each term u ∈ T (Σ ∪K1) represents exactly one term in T (Σ) via

R1.

(1) ⇒ (2): Assume that Fj is non-overlapping modulo Rj. Clearly, the set Fj↑ρRj

is locally confluent. Since E is terminating, the set Fj↑ρRj
is terminating, and hence

confluent. Therefore, using Lemma 17 we know that Fj is persistent with respect to

R. Let u ∈ T (Σ∪Kj) be any term in Rj-normal form. Equivalence class represented

by u has a unique Fj+1↑ρRj+1-normal form tu. Since Nj+1 ∪Xj+1 is a rewrite closure,

therefore, we have tu →!
Nj

u.

(2) ⇒ (3): We now show that the innermost strategy is well-defined. Suppose

lσ → rσ and l′σ′ → r′σ′ are both selectible after the end of rewrite closure phase

j. Say, lσ →!
Nj

u, and, l′σ′ →!
Nj

u′. Suppose the innermost strategy is ambiguous.

Therefore, there exist terms s[u] and s′[u′] containing the terms u and u′ respectively,

such that s[u]→∗
Nj

u′ and s′[u′]→∗
Nj

u. This means we have s′[s[u]]→∗
Nj

s′[u′]→∗
Nj

u.

By assumption there exists a unique term tu represented by u via Nj, i.e., tu →∗
Nj

u.

This means that s′[s[tu]] is another term which satisfies conditions in property 2, but

this contradicts uniqueness of t∗.

(3) ⇒ (4): Suppose statement 4 is false. We have ljσj →∗
Nj

uj, for some uj

occurring (as a proper subterm) in Rj. Without loss of generality, assume that all

constants in ljσj are in Rj-normal form. For all such constants, define a mapping

ρ : K 7→ T (Σ) such that cρ = tc (i.e., cρ →∗
Nj

c). Now let u ∈ T (Σ ∪ Kj) be the

smallest proper subterm of ljσj such that uρ is not in E-normal form.5 Since uρ is

root-reducible by E , and u is a proper subterm of ljσj, by completeness of narrowing,

we violate the assumption that liσi → riσi was chosen using an innermost strategy.

(4) ⇒ (5): Next, suppose that Fj+1 = {liσi → riσi : 1 ≤ i ≤ j} is overlapping

modulo Rj+1. Say, lmσm → rmσm, lnσn → rnσn ∈ Fj+1 are the two overlapping

5Note that since u is a subterm of ljσj , we also have u→!
Nj

u!, and u! occurs in Rj . By Lemma 14,

we know that tu
!
= tu = uρ.

CHAPTER 7. APPLICATIONS OF CONGRUENCE CLOSURE 91

rules. Therefore, there exist mappings ρm, ρn : Kj 7→ T (Σ ∪Kj) and a non-constant

proper subterm l′n of lnσ such that lmσmρm = l′nρn with cρ↔∗
Rj+1

c for all constants

c. This shows that the E-normal form term tl
′
n is reducible by the rule lm → rm ∈ E ,

a contradiction.

Thus we have the following result.

Theorem 12 Let E be a convergent rewriting system. Then given any term, the

inference system outlined above finds its normal form.

Proof. We choose the next instance to be processed in the selection rule using

an innermost fair strategy. In every application of this rule, we choose to process

exactly one instance. Again soundness of the method follows from Theorem 9. In

order to complete the proof we need to show that an innermost strategy guarantees

satisfiability of conditions (i)–(iii) of Theorem 10. Conditions (i) and (ii) follow from

Lemma 19.

Finally, we show that the normal form term t∗ of any term t is always eventually

represented. It suffices to prove that if t ∈ T (Σ) is such that t is represented (via Rj),

and t is reducible by E , then some term t′ such that t→E t′ is eventually represented.

Since Rj is a rewrite closure, if t is not represented via Nj, then t is reducible by

the processed instances, and hence some t′ with t →E t′ is represented too. Suppose

t is represented via Nj. Let t = t[lσ] →E t′ = t[rσ] using an innermost reduction

step. Since E is convergent all proper subterms of lσ are in E-normal form. Clearly,

lσ →∗
Nj

c for some c. Hence, some instance of l → r is selectible (in an innermost

strategy).

7.1.5 Conclusion

Normalization of terms by a given set of rewrite rules is critical for the efficient

implementation of rewrite-based systems. Simple straight-line reduction methods

can be made more efficient by incorporating a history of reduction steps into the

normalization process, so as to avoid repeating similar rewrite steps. Chew [30]

adapted congruence closure techniques to obtain a practical technique such a non-

oblivious normalization procedure. Chew’s procedure applies to orthogonal systems,

but was refined and generalized by Verma and Ramakrishnan [82] and Verma [81].

We have presented a general formalism, based on transformation rules, within

which both Chew’s original method and variants thereof, as well as more general

normalization procedures, can be described. The most comprehensive previous results

CHAPTER 7. APPLICATIONS OF CONGRUENCE CLOSURE 92

were obtained by Verma [81], who specified several postulates on a (priority) rewrite

relation, which suffice to ensure completeness of a rewrite closure-based procedure for

normalization. The postulates that are relevant for standard rewrite relations imply

that the given rewrite system be confluent and non-overlapping, which means that

our results cover a broader class of rewrite systems.

We believe that our approach sheds new light on the basic concepts underlying

non-oblivious normalization in that it relates normalization methods to standard term

rewriting techniques, such as completion and narrowing. The transformation rules

for the two basic components of non-oblivious normalization—congruence closure

and narrowing—are essentially specialized versions of standard rules used to describe

rewrite-based deduction and computation methods. Rules specific to non-oblivious

normalization control the interface between the two components and the termination

of the overall process.

7.2 Rigid E-Unification

Rigid E-unification arises when tableaux-based theorem proving methods are ex-

tended to logic with equality. The general, simultaneous rigid E-unification prob-

lem is undecidable [36] and it is not known if a complete set of rigid E-unifiers in

the sense of [46] gives a complete proof procedure for first-order logic with equality.

Nevertheless complete tableau methods for first-order logic with equality can be de-

signed based on incomplete, but terminating, procedures for rigid E-unification [37].

A simpler version of the problem is known to be decidable and also NP-complete,

and several corresponding algorithms have been proposed in the literature (not all of

them correct) [45, 46, 16, 37, 47, 18]. In the current paper, we consider this standard,

non-simultaneous version of the problem.

Most of the known algorithms for finding a complete set of (standard) rigid unifiers

employ techniques familiar from syntactic unification, completion and paramodula-

tion. Practical algorithms also usually rely on congruence closure procedures in one

form or another, though the connection between the various techniques has never been

clarified. The different methods that figure prominently in known rigid unification

procedures—unification, narrowing, superposition, and congruence closure—have all

been described in a framework based on transformation rules. We use the recent work

on congruence closure as a starting point [51, 13] and formulate a rigid E-unification

method in terms of fairly abstract transformation rules.

CHAPTER 7. APPLICATIONS OF CONGRUENCE CLOSURE 93

This approach has several advantages. For one thing, we provide a concise and

clear explication of the different components of rigid E-unification and the connec-

tions between them. A key technical problem has been the integration of congru-

ence closure with unification techniques, the main difficulty being that congruence

closure algorithms manipulate term structures over an extended signature, whereas

unifiers need to be computed over the original signature. We solved this problem

by rephrasing unification problems in terms of congruences and then applying proof

theoretic methods, that had originally been developed in the context of completion

and paramodulation. Some of the new and improved features of the resulting rigid

E-unification method in fact depend on the appropriate use of extended signatures.

Almost all the known rigid E-unification algorithms require relatively complicated

term orderings. In particular, most approaches go to great length to determine a

suitable orientation of equations (between terms to be unified), such as x ≈ fy,

a decision that depends of course on the terms that are substituted (in a “rigid”

way) for the variables x and y. But since the identification of a substitution is

part of the whole unification problem, decisions about the ordering have to made

during the unification process, either by orienting equations non-deterministically, as

in [46], or by treating equations as bi-directional constrained rewrite rules (and using

unsatisfiable constraints to eliminate wrong orientations) [16]. In contrast, the only

orderings we need are simple ones in which the newly introduced constants are smaller

than all other non-constant terms. The advantage of such simple orderings is twofold,

in that not only the description of the rigid E-unification method itself, but also the

corresponding completeness proofs, become simpler.6 Certain optimizations can be

easily incorporated in our method that reduce some of the non-determinism still

inherent in the unification procedure. The treatment of substitutions as congruences

defined by special kinds of rewrite systems (rather than as functions or morphisms)

is a novel feature that allows us to characterize various kinds of unifiers in proof-

theoretic terms via congruences.

As an interesting fallout of this work we obtain an abstract description of a class

6A key idea of congruence closure is to employ a concise and simplified term representation via
variable abstraction, so that complicated term orderings are no longer necessary or even applicable.
There usually is a trade-off between the simplicity of terms thus obtained and the loss of term
structure [13]. In the case of rigid unification, we feel that simplicity outweighs the loss of some
structure, as the non-determinism inherent in the procedure limits the effective exploitation of a
more complicated term structure in any case.

CHAPTER 7. APPLICATIONS OF CONGRUENCE CLOSURE 94

of efficient syntactic unification algorithms based on recursive descent. Other descrip-

tions of these algorithms are typically based on data structures and manipulation of

term dags. Since our approach is suitable for abstractly describing sharing, we obtain

a pure rule based description.

One motivation for the work presented here has been the generalization of rigid E-

unification modulo theories like associativity and commutativity, which we believe are

of importance for theorem proving applications. Our approach, especially because of

the use of extensions of signatures and substantially weaker assumptions about term

orderings, should more easily facilitate the development of such generalized unification

procedures.

We also believe that our way of describing rigid E-unification will facilitate a

simpler proof of the fact that the problem is in NP. Previous proofs of membership

of this problem in NP “require quite a bit of machinery” [46]. The weaker ordering

constraints, a better integration of congruence closure and a rule-based description of

the rigid E-unification procedure should result in a simpler proof.

7.2.1 Substitutions as Congruences

It is often useful to reason about a substitution σ by considering the congruence

relation ↔∗
Eg

σ
induced by the set of equations Eσ = {xσ ≈ x : x ∈ Dom(σ)}. The

following proposition establishes a connection between substitutions and congruences.

Proposition 5 (a) For all terms t ∈ T (Σ, V), t ↔∗
Eg

σ
tσ. Therefore, Eσ ⊆

↔∗
(E∪Eσ)g . (b) If the substitution σ is idempotent, then for any two terms s, t ∈

T (Σ, V), we have sσ = tσ if, and only if, s↔∗
Eg

σ
t.

Proof. Part (a) is straight-forward and also implies the “only if” direction of part

(b). For the “if” direction, note that if u ↔Eg
σ

v, then u = u[l] and v = v[r] for

some equation l ≈ r or r ≈ l in Eσ. Thus, uσ = (u[l])σ = uσ[lσ] ↔(Eσσ)g uσ[rσ] =

(u[r])σ = vσ. Therefore, if s↔∗
Eg

σ
t, then sσ ↔∗

(Eσσ)g tσ. But if σ is idempotent, then

Eσσ consists only of trivial equations t ≈ t, and hence sσ and tσ are identical.

Theorem 13 Let σ be an idempotent substitution and [x1 7→ t1; . . . ; xn 7→ tn] be a

triangular form representation of σ. Then the congruences ↔∗
Eg

σ
and ↔∗

(∪iEσi)
g are

identical, where σi = {xi 7→ ti}.

CHAPTER 7. APPLICATIONS OF CONGRUENCE CLOSURE 95

Proof. It is sufficient to prove that Eσ ⊆ ↔∗
(∪iEσi)

g and Eσi
⊆ ↔∗

Eg
σ

for all 1 ≤ i ≤ n.

If xiσ ≈ xi is an equation in Eσ, then

xiσ = xiσ1 . . . σn = xiσi . . . σn = tiσi+1 . . . σn,

and therefore, using Proposition 5 part (a),

xi ↔∗
Eg

σi
ti ↔∗

Eg
σi+1

tiσi+1 ↔∗
Eg

σi+2
· · · ↔∗

Eg
σn

tiσi+1 . . . σn = xiσ.

For the converse, using part of the above proof, we get ti ↔∗
(∪k>iEσi)

g xiσ ↔∗
Eg

σ
xi. By

induction hypothesis we can assume, Eσk
⊆ ↔∗

Eg
σ

for k > i, and then the above proof

would establish Eσi
⊆ ↔∗

Eg
σ
.

The theorem indicates that if an idempotent substitution σ can be expressed as

a composition σ1σ2 . . . σn of finitely many idempotent substitutions σi with disjoint

domains, then the congruence induced by Eσ is identical to the congruence induced

by ∪iEσi
. We denote by E~σ the set ∪iEσi

.

The variable dependency ordering �S
V induced by a set S of equations on the set

V of variables is defined by: x �S
V y if there exists an equation t[x] ≈ y in S. A

finite set S of equations is said to be substitution-feasible if (i) the right-hand sides of

equations in S are all distinct variables and (ii) the variable dependency ordering �S
V

induced by S is well-founded. If S is a substitution-feasible set {ti ≈ xi : 1 ≤ i ≤ n}
such that xj 6�S

V xi whenever i > j, then the idempotent substitution σ represented

by the triangular form [x1 7→ t1; . . . ; xn 7→ tn] is called the substitution corresponding

to S. Given an idempotent substitution σ and any triangular form representation

σ1σ2 . . . σn, the sets Eσ and ∪iEσi
are substitution-feasible.

Rigid E-Unification

Definition 18 Let E be a set of equations (over Σ ∪ V) and s and t be terms in

T (Σ, V). A substitution σ is called a rigid E-unifier of s and t if sσ ↔∗
(Eσ)g tσ.

When E = ∅, rigid E-unification reduces to syntactic unification.

Theorem 14 An idempotent substitution σ is a rigid E-unifier of s and t if and only

if s ↔∗
(E∪Eσ)g t.

Proof. Let σ be an idempotent substitution that is a rigid E-unifier of s and t. By

definition we have sσ ↔∗
(Eσ)g tσ. Using Proposition 5 part (a), we get

s ↔∗
Eg

σ
sσ ↔∗

(E∪Eσ)g tσ ↔∗
Eg

σ
t.

CHAPTER 7. APPLICATIONS OF CONGRUENCE CLOSURE 96

Conversely, suppose σ is an idempotent substitution such that s ↔∗
(E∪Eσ)g t.

Then, we have sσ ↔∗
(Eσ∪Eσσ)g tσ. But (Eσ)σ consists of trivial equations of the

form t ≈ t and hence we have sσ ↔∗
(Eσ)g tσ.

If the substitution σ is not idempotent, the above proof does not go through as

the set (Eσ)σ may contain non-trivial equations. However, we may use Theorem 13

to establish that the congruences induced by E ∪Eσ and E ∪E~θ, where θ1 . . . θn is a

triangular representation for σ, are identical.

We obtain a characterization of standard E-unification if we replace the congru-

ence induced by E ∪ Eσ by the congruence induced by ∪σEσ ∪ Eσ in the above

theorem, and a characterization of syntactic unifiers if E = ∅.

Orderings on Substitutions

Unification procedures are designed to find most general unifiers of given terms. A

substitution σ is said to be more general than another substitution θ with respect to

a set of variables V , denoted by σ �V θ, if there exists a substitution σ′ such that

xσσ′ = xθ for all x ∈ V .

A substitution σ is called more general modulo Eg on V than θ, denoted by

σ �V
Eg θ, if there exists a substitution σ′ such that xσσ′ ↔∗

(Eθ)g xθ for all x ∈ V . We

also define an auxiliary relation v between substitutions by σ vV
Eg θ if xσ ↔∗

(Eθ)g xθ

for all x ∈ V . Two substitutions σ and θ are said to be equivalent modulo Eg on V

if σ �V
Eg θ and θ �V

Eg σ.

If σ is a rigid E-unifier of s and t, then there exists an idempotent rigid E-

unifier of s and t that is more general modulo Eg than σ. Hence, in this paper, we

will be concerned only with idempotent unifiers. Comparisons between idempotent

substitutions can be characterized via congruences.

Theorem 15 Let σ and θ be idempotent substitutions and V the set of variables in

the domain or range of σ. Then, σ �V
Eg θ if and only if Eσ ⊆ ↔∗

Eg∪Eg
θ
.

Proof. If σ is idempotent then we can prove that σ �V
Eg θ if and only if σθ vV

Eg θ.

Now assuming σ �V
Eg θ, we have xσθ ↔∗

(Eθ)g xθ for all x ∈ V . But xθ ↔(Eθ)g x and

Eθ ⊆ ↔∗
Eg∪Eg

θ
by Proposition 5. Therefore, it follows that Eσθ ⊆ ↔∗

Eg∪Eg
θ
. But

again by Proposition 5, xσθ ↔∗
Eg

θ
xσ and therefore, Eσ ⊆ ↔∗

Eg∪Eg
θ
.

Conversely, if Eσ ⊆ ↔∗
Eg∪Eg

θ
then, Eσθ ⊆ ↔∗

(Eθ)g∪(Eθθ)g , and since the equations

in Eθθ are all trivial equations of the form u ≈ u, it follows that Eσθ ⊆ ↔∗
(Eθ)g ,

which implies σθ vV
Eg θ and hence σ �V

Eg θ.

CHAPTER 7. APPLICATIONS OF CONGRUENCE CLOSURE 97

7.2.2 Rigid E-unification

We next present a set of abstract transformation (or transition) rules that can be used

to describe a variety of rigid E-unification procedures. By Theorem 14, the problem of

finding a rigid E-unifier of two terms s and t amounts to finding a substitution-feasible

set S such that s ↔∗
(E∪S)g t, and involves (1) constructing a substitution-feasible set

S, and (2) verifying that s and t are congruent modulo E∪S. Part (1), as we shall see,

can be achieved by using syntactic unification, narrowing and superposition. Efficient

techniques for congruence testing via abstract congruence closure can be applied to

part (2).

We recapitulate here the notion of an abstract congruence closure suitably modi-

fied to treat all variables essentially as constants in the signature. Let Γ be a set of

function symbols and variables and K be a disjoint set of constants. An (abstract)

congruence closure (with respect to Γ and K) is a ground convergent rewrite system

R over the signature Γ ∪ K7 such that (i) each rule in R is either a D-rule of the

form t ≈ c0 where t ∈ T (Γ ∪K) −K and c0 is a constant in K, or a C-rule of the

form c0 ≈ c1 with c0, c1 ∈ K, and (ii) for each constant u ∈ T (Γ ∪ K) that is in

normal form with respect to R, there exists a term tu ∈ T (Γ) such that tu →∗
Rg u.

Furthermore, if E is a set of equations (over Γ ∪ K) and R is such that (iii) for all

terms s and t in T (Γ), s ↔∗
Eg t if, and only if, s →∗

Rg ◦ ←∗
Rg t, then R is called an

(abstract) congruence closure for E.

For example, let E0 = {gfx ≈ z, fgy ≈ z} and Γ = {g, f, x, y, z}. The set E1

consisting of the rules gfx ≈ c1, fgy ≈ c1, z ≈ c1 is an abstract congruence closure

(with respect to Γ and {c1}) for E0.

The rules for construction of a congruence closure can easily be modified to deal

with the new symbols—variables which are considered as part of the signature Γ.

Additionally, we merge the second and third components used in the construction of

a congruence closure to just one component.

For our purposes, transition rules are defined on quintuples (K, E; V, E?; S), where

Σ is a given fixed signature, V is a set of variables, K is a set of constants disjoint

from Σ ∪ V , and E, E? and S are sets of equations. The first two components of

the quintuple represent a partially constructed congruence closure, whereas the third

and fourth components are needed to formalize syntactic unification, narrowing and

superposition. The substitution-feasible set in the fifth component stores an answer

7We treat variables as constants and in this sense speak of a ground convergent system R.

CHAPTER 7. APPLICATIONS OF CONGRUENCE CLOSURE 98

substitution in the form of a set of equations. For a given state (K, E; V, E?; S),

we try to find a substitution σ with Dom(σ) ⊆ V , that is a rigid E-unifier of each

equation in the set E?. By an initial state we mean a tuple (∅, E0; V0, {s ≈ t}; ∅)
where V0 is the set of all variables that occur in E0, s or t. Transition rules specify

ways in which one quintuple state can be transformed into another such state. The

goal is to successively transform a given initial state to a state in which the fourth

component is empty.

C-Closure:
(K, E; V, E?; S)

(K ′, E ′; V, E?; S)

if E ′ is an abstract congruence closure (with respect to Σ ∪ V and K ′) for E.

Note that we need not choose any term ordering, which is one of the main differ-

ences of our approach with most other rigid unification methods.

Syntactic Unification

C-closure can potentially extend the signature by a set of constants. Thus we obtain

substitutions (or substitution-feasible sets) and terms over an extended signature

that need to be translated back to substitutions and terms in the original signature,

essentially by replacing these constants by terms from the original signature. For

example, consider the abstract congruence closure E1 for E0 = {gfx ≈ z, fgy ≈ z}
described above, and the substitution-feasible set S = {c1 ≈ x, x ≈ y}. This set can

be transformed by replacing the constant c1 by z to give a substitution-feasible set

{z ≈ x, x ≈ y}. Unfortunately, this may not be possible always. For example, in the

substitution-feasible set S = {c1 ≈ x, x ≈ y, y ≈ z}, we can’t eliminate the constant

c1 since every term congruent to c1 modulo E1 contains one of x, y or z.

We say that a (substitution-feasible) set S = {ti ≈ xi : ti ∈ T (Σ ∪ K, V), xi ∈
V, 1 ≤ i ≤ n} of rules is E-feasible on V if, there exist a terms si ∈ T (Σ ∪ V) with

si ↔∗
Eg ti, such that the set S↑E= {si ≈ xi : 1 ≤ i ≤ n} is substitution-feasible.

Recall that if σ is a rigid E-unifier of s and t, then there exists a proof s ↔∗
Eg∪Eg

σ
t.

The transition rules are obtained by analyzing the above hypothetical proof. The rules

attempt to deduce equations in Eσ by simplifying the above proof. We first consider

the special case when s ↔∗
Eg

σ
t, and hence s and t are syntactically unifiable. Trivial

proofs can be deleted.

CHAPTER 7. APPLICATIONS OF CONGRUENCE CLOSURE 99

Deletion:
(K, E; V, E? ∪ {t ≈ t}; S)

(K, E; V, E?; S)

If Eσ is a substitution-feasible set and the top function symbols in s and t are

identical, then all replacement steps in the proof s ↔∗
Eg

σ
t occur inside a non-trivial

context, and hence this proof can be broken up into simpler proofs.

Decomposition:
(K, E; V, E? ∪ {f(t1, . . . , tn) ≈ f(s1, . . . , sn)}; S)

(K, E; V, E? ∪ {t1 ≈ s1, . . . , tn ≈ sn}; S)

if f ∈ Σ is a function symbol of arity n.

Finally, if the proof s ↔∗
Eg

σ
t is a single replacement step (at the root position,

and within no contexts), we can eliminate it.

Elimination:
(K, E; V, E? ∪ {x ≈ t}; S)

(K ∪ {x}, E ∪ Eθ; V − {x}, E?; S ∪ Eθ)

if (i) θ = {x 7→ t}, (ii) the set Eθ = {t ≈ x} is E-feasible on V , and (iii) x ∈ V .

Deletion and decomposition are identical to the transformation rules for syntactic

unification, c.f. [2]. However, elimination (and narrowing and superposition described

below), do not apply the substitution represented by Eθ (or Eθ↑E) to the sets E? and

S as is done in the corresponding standard rules for syntactic unification. Instead we

add the equations Eθ to the second component of the state.

Decomposition, deletion and elimination can be replaced by a single rule that

performs full syntactic unification in one step. We chose to spell out the rules above

as they provide a method to abstractly describe an efficient quadratic-time syntactic

unification algorithm by recursive descent, c.f. [2].

Narrowing and Superposition

The following rule reflects attempts to identify and eliminate steps in a proof

s ↔∗
Eg∪Eg

σ
t that use equations in Eg.

Narrowing:
(K, E; V, E? ∪ {s[l′] ≈ t}; S)

(K ∪ V ′, E ∪ Eθ; V − V ′, E? ∪ {s[c] ≈ t}; S ∪ Eθ)

CHAPTER 7. APPLICATIONS OF CONGRUENCE CLOSURE 100

where (i) l ≈ c ∈ E, (ii) θ is the most general unifier of l′ and l, (iii) the set Eθ is

E-feasible on V , (iv) V ′ = Dom(θ) ⊂ V , (v) E is an abstract congruence closure with

respect to Σ ∪ V and K, and (vi) either l′ 6∈ V or l ∈ V .

We may also eliminate certain “proof patterns” involving rules in Eg (and Eg
σ)

from the proof s ↔∗
Eg∪Eg

σ
t via superposition of rules in E.

Superposition:
(K, E = E ′ ∪ {t ≈ c, C[t′] ≈ d}; V, E?; S)

(K ∪ V ′, E ′ ∪ {t ≈ c} ∪ T ; V − V ′, E?; S ∪ Eθ)

if (i) θ is the most general unifier of t and t′, (ii) Eθ is E-feasible on V , (iii) T =

Eθ ∪ {C[c] ≈ d}, (iv) V ′ = Dom(θ) ⊂ V , (v) E is an abstract congruence closure

with respect to Σ ∪ V and K, and (vi) either t′ 6∈ V or t ∈ V .

Narrowing, elimination and superposition add new equations to the second com-

ponent of the state, which are subsequently processed by C-closure.

We illustrate the transition process by considering the problem of rigidly unifying

the two terms fx and gy modulo the set E0 = {gfx ≈ z, fgy ≈ z}. Let E1 denote

an abstract congruence closure {gfx ≈ c1, fgy ≈ c1, z ≈ c1, } for E0. Table 12

i Ki Ei Vi E?i Si Rule

0 ∅ E0 {x, y, z} {fx ≈ gy} ∅ C-Closure
1 {c1} E1 {x, y, z} {fx ≈ gy} ∅ Narrow
2 K1 ∪ {x} E1 ∪ {gy ≈ x} {y, z} {c1 ≈ gy} {gy ≈ x} C-Closure
3 K2 ∪ {c2} E3 {y, z} {c1 ≈ gy} {gy ≈ x} Narrow
4 K2 ∪ {y} E3 ∪ {y ≈ c1} {z} {c1 ≈ c1} S3 ∪ {c1 ≈ y} Delete
5 K4 E4 {z} ∅ S4

Table 12: Example: Intermediate states in a derivation illustrating the rigid E-
unification transition rules.

describes some intermediate stages of a derivation. The set E3 = {x ≈ c2, gy ≈
c2, z ≈ c1, gc1 ≈ c1, fc2 ≈ c1} is an abstract congruence closure for E2. Since the

set E?5 is empty, the rigid unification process is complete. Any set S4↑E4 is a rigid

unifier of fx and gy. Since S4 = {gy ≈ x, c1 ≈ y} we need to choose a term in the

equivalence class of c1 (not containing x). For instance, we may choose z for c1 to get

the set S4↑E4= {gy ≈ x, z ≈ y} and the corresponding unifier [x 7→ gy; y 7→ z].

A cautious reader might note that the transition rules Compress1 and Compress2

are crucial optimizations for this application. In fact, we should use Extension mini-

mally so that term structure is preserved as much as possible.

CHAPTER 7. APPLICATIONS OF CONGRUENCE CLOSURE 101

7.2.3 Correctness

Let U be an infinite set of constants from which new constants are chosen in C-closure.

If a state ξi = (Ki, Ei; Vi, E?i; Si) is transformed to a state ξj = (Kj, Ej; Vj, E?j; Sj)

by C-closure, then (i) Ej is an abstract congruence closure (with respect to Σ ∪ V

and K) for Ei and (ii) Ej is contained in a well-founded simplification ordering.

We use the symbol `REU to denote the one-step transformation relation induced

by C-closure, deletion, decomposition, elimination, narrowing and superposition. A

derivation is a sequence of states ξ0 `REU ξ1 `REU · · · with no two consecutive

applications of C-closure.

Theorem 16 (Termination) All derivations starting from an initial state (∅, E0;-

V0, {s ≈ t}; ∅) are finite.

Proof. Define a measure associated with a state (K, E; V, E?; S) to be the pair

(|V |, mE?), where |V | denotes the cardinality of the set V and mE? = {{s, t} : s ≈
t ∈ E?}. These pairs are compared lexicographically using the greater-than relation

on the integers in the first component and the two-fold multiset extension of the

ordering � in the second component. This induces a well-founded ordering on states

with respect to which each transition rule is reducing.

Lemma 20 Let (Kn, En; Vn, E?n; Sn) be the final state of a derivation from (∅, E0;-

V0, E?0; ∅), where E0 ∪ E?0 are equations over T (Σ, V0). Then

(a) the set Sn is En-feasible on V0 and

(b) if E?n ⊆ ↔∗
(En∪Sn↑En)g , then E?0 ⊆ ↔∗

(E0∪Sn↑En)g .

Proof. We prove both claims by induction on the length i of the derivation. For

claim (a), we show that in the i-th state, Si is Ei-feasible on V0. The base case is

trivial as S0 = ∅. For the induction step, assuming Si is Ei-feasible on V0, we need

to prove that Si+1 is Ei+1-feasible on V0. We verify this for individual rules now.

The E- and S-components are left unchanged by deletion and decomposition rule. In

case of elimination, narrowing and superposition, if Si is Ei-feasible on V0, then Si+1

is Ei-feasible on V0 (because of condition (ii) in elimination and superposition and

condition (iii) in narrowing). But since Ei ⊂ Ei+1 for each of these rules, Si+1 is

also Ei+1-feasible on V0. Since an abstract congruence closure does not change the

congruence defined on the original signature, the claim holds for the C-Closure rule.

CHAPTER 7. APPLICATIONS OF CONGRUENCE CLOSURE 102

For claim (b), we prove that if E?i+1 ⊆ ↔∗
(Ei+1∪Sn↑En)g , then, E?i ⊆ ↔∗

(Ei∪Sn↑En)g

by considering each transition rule separately. Let E?i+1 ⊆ ↔∗
Eg

i+1∪(Sn↑En)g . If either

deletion or decomposition was used to obtain state ξi+1:

E?i ⊆ ↔∗
E?g

i+1
⊆ ↔∗

Eg
i+1∪(Sn↑En)g ⊆ ↔∗

Eg
i ∪(Sn↑En)g

If either elimination, narrowing or superposition was used to obtain state ξi+1:

E?i ⊆ ↔∗
Eg

i+1∪(Sn↑En)g ⊆ ↔∗
Eg

i ∪(Sn↑En)g∪Eg
θ
⊆ ↔∗

Eg
i ∪(Sn↑En)g

as either Eθ is always contained in Sn.

In case of the C-Closure rule, we note that the congruence induced by Ei is

identical to that induced by Ei+1 on the set T (Σ ∪ V0 ∪ Ki) and that any term in

Ei∪E?i is over the signature Σ∪Ki∪V0. Therefore, E?i ⊆ ↔∗
Eg

i+1∪(Sn↑En)g and hence,

E?i ⊆ ↔∗
Eg

i ∪(Sn↑En)g .

Theorem 17 (Soundness) If (Kn, En; Vn, E?n; Sn) is the final state of a derivation

from (∅, E0; V0, E?0; ∅), then the set Sn is En-feasible and the substitution correspond-

ing to (any) set Sn↑En is a rigid E0-unifier of s and t.

Proof. The En-feasibility of Sn on V0 follows from Lemma 20. Since E?n = ∅, the

antecedent of the implication in part (b) of Lemma 20 is vacuously satisfied and hence

E?0 ⊆ ↔∗
(E0∪Sn↑En)g .

Note that by Theorem 13, the ground congruence induced by Sn↑En is identical to

the congruence induced by Eσ, where σ is the idempotent substitution corresponding

to the set Sn↑En . Hence, s ↔∗
Eg

0∪Eg
σ

t. Using Theorem 14, we establish that σ is a

rigid E0-unifier of s and t.

Theorem 18 (Completeness) Let θ be an idempotent rigid E0-unifier of s and t

and V0 the set of variables in E0, s and t. Then, there exists a (finite) derivation with

initial state (∅, E0; V0, {s ≈ t}; ∅) and final state (Kn, En; Vn, ∅; Sn) where ESn↑En
⊆

↔∗
Eg

0∪Eg
θ
.

Proof. Let ξi = (Ki, Ei; Vi, E?i; Si) be a state. We say a substitution-feasible set Si

is a solution for state ξi if Si is Ei-feasible on Vi and

E?i ⊆ ↔∗
(E∪Si∪Si)g .

CHAPTER 7. APPLICATIONS OF CONGRUENCE CLOSURE 103

Now, given a state ξi and a solution Si for ξi, we show how to obtain a new state

ξj and a solution Sj for ξj such that the pair 〈ξj, S
j〉 is smaller in a certain well-

founded ordering than the pair 〈ξi, S
i〉 and the congruences induced by Ej ∪ Sj ∪ Sj

and Ei ∪ Si ∪ Si are identical. The well-founded ordering will be a lexicographic

combination of the ordering on states ξi’s used in the proof of Theorem 16 and a

well-founded ordering on substitution-feasible sets Si’s. Using proof transformation

arguments, we argue that if a pair (ξi, S
i) can not be reduced then the set E?i is

empty. This yields the desired conclusion.

The above reduction of a pair (ξi, S
i) can be achieved in two ways: (i) by an

REU transformation on ξi, suitably guided by the given solution Si, or, (ii) by some

simple transformation of the set Si. The latter transformation rules are defined in

the context of the state ξi. The initial state is (Si, ∅).

R1 :
(D′ ∪ {c ≈ x}, C ′)

(D′, C ′ ∪ {c ≈ x})
if c ∈ Ki ∪ Vi, x 6→∗

Eg
i /C′g c8

R2 :
(D′ ∪ {c ≈ x}, C ′)

(D′, C ′)
if c ∈ Ki ∪ Vi, x→∗

Eg
i /C′g c

R3 :
(D′ ∪ {t[l′] ≈ x}, C ′)

(D′ ∪ {t[c] ≈ x}, C ′)
if l ≈ c ∈ Ei, l↔∗

C′g l′

R4 :
(D′ ∪ {t[l′] ≈ x}, C ′)

(D′ ∪ {t[y] ≈ x}, C ′)
if l ≈ y ∈ D′, l↔∗

C′g l′, l 6∈ Ki ∪ Vi

These rule construct a generalized congruence closure for the initial set D′ ∪ C ′

(modulo the congruence induced by Ei). One can also think about them as converting

the Si presentation of a substitution into some sort of a minimal triangular form. If

(D′, C ′) can be obtained from (Si, ∅) by repeated application of these rules, then the

set D′ ∪ C ′ is (i) substitution-feasible, (ii) Ei-feasible with respect to Vi, and (iii)

equivalent modulo Eg
i on Vi to Si. This fact is proved in Lemma 23. Furthermore,

Lemma 22 establishes that the set of rules R1–R4 is terminating.

Finally using proof transformation arguments, Lemma 24 shows that if S is a

solution for state ξ, then there exists an REU derivation such that the E?-component

in the final state is empty.

CHAPTER 7. APPLICATIONS OF CONGRUENCE CLOSURE 104

Lemma 21 Let S be substitution-feasible. If (D′, C ′) is any intermediate state in a

derivation (using rules R1–R4) starting from the state (S, ∅) and x ∈ V , then, the set

{c ∈ K : c ↔∗
C′g x} contains at most one element from the set K, and that too only

if a rule with right-hand side x is in C ′.

Proof. Consider the directed graph where the symbols in K∪V are the vertices, and

there is a directed edge from c to x if c ≈ x ∈ C ′. The set {c ∈ K ∪ V : c ↔∗
C′g x}

represents a connected component. The vertices K have no incoming edges. But, if

a directed connected graph contains two vertices with no incoming edges, then there

exists a vertex with indegree at least two. But all vertices in our graph have indegree

at most one. This argument also shows that C ′g−1 is confluent, and the rest of the

lemma follows.

Lemma 22 Let S be substitution-feasible, and let E-component of the current REU

state be a fully-reduced abstract congruence closure (with respect to Σ∪V and K) con-

taining no redundant C-equations. Any derivation (D′
0, C

′
0) `R1−R4 (D′

1, C
′
1) `R1−R4

· · · with starting state (D′
0 = S, C ′

0 = ∅) and using the rules R1, R2, R3 and R4 is

finite.

Proof. To every state (D′, C ′), assign a measure m(D′, C ′) equal to the multiset

of left-hand sides of all rules in D′. States are ordered by comparing the associated

measures using a multiset extension of the ordering �′ on terms, where �′ is a simple

lexicographic path ordering based on the following precedence on symbols in Σ∪V ∪K:

f � c if f ∈ Σ ∪ V and c ∈ K; f � x if f ∈ Σ and x ∈ V ; and, c � d if c, d ∈ K

and c →∗
Eg/C′

∞
g d, where C ′

∞ = ∪iC
′
i. It is easy to see that all rules reduce the

defined measure on states. We need to establish that �′ restricted to constants is

well-founded.

Suppose not. Then, at some point we go from state (D′
i ∪ {c ≈ x}, C ′

i) to

(D′
i+1, C

′
i+1 = C ′

i ∪ {c ≈ x}) using rule R1 such that Eg/C ′
i
g is well-founded whereas

Eg/C ′
i+1

g is not (both restricted to constants in K). This means that there exist

c0, d0 ∈ K such that d0 →∗
Eg/C′

i
g c0 and c0 →Eg/C′

i+1
g d0. Since this latter proof should

use the newly added rule c ≈ x, we would have c0 ↔∗
C′

i
g c → x ↔∗

C′
i
g y →Eg d0. The

only possibility for the use of c ≈ x is in the direction shown since, by Lemma 21, the

equivalence class of x modulo C ′
i contains only variables. Putting these two proofs

together, we get x→∗
Eg/C′

i
g c, which means that the condition in rule R1 is violated.

CHAPTER 7. APPLICATIONS OF CONGRUENCE CLOSURE 105

Lemma 23 Let E be as in lemma 22. Let S be a E-feasible (w.r.t V) and

substitution-feasible set. Consider any maximal derivation

(S, ∅) = (D0, C0) `R1−R4 (D1, C1) `R1−R4 · · · `R1−R4 (Dk, Ck).

such that none of the rules is applicable to the final state. Let Si = Di ∪ Ci.

1. The set Si is a substitution-feasible set, and consequently S−1
i is convergent.

2. The set Si+1 is equivalent modulo Eg on V to Si. In fact, for any t ≈ x ∈ Si,

t→∗
(E∪Di+1)g/Cg

i+1
x.

3. Each substitution-feasible set Si is also E-feasible.

4. Any proof pattern of the form given in the left-hand side of ⇒ can be replaced

by a proof of the form on the right.

◦ ←Dg
k
◦ ↔∗

Cg
k
◦ →Dg

k
◦ ⇒ ◦ →Dg

k
/Cg

k
◦ ←Dg

k
/Cg

k
◦

◦ ←Dg
k
◦ ↔∗

Cg
k
◦ →Eg ◦ ⇒ ◦ →Eg/Cg

k
◦ ←Dg

k
/Cg

k
◦

5. If t1 ↔∗
Sg

i
t2, then t1 and t2 are syntactically unifiable. Moreover, the most

general unifier σ′ is E-feasible. The set Sinew = Si − {t ≈ x ∈ Sk : ∃(t′).t′ ≈
x ∈ Eσ′} ∪ Eσ′ is substitution-feasible and is equivalent modulo Eg on V to the

set Si.

Proof. All right-hand sides of equations in Si are variables as rules R1–R4 do not

simplify equations on the right. We next prove that the variable dependency ordering

�Si
V is well-founded by induction on the length i of derivations. For the case when

i = 0, we note that S is substitution-feasible. We establish the induction step by

contradiction. Given that �Sj−1

V is well-founded, assume that the partial order �Sj

V

is not well-founded. There are four ways in which we could have obtained state

(Dj, Cj) from the state (Dj−1, Cj−1). In all cases, we can show that if �Sj

V is not

well-founded, then �Sj−1

V is not well-founded too. Since right-hand sides of all rules

in E are constants in K, the only non-trivial case is when (Dj−1, Cj−1) `R4 (Dj, Cj).

Since �Sj

V is not well-founded, there exist rules

t0[x0] ≈ x1, t1[x1] ≈ x2, . . . , tm[xm] ≈ x0

in Sj. Since �Sj−1

V is well-founded, not all of the above rules are in Sj−1. Wlog we

assume that Dj−1 = D′ ∪ {tm[l′] ≈ x0} and Dj = D′ ∪ {tm[xm] ≈ x0}. But the

CHAPTER 7. APPLICATIONS OF CONGRUENCE CLOSURE 106

only rule with right-hand side xm in D′ ∪ Cj−1 is tm−1[xm−1] ≈ xm, and therefore,

l′ ↔∗
Cg

j−1
tm−1[xm−1]. Let l′ = t′m−1[y] where y ↔∗

Cg
j−1

xm−1. Since Cg
j−1

−1 is confluent

(Lemma 21), therefore y ←∗
Cg

j−1
z →∗

Cg
j−1

xm−1. But since all right-hand sides are

distinct variables, z = xi for some 0 ≤ i ≤ m − 1. In all cases, we can argue that

x0 �Sk−1

V y. But then, we already have y �Sk−1

V x0.

We note that for every substitution-feasible set Si the set (Sg
i)
−1 is convergent

(terminating and non-overlapping).

Property 2: Let t ≈ x ∈ Si−1. If t ≈ x ∈ Si, then there is nothing to prove. If

not, then it is deleted in an application of either the R3 or the R4 rule. In both case

however, it is easy to see that t→∗
Sg∪Dg

i /Cg
i

x. The converse direction is trivial as the

rules R1–R4 are all sound.

Property 3: Every R3 or R4 step can be thought of as consisting of multiple

applications of the following basic steps:

R5 :
(D′ ∪ {t[y]→ x}, C ′)

(D′ ∪ {t[z]→ x}, C ′)
if y ↔C′g z R3′ :

(D′ ∪ {t[l]→ x}, C ′)

(D′ ∪ {t[c]→ x}, C ′)
if l→Eg c

R4′ :
(D′ ∪ {t[l]→ x}, C ′)

(D′ ∪ {t[y]→ x}, C ′)
if l→D′g y

It suffices to prove that for (Di, Ci) `R3′,R4′,R5 (Di+1, Ci+1), if Si = Di ∪ Ci is E-

feasible, then so is Si+1 = Di+1 ∪ Ci+1. This is straight-forward for rule R3’. For

rule R5, first assume that y → z ∈ C ′ (Argument for R4’ is similar). Since Si is

E-feasible, let Si↑E be the witness. Suppose t′[y′]→ x ∈ Si↑E. We claim that the set

Si+1↑E= Si↑E −{t′[y′] → x} ∪ {t′[z] → x} is the required witness for E-feasibility of

Si+1. We only need to prove that this set is substitution-feasible. Given that �Si↑E
V is

well-founded, we need to prove that �Si+1↑E

V is well-founded. Wlog we assume that all

instances of y in left-hand sides of Si are expanded to the same term in left-hand sides

of Si↑E. The the set �Si+1↑E

V = (�Si↑E
V ∪{(z, x)})+ is not well-founded only if x �i z.

But, since y ≈ z ∈ Si, therefore if if x �Subsi↑E
V z then x �Si↑E

V x.

For the other case assume z ≈ y ∈ C ′. Suppose z′ ≈ y ∈ Si↑E. We claim that the

set Si↑E −{t′[y′] ≈ x} ∪ {t′[z′] ≈ x} is the required witness for E-feasibility of Si+1.

That this set is substitution-feasible follows from noting that �Si+1↑E

V ⊆ �Si↑E
V .

Property 4: Note that there are no non-trivial overlaps of the form

◦ ←Dg
σ
◦ ↔∗

Cg
σ
◦ →Dg

σ
◦

CHAPTER 7. APPLICATIONS OF CONGRUENCE CLOSURE 107

because if there is one, then (assuming that the rules R1–R2 are not applicable)

rule R4 would be applicable. For proof patterns arising out of non-overlaps, we can

get new proof patterns by commuting the proof steps (modulo C-steps). Similarly,

since rule R3 is not applicable to the state (Dσ, Cσ), therefore there are no non-trivial

proof patterns

◦ ←Dg
σ
◦ ↔∗

Cg
σ
◦ →Sg

k
◦.

Any such patterns arising out of non-overlaps can be eliminated by commuting the

proof steps.

Property 5: Since Si is substitution-feasible, let θ be the idempotent substitution

corresponding to Si. If t1 ↔∗
Sg

i
t2, then by Theorem 13 t1 ↔∗

Sg t2, and therefore using

theorem 14, the substitution θ is a syntactic unifier for t1 and t2. Let σ′ �V θ be the

most-general unifier. The proof of Theorem 15 shows that the substitution-feasible

set Sinew = Si − {t→ x ∈ Si : x ∈ Dom(σ′)} ∪Eσ′ is equivalent (modulo ∅ on V) to

the substitution-feasible set Si.

Now, Si is equivalent to Sinew and hence the idempotent substitution correspond-

ing to these two sets is identical. Hence, since Si is E-feasible, the set Sinew is also

E-feasible. Furthermore, if a substitution-feasible set S ′i is E-feasible, then so is any

subset of it (with respect to the same set of variables).

Lemma 24 Let ξ1 = (K1, E1; V1, E?1; S1) be a state with solution feasible set S1. If

E?1 6= ∅, then there exists a smaller problem state (ξ2, S
2) that can be obtained using

either an REU transition step or the transition rules R1–R4.

Proof. We show how to get a simpler problem instance 〈ξ′, (D′, C ′)〉 from a given

one 〈ξ, (D, C)〉 such that D′ ∪ C ′ is a solution for ξ′.

1. If C-Closure is not the last rule applied or deletion is applicable, then by an ap-

plication of the respective rule we get the required smaller instance 〈ξ′, (D, C)〉.

2. If some equation s ≈ t ∈ E? has a proof P

s ↔∗
(E∪D∪C)g t

in which there is no step applied at the top redex, then the proof P can be

rewritten as C[P] where C[] is a non-trivial context. Clearly, we can apply

decomposition to get a simpler instance ξ′ of the rigid E-unification problem.

The pair 〈ξ′, (D, C)〉 is the desired tuple.

CHAPTER 7. APPLICATIONS OF CONGRUENCE CLOSURE 108

3. If case 1 is not applicable, then we can assume that the set E is fully-reduced,

and the right-hand side of every rule in E is a constant in K and no left-hand

side is a constant in K. If any of the rules R1, R2, R3 or R4 are applicable

to the state (D, C), then, we know we can use these rules to get a smaller

state (D′, C ′). As seen above, the new set D′ ∪ C ′ is E-feasible and equivalent

(modulo E on V) to D ∪ C. Thus, the pair 〈ξ, (D′, C ′)〉 is the desired tuple.

4. If there is a non-trivial proof pattern of the following form:

◦ ←Eg ◦ ↔∗
Cg ◦ →Eg ◦

then there exist two rules t1 ≈ c1, t2 ≈ c2 ∈ E such that t1 ↔∗
Cg t2. Now, using

property 5 in Lemma 23, we know that we can use superposition on the current

state to get a new state ξ′ = (K ′, E ′; V ′, E?′; S ′).

The solution for this new smaller instance is obtained thus: Let θ∗ be the

most-general unifier for t1 and t2. Define R′ = Rθnew −Eθ∗ . The substitution-

feasible set R′ is trivially E ′-feasible, and is also a solution for ξ′. Hence, the

pair 〈ξ′, (R′, ∅)〉 is the required smaller pair.

5. Next assume that case 3 is not applicable. Suppose there exists a proof P in

E ∪D ∪ C for s ≈ t ∈ E?, of the form

s = C[t′] →∗
Dg/Cg C[t] = s1 →Eg C[c] ↔∗

(E∪R)g t.

It follows from property 5 of Lemma 23 that we can apply narrowing (as t′ and

t are unifiable by a feasible substitution) to get a new smaller state ξ′. As in

case 4, we can construct a new solution R′ for ξ′.

6. Under the assumption that all the previous cases are not applicable, suppose

there exists a proof in E ∪D ∪ C for s ≈ t ∈ E?, of the form

s ↔+
(D∪C)g t.

By theorem 14, it follows that s and t are syntactically unifiable. Since case 2

is not applicable, either s or t is a variable. Moreover since D∪C is E-feasible,

so is the substitution arising in elimination. Hence, we can apply elimination to

get a smaller problem instance ξ′. Accordingly we can obtain the new solution

R′ as we did in the last two cases.

CHAPTER 7. APPLICATIONS OF CONGRUENCE CLOSURE 109

Assume that none of the above mentioned cases are applicable to the given

(ξ, 〈D, C〉) pair. We claim that E? = ∅, and hence, the state is a final state. Suppose

not. Let s ≈ t ∈ E?. Since case 1 is not applicable, the set E is fully-reduced ground

convergent. Since D ∪ C is a solution, therefore,

s ↔∗
(E∪D∪C)g t.

Since case 4 is not applicable, we can eliminate all patterns of the form,

◦ ←Eg ◦ ↔∗
Cg ◦ →Eg ◦

by commuting the proof steps. Similarly, since case 3 is not applicable, therefore by

property 4 in Lemma 23, there are no patterns of the form,

◦ ←Eg ◦ ↔∗
Cg ◦ →Dg ◦ or, ◦ ←Dg ◦ ↔∗

Cg ◦ →Dg ◦

Hence, there is a proof for s ≈ t of the form s →∗
(R∪D)g/Cg ◦ ←∗

(R∪D)g/Cg t. Because

of case 5, there are no E-steps in the above proof, and hence it can only be of the

form s ↔∗
Dg/Cg t. And because of case 6, it is not of the form s ↔+

(D∪C)g t. This

means that the proof is trivial and s = t, but, this is impossible since case 1 would

be applicable otherwise.

7.2.4 Specialization to syntactic unification

Since rigid unification reduces to syntactic unification when the set E0 is empty,

one pertinent question is what procedure the REU transformation rules yield in this

special case? Note that elimination does not apply a substitution to the fourth and

fifth components of the state, but does perform an occur check in condition (ii). This

is in the spirit of syntactic unification by recursive descent algorithm which works on

term directed acyclic graphs and is a quadratic time-complexity algorithm.

In fact, in the case of syntactic unification, every equation in the second component

is of a special form where one side is always a variable. Hence, we can argue that for

each c ∈ K, there is at most one rule in E of the form f(. . .) → c where f ∈ Σ. We

may therefore replace superposition by the following rule:

Det-Decompose:
(K,E; V, E? ∪ {c ≈ t}; S)

(K, E; V, E? ∪ {f(c1, . . . , ck) ≈ t}; S)

if there exist exactly one rule f(c1, . . . , ck) ≈ c with right-hand side c in E.

CHAPTER 7. APPLICATIONS OF CONGRUENCE CLOSURE 110

In addition, we may restrict narrowing so that the unifier θ is always the identity

substitution, that is, narrowing is used to only for simplification of terms in the fourth

component E? by equations in the second component E.

We can get various efficient syntactic unification algorithms by using specific

strategies over our abstract description. Other descriptions of the quadratic time

syntactic unification algorithms are usually based on descriptions of dags and ab-

stract rules that manipulate the dags directly. However, since we can abstractly

capture the notion of sharing, we obtain rules for this class of efficient algorithms

that work on terms and are very similar to the rules for describing the naive syntactic

unification procedures (with a worst case exponential behavior). Further details can

be looked up in [14].

7.2.5 Summary

We have presented a formulation of rigid E-unification in terms of fairly abstract

transformation rules. The main feature is the integration of (abstract) congruence

closure with transformation rules for syntactic unification, paramodulation and super-

position. The use of an extended signature (inherent in abstract congruence closure)

helps to dispense with term orderings over the original signature. An abstract rule-

based description facilitates various optimizations. The specialization of the trans-

formation rules to syntactic unification yields a set of abstract transition rules that

describe a class of efficient syntactic unification algorithms. Our transformation rules

can be derived from proof simplification arguments.

In [46], a congruence closure algorithm is used in a rigid E-unification procedure,

but not as a submodule. Congruence closure is used “indirectly” to do ground comple-

tion. The work on abstract congruence closure shows that congruence closure actually

is ground completion with extension. But for the purpose of rigid E-unification, we

don’t need to translate the abstract closure to a ground system over the original

signature, though we do need to translate the substitutions back to the original sig-

nature. Extended signatures also help as we do not need to guess an ordering to orient

equations such as x ≈ fa when the substitution for x is not yet known. This is a

major concern in [46] where the dependence on orderings complicates the unification

process.

In [16], the problem of correctly orienting equations is solved by delaying the

choice of orientation and maintaining constraints. Constraint satisfiability is required

to ensure that orientations are chosen in a consistent manner, and to guarantee the

CHAPTER 7. APPLICATIONS OF CONGRUENCE CLOSURE 111

termination of such a procedure.

We would like to point out that the transformation process involves “don’t-care”

non-determinism (where it does not matter which rule one applies) and “don’t-know”

non-determinism (where an application of a wrong rule may lead to a failure even if a

unifier exists). Whereas C-closure, deletion and narrowing with identity substitution

can be applied “don’t-care” non-deterministically, the other rules have to be applied

in a “don’t-know” non-deterministic manner. The rules for syntactic unification de-

scribed in Section 7.2.4 are “don’t-care” non-deterministic.

All algorithms for computing the set of rigid unifiers for a pair of terms can be seen

as a combination of top-down and bottom-up method. In a pure bottom-up approach

a substitution is guessed non-deterministically: for every variable one tries every sub-

term that occurs in the given unification problem, see [55] for details. Superposition

and narrowing using a rule that contains a variable as its left-hand side captures the

bottom-up aspect in our description. A top-down approach is characterized by the

use of narrowing to simplify the terms in the goal equations E?.

We note that for variables that cannot be eliminated from the left-hand sides of

rules using compression1, we need to try a lot of possible substitutions because they

can unify with almost all subterms in the second and fourth components. This is the

cause of a bottom-up computation for these variables. For other variables, however,

we need to try only those substitutions that are produced by some unifier during an

application of narrowing or superposition, and hence a top-down approach works for

these variables.

We illustrate some of the above observations via an example. Let E0 = {gx ≈
x, x ≈ a}, and suppose we wish to find a rigid E0-unifier of the terms gfffgffx

and fffx. The substitution {x 7→ fa} is a rigid E-unifier, but it cannot be obtained

unless one unifies the variable x with an appropriate subterm.

We believe that our approach of describing rigid E-unification can be used to

obtain an easier proof of the fact that this problem is in NP. We need to show that

(i) the length of a maximal derivation from any initial state is bounded by some

polynomial in the input size, (ii) each rule can be efficiently applied, and (iii) there

are not too many choices between the rules to get the next step in a derivation. It is

easy to see that (i) holds. For the second part, a crucial argument involves showing

that the test for E-feasibility can be efficiently done. This is indeed the case, but due

to space limitations, we don’t give a way to do this here.

CHAPTER 7. APPLICATIONS OF CONGRUENCE CLOSURE 112

The notion of an abstract congruence closure is easily extended to handle associa-

tive and commutative functions [11]. The use of extended signatures is particularly

useful when one incorporates such theories. This leads us to believe that our proposed

description of rigid E-unification can be suitably generalized to such applications.

7.3 Shostak’s Combination Method Revisited

In this section, we revisit Shostak’s combination method that was first discussed in

Section 3.2. The intent here is to provide some more details by giving rules responsible

for performing deductions over individual theories.

For simplicity, we consider the combination of (i) the pure theory of equality over

the signature Σ0 and (ii) an E1-theory over the signature Σ1 (such that Σ0 ∩Σ1 = ∅).
The rest of the assumptions and notations are as in Section 3.2. We focus our attention

on the deductive aspects of Shostak’s method, and hence ignore the disequations s 6≈ t

as they do not participate in the deductive inferences.

Since we describe the procedure in more detail, the state is now characterized by

a quadruple (K, E, S, R), where K is a set of constant (more appropriately variable)

symbols, and E, S and R are sets of equations. The initial state for a derivation is

(V, E, ∅, ∅) where E is a set of equations over Σ0 ∪ Σ1 ∪ V .

Deductions in the pure theory of equality are done via congruence closure, as

outlined in Section 5.1. Therefore, we have (K,E, S, R) `Sho (K ′, E ′, S, R′) if

(K, E,R) `CC (K ′, E ′, R′) using any of the congruence closure rules except orien-

tation and composition. Note that extension creates rules that contain symbols from

some Σi and K. The set R can always be partitioned into disjoint sets as R0∪R1∪C,

where R0 contains all D-rules over the signature Σ0∪K, R1 contains all D-rules over

the signature Σ1 ∪K, and C contains all C-rules.

We next focus on rules for deduction in the theory over Σ1.

Unification:
(K, E ∪ {s ≈ t}, ∅, R0 ∪R1 ∪ C)

(K, E,Eσ, R0 ∪R1 ∪ C)

if s, t ∈ T (Σi ∪K), and σ is the most-general E1-unifier of s↑R1∪C and t↑R1∪C .9

9The requirement that the S-component be empty is not part of Shostak’s method. We introduce
it here as without it we get an incomplete set of rules (for example, consider y ≈ 1 ∈ S and
y ≈ 2 ∈ E). Shostak’s description contains this subtle bug.

CHAPTER 7. APPLICATIONS OF CONGRUENCE CLOSURE 113

Note that no variable (constant) occurring in the unification problem s↑R1∪C≈?

t↑R1∪C can occur as right-hand side of any rule in R1. If these two terms are not

E1-unifiable, then we stop in a failure state ⊥. Intuitively, if we think of R1 as a set of

equations representing a substitution, then the term s↑R1 denotes the term obtained

by applying this substitution to the term s.

Equations in S can be simplified and oriented using the standard congruence

closure rules. Hence, we also have (K, E, S, R) `Sho (K ′, E, S ′, R′) if (K, S, R) `CC

(K ′, S ′, R′) using any congruence closure rule except deduction.

E-Collapse:
(K, E, S, R ∪ {s→ c})

(K,E, S ∪ {s↑R1∪C≈ c}, R ∪ {s→ c})

if s ∈ T (Σ1 ∪K).

E-Simplification:
(K, E[s], S[s], R)

(K,E[s′], S[s′], R)

if s occurs in either E or S and s→!
E1 s′.

Example 19 Consider the formula

z ≈ f(x− y) ∧ x ≈ z + y ∧ y 6≈ x− f(f(z))

in the combination of the theory of real linear arithmetic and the pure theory oof

equality. We have Σ0 = {f} and Σ1 = {+,−}. We apply the transition rules to the

initial state ({x, y, z}, E0 = {z ≈ f(x − y), x ≈ z + y}, ∅, ∅). In Table 13, we show

some of the important intermediate steps of a derivation that closely mimics Shostak’s

combination procedure.

7.3.1 Correctness

It is straight forward to verify that each transition rule is sound in the sense that

any equation added to the E-, S- or R-component is, in fact, a consequence of the

equations present in these components and the theory of interest. Proposition 3

suggests that the abstract set of transition rules presented in Section 3.2 are complete.

Hence, in order to prove that the new set of rules outlined here are complete, we only

need to ensure that if there is an equality x ≈ y that is implied by the set R1 ∪ C

(and the theory under consideration), then it is added to the C-component.

CHAPTER 7. APPLICATIONS OF CONGRUENCE CLOSURE 114

i Constants Ki Equations Ei Equations Si Rules Ri

0 {x, y, z} E0 ∅ ∅
1 K0 ∪ {x1, x2} {z ≈ x2, ∅ {x− y → x1, Ext

x ≈ z + y} fx1 → x2} Ext
2 K1 {x ≈ z + y} {x2 ≈ z} {x− y → x1,

fx1 → x2} Uni
3 K1 {x ≈ z + y} ∅ R2 ∪ {x2 → z} Ori
4 K1 ∅ {x2 + y ≈ x} R3 Uni
5 K1 ∅ ∅ R3 ∪ {x2 + y → x} Ori
6 K1 ∅ {x2 + y − y ≈ x1} R5 E-Col
7 K1 ∅ {x2 ≈ x1} R5 E-Sim
8 K1 ∅ ∅ {x− y → z, fz → z, Cong

z + y → x} Clo

Table 13: Example: Intermediate states in a derivation illustrating the Shostak’s
combination approach.

First, since we are interested in proving completeness, we remove redundant for-

mulas to simplify our argument below. In particular, in E-collapse we remove the

equation s → c from the set R1 in the R-component. Furthermore, we consider a

particular strategy in which (i) the set C is always eventually convergent, (ii) if any

variable (constant) that occurs in E ∪ S ∪R0 ∪R1 is not in C-normal form, then we

simplify it to a C-normal form term, (iii) if any of the rules simplification, composition,

E-simplification or E-Collapse is applicable, then it is applied before the application

of any of the other rules.

The idea behind these assumptions is that the set R1 of D-rules over Σ1 ∪ K is

always eventually a substitution-feasible set. In particular, the set R1 can be written

as

R1 = {t1 → x1, t2 → x2, . . . , tk → xk}

where x1, x2, . . . , xk are distinct variables and none of these variables occur in any

of the terms t1, t2, . . . , tk. Hence, the set R1 defines an idempotent substitution σR1

defined as [x1 7→ t1, x2 7→ t2, . . . , xk 7→ tk]. This is a consequence of the condition in

unification which prohibits any variable that already occurs as a right-hand side term

in R1 to occur in the new equations generated by unification. Additionally, if one of

the variables xi ever occurs in the left-hand side of any other rule, then E-collapse

eliminates it. It is also clear that R−1
1 is convergent.

CHAPTER 7. APPLICATIONS OF CONGRUENCE CLOSURE 115

Now, if x ↔∗
E1∪R1

y, then xσR1 ↔∗
E1 yσR1 , which means there are two left-hand

side terms in the set R1 that are equal modulo E1. Therefore, xσR1 →!
E1
◦ ←!

E1
yσR1 .

In this case, E-collapse and E-simplification rules will ensure that the equality x ≈ y

is deduced. This shows that all possible equalities between variables will be deduced

in a derivation satisfying the conditions mentioned earlier.

7.3.2 Summary

We presented a set of transition rules that capture the essence of the deductive aspects

of Shostak’s combination procedure. One important observation is that if suitable

redundant rules are eliminated, then the set of D-rules R1 over the signature Σ1∪K is

always a substitution-feasible set. This observation considerably simplifies the under-

standing of Shostak’s combination method and also allows us to correctly formulate

the transition rules like unification.

This concludes our digress to discuss applications of abstract congruence closure.

Chapter 8

Gröbner Basis Methods

We next discuss the theory of polynomial ideals, and present a set of transition rules

that describe the construction of Gröbner basis for a polynomial ideal over a com-

mutative Noetherian ring in a proof-theoretic setting. The results contained in this

chapter establish that the theory of polynomial rings satisfies the conditions outlined

in Chapter 3, and hence it can be integrated with the other theories discussed ear-

lier. Additionally, this chapter illustrates the second aspect of integration—use of

constraints to separate non-logical and domain specific aspects of an algorithm from

other abstract syntactic operations. In particular, constraints provide a clean way of

separating the two modes of computation that are employed in the construction of

polynomial ideal bases: rewriting (or reduction) on the polynomial ring and compu-

tations with ideals in the coefficient domain (e.g., computation of the intersection of

finitely generated ideals).

Buchberger’s algorithm for constructing a Gröbner basis for polynomial ideals over

a field is one of the central methods in computational algebra [24, 26]. It has been

extended in two directions: to polynomials over coefficient domains other than fields

and to non-commutative polynomial rings, cf. [17]. For instance, Kandri-Rody and

Kapur [50] and Pan [66] considered polynomials over Euclidian rings and principal

ideal domains, respectively.

A Gröbner basis for an ideal I induces a terminating rewrite relation on poly-

nomials, such that two polynomials have the same normal form if, and only if, they

belong to the same remainder class modulo I. The algorithm proposed by Pan [66]

constructs a weak Gröbner basis (D-basis), whereby any polynomial that belongs

to the ideal I (and only these polynomials) can be reduced to zero. (Given a weak

116

CHAPTER 8. GRÖBNER BASIS METHODS 117

Gröbner basis, one can determine whether p and q are equivalent modulo I by check-

ing whether their difference p − q can be rewritten to zero.) In this chapter, we

present a procedure for constructing weak Gröbner bases for polynomials over more

general Noetherian rings (Section 8.3) and show how one can obtain a Gröbner basis

from a weak basis in the next chapter. Further, we argue that the conditions on the

coefficient domain that allow effective computation of the weak Gröbner basis are the

weakest possible (Section 8.7). These conditions can also be lifted from rings B to

B[X] (Section 8.8), thus providing a framework to obtain a hierarchic Gröbner basis

computation algorithm for an arbitrary polynomial rings B[X1][X2] . . . [Xn], which is

isomorphic to the ring B[X1, · · · , Xn].

We describe our method in proof-theoretic terms, as an abstract completion proce-

dure in the sense of Bachmair and Dershowitz [5, 7]. The presentation is by transition

(or inference) rules operating on sets of equations and rewrite rules. Transitions de-

scribe basic steps for changing the presentation of the underlying equational theory.

If the rules are applied until they can be applied no more, we obtain a weak Gröbner

basis. The correctness of the approach is proved by proof simplification arguments:

we show that any proof of p ≈ 0 can be normalized to a rewrite proof. Formally, our

method is a constraint-based associative-commutative completion procedure, where

all algebraic computations on the coefficient domain are embedded via constraints.

Bachmair and Ganzinger [8] describe Buchberger’s original algorithm for con-

structing a Gröbner basis for a polynomial ideal over a field in a proof-theoretic

setting similar to the one used here. But in the case of polynomials over fields, a

considerably optimized and simplified procedure is possible that, for instance, does

not require the flexibility of the full constraint formalism. The addition of constraints

gave rise to a number of technical problems, which required us to redesign some tran-

sition rules and to add new ones, while also changing the term signature slightly. On

the other hand, constraints helped in incorporating certain optimizations, related to

restricting the number of superpositions that need to be considered.

Weak Gröbner bases can be extended to strong Gröbner bases under some ad-

ditional assumptions on the coefficient domain. We shall state these conditions and

also argue that these assumptions are the minimal possible required for the extension.

We also show that assumptions on the coefficient domain can be lifted from a ring B

to the ring B[X].

In this chapter, we require that the theory of term rewriting and completion [5, 7]

CHAPTER 8. GRÖBNER BASIS METHODS 118

be extended to include constraints. The integration of constraints is fairly straightfor-

ward and fits into the framework proposed by Kirchner, Kirchner and Rusinowitch [52]

for constraint-based completion.

8.1 Polynomials

We first outline how polynomials may be represented as (variable-free) first-order

terms over a many-sorted signature with sorts Coef (coefficients), PProd (power

products) and Poly (polynomial expressions), see also Bündgen [28] and Bachmair

and Ganzinger [8].

8.1.1 Coefficients

We assume that the coefficient domain is a commutative ring with unit, specified by

some algebra B over a given signature such that every element of B is represented

by some ground term (i.e., B is term-generated). The specific term representation

of coefficients is not significant for our purposes and may vary with the coefficient

domain, but we assume that the signature contains at least the declarations

0, 1 : → Coef

− : Coef → Coef

+, · : Coef × Coef → Coef

Variables of sort Coef , also called coefficient variables, are denoted by the letters x,

y, and z (possibly with subscripts or other annotation). We also use (meta-variables)

a, b, c, and d to denote ground terms of sort Coef , also called coefficient terms.

We will simplify the notation, writing, for instance, ax instead of a · x, or using

summations,
∑k

j=1 ajxj. We also use vector notation: ~a and ~b denote vectors of

coefficient terms, e.g., (a1, . . . , ak), whereas ~x, ~y, and ~z denote transposed vectors (of

dimension k × 1) of coefficient variables. Thus ~a · ~x also denotes a sum a1 · x1 + a2 ·
x2 + · · · ak · xk.

We define B (the “base theory”) as the set of all ground equations a ≈ b such that

a and b denote the same element in B. We need to be able to decide whether a given

equation a ≈ 0 belongs to B, and hence the ground theory B must be decidable. The

construction of ideal bases depends on additional properties of the coefficient domain,

which will be given later.

CHAPTER 8. GRÖBNER BASIS METHODS 119

8.1.2 Polynomial expressions

Polynomial expressions are constructed from coefficients, power products and function

symbols representing ring operations. We use the following signature:

I, X1, . . . , Xn : → PProd

· : PProd × PProd → PProd

M : Coef × PProd → Poly

Ω : → Poly

⊕,⊗ : Poly × Poly → Poly

Variables of sort Poly are denoted by the letters α, β, and γ; variables of sort PProd

by ν and µ. The constants Xi are called indeterminates. Terms of sort PProd are

called power products and denoted by s, t and u; terms of sort Poly, which are also

called polynomial expressions, are denoted by p, q, and r. Terms of the form M(a, t)

are called monomials.

We will use standard algebraic notation for power products, monomials, and poly-

nomial expressions. For instance, for our purposes it is sufficient to characterize power

products up to associativity and commutativity, and hence we write, say, X3Y . The

symbol M will usually also be represented by juxtaposition. For instance, we write

3X2Y instead of M(3, X · (X · Y)).

8.1.3 Constraints

The construction of ideal bases requires different modes of computation for coefficients

and polynomial expressions. Computation with coefficients requires algebraic opera-

tions such as intersection and union of ideals, whereas the manipulation of the non-

coefficient parts of polynomials involves syntactical operations such as (associative-

commutative) matching and unification and term replacement. A constraint-based

formalism allows for a clean separation of the two parts.

The simple constraints we use are either equality constraints of the form x = a,

x = y + z, x = y · z, or x =
∑k

j=1 ajyj (x = ~a · ~y in short); or negated equality

constraints of the form µ 6= sν. Thus, we have only simple constraints of the form

µ 6= sν on variables and terms of sort PProd . All other constraints are on terms of

sort Coef . A constraint is a conjunction of (zero or more) simple constraints.1 We

1Thus, as special cases we have (i) the empty constraint and (ii) constraints consisting of a single
simple constraint.

CHAPTER 8. GRÖBNER BASIS METHODS 120

use the matrix notation ~x = A ·~y to represent a conjunction of constraints xi = ~ai ·~y,

for i = 1, . . . , l, where A contains the vectors ~ai as rows. In the same spirit, the

conjunction of µ 6= tiν will be compactly written as µ 6∈ ~tν. The letters C and D are

used to denote constraints.

By a solution of a constraint we mean a substitution σ that assigns ground terms

to coefficient variables, and ground power products to variables of sort PProd , such

that: (i) in the case of an equality constraint, both terms denote the same element

of the coefficient domain B; and, (ii) in case of the constraint µ 6= tν, µσ 6↔∗
AC tνσ′

for any substitution σ′, where AC denotes the associativity and commutativity of ·
operator. In other words, the inequality constraint is satisfiable if µ is mapped to a

power product that is not a multiple of t. Any substitution is a solution of the empty

constraint.

A constrained equation is an expression p ≈ q if C, where p and q are polynomial

expressions and C is a constraint. If C is empty, we simply write p ≈ q. By an

(unconstrained) instance of p ≈ q if C we mean any equation pσ ≈ qσ, where the

restriction of σ to coefficient variables and power product variables is a solution of

the constraint C. By the ground theory represented by a set of constrained equations

we mean the equational theory induced by the set of all its unconstrained ground

instances.

We shall enforce a sharp distinction between coefficient and non-coefficient terms

by transforming expressions via variable abstraction. That is, we replace a non-

variable coefficient subterm a in a polynomial expression by a new coefficient variable

x defined by a simple constraint x = a.

For example, the polynomial equation 3X2Y ⊕ (−2)XY 2 ≈ Ω is transformed to

uX2Y ⊕ vXY 2 ≈ Ω if u = 3, v = −2.2

Evidently, the ground instances of the new equation are equivalent (up to the repre-

sentation of coefficients) to the ground instances of the original equation.

8.1.4 Polynomials

Let us next discuss the equational theory of polynomials. By H we denote the set of

equations

xν ⊕ yν ≈ zν if z = x + y

xµ⊗ yν ≈ zµ · ν if z = x · y
2Conjunctions of simple constrained are usually written as sequences.

CHAPTER 8. GRÖBNER BASIS METHODS 121

that relate addition and multiplication of polynomials to the corresponding operations

on coefficients and power products; by AC we denote the set of associativity and

commutativity axioms,

α⊕ (β ⊕ γ) ≈ (α⊕ β)⊕ γ α⊕ β ≈ β ⊕ α

α⊗ (β ⊗ γ) ≈ (α⊗ β)⊗ γ α⊗ β ≈ β ⊗ α

µ · (µ′ · µ′′) ≈ (µ · µ′) · µ′′ µ · µ′ ≈ µ′ · µ

and, by R the set of ring axioms,

µ · I ≈ µ

α⊕ Ω ≈ α

α⊕ α⊗ xI ≈ Ω if x = −1

α⊗ xI ≈ α if x = 1

α⊗ (β ⊕ γ) ≈ (α⊗ β)⊕ (α⊗ γ)

The set R ∪ AC ∪H is an equational specification of polynomial monoid rings over

commutative rings. We next present a rewrite system that defines unique normal

forms for ground terms of sort Poly .

µ · I → µ (1)
xν → Ω if x = 0 (2)

Ω⊕ α → α (3)
Ω⊗ α → Ω (4)

xν ⊕ yν → zν if z = x + y (5)
xµ⊗ yν → zµ · ν if z = x · y (6)

α⊗ (β ⊕ γ) → (α⊗ β)⊕ (α⊗ γ) (7)

Table 14: Convergent rewrite system presenting the theory of polynomials.

Let P be the (constrained) rewrite system3 presented in Table 14. Then P e

consists of P plus the extended versions of all rules in P except (2). For instance, the

extensions of rules (5) and (6) are

xν ⊕ yν ⊕ α → zν ⊕ α if z = x + y

xµ⊗ yν ⊗ α → zµ · ν ⊗ α if z = x · y

3We should point out that our notation closely resembles the one in [28]. The convergent rewrite
system we use is much simpler, though, as we deal with coefficients through constraints, whereas
Bündgen handles them by rewriting also.

CHAPTER 8. GRÖBNER BASIS METHODS 122

(The extensions of rules (1), (3), and (4) are actually not needed, as these rules may

serve as their own extensions, so to say.)

Proposition 6 The rewrite system AC\P e is ground convergent modulo B∪AC and

the ground equational theories induced by B ∪ P ∪ AC and B ∪ R ∪H ∪ AC are the

same.

The uniqueness of normal forms up to equivalence under B∪AC can be shown easily.

Termination of P e can be established by showing that all rules are decreasing in a

suitable associative path ordering (Bachmair and Plaisted [9]). Any precedence � will

work in which (i) a ∼ b, for all coefficients a and b, and, (ii) I � ⊗ �M � ⊕ ∼ · � Ω

and all constants X1, . . . , Xn precede I.4 We denote this associative path ordering by

�apo or simply �.

Proposition 7 The ordering � is a (AC ∪B)-compatible reduction ordering that

contains all (ground instances of) rewrite rules in P .

Proposition 6 shows that condition 1 of Chapter 3 is satisfied. We next show that

convergent systems corresponding to a set of ground equations can be constructed in

the theory of polynomial rings, thus establishing condition 2 as well. Ground terms

(of sort Poly) in normal form correspond to (and will be called) polynomials. They

can be written as sums of monomials
∑

j ajtj.

8.2 Polynomial Rules and Equations

By a standardized (constrained) equation we mean an equation of the form

∑
i

xitiµ ≈ Ω if ~x = A · ~y, µ 6∈ ~sν (1)

where A is a matrix of ground coefficient terms and the coefficient variables in ~x and

~y are all distinct; furthermore, as described earlier, ~s is a vector consisting of ground

power products si. In other words, the coefficient variables xi in a standardized

equation are all constrained by (and only by) linear equations, and the power product

variable µ is constrained by linear inequalities.

4Any precedence on the indeterminates will do. If all indeterminates are distinguished, we obtain
an extension of a “lexicographic ordering,” whereas an extension of the “total degree ordering” is
obtained by declaring all indeterminates to be equivalent.

CHAPTER 8. GRÖBNER BASIS METHODS 123

Polynomial equations can easily be converted to standardized form. For example,

the equation 4X2Y 3 ≈ −7X4Y can be written as (the extended equation) x1X
2Y 3µ⊕

x2X
4Y µ ≈ Ω if x1 = 4y, x2 = 7y, where the coefficient domain is the ring of integers.

We will assume that all equations have been thus standardized before the start of the

completion procedure.

By a (constrained) polynomial rule, denoted by ρ, we mean an equation of the

form x0t0 →
∑

i xiti if C, where x0t0 � xiti, for all i. Such a rule is said to be in

standardized form if it can be written as

x0t0µ→
∑

i

xitiµ if x0 = ~a · ~y, ~x = A · ~y, µ 6∈ ~sν (2)

where ~a is a vector of ground coefficient terms, A a matrix of ground coefficient terms,

and the variables x0, x1, . . . , xn and y1, . . . , yk are all distinct; furthermore, ~s is a vector

of ground power product terms, the leading power product t0 does not contain I as a

subterm, and at most one monomial can be of the form xjµ (this corresponds to the

case when tj = I). As a special case, rules of the form x0t0µ→ Ω if x0 = ~a ·~y, µ 6∈ ~sν

will also be considered to be in standardized form (optionally t0 may not be present

too). In the sequel, when we write a polynomial rule in the above form, we will mean

to include these other cases (when some tj is absent, or, the right-hand side is Ω)

as well. We also call x0 the leading coefficient and x0t0 the leading monomial of the

rule.

As mentioned before, while performing associative-commutative completion, we

need to consider extensions of rules. For example, technically, orienting an equation

2X ≈ 1 would yield 2X → 1, but, we use the extension (2x)Xµ → xµ. In other

words, we need to add, for any polynomial rule

a0t0 →
∑

aiti

an extended polynomial rule

x0t0µ→
∑

xitiµ if x0 = a0y, xi = aiy

which, in general, takes the form 2 defined above. However, for simplicity, we assume

we perform the required extensions on the equations itself and hence, we work on

standardized equations of the form 1.

Suppose we want to reduce the monomial ct0 using such a constrained rewrite rule.

This is possible if x0 can be “matched” with c, i.e., if the constraint c = ~a·~y is solvable,

CHAPTER 8. GRÖBNER BASIS METHODS 124

which is the case precisely if c is an element of the ideal Id(a1, . . . , ak) generated by

the elements of ~a = (a1, . . . , ak). Therefore, we call the constraint x0 = ~a · ~y the ideal

membership constraint of the polynomial rule, and sometimes write x0 ∈ Id(~a). Once

a solution for the ideal membership constraint has been obtained, the variables in ~y

get instantiated, so that the remaining equality constraints can be trivially satisfied

by instantiating the variables in ~x appropriately.

We can naturally associate with every constrained polynomial rule (and con-

strained equation), a constrained polynomial. Specifically, corresponding to the stan-

dardized polynomial rule ρ described above, we have the polynomial p,

x0t0µ⊕
∑
j

(−xj)tjµ if x0 = ~a · ~y, ~x = A · ~y, µ 6∈ ~sν.

If N is a set of polynomial rules or equations, then by Id(N) we denote the ideal

generated by ground instances of all polynomials associated with the rules or equations

in N , i.e., Id(N) = {∑i qipi : qi ∈ B[X1, . . . , Xn], pi is some ground instance of a

polynomial which corresponds to some polynomial rule in N}.

Definition 19 Let E be a set of ground polynomial equations. A set of polynomial

rules R is called a weak Gröbner basis (for E) if for every ground polynomial expres-

sion p we have p ↔∗
B∪R∪H∪AC∪E Ω, if and only if, p →∗

AC\(P e∪R) Ω. Equivalently we

can say p ∈ Id(E), if and only if, p→∗
AC\(P e∪R) Ω.

8.2.1 Computations on Coefficients

We assume that the coefficient domain B is a commutative ring with unit that satisfies

the following conditions:

B1 (Decidability and solvability of ideal membership) Given coefficients a and

a1, · · · , ak, it is decidable whether a ∈ Id(a1, · · · , ak), and if so, elements

b1, · · · , bk can be computed such that a =
∑k

i=1 biai.

B2 The intersection of any two finitely generated ideals in B is finitely generated.

B3 (Computation of intersection ideals) Given two finitely generated ideals I1 and

I2, the generators of I1 ∩ I2 can be computed.

B4 The ideal {x ∈ B|ax = 0} is finitely generated, for all a ∈ B.

CHAPTER 8. GRÖBNER BASIS METHODS 125

B5 (Computation of zero divisors) Given a ∈ B, the generators of the ideal {x|ax =

0} can be computed.

Conditions (B2)-(B5) can also be replaced by the requirement that syzygies be effec-

tively computable, see the discussion in section 8.7.

We have seen that condition (B1) is needed for the matching part of rewriting with

polynomial rules. The computation of intersections of ideals will be needed when left-

hand sides of rules have to be unified during critical pair computation. Finally, the

condition about zero divisors is required when left-hand side of a polynomial rule is

unified with that of P -rule (2).

8.3 Polynomial Completion

We use a completion approach for constructing weak Gröbner bases. We follow the

methodology of Bachmair and Dershowitz [5, 7], and describe completion by tran-

sition rules operating on sets of (polynomial) equations and rules. Each set E of

equations defines a set of (ground) proofs. Transition rules are designed to enable

proof transformations that eventually yield certain normal-form proofs. More specif-

ically, we have to transform ground proofs p ↔∗
E∪B∪P∪AC Ω to rewrite proofs of the

form p →∗
AC\R∪P Ω. (The transition rules are also sound, in that the underlying

equational theory does not change.)

We classify transition rules into four groups: (i) the orientation rule turns equa-

tions into directed rewrite rules; (ii) deduction rules eliminate subproofs that are

not allowed in normal-form proofs; (iii) constraint manipulation rules are needed to

standardize equations and to simplify constraints, and are crucial for efficiency and

termination; and (iv) simplification rules induce additional proof transformations that

are critical for effective application of the orientation rule.

8.3.1 Orientation

The transformation of unoriented equations into directed rewrite rules is one of the

key steps in completion. In the context of polynomial equations the idea is simply to

shift the leading monomial to the left-hand side of a rule and the remaining monomials

to the right-hand side. The presence of zero divisors causes technical complications,

which we handle via constraints. More specifically, we “split off” those instances for

which the leading coefficient is zero.

CHAPTER 8. GRÖBNER BASIS METHODS 126

Orientation:
N ∪ {x0t0µ⊕

∑
xitiµ ≈ Ω if x0 = ~a · ~y, ~x = A · ~y, µ 6∈ ~sν}

N ∪ {x0t0µ→
∑

xitiµ if C1} ∪ {
∑

xitiµ ≈ Ω if C2}

if x0t0µ →
∑

xitiµ if C1, with C1 defined as x0 = ~a · ~y, ~x = −A · ~y, µ 6∈ ~sν, is

a standardized polynomial rule; and C2 is defined as ~a · ~y = 0, ~x = A · ~y, µ 6∈ ~sν.

The notation −A is used to denote the matrix obtained from A by replacing each

entry aij by −aij. (One may also use a more conventional orientation rule without

splitting, and describe splitting by a separate transition rule. The “split off” equation

is a critical pair arising from the overlap between the oriented rule and P -rule (2).)

8.3.2 Deduction

The deduction rules form the core of completion. They ensure that undesirable sub-

proofs can be eliminated. Since we are dealing with a special case of (constrained)

associative-commutative completion, subproofs to be eliminated include “peaks” of

the form q ←R p →AC\R r and “cliffs” of the form q ↔AC p →AC\R r, where R is

the set of rewrite rules (including P rules) under consideration. The standard way

of getting rid of these proof patterns is by critical pair computation (in the case of

peaks) and by extended rules, see section 8.2 (in the case of cliffs), cf. Bachmair and

Dershowitz [6]. Roughly speaking, critical pairs are equations p ≈ q obtained from

“minimal” peaks called “overlaps.”

An overlap between a polynomial rule x0t0µ →
∑

xitiµ if C and extension of

P -rule (5) yields an extended equation

(x0 + z0)t0µ ≈ z0t0µ⊕
∑

xitiµ if C. (3)

However, we ignore these rules for this section.5 Extended equations will not be

explicitly deduced via transition rules, but instead are implicitly used in the deduction

of critical pairs (see below).

In describing critical pairs, we will make use of some algebraic terminology. Sub-

sequently we will assume that power products s, t, . . . do not contain I as a proper

subterm. We say that s properly divides t if sν AC-matches t, and that s divides t,

written s|t, if either s ↔∗
AC t, or s properly divides t. The least common multiple of

5Technically, this is the main reason why we obtain weak Gröbner bases rather than more general
Gröbner bases.

CHAPTER 8. GRÖBNER BASIS METHODS 127

s and t is a shortest power product divided by both s and t. Similarly, we can define

the greatest common divisor of s and t. We denote it by gcd(s, t). By
~t
t0

, we denote

the vector whose i-th component is ti/gcd(ti, t0).

An analysis of peaks involving polynomial rules (and their extensions) shows that

two kinds of critical pairs need to be computed.

Definition 20 Consider the two (standardized) polynomial rules

ρ1 : x0s0µ→
∑

i xisiµ if x0 = ~a · ~z, ~x = A · ~z, µ 6∈ ~s′µ′

ρ2 : y0t0ν →
∑

j yjtjν if y0 = ~b · ~z′, ~y = B · ~z′, ν 6∈ ~t′ν ′

and let u be the least common multiple of the two power products s0 and t0, and s′0
and t′0 be power products such that u ↔∗

AC s0s
′
0 ↔∗

AC t0t
′
0.

6 If s′0 is not a multiple of

any of the power products in ~s′, and t′0 is not a multiple of any of the power products

in ~t′, then the set ξint(ρ1, ρ2)

{
∑

i

xi(sis
′
0)µ ⊕

∑
j

yj(tjt
′
0)µ ≈ Ω

if ~a · ~z = ~b · ~z′, ~x = A · ~z, ~y = −B · ~z′, µ 6∈ ~s′

s′0
ν, µ 6∈ ~t′

t′0
ν ′}

is called an intersection critical pair equation set; and, additionally if Id(~a) 6⊂ Id(~b)

and Id(~b) 6⊂ Id(~a), then the set ρunion(ρ1, ρ2)

{x0(s0s
′
0)µ →

∑
i

xi(sis
′
0)µ ⊕

∑
j

yj(tjt
′
0)

if x0 = ~a · ~z +~b · ~z′, ~x = −A · ~z, ~y = −B · ~z′, µ 6∈ ~s′

s′0
ν, µ 6∈ ~t′

t′0
ν ′}

is called a union critical pair rule set. In other cases these sets are defined to be

empty.

We speak of “intersection” and “union” critical pairs because we consider the

intersection of the two ideals, Id(~a)∩Id(~b), and their union Id(~a)∪Id(~b) in the process

of computing the respective rules. The computation of the least common multiple of

two power products formally corresponds to (a special case of) AC-unification. (Note

that both of the above critical pairs may have to be computed even when the two

power products, s0 and t0, share no common indeterminates, because, the coefficients

may still overlap, so to say.) Union critical pairs are obtained from overlaps between

a (extended) polynomial rule and an extended equation defined in equation 3.

6If s′0 = I, then s0s
′
0 is replaced by s0; and similarly for t0t

′
0.

CHAPTER 8. GRÖBNER BASIS METHODS 128

The computation of critical pairs is achieved by a deductive transition rule:

Superposition:
N ∪ {ρ1, ρ2}

N ∪ {ρ′1, ρ′2} ∪ ρunion(ρ1, ρ2) ∪ ξint(ρ1, ρ2)

where, assuming ρ1 and ρ2 are defined as in Definition 20,

(1) whenever ρunion(ρ1, ρ2) 6= ∅, ρ′1 is obtained from ρ1 by adding the constraint

µ 6= s′0µ
′′, and, similarly ρ′2 is obtained from ρ2 by adding the constraint ν 6= t′0ν

′′;

and,

(2) whenever ρunion(ρ1, ρ2) = ∅, the rule ρ′1 is the same as ρ1 if either (i) Id(~b) is

a proper subset of Id(~a), or, (ii) Id(~a) = Id(~b) and s0 is smaller than t0, or, (iii)

Id(~a) = Id(~b) and s0 ↔∗
AC t0 and either the right-hand side of rule ρ1 is smaller than

the right-hand side of rule ρ2, or, the rule ρ2 is larger (say, has a larger time-stamp)

than ρ1.

If the union critical pair equation set is empty, then one of the two rules ρ1 or

ρ2 can be used to reduce all instances of xlcm(s0, t0) where x ∈ Id(~a) ∪ Id(~b). This

rule, so to say, acts like the union critical pair and hence, in this case, we don’t add

additional constraints to it. In the special case when s0 divides t0, and Id(~b) ⊆ Id(~a),

then, we can collapse the rule ρ2 (by ρ1). We note that in this case, we add the

constraint µ 6= Iν, which is unsatisfiable. Hence the above formulation subsumes the

collapse rule. The other technical side conditions in the superposition rule ensure

that we always delete the “larger” rule when collapsing.

A few remarks on this formulation of the superposition rule are in order here. First,

adding extra inequality constraints (of the form µ 6∈ ~sν) on the power product variable

helps in optimizing the completion procedure by limiting the number of critical pairs

that will be computed later. This is because, in essence, adding new constraints simply

means that certain rules from the set N are being deleted. Secondly, technically one

could delete these instances only after the union critical pair was added as a rule, for

otherwise, the deleted instances would not have simpler proofs in the new set N .

The optimization suggested above by the added constraints uses information from

power products. We could also incorporate certain other optimizations based on the

leading coefficients. For example, if the intersection ideal Id(~a)∩ Id(~b) is generated by

the set {aibj}, and s0 and t0 share no common indeterminates, then, we don’t need

to compute the intersection critical pair (corresponds to non-overlap), and we could

define ξint(ρ1, ρ2) to be empty. We might still need to compute the union critical

pair.

CHAPTER 8. GRÖBNER BASIS METHODS 129

8.3.3 Constraint Manipulation

The computation of the intersection critical pair equation, as defined above, involves

only syntactic constraint transformations, but results in non-standardized equations,

and potentially unsatisfiable constraints. Standardization essentially amounts to solv-

ing certain constraints so as to make the orientation rule applicable, and identifying

unsatisfiable constraints to delete certain polynomial rules. In other words, our for-

malism allows for “lazy evaluation” of constraints. (While we have chosen to require

constraint solving before orientation, other ways of constraint handling are conceiv-

able.)

Converting the constraints into standardized form involves simple algebraic ma-

nipulations. It should be pointed out that the conditions (B2) and (B3) are needed

to make sure that we can carry out the computations needed to standardize the con-

straints in the intersection critical pair equation. Moreover, along with the additional

conditions (B4) and (B5) we can standardize the equation produced in the orientation

rule.

The union critical pair rule is actually already in standardized form. This is

because the constraint x0 = ~a · ~z +~b · ~z′, ~x = A · ~z, ~y = B · ~z′, µ 6∈ ~s′ν, µ 6∈ ~t′ν ′ can

be rewritten as

x0 = [~a,~b] ·

 ~z
~z′

 ,

 ~x

~y

 =

 A 0

0 B

 ·
 ~x

~y

 , µ 6∈ [~s′, ~t′]ν,

where [~a,~b] denotes the vector (of dimension 1× (m + n)) obtained by concatenating

the vectors ~a and ~b (of dimension 1×m and 1× n respectively).

Now suppose we add a constraint ~b · ~y = 0 to a standardized constraint ~x = A · ~y,

where ~y contains the variables y1, . . . , yk. To transform the extended constraint to

standardized form we change variables as follows: (i) If k = 1 (i.e. if the leading

coefficient is constrained by membership in a principal ideal), then assuming the 1× l

vector ~c generates the ideal {x : b1x = 0}, the constraint ~x = A · ~y is replaced by

~x = (A·~c)·~z, where ~z is a l×1-dimension vector of new variables, and A·~c denotes usual

matrix multiplication. This process can be seen as replacing variable y1 by ~c · ~z. (ii)

If k > 1, then we first compute the intersection of the two ideals I1 = Id(a1, . . . , ak−1)

and I2 = Id(ak), say I = I1∩I2 = Id(c1, . . . , cl). Then, for each j with 1 ≤ j ≤ l, there

exist coefficients di,j, such that cj = a1d1,j + . . . + ak−1dk−1,j = ak(−dk,j). Replace

in C each variable yi by d1iz1 + . . . + dlizl. In other words, if D = (dij) is the k × l

matrix, then we are replacing ~y by D · ~z.

CHAPTER 8. GRÖBNER BASIS METHODS 130

For any non-standardized constraint C (that can be produced during completion)

a standardized constraint Θ(C) can be obtained [12], such that p ≈ 0 if C and

p ≈ 0 if Θ(C) have the same (unconstrained) ground instances.

Constraint solving:
N ∪ {p ≈ Ω if C}

N ∪ {p ≈ Ω if Θ(C)}

In addition to constraint solving, there are various mechanisms for constraint

simplification, including

• deletion of equations with unsolvable constraints: For example, we could get

unsatisfiable constraints of the form C ∧ µ 6= ν. Eager application of this rule

is crucial for termination of the completion procedure.

• simplification of membership constraints: For example, if the leading ideal of a

rule is generated by a different set of generators, then we can change variables

accordingly. Rather than formally describe the rule, we illustrate it below. Since

application of this rule deletes certain instances, we restrict it and apply this

rule only in conjunction with the superposition rule (i.e. we apply this rule to

the union critical pair rule before adding it to the set N).

• deletion of redundant parts of constraints.

For example, consider the two rules 3X → 1 and 2X → 3 in the polynomial ring

Z[X] over the integers. In our notation, the rules are written as

x0Xµ→ x1µ if x0 = 3z, x1 = z

y0Xµ→ y1µ if y0 = 2z, y1 = 3z

The union critical pair rule corresponding to these two rules is

z0Xµ→ z1µ⊕ z2µ if z0 = 3z′1 + 2z′2, z1 = z′1, z2 = 3z′2.

Rather than adding this rule directly to the set N , we first choose to do some con-

straint simplification. Since the integers are a principal ideal domain we can express

the ideal membership constraint in terms of a principal ideal. We have Id(2, 3) = Id(1)

or, more specifically, 3z′1 + 2z′2 = 1 if z′1 = 1 and z′2 = −1. Thus we substitute z′ for

z′1 and −z′ for z′2 and obtain a simplified constrained equation

z0Xµ→ z1µ⊕ z2µ if z0 = z′, z1 = z′, z2 = −3z′,

CHAPTER 8. GRÖBNER BASIS METHODS 131

which can be simplified (using P -rules as described in the next section) into z0Xµ→
z1µ if z0 = z′, z1 = −2z′. Similarly, the intersection critical pair equation would

eventually get oriented into z0µ → Ω if z0 = 7z′. The original equations are both

deleted because we add the unsatisfiable constraint µ 6= ν to both of them.

8.3.4 Simplification

Mechanisms for simplifying equations and rules are crucial for the efficiency of com-

pletion. In the present case, superposition implicitly takes care of collapse.

We note that instances of polynomial rules ρi that do not conform to the inequal-

ity constraint µ 6∈ ~sν can also be used to simplify other equations and rules. The

additional inequality constraints only help to cut down on the number of superpo-

sitions that need to be done. As a general principle, in any completion procedure,

we can always use rules that were once present in some Ni (but are now no longer

present since they were simplified during the completion) for simplifications.

We say that a set R of polynomial rules is left-reduced if R contains no two rules

ρ1 : x0s0µ→
∑

i

xisiµ if x0 = ~a · ~z, ~x = A · ~z, µ 6∈ ~s′µ′

ρ2 : y0t0ν →
∑
j

yjtjν if y0 = ~b · ~z′, ~y = B · ~z′, ν 6∈ ~t′ν ′

such that s0 divides t0, t0/s0 is not a multiple of any power product in ~s′ and Id(~b) ⊆
Id(~a). If a set R is not left-reduced, then some rule can be “collapsed”, as we described

earlier, using superposition.

We can use rules in the set N to simplify terms occurring in polynomial equations.

Simplification:
N ∪ {ytµ⊕∑

i yitiµ ≈ Ω if y = ~b · ~z′ ∧ ~y = B · ~z′ ∧ C, ρ1}

N ∪ {∑j xjsjs
′µ⊕∑

i yitiµ ≈ Ω if C ′, ρ1}

if ρ1 is as defined above; s ↔∗
AC s0s

′ for some power product s′; Id(~b) ⊂ Id(~a);
~b = ~a ·A′; the constraint C ′ is ~x = (A ·A′) · ~z′ ∧ ~y = B · ~z′ ∧ C.

Other common simplification techniques include

• deletion of trivial equations,

• simplification of polynomial equations by rules in P ,

• simplification of right-hand sides of polynomial rules.

These can be formulated as transition rules in a similar way as the Simplification rule.

CHAPTER 8. GRÖBNER BASIS METHODS 132

8.3.5 Correctness

A derivation is a (possibly infinite) sequence of transition steps N0 ` N1 ` N2 ` · · ·
where N0 is a set of polynomial equations in standardized form. The limit N∞ of the

derivation is the set
⋃

i

⋂
j≥i Nj of all persisting equations and rules.

Definition 21 A derivation is said to be fair if (i) N∞ is a left-reduced set of poly-

nomial rules with satisfiable constraints, and (ii)
⋃

i Ni contains all intersection and

union critical pairs between (extended) rules in N∞.

The following technical lemma will be used in the proofs of termination and correct-

ness.

Lemma 25 Let N∞ be the limit of a fair derivation. Suppose x0t0µ ⊕
∑

xitiµ ≈
Ω if C is an equation in

⋃
i Ni such that x0t0 � xiti, for all i, and x0 is constrained

by an ideal membership constraint x0 ∈ I. If the constraint set C is satisfiable, then

there is a rule in N∞ with left-hand side y0u0 and ideal membership constraint y0 ∈ I ′,

such that u0 divides t0 and I ⊆ I ′.

Intuitively, the lemma states that all leading monomials of polynomial equations

can be reduced by persisting rules. This is a consequence of part (i) of the fairness

conditions. (Polynomial equations do not persist. Thus the leading monomial is

either reduced at some point, or else it will become the left-hand side of a rule when

the equation is oriented.)

Theorem 19 (Termination) Suppose the coefficient domain B is Noetherian and

satisfies conditions (B1)-(B5). Then the limit N∞ of any fair derivation is a finite

set of polynomial rules.

Proof. (By contradiction) Suppose N∞ contains infinitely many polynomial rules.

Let xntn be the corresponding left-hand sides, for n ∈ N, where xn is constrained by an

ideal membership constraint xn ∈ In. Since the divisibility relation on power products

is a Dickson partial order, there exists an infinite subsequence tn1 , tn2 , . . . such that

tni
properly divides tnj

for all i < j (cf. [17], pp. 162 & 189). Since N∞ is left-reduced,

we have Ini+1
6⊆ Ini

, for all i. Suppose we have Inj
6⊆ Inj+1

, for some j. Then there

exists a union critical pair with maximal monomial xtnj+1
, where x is constrained

by x ∈ Inj
∪ Inj+1

. By Lemma 25, the monomial xtnj+1
is reducible by some rule in

N∞, which contradicts the assumption that N∞ is left-reduced. We conclude that

CHAPTER 8. GRÖBNER BASIS METHODS 133

Inj
⊂ Inj+1

, for all j, which contradicts the assumption that the coefficient domain is

Noetherian.

We note that in order to ensure that we obtain finite fair derivations, we need

to (i) eventually always apply superposition and orientation, whenever any of these

transition rules is continuously applicable; and, (ii) eagerly apply the constraint ma-

nipulation rule which deletes rules with unsatisfiable constraints, Since N∞ is finite,

after a finite number of steps we would obtain a set Nk which contains all the finitely

many rules in N∞. Thereafter, under condition (ii), any fair derivation is terminat-

ing as after reaching state Nk, a fair derivation would would carry out finitely many

applications of the superposition and constraint manipulation rules, before reaching

a state Nk′ where no further rules are applicable.

8.4 Weak Gröbner bases

In this section we show that the limit N∞ of a fair derivation gives us a weak Gröbner

basis. To this effect, we first establish that we need to consider proofs on sums

of monomials only. This we show by projecting a proof on arbitrary polynomial

expressions to a proof on sums of monomials.

Consider the P -rules (4), (6) and (7), which are

Ω⊗ α → Ω (4)

xµ⊗ yν → zµ · ν if z = x · y (6)

α⊗ (β ⊕ γ) → (α⊗ β)⊕ (α⊗ γ) (7)

Using the set of these three rules, which we denote by P467, we can rewrite any

ground polynomial expression to a sum of monomials, SOMs in short (consider Ω to

be a monomial for this discussion),

p →!
AC\P e

467

∑
i

xiti ⊕
∑
j

Ω. (4)

The set of polynomial rules in the set N will be referred to by R, and E would

denote the set of equations in N = E ∪R.

Proposition 8 If p ↔AC\R,P e q, then there is a proof of the following form,

p →∗
AC\P e

467
p′ ↔∗

AC\R,P e q′ ←∗
AC\P e

467
q

where we have only sums of monomials in the proof of p′ ↔∗
AC\R,P e q′.

CHAPTER 8. GRÖBNER BASIS METHODS 134

Proof. Since application of R ∪ P e rules to SOMs yields SOMs, we need to only

consider the case where either p or q is not a SOM. Without loss of generality, assume

p→AC\R,P e q and p is not a SOM. In this case we will have p→AC\P e
467

p′. Since non-

overlaps and variable overlaps commute, we just need to consider critical overlaps

between arbitrary P e ∪ R rules and the P rules (4), (6) and (7). In all such cases, it

is easily shown that we can obtain the desired proof pattern.

We can generalize proposition 8 to handle multiple applications of R ∪ P e rules.

Proposition 9 If p ≈Id(R)
q, then there is a proof of the following form,

p→!
AC\P e

467
p′ ↔∗

AC\R,P e q′ ←!
AC\P e

467
q

where we have only sums of monomials in the proof of p′ ↔∗
AC\R,P e q′.

Proof. Since p ≈Id(R)
q implies p 	 7q ∈ Id(R), therefore, there exist ground

instances pi of polynomials represented by the polynomial rewrite rules in R such

that, p	 q ↔∗
AC\P e

∑
i pi. Therefore,

p ↔∗
AC\P e p	 q ⊕ q ↔∗

AC\P e q ⊕
∑

i

pi ↔∗
AC\R,P e q.

Using the result of proposition 8, we replace each P e or R step by the proof on sums

of monomials. Since P e is convergent modulo AC, and since application of P e rules

to SOMs gives only SOMs, we have the desired result.

8.4.1 Reduction ordering on sums of monomials

In order to establish the correctness of the procedure for computing weak Gröbner

basis, we use the restriction of the predefined ordering � on sums of monomials,

denoted by �SOM. Later on, we would extend this ordering using a given ordering

on coefficients. This will allow us to extend a weak Gröbner basis to a Gröbner basis.

Its straight-forward to prove the following results about this ordering.

Lemma 26 If p and q are sums of monomials and p �SOM q then for any p′ we

have p⊕ p′ �SOM q ⊕ p′.

Lemma 27 The ordering �SOM is AC ∪B-compatible reduction ordering.

Also, the polynomial rules R and the P rules are simplifying with respect to this

ordering.

7The operator 	 is defined so that it is the inverse of ⊕, and yields a SOM when applied to a
SOM.

CHAPTER 8. GRÖBNER BASIS METHODS 135

8.4.2 Proof ordering

The correctness of the procedure will be established using proof simplification tech-

niques for completion modulo associativity and commutativity, as described by Bach-

mair and Dershowitz [6, 5]. We define a complexity measure for ground proofs on

sums of monomials in AC ∪B ∪ P e ∪R ∪ E.

Let p = p[ασ] ↔ p[βσ] = q be an equational replacement step with an equation

(or a rule ρ) α ≈ β if C applied to the subterm of p (ασ ≈ βσ is an unconstrained

ground instance of α ≈ β if C). Let t0 and I denote the leading power product

and the ideal defining the ideal membership constraint of α ≈ β if C whenever this

equation is actually a rule. Furthermore, let τ denote the time stamp when this rule

was first added to N . The complexity of the proof step is the tuple

({p, q},⊥,⊥,⊥, 0) if α ≈ β ∈ E

({p}, I, t0, {q}, τ) if α→ β ∈ R

({q}, I, t0, {p}, τ) if β → α ∈ R

({p},⊥,⊥, {q}, 0) if α→ β ∈ P ∪ P e

({p},⊥,⊥,⊥, 0) if α ≈ β ∈ AC ∪B.

Such tuples are compared using the multiset extension of the reduction ordering

�SOM in the first and fourth component; the subset relation on sets in the second

component; the less than relation on natural numbers in the fifth component; and

the reduction ordering restricted to power products in the third component. (The

constants > and ⊥ denote additional maximum and minimum elements.) The com-

plexity of a proof is the multiset of complexities of its proof steps. The multiset

extension of the ordering on tuples yields a proof ordering, denoted by the symbol �.

Certain remarks on the proof ordering are required here. First we don’t mention

extensions Re of the rules R because R are their own extensions. Secondly, in our

completion procedure, the P rules and their extensions remain static, i.e., they are

neither simplified or added. Hence the assigned proof complexity tuple for proof steps

using P rules.

Lemma 28 If E ∪R ` E ′ ∪R′, then corresponding to any proof in E ∪R there is a

proof in E ′ ∪ R′ which is either equal to, or strictly simpler than, the original proof

in the proof ordering �.

Proof. Exhaustively do a test for each of the inference rules. Specifically, we

have to check that the deleted instances have a simpler proof. This is easily verified

CHAPTER 8. GRÖBNER BASIS METHODS 136

for simplification rules, orientation rule and all of the constraint manipulation rules

except the one which simplifies the membership constraint. To show that the instances

deleted in the superposition rule have smaller proofs,, it is crucial that we have I as

the second, and t0 as the third component in the complexity of a rewrite step. The

technical conditions in the superposition rule ensure that the lemma is true in the

case that this rule acts like a collapse rule. Similarly, the technical condition with

the constraint manipulation rule which simplifies the membership constraint ensures

that the lemma is true.

Now we know that application of transition rules gives smaller proofs. Since the

proof ordering is well-founded, there is a minimal proof. In the following last step, we

show that if we carry out a fair derivation, a rewrite proof will be the minimal one.

This will complete the proof of correctness for construction of weak Gröbner basis.

Theorem 20 ((Correctness)) Suppose the coefficient domain B is Noetherian and

satisfies conditions (B1)-(B5). If N∞ = R is the limit of a fair derivation, then N e
∞

is a weak Gröbner basis.

Proof. Any fair derivation is unfailing as given any constrained equation, we can

always orient it using constraint manipulation, simplification and orientation rules.

Hence, if N∞ = E ∪R, then E = ∅.
Note that N∞ is finite by Theorem 19 and hence, let N∞ = {ρ1, . . . , ρk}. By

Lemma 28, the ideal generated by the input polynomials is exactly equal to the ideal

generated by the set of all instances of pi, i = 1, . . . , k. Let f ∈ Id(R). As none of

the P rules can be applied to Ω, by Proposition 9 we get f →!
AC\P e

467
f ′ ↔∗

AC\R,P e Ω

where we have only sums of monomials in the proof of f ′ ↔∗
AC\R,P e Ω.

Let N∞ = R = {ρ1, . . . , ρk} be the set of polynomial rewrite rules ρi: x0ti0µ →∑
j xjtijµ if x0 = ~gi · ~y ∧ ~x = Ai · ~y ∧ x0 6= 0 ∧ µ 6∈ ~siν that occur in N∞, and

let E = {ξ1, . . . , ξk} be the corresponding set of extended equations ξi, defined as,

(x0 + x′0)ti0µ ≈ x′0ti0µ⊕
∑

j xjtijµ if x0 = ~gi · ~y ∧ ~x = Ai · ~y ∧ µ 6∈ ~siν. A left to right

use of these equations, denoted by ⇒ and a right to left use, denoted by ⇐ will be

used later to represent certain proof patterns that are not eliminated.

Let f ∈ Id(R). As none of the P rules can be applied to Ω, by Proposition 9 we

get f →!
AC\P467

f ′ ↔∗
AC\R,P Ω where we have only sums of monomials in the proof of

f ′ ↔∗
AC\R,P Ω. We show that any such proof can be simplified to a simpler proof (in

the proof ordering mentioned before), until we get a rewrite proof f ′ →∗
AC\P e∪R Ω.

First we eliminate the following proof patterns:

CHAPTER 8. GRÖBNER BASIS METHODS 137

1. p ←AC\P e p′ →AC\P e q: Since P e is convergent modulo AC, we have a simpler

proof of the form p→∗
AC\P e q′ ←∗

AC\P e q.

2. p←AC\ρi
p′ →AC\P e q: Since we are dealing with sums of monomials, we cannot

apply P rules (4), (6) and (7). There are no (non-trivial) overlaps of any of the

R rules with the P e-rules (1) and (3).

Overlap between ρi and rule (2) produces:

∑
j

cjtij ←AC\ρi
cti0 →AC\P e Ω

where c = ~gi · ~y = 0 and ~c = Ai · ~y. We get a smaller one-step proof using

the same equation that got added to N when rule ρi was added (by either

orientation, or superposition).

A rule ρi non-trivially overlaps rule (5). Here we get the following peak:

∑
j

cjtij ⊕ c′ti0 ←AC\ρi
cti0 ⊕ c′ti0 →AC\P e (c + c′)ti0

where c = ~gi · ~y and ~c = Ai · ~y. We do not eliminate such patterns right now.

In the following, we reason about such patterns by referring to them by

∑
j

cjtij ⊕ c′ti0 ⇐AC\ξi
(c + c′)ti0

and the inverse thereof.

3. p ⇐AC\ξi
p′ →AC\P e q: Proof patterns with P rules (1) and (3) can be got

ridden of by commuting and pushing the ⇐ξi
pattern below the application of

the P rule.

With rule (2) we need to consider the following pattern:

(c− c)ti0 −−−−→
AC\P2

Ω

AC\ξi

y ∗
xAC\P e

(−c)ti0 ⊕
∑

j cjtij −−−→
AC\ρi

∑
j(−cj)tij ⊕

∑
j cjtij

Since c = ~gi · ~y, therefore −c = ~gi · (−~y). The new proof is simpler because a

peak is eliminated.

CHAPTER 8. GRÖBNER BASIS METHODS 138

Patterns with rule (5):

(c0 + c′)ti0 ⊕ c′′ti0 −−−→
AC\ξi

∑
j cjtij ⊕ c′ti0 ⊕ c′′ti0

AC\P e

y yAC\P e

(c0 + c′ + c′′)ti0 −−−→
AC\ξi

∑
j cjtij ⊕ (c′ + c′′)ti0

where c0 = ~gi · ~y and ~c = Ai · ~y. The new proof is simpler because the peak

implicit in ⇐ is smaller in the new proof.

4. p ←AC\ρi
p′ →AC\ρj

q: These proof patterns are explicitly considered in the

procedure. Intersection critical pair obtained through overlap between rules ρi

and ρj can be used to replace the peak.

c0t0 −−−→
AC\ρj

∑
k bktjk

AC\ρi

y xAC\ξint(ρi,ρj)∪P e

∑
k cktik

∗←−−−−
AC\P e

∑
k cktik ⊕

∑
k bktjk ⊕

∑
k(−bk)tjk

where c0 = ~gi · ~y = ~gj · ~z and ~c = Ai · ~y, and ~b = Aj · ~z. If i = j, we use the

following simpler proof:∑
k

cktik ↔AC\ξ
∑
k

cktik ⊕
∑
k

(bk − ck)tik →∗
AC\P e

∑
k

bktik

The equation ξ is the equation produced by either the orientation rule or, the

superposition rule, depending on which of these two created the rule ρi. The

new proof is simpler in the proof ordering.

5. p ⇐AC\ξi
p′ →AC\ρj

q: Union critical pair obtained through overlap between

rules ρi and ρj can be used to replace such proof patterns.

(c0 + c′0)t0 −−−→
AC\ρj

∑
k bktjk

AC\ξi

y ∗
xAC\Pe

c′0t0 ⊕
∑

k cktik −−−−−−−−−−−→
AC\ρunion(ρi,ρj)

◦

where c0 = ~gi · ~y, c0 + c′0 = ~gj · ~z, ~c = Ai · ~y, and ~b = Aj · ~z. When i = j, then

the simplified proof looks like this:

c′0t0 ⊕
∑
k

cktik →AC\ρe
i

∑
k

(bk − ck)t
′
ik ⊕

∑
k

cktik →∗
AC\P e

∑
k

bktik

CHAPTER 8. GRÖBNER BASIS METHODS 139

The new proof is simpler as the peak implicit in ⇐ pattern in the proof is

eliminated. In the case when the set ρunion(ρi, ρj) is empty, we obtain a simpler

proof using either ρi, or ρj, whichever “acts” as the union critical pair in this

case.

Now, amongst all possible proofs of f ′ ↔AC\N∞ Ω, let P be the minimal proof. None

of the R or P e rules can be applied to Ω. If P contains no steps using the extended

equations ξi’s, then P should be a rewrite proof f ′ →∗
AC\R∪P e Ω.

If not, then there are certain ξi steps in the proof. Hence, the proof P can be

written as,

f ′ ↔∗
AC\R∪P e f1 ⇒AC\ξj

f2 →+
AC\R∪P e Ω

Note that all other possible patterns involving ⇒ have been eliminated. Clearly, f1

can only be of the form
∑k

j=1 cjt
′
j ⊕ (c0 + c′0)tiz, such that there are no R or P e

steps in
∑k

j=1 cjt
′
j. Hence, f2 is

∑k
j=1 cjt

′
j ⊕ c′0tiz ⊕

∑
j bjtijz where c0 = ~gi · ~y. Since

f2 →+
AC\P e∪R Ω, hence, there should be R∪P e steps to rewrite terms with the largest

power product in f2 to Ω. It is clear that in a minimal proof, the largest power

product terms are eliminated before the others. Hence, c′0tiz is the largest monomial

in f2 (there might be others as large as this one). Hence, we need to consider only

two (restricted) proof patterns: ⇒AC\ξi
◦ →AC\R; and, ⇒AC\ξi

◦ →AC\P e .

The first pattern is eliminated by the use of the union critical pair rule. The second

one is eliminated by commuting the two steps, thus pushing the ξi step further down

(see the second commuting diagram in case 3 above). This completes the proof.

8.5 Gröbner Bases

A weak Gröbner basis R for an ideal I defines a unique normal form, Ω, for all

polynomial expressions equivalent to Ω modulo I. However, two two polynomial

expressions equivalent modulo the ideal I (but not both equivalent to Ω) may not

be reducible to the same expression with respect to R. When equivalent polynomial

expressions have identical normal forms, we say R is a Gröbner basis. Under an

additional assumption on the coefficient domain, a weak Gröbner basis for polynomial

ideals over commutative noetherian rings can be suitably extended to a Gröbner basis.

Assuming an ordering > on the coefficient ring B, we can define ordered equations,

see 3.

CHAPTER 8. GRÖBNER BASIS METHODS 140

Definition 22 If

x0ti0µ →
∑

j xjtijµ if xi0 = ~gi · ~y, ~xi = Ai · ~y, µ 6∈ ~siν

is a polynomial rule ρi, then

x0ti0µ→ x′0ti0µ⊕
∑

j xjtijµ if x0 > x′0, x0 − x′0 = ~gi · ~y, ~xi = Ai · ~y, µ 6∈ ~siν

will be called an ordered equation ζi corresponding to the polynomial rule ρi.

Next we define what we mean by a Gröbner basis.

Definition 23 A set of ordered equations G is a Gröbner basis if for any two poly-

nomial expressions p, q, we have p	 q ∈ Id(G) if and only if

p →AC\P e∪G p′ ←AC\P e∪G q.

8.5.1 Additional assumption on coefficient domain

In addition to the conditions (B1)–(B5) on the coefficient domain, now we also assume

that there exists a well-founded ordering > that satisfies the following condition:

B6 (Uniqueness of minimal element) There exists a unique element of B in any equiv-

alence class modulo any ideal in the ring B. In particular, 0 is the minimal

element in the whole ring B, i.e., x > 0 for all x 6= 0.

Let I be a finitely generated ideal in B. Then, if there is a Gröbner basis for this

ideal, then by the definition of Gröbner basis, there should a unique element in

each equivalence class modulo I. This argues for the minimality of this additional

assumption for establishing the existence of Gröbner basis. We note that in the

assumption (B6), we can replace any ideal by any finitely generated ideal as every

ideal is finitely generated in a Noetherian ring.

8.5.2 Reduction ordering on sums of monomials

We first note that the Propositions 8 and 9 were proved in their generality, and

hence the correctness proof for construction of Gröbner bases can be restricted to

considering proof patterns on sums of monomials. Nevertheless, since we now use

CHAPTER 8. GRÖBNER BASIS METHODS 141

ordered equations as directed rules, we need to define a new ordering8 on sums of

monomials.

Let �pp and > respectively denote some suitable (AC-compatible and well-

founded) orderings on power-products and coefficients. Now, let p =
∑k

i=1 aiti and

q =
∑l

i=1 bisi be any two sums of monomials. Without loss of generality, assume

ti �pp tj and si �pp sj for all i < j. Suppose t1 ↔∗
AC t2 ↔∗

AC · · · ↔∗
AC tk′ and

s1 ↔∗
AC s2 ↔∗

AC · · · ↔∗
AC sl′ (1 ≤ k′ ≤ k and 1 ≤ l′ ≤ l). Now, �som is defined

recursively by p �som q if, and only if,

(1) {t1, · · · , tk′} �m
pp {s1, · · · , sl′}9, or,

(2) t1 ↔∗
AC s1, k′ = l′ and {a1, · · · , ak′} >m {b1, · · · , bl′}, or,

(3) t1 ↔∗
AC s1, k′ = l′, {a1, · · · , ak′} =m {b1, · · · , bl′}, and

∑k
i=k′+1 aiti �som∑l

i=l′+1 bisi.

We establish some useful properties of this relation on sums of monomials.

Lemma 29 The relation �som is an AC ∪B-compatible well-founded ordering.

Proof. We first establish that �som is irreflexive and transitive. Let p =
∑k

i=1 ait⊕q,

p′ =
∑k′

i=1 a′it
′ ⊕ q′, and p′′ =

∑k′′

i=1 a′′i t
′′ ⊕ q′′ be arbitrary sums of monomials, where

t, t′ and t′′ are respectively the largest power products in p, p′ and p′′ and we assume

that they do not occur in q, q′ and q′′.

To prove that �som is irreflexive, we induct on the number of monomials in the

polynomial expression. From definition it follows that p �som p if, and only if,

q �som q. However, induction hypothesis impies that q 6�som q, and hence, p 6�som p.

Next we establish transitivity. Assume that p �som p′ and p′ �som p′′. We prove

that p �som p′′ by considering all possible cases based on which clause in the definition

of �som witnesses p �som p′ and p′ �som p′′.

(i) if p �som p′ by clause (1), then clearly p �som p′′ by clause (1) also.

(ii) if p �som p′ by clause (2) and p′ �som p′′ by clause (1), then p �som p′′ follows

from clause (1).

(iii) if p �som p′ by clause (2) and p′ �som p′′ by clause (2) or (3), then p �som p′′

follows using clause (2).

(iv) if p �som p′ by clause (3) and p′ �som p′′ by clause (i), then p �som p′′ follows

using clause (i), where i can be 1, 2 or 3.

8Note that in the old ordering, the ordered equations defined in definition 22, are ordered in the
wrong direction.

9We write �m to denote the multiset extension of the relation �.

CHAPTER 8. GRÖBNER BASIS METHODS 142

We prove that neworder is well-founded by showing that any descending chain

of elements p0 �som p1 �som p2 �som · · · is finite. This we do by induction on the

largest power product in p0. Assume p0 �som p1 �som p2 �som · · · is an infinite

decreasing chain. First note that there can not be infinite number of steps witnessed

by clause (1), since if so, we can extract an infinite chain of multiset of power products

decreasing in the order �m
pp. Therefore, without loss of generality, we can assume

each step pi �som pi+1 is witnessed by either clause (2) or clause (3). But since >m

is well-founded, we can not have infinite steps witnessed by clause (2). Thus, there

should exist an infinite chain where each step is witnessed by clause (3). But this is

impossible by induction hypothesis.

Finally, the ordering �som is easily seen to be AC ∪B-compatible.

Lemma 30 Let p =
∑k

i=1 aiti and q =
∑l

i=1 bisi be two sums of monomials such

that p �som q. If at is a monomial with coefficient a and power product t, then (i)

p⊕ at �som q ⊕ at.

(ii)
∑k

i=1 aitit �som
∑l

i=1 bisit.

Proof. If t is strictly larger than all power products in p, then p ⊕ at �som q ⊕ at

follows from clause (3). In the other case, if p �som q is witnessed by clasue (i), then

p⊕ at �som q ⊕ at is witnessed by clause (i) too.

The second part of this lemma follows from the fact that the ordering �pp on

power products is closed under contexts.

It is easy to check that the polynomial rules and the ordered equations are all

reducing with respect to this ordering.

We also need to extend the proof ordering as we have to assign a complexity to

a proof step using the ordered equation step. Since the ordered equations ζ replace

the polynomial rules ρ, we assign the same proof complexity to steps using them.

Specifically, if p = p[ασ] ↔ p[βσ] = q is an equational replacement step with an

ordered equation α → β if C applied to the subterm of p, then, the complexity

of this proof step is the tuple ({p}, I, t0, {q}, τ), where I, t0 and τ are as for the

corresponding polynomial rule from which this ordered equation is obtained. Now

the first and fourth components of the tuple are compared using the multiset extension

of this modified ordering on sums of monomials.

CHAPTER 8. GRÖBNER BASIS METHODS 143

8.5.3 Correctness proof for construction of Gröbner bases

In this section, R denotes a weak Gröbner basis, and G is the set containing all

ordered equations corresponding to polynomial rules in R. We also assume that the

coefficient domain B additionally satisfies condition (B6). In this case, every instance

of any rule in R is also an instance of some rule in G.
We first prove the following lemma that will be used repeatedly in the proof of

correctness.

Lemma 31 If p1 ←AC\G,P e p→AC\G,P e p2 is a peak, and p �SOM p2 ⊕ p1 	 p2, then

there is a simpler proof for this peak.

Proof. Since R is a weak basis, and since p1	p2 ∈ Id(R), hence p1	p2 →∗
AC\R,P e Ω.

It can be checked that the following is a simpler proof.

p1 ←∗
AC\P e p2 ⊕ p1 	 p2 →∗

AC\G,P e p2.

Note that 	 is defined such that when applied to two SOMs, it yields a SOM.

Now we are ready to prove the main result of this section.

Theorem 21 (Correctness) If R = {ρ1, ρ2, . . . , ρk} is a weak Gröbner basis, then

the set G = {ζ1, ζ2, . . . , ζk}, containing all ordered equations corresponding to polyno-

mial rules in R (Definition 22), is a (strong) Gröbner basis.

Proof. Using Lemma 9 and reasoning just as in the proof for weak Gröbner basis,

we have that for p	 q ∈ Id(G),

p →!
AC\P467

p′ ↔∗
AC\G,P q′ ←!

AC\P467
q

where the subproof p′ ↔∗
AC\G,P q′ contains only sums of monomials10.

We show that we can get a rewrite proof using proof simplification arguments on

the proof on SOMs. Note that since the P -rules (4), (6) and (7) can not be applied

on SOMs, in the sequel, P e would just mean the rules (1), (2), (3) and (5).

There are three kinds of peaks to consider. In the simple case, peaks between two

P e-rules can be eliminated since P e is convergent (modulo AC). Secondly, we consider

peaks involving a P -rule and an ordered equation. Proof patterns with P rule (3)

can be eliminated by commuting. With rule (2), due to the ordering constraint in

10Note that Id(G) = Id(R).

CHAPTER 8. GRÖBNER BASIS METHODS 144

ζi rule, no non-trivial overlap is possible. For rule (5) the argument is similar to the

weak Gröbner basis case (Section 8.4).

Finally, we consider overlap between rules ζi and ζj. Suppose ti0s ↔∗
AC tj0s

′ and

c = a0 + a′0 = b0 + b′0 such that a0 = ~gi · ~y, c > a′0 and b0 = ~gj · ~z, c > b′0. Then we

have the following peak:

a′0ti0s⊕
∑
k

aktiks ←AC\ζi
cti0s →AC\ζj

b′0tj0s
′ ⊕

∑
k

bktjks
′

Now we have p = (a′0− b′0)ti0s⊕
∑

k aktiks⊕
∑

k(−bk)tjks
′ belongs to the ideal Id(R).

Since R is a weak Gröbner basis, therefore, p→∗
AC\R,P e Ω.

There are two cases now, either a′0 = b′0 or a′0 6= b′0. If a′0 = b′0, then we can use

Lemma 31 and get a simpler proof (on a′0ti0s⊕
∑

k aktiks⊕
∑

k bktjks
′⊕∑

k(−bk)tjks
′).

If a′0 6= b′0, then, since p →∗
AC\R,P e Ω, therefore there should be an R-rule ρk that

rewrites the monomial (a′0 − b′0)ti0s. By assumption (B6) there is a minimal element

c∗ in the equivalence class of a′0 (which is the same as the equivalence class of b′0)

modulo the ideal generated by the single element a′0− b′0. Using this observation, the

two polynomial expressions involved in the original peak can be rewritten as:

a′0ti0s⊕
∑

l

altils →AC\ζk
c∗ti0s⊕

∑
l

cltkls
′′ ⊕

∑
l

altils

b′0ti0s⊕
∑

l

bltils →AC\ζk
c∗ti0s⊕

∑
l

dltkls
′′ ⊕

∑
l

bltils

where a′0 − c∗ = ~gk · ~x, ~c = Ak · ~x, b′0 − c∗ = ~gk · ~y, and ~d = Ak · ~y. Now we note

that the largest power product term c∗ti0s is the same in both the expressions. This

is the same as the a′0 = b′0 case. Hence we can complete the proof just as we did in

that case.

Note that the case when i = j (i.e., overlap of ordered rules with themselves) can

be similarly handled. Thus we can eliminate all peaks and finally we will be left with

a rewrite proof. This proves that we have a Gröbner basis.

8.6 Other Approaches for Computing Gröbner

Bases

An algorithm for constructing (weak) Gröbner bases for polynomial ideals over

Noetherian commutative rings has been discussed in [61] and [1]. The basic method

CHAPTER 8. GRÖBNER BASIS METHODS 145

involves adding generalized critical pairs obtained using syzygy computations over the

coefficient ring. Additional optimizations can be incorporated to the computation of

syzygies [61].

We briefly describe the above mentioned approach for computing weak bases. We

will also point out some known optimizations that have been done. A weak Gröbner

basis for a set of polynomials R is computed by adding generalized S-polynomials (to

be defined below) to the set R. In other words, rather than computing an intersection

critical pair ξint(ρ1, ρ2) between two rules (polynomials) ρ1 and ρ2, one computes

critical pairs over all possible subsets of rules. This is required since there is no

concept of a union critical pair in these algorithms.

Let N = {p1, p2, . . . , pm} be a set of (unconstrained) ground polynomial rules with

ci0ti0 being the leading monomial in pi. We compute a generating set A ⊂ Bm for

the syzygies Syz(c10, c20, . . . , cm0). Corresponding to each element in A, we have an

S-polynomial. Specifically, if ~a = (a1, . . . , am) ∈ A, then we have an S-polynomial

equation

a1 · p1 · t/t10 ⊕ a2 · p2 · t/t20 ⊕ · · · ⊕ am · pm · t/tm0 ≈ Ω

where t = lcm(t10, . . . , tm0). These S-polynomial equations are added to the set N

in case they are not simplifiable to Ω by N . The process is repeated until no more

polynomials get added. Reduction is defined as simultaneous reduction where several

rules are used at once for reducing a term.

The computation of syzygies can be optimized ([61]). We can do it incrementally

- starting from computing syzygies for small subsets, and gradually going to larger

subsets. Further details will be given in the example below.

The conditions assumed of the coefficient domain in [61] and [1] are equivalent

to the assumptions we make, see section 8.7. However, it is difficult to formally say

the connection of the “optimizations” we propose with the ones suggested by Möller.

The idea of using only saturated subsets of G for computing the S-polynomials is,

informally speaking, subsumed by the inequality constraints we introduce. This point

will be highlighted in the example. Certain cases of the second optimization, that

avoids computing certain other S-polynomials based on conditions on the coefficients,

are also handled in our framework by the condition that avoids the union critical

pair computation in certain cases (when one ideal is subset of the other). Effective

implementation of Möller’s algorithm requires computation of remainder ideals. Next,

we illustrate some of these remarks through an example.

CHAPTER 8. GRÖBNER BASIS METHODS 146

Example 20 Consider the ring Z[X,Y] where Z denotes the set of integers. Let

N0 = {3X2Y ≈ 0, 4XY 2 ≈ 0, 15X2 ≈ 0}. We will use the lexicographic extension

of Y > X as the ordering on power-products. In this example, we use Z as the

coefficient domain. Converting the equations to standardized form, we start with the

following set N0.

N0 = { xX2Y µ ≈ Ω if x = 3y1

xXY 2µ ≈ Ω if x = 4y1

xX2µ ≈ Ω if x = 15y1}.

Next we apply the orientation (split) rule to the three equations. Since Z is an integral

domain (no zero divisors), we simply get back N0 with the equations replaced by

directed rules. Next say we apply the superposition rule (taking the first two rules).

The union critical pair rule is xX2Y 2 → Ω ⊕ Ω if x = 3y1 + 4y2. The intersection

critical pair equation similarly is Ω ≈ Ω if 4y2 = 3y1. The intersection critical

pair equation is deleted, whereas the union critical pair simplifies (using constraint

manipulation and simplification rules) to xX2Y 2 → Ω if x = 1y1. Note now that in

the superposition rule, additional constraints are added to the original rules. So, now

the new set of rules N1 is:

xX2Y µ → Ω if x = 3y1, µ 6= Y ν

xXY 2µ → Ω if x = 4y1, µ 6= Xν

xX2Y 2µ → Ω if x = 1y1

xX2µ → Ω if x = 15y1

Note that the added constraints strictly restrict the application of the superposition

rule. But still, in this example, there are peaks left. Now, say we next compute

critical pairs between the first and the last rules. Clearly the union critical pair is

not defined as Id(15) ⊂ Id(3). Furthermore, similar to what happened before, the

intersection critical pair is deleted soon. However, the superposition step does add an

extra constraint on the last rule. So, the new set N2 we will obtain is N1 minus the

last rule, plus the following rule:

xX2µ → Ω if x = 15y1, µ 6= Y ν

Now, we see that due to this change, no more peaks remain. Thus, N2 is a weak

Gröbner basis.

The next example shows briefly how Möller’s optimized method would compute

the basis for set N0.

CHAPTER 8. GRÖBNER BASIS METHODS 147

Example 21 Let us first number the rules for ease of reference.

1. 3X2Y → Ω 2. 4XY 2 → Ω 3. 15X2 → Ω

We need to generate S-polynomials corresponding to different subsets of these rules.

Since integers form an integral domain, we don’t need to consider singleton sets. Sec-

ondly, we only need to consider saturated sets: the lcm of the leading power products

of rules in the set is not divisible by the leading power product of any rule not in the

set. The only saturated (non singleton) sets are {1,2}, {1,3} and {1,2,3}.
Corresponding to the choice {1, 2}, the generalized intersection critical pair, or

the S-polynomial, is computed. We first find generators for remainder ideal11 Id(3) :

Id(4) = Id(3). This shows that the only syzygy for 〈3, 4〉 is (−4, 3). The corresponding

S-polynomial is seen to simplify to Ω ≈ Ω.

For {1, 3}, we compute Id(3) : Id(15) = Id(1) giving the syzygy (5, 0,−1). The

corresponding S-polynomial is also Ω ≈ Ω. Finally, we need to compute syzygies and

the generalized S-polynomial for the rules (1), (2) and (3) taken together (correspond-

ing to the choice {1, 2, 3}). We compute Id(3, 4) : Id(15) = Id(1), and hence we may

use the same syzygy (5, 0,−1) as before. Therefore, no work is done in this case.

There are no more possibilities to consider for set J . Hence, we stop.

The equivalent of considering only saturated sets, and not arbitrary subsets, for

computing S-polynomials is captured in our optimization as well. In the example

above, the set {2, 3} wasn’t considered, and identically, we did not apply the Super-

position rule on these rules in Example 20. This can be seen to be true in general as

well.

On the other hand, the second optimization, based on using same syzygies for

different saturated sets, is also handled in our setting in most of the cases (though it

is difficult to argue about it in general). In the above example, Möller’s method did no

work on the saturated set {1, 2, 3}. The corresponding Superposition rule, applied on

the union critical pair of rules 1, 2 and rule 3, wasn’t even considered in our method.

We further note that Möller’s method required computation of the remainder ideal,

whereas we deal with ideal inclusion questions. Moreover, the definition of reduction

is different from the standard notion.

11Given ideals I and J, the remainder ideal I : J is defined as {r : rJ ⊂ I}.

CHAPTER 8. GRÖBNER BASIS METHODS 148

8.7 A note on the minimality of assumptions

We have presented a procedure for computing strong Gröbner basis for finitely gen-

erated ideals in polynomial rings over a coefficient domain B that is a commutative

ring with unit that satisfies the additional assumptions (B1)-(B6) mentioned in sec-

tion 8.2. We will shortly show that the set of conditions (B1)-(B5) are equivalent to

the following:

B1 (Decidability and solvability of ideal membership) Same as condition (B1).

B2’ (Solvability of syzygies) Given coefficients a1, · · · , ak, the generators of the mod-

ule of syzygies of (a1, · · · , ak) can be computed.

Proposition 10 The set of assumptions (B1)-(B5), defined in Section 8.2 is equiv-

alent to the two assumptions (B1) and (B2’).

Proof. Assume the ring B satisfies the first set of assumptions. Let us say we

need to compute the generators for the module of syzygies of (a1, · · · , ak). If k =

1 then assumption (B5) implies that we can compute the required generators. If

k > 1 then we group the coefficients into two disjoint sets, say S1 = {a1} and

S2 = {a2, · · · , ak}. We can compute the generators b1, · · · , bl of the intersection ideal

I = Id(S1)∩Id(S2) (by assumption (B3)). Corresponding to each generator gi, we can

compute vectors ~bi = 〈b′i1, · · · , b′ik〉 such that gi =
∑k

j=2 b′ijaj and gi = bi1a1 (follows

from assumption (B1)). It is a trivial exercise to verify that the set {~b1, · · · , ~bl} is the

required set of generators.

The other direction of the equivalence can be established similarly. We just need

to note that the assumptions (B2) and (B4) are implicitly implied by the assump-

tion (B2’).

We now prove the following result which helps to argue that the above set of

assumptions is the weakest set of assumptions necessary to obtain a weak Gröbner

basis algorithm.

Lemma 32 If there is a procedure for computing a weak Gröbner basis for any finitely

generated ideal in B[Y], then there is a procedure for computing generators for the

intersection of any two finitely generated ideals in B.

Proof. Let I1 = Id(a1, · · · , ak) and I2 = Id(b1, · · · , bl) be two finitely generated ideals

in B. Compute the weak Gröbner basis for {a1Y, · · · , akY, b1(1	 Y), · · · , bl(1	 Y)},

CHAPTER 8. GRÖBNER BASIS METHODS 149

using B as the coefficient domain and an ordering on power products such that any

product containing Y is larger than any product which does not contain a Y . We

claim that the set of polynomials c1, · · · , cm corresponding to those rules in the weak

Gröbner basis12 that do not contain Y (elimination ideal) form a set of generators for

the ideal I1 ∩ I2.

The proof of the claim is easy to see. Suppose c ∈ Id(c1, · · · , cm). Therefore,

c =
∑k

1 a′iaiY ⊕
∑l

1 b′ibi(1 	 Y). Substituting Y = 0 and Y = 1 respectively gives

c ∈ I1 and c ∈ I2.

Now suppose c ∈ I1 and c ∈ I2. Clearly, c = cY ⊕ c(1 	 Y). We get c =

(
∑k

1 a′iai)Y ⊕ (
∑l

1 b′ibi)(1	 Y). Hence proved.

If there is a procedure to compute a weak Gröbner basis for finitely generated

ideals in B[X], then there is a procedure to (1) decide ideal membership in B, and

(2) compute syzygy generators for any finite set A of elements in B. The first claim

can is established by noting that elements in B are also elements in B[X]. The second

claim can be easily proved by observing that if |A| > 1, then using the Lemma 32, and

the equivalence of assumptions proof, we can compute syzygy generators. If |A| = 1,

say A = {a}, then we generate the weak Gröbner basis for {aY = 1}. It is easily

seen that the rules in the weak Gröbner basis not containing Y give generators for

the solution set of ax = 0. The Noetherian ring assumption is required essentially for

termination. This suggests that the set of assumptions we make for the coefficient

domain B are, in this sense, minimal required in order to obtain a Gröbner basis

computation procedure for the ring B[X].

8.8 Lifting of assumptions from B to B[X]

We next show that the conditions (B1)–(B5) are satisfied by a large class of rings.

This we do by proving that whenever a ring B satisfies them, then so does B[X]. In

this section whenever we write p = q for ground polynomial expressions p and q, we

mean p↔∗
AC\P e q.

Lemma 33 (Lifting lemma) Suppose that ideal membership in ring B is decidable

and that there is an effective procedure to compute syzygies in B. Then, if there is

a procedure for computing a weak Gröbner basis for any finitely generated ideal in

12There can be more than one polynomial associated with one rewrite rule in the weak Gröbner
basis. For each generator of the ideal in the left-hand side of a rule, we generate one ground
polynomial.

CHAPTER 8. GRÖBNER BASIS METHODS 150

B[X], then there is a procedure for computing the generators of syzygies of any finite

set of polynomials in B[X].

Proof. First consider a weak Gröbner basis R = {ρ1, · · · , ρn}, where the rule ρi,

ignoring the extension variable µ and the inequality constraints, is,

x0ti0 →
∑
j

xjtij if x0 = ~ai · ~y, ~x = Ai · ~y.

In the sequel, we will denote the right-hand side expression of the above rule by

qi(Ai · ~y). If ~ai = 〈ai1, · · · , aiki
〉 then with the rule ρi, we can associate polynomials

pi1, · · · , piki
, where polynomial pik is defined as,

pik = aikti0 	 qi(Ai(k)T)

where Ai(k)T denotes the transposed k-th column of the matrix Aj.
13

We first give a method to compute the generators for the module S of syzygies of

(p11, . . . , p1k1 , p21, . . . , p2k2 , . . . , pn1, . . . , pnkn).

S = {(q11, · · · , qnkn)|
∑
i,j

qijpij = Ω}

The finite set B of generators of S will be obtained as a union of two sets B1 and B2.

B1 or the zero-divisor/split case : Let ~bi1, · · · , ~bili be the generators of the syzy-

gies of (~ai), i.e., generators of the module {~x|~ai · ~x = 0}. Clearly then,

qi(Ai · ~bil) ∈ Id(R)

for l = 1, . . . , li. Since R is a weak Gröbner basis,

qi(Ai · ~bil) =
∑
j,k

qiljkpjk (5)

where14 qiljk ∈ B[X] and HT(qiljkpjk) ≤ HT(qi(Ai · ~bil)). The left-hand side of

equation 5 can be rewritten to give the new equation,

ki∑
k=1

bilkpik = (
ki∑

k=1

bilkaikti0)	 qi(Ai · ~bil) =
∑
j,k

−qiljkpjk (6)

where ~bil = 〈bil1, · · · , bilki
〉 is a syzygy of ~ai. Note that qilik = 0 for 1 ≤ k ≤ ki.

13Note that pi1, · · · , piki
generate any polynomial instance of the rule ρi.

14We write HT(p) to denote the largest power product in the sum of monomials p.

CHAPTER 8. GRÖBNER BASIS METHODS 151

Define

riljk =

 qiljk if j 6= i

bilk if j = i

Define

~ril = 〈ril11, · · · , rilnkn〉

Clearly, ~ril ∈ S for 1 ≤ i ≤ n and 1 ≤ l ≤ li. Define the set B1 = { ~ril|1 ≤ i ≤
n, 1 ≤ l ≤ li}.

B2 or the intersection of ideals case : Let

{(~bij1, ~bji1), (~bij2, ~bji2), · · · , (~bijlij ,
~bjilij)}

be the generators of the syzygies of (~ai, ~aj).

Suppose ti0si ≈AC tj0sj. Define for m = 1 to lij,

qcp
ijm =

ki∑
k=1

bijmksipik ⊕
kj∑

k=1

bjimksjpjk

Clearly, the highest power product term in qcp
ijm vanishes. Hence, HT(qcp

ijm) <

ti0si. Also qcp
ijm ∈ Id(R) and therefore,

qcp
ijm =

∑
k,l

qijmklpkl

Eliminating qcp
ijm from these two equations we get,

ki∑
k=1

bijmksipik ⊕
kj∑

k=1

bjimksjpjk =
∑
k,l

qijmklpkl

Define,

rijmkl =


qijmil 	 bijmlsi if k = i

qijmjl 	 bjimlsj if k = j

qijmkl otherwise

Note that HT(qijmil) < si and HT(qijmjl) < sj. Define,

~rijm = 〈rijm11, · · · , rijmnkn〉

Clearly ~rijm ∈ S for 1 ≤ i < j ≤ n, 1 ≤ m ≤ lij. We put all these vectors in

B2 = { ~rijm}.

CHAPTER 8. GRÖBNER BASIS METHODS 152

We have thus found elements in the set S of syzygies. We prove that this set of

elements B obtained through the above methodology is the desired generating system

for the module of syzygies in question.

Lemma 34 The set B = B1 ∪B2 generates S as an B[X] module.

Proof. Assume for a contradiction that the set M = S − (G) is non-empty. Let

(h11, · · · , hnkn) ∈M be such that

t = max{HT(hijpij)|1 ≤ i ≤ n, 1 ≤ j ≤ ki}

is minimal w.r.t. the term order used for constructing the weak Gröbner basis in the

set

max{HT(gijpij) |1 ≤ i ≤ n, 1 ≤ j ≤ ki | (g11, · · · , gnkn) ∈M}

Assume further that among all possible choices that satisfy this requirement, ~h =

(h11, · · · , hnkn) is such that the cardinality of the set

J = {i | 1 ≤ i ≤ n, 1 ≤ j ≤ ki, HT(hijpij) = t}

is minimal. We have ∑
i,j

hijpij = Ω

since ~h = (h11, · · · , hnkn) ∈ S, and so it follows that the sum of all monomials in this

sum that have t as their power product equals 0.

We have three cases.

|J | = 1 : Without loss of generality, assume J = {1}. Therefore we have,

k1∑
j=1

HC(h1jp1j) = 0

Let ~bh1

T
denote the column vector of coefficients of the highest power product

t/t10 in h11, · · · , h1k1 . Clearly then, ~a1 · ~bh1

T
= 0. Therefore, ~bh1 =

∑l1
j=1 b′1j

~b1j

where b′1j are arbitrary elements of B and ~b1∗ are generators of the syzygies of

~a1.

Now, define

~b =
l1∑

j=1

b′1j ~r1j(t/t10) ∈ (G)

where ~r1j ∈ B1. Consider ~h′ = ~h−~b. Clearly, HT(~h′) < HT(~h), and therefore,
~h′ ∈ (G). But then since ~b ∈ (G), ~h ∈ (G).

CHAPTER 8. GRÖBNER BASIS METHODS 153

|J | = 2 : Without loss of generality, assume J = {1, 2}. Therefore we have,

k1∑
j=1

HC(h1jp1j) +
k2∑

j=1

HC(h2jp2j) = Ω

where HC denotes the coefficient of t in the argument. Let ~bhi
denote the row

vector of coefficients of the highest power product t/ti0 in hi1, · · · , hiki
. Clearly

then, [~a1, ~a2] · [~bh1 ,
~bh2]

T = 0. Therefore, [~bh1 ,
~bh2] =

∑l12
j=1 b′12j[

~b12j, ~b21j] where

b′12j are arbitrary elements of B and [~b12j, ~b21j]’s are generators of the syzygies

of [~a1, ~a2].

Now, define

~b =
l12∑
j=1

b′12j ~r12j(t/lcm(t10, t20)) ∈ (G)

where ~r12j ∈ B2. Consider ~h′ = ~h +~b. Clearly, HT(~h′) < HT(~h), and therefore,
~h′ ∈ (G). But then since ~b ∈ (G), ~h ∈ (G).

|J | > 2 : Without loss of generality, assume {1, 2} ⊂ J . Let ~b1 denote the row vector

of coefficients of the highest power product t/t10 in h11, · · · , h1k1 and let ~b2 denote

the row vector of coefficients of the highest power product t/t20 in h21, · · · , h2k2 .

If [~a1, ~a2] · [~bh1 ,
~bh2]

T = 0, then we carry out the reasoning of the previous case.

If not, then if Id(~a1) ⊂ Id(~a2) then since Id(~a1) ∩ Id(~a2) = Id(~a1), hence

(~b121, · · · , ~b12l12) (the first k1 = |~a1| components of the generators of syzygies

of (~a1, ~a2), see definition of set B2) generate whole of Bk1 . Hence the vector ~bh1

can be expressed as a linear combination of (~b121, · · · , ~b12l12).

~bh1 =
l12∑
j=1

b′12j
~b12j

where b′12j are arbitrary elements of B and [~b12j, ~b21j]’s are generators of the

syzygies of [~a1, ~a2]. Now, define

~b =
l12∑
j=1

b′12j ~r12j(t/lcm(t10, t20)) ∈ (G)

Consider ~h′ = ~h +~b. The number of occurrences of the highest term is reduced

by 1, i.e., the J corresponding to ~h′ has cardinality one less than the J for ~h.

Therefore, ~h′ ∈ (G). But then since ~b ∈ (G), ~h ∈ (G).

CHAPTER 8. GRÖBNER BASIS METHODS 154

The case when Id(~a2) ⊂ Id(~a1) is symmetric.

If neither of the ideals is contained in the other, then using lemma 35, it follows

that all instances of (~a1 · ~y1 + ~a2 · ~y2)lcm(ti, tj) should be reducible by a single R-

rule ρ3. Clearly, Id(~a1) ⊂ Id(~a3) and Id(~a2) ⊂ Id(~a3). Using the same argument

as above (for the case when we had Id(~a1) ⊂ Id(~a2)) twice we can get a new

vector ~h′ such that the corresponding J ′ set (defined as J was defined for ~h)

satisfies J ′ = J ∪ {k} − {i, j}. Hence, again we can conclude that ~h ∈ (G).

This concludes the proof of the fact that G is a generating set for the syzygies of

p11, · · · , pnkn .

Having obtained a method to compute syzygy generators for sets representing

weak Gröbner basis, we now let P = {p1, p2, · · · , pm} be a set containing arbitrary

polynomials in B[X]. Let R = {ρ1, · · · , ρn} be a weak Gröbner basis of the ideal

generated by P . Let us denote by SP and SG the module of syzygies of (p1, · · · , pm)

and (p11, · · · , pnkn), respectively. We know how to find a generating system for SG,

and we are going to show how this can be used to obtain a generating system for SP .

Since F and G generate the same ideal I in B[X], we have “forward” and “backward”

transformations between these ideals, i.e., there exist aijk, bkij ∈ B[X] with

pij =
m∑

k=1

aijkpk for 1 ≤ i ≤ n, 1 ≤ j ≤ ki and

pk =
∑
i,j

bkijpij for 1 ≤ k ≤ m.

Composing these transformations, we obtain

pk =
∑
i,j

bkijpij =
∑
i,j

bkij

m∑
l=1

aijlpl =
m∑

l=1

(
∑
i,j

bkijaijl)pl (7)

for 1 ≤ k ≤ m. Let δij be the Kronecker symbol, i.e., δii = 1 and δij = 0 for i 6= j.

We can rewrite equation 7 in the form

m∑
l=1

(δkl −
∑
i,j

bkijaijl)pl = 0 for 1 ≤ k ≤ m.

Now if we set

ckl = δkl −
∑
i,j

bkijaijl for 1 ≤ k, l ≤ m.

then we see that the m-tuple ~ck = (ck1, · · · , ckm) is an element of SP for 1 ≤ k ≤ m.

CHAPTER 8. GRÖBNER BASIS METHODS 155

To obtain the desired generating system for SP , we set A = {~c1, · · · , ~cm}. Let

B = {~d1, · · · , ~ds} be a generating system for the B[X]-module SG of syzygies of

(p11, · · · , pnkn). Hence we have for 1 ≤ k ≤ s

Ω =
∑
i,j

dkijpij

=
∑
i,j

dkij

m∑
l=1

aijlpl

=
m∑

l=1

(
∑
i,j

dkijaijl)pl.

Let ~dk

∗
= (d∗k1, · · · , d∗km) where d∗kl =

∑
i,j dkijaijl. Let B∗ = {~d1

∗
, · · · , ~ds

∗
}. Clearly

B∗ is a transformation of B to a set of solutions of SP and B∗ ⊂ SP . We claim that

A ∪B∗ is a generating set for the R[X]-module SP of syzygies of (p1, · · · , pm).

We have already seen that A ∪ B∗ ⊂ SP . In order to show that A ∪ B∗ gen-

erates SP as B[X]-module, let ~h = (h1, · · · , hm) ∈ SP be arbitrary and define
~h∗ = (h∗11, · · · , h∗nkn) by

h∗ik =
m∑

j=1

hjbjik

Then ~h ∈ SP implies

Ω =
m∑

j=1

hjpj =
m∑

j=1

hj

∑
i,k

bjikpik

=
∑
i,k

(
m∑

j=1

hjbjik)pik =
∑
i,k

h∗ikpik

and so ~h∗ ∈ SG. Now SG is generated by B, and so ~h∗ is a linear combination of

elements of B, i.e., there exist q1, · · · , qs ∈ B[X] with

~h∗ =
s∑

l=1

ql
~dl.

Define ~k = (k1, · · · , km) by setting

ki =
∑
k,l

h∗klakli for 1 ≤ i ≤ m.

Then

ki =
∑
k,l

(
s∑

j=1

qjdjkl)akli =
s∑

j=1

qj

∑
k,l

djklakli =
s∑

j=1

qjd
∗
ji

CHAPTER 8. GRÖBNER BASIS METHODS 156

and so ~k ∈ (B∗). We claim that ~h−~k (where subtraction is performed componentwise)

is in (A). Indeed,

hi 	 ki = hi 	
∑
k,l

h∗klakli

= hi 	
∑
k,l

(
m∑

j=1

hjbjkl)akli

= hi 	
m∑

j=1

hj(
∑
k,l

bjklakli)

=
m∑

j=1

hj(δij 	
∑
k,l

bjklakli) =
m∑

j=1

hjcji

for 1 ≤ j ≤ m, and so ~h 	 ~k ∈ (A). Together, we conclude that ~h ∈ (A). This

completes the proof.

To complete the above proof, we use the fact that if ρi and ρj are two rules in

the weak Gröbner basis, then there is also a rule ρk in the basis which reduces all

instances of (~ai · ~y1 + ~aj · ~y2)lcm(ti, tj). This fact is a consequence of the following

lemma.

Lemma 35 Let B be an arbitrary ring, and k > 1. If for ideals I1, . . . , Ik ⊂ B, it is

the case that I1 ∪ . . . ∪ Ik = Id(I1 ∪ . . . ∪ Ik), then I1 ∪ . . . ∪ Ik − Ii ⊂ Ii for some i.

Proof. If not then let gi ∈ I1 ∪ . . . ∪ Ik − Ii for all i. The element g1 + . . . + gk ∈ B

does not belong to any Ii, but it belongs to Id(I1 ∪ . . . ∪ Ik).

Theorem 22 If B is a commutative Noetherian ring with unit that satisfies the con-

ditions (B1)− (B5), then the same is true for the polynomial ring B[X].

Proof. Suppose B is a commutative Noetherian ring with 1 satisfying the ideal

membership and syzygies assumption mentioned above. Then clearly B[X] too is a

commutative ring with 1. Ideal membership in B[X] can be decided by constructing

a weak Gröbner basis. The Noetherian property follows from the Hilbert’s basis

theorem. The above lemma shows that computation of syzygies is possible too, thus

completing the proof.

A similar result was proved by Richman [70], but the proof was not constructive.

Using the results of the previous sections, we can now compute weak Gröbner

bases in the polynomial ring K[X0, . . . , Xn], where K is a field (or a commutative

ring satisfying other conditions, or a PID, or a Euclidean Domain) by considering

this polynomial ring as the ring K[X0][X1] . . . [Xn].

CHAPTER 8. GRÖBNER BASIS METHODS 157

8.9 Summary

Algorithms for constructing polynomial ideal bases have been extensively studied, cf.

Becker and Weispfenning [17]. Our work generalizes previous results for commuta-

tive polynomials in that we consider a larger class of coefficient domains (including

domains with zero divisors). The basic conditions we impose on a coefficient domain

are (i) decidability of ideal membership (for finitely generated ideals) and (ii) com-

putability of syzygy generators. In addition, termination of the completion process is

guaranteed only if the coefficient domain is Noetherian. These assumptions are shown

to be the weakest required to obtain a weak Gröbner cases construction procedure.

We believe that most of the rewrite-based methods for constructing ideal bases for

commutative polynomial rings can be described within our formalism. In particular,

this is the case for Buchberger’s original algorithm and for the method proposed by

Pan [66] for polynomials over principal ideal domains. Buchberger’s original algorithm

works for coefficient domains that are fields, in which case we also obtain (strong)

Gröbner bases (and not just weak Gröbner bases), because extended equations and

union critical pairs become irrelevant. We also have shown that our method produces

a Gröbner basis whenever a partial order on the coefficient domain is given, such

that for any ideal I, every remainder class of I has a unique minimal element. This

additional assumption is also easily seen to be the weakest required to get a strong

basis. It remains to be investigated to what extent our techniques can be carried over

to non-commutative polynomials.

There have also been various attempts at characterizing the class of rings that

admit a Gröbner basis algorithm. These characterizations typically involve as one

key parameter a (axiomatically characterized) reduction relation; see Buchberger [25]

and Stifter [77] for one notion of “reduction rings” and Madlener and Reinert [58] for

another. We have taken a different approach that employs only standard associative-

commutative rewriting (with constraints). We believe our results indicate that in the

case of commutative polynomial rings standard rewriting is sufficient. Non-standard

reduction relations have been used, for instance, by Trinks [80] and Möller [61]. There

several rewrite rules may be simultaneously applied to a single monomial. We actually

obtain a similar effect, to some extent, via constraints. For example, a weak basis for

the two polynomial equations 2X = 0 and 3X = 0 over the Z consists of just one rule

xX → Ω if x = 2y1 +3y2 (which is obtained via a union critical pair and renders the

other two rules redundant). From a computational point of view (and probably also

CHAPTER 8. GRÖBNER BASIS METHODS 158

conceptually) constrained rewriting appears to be preferable to arbitrary “simultane-

ous reduction” by several rules. Other features of constraints, such as the possibility

of delaying constraint solving, and encoding additional optimizations (as suggested

by the inequality constraints that reduce the number of possible superpositions in our

presentation) might also be of interest for implementation purposes.

Chapter 9

Conclusions

Methods for mechanical theorem proving have recently attracted a lot of interest

from the verification community. Techniques to prove correctness of specifications

(of hardware or software systems) that rely on exhaustive state space enumeration

are limited to analysis of only finite state systems. On the other hand, methods

based on symbolic representation of state space are capable of handling all kinds of

systems—finite or not. Theorem proving naturally comes up when reasoning with

such symbolic presentations.

More recently, theorem proving technology is also being integrated with program

analysis methods. For instance, static analysis techniques can become greatly useful

if syntactic analysis is enhanced with certain amount of symbolic reasoning capa-

bility [19]. Most of such applications however need assistance with symbols from

specific domains or theories like real arithmetic, or deal with structures satisfying

certain properties like queues, etc.

General purpose theorem provers have been found lacking in predictability. In

fact, they seem to not terminate (or take an arbitrarily long time to finish) even

when challenged with simple formulas that fall in well-known decidable fragments of

logics or theories. Hence, most of the general purpose theorem provers that have been

used for such applications have integrated decision procedures in them. But there is

no standard way to achieve such an integration, and there are several independent

and diverse efforts.

This thesis presents one of the first attempts towards formalizing the problem of

combination and proposes a uniform solution. The essential idea behind integrating

useful decision procedures into a deduction system involves identifying and separating

159

CHAPTER 9. CONCLUSIONS 160

the logical or deductive aspect of a procedure from the non-deductive (like compu-

tational) part. The latter part can usually be incorporated using constraint based

formalisms. A description of the former often requires the adoption of the general

inference rules. Obtaining decision procedures for various different theories using the

abstract combination result (presented in Chapter 3) leads essentially to a presenta-

tion of the decision procedure in terms of specialized inference rules, thus proposing

theoretical results that help in tight integration of decision procedures with general

purpose provers.

For instance, Chapter 4 discusses the problem of construction of congruence clo-

sure, and presents a set of abstract transition rules, derived from the rules for stan-

dard completion, to construct congruence closures. Congruence closure algorithms

have been central in the combination and integration of decision procedures. Our

description not only brings out a means for integration of congruence closure with

general purpose provers, but also shows how other interesting theories can be added

to the combination as well. In particular, ground AC theories can be added to the

theory of ground equational theories naturally—again using the abstract combination

result [11]. This extension is worked out in detail in Chapter 6. Many other theories

can be integrated as well—but we chose not to go into the details of others. Instead

we only mention conditions that require to be satisfied for proper integration.

As a last non-trivial illustration of our combination result, we describe an abstract

completion-like procedure for computing Gröbner bases for polynomial ideals over

certain very general rings, see Chapter 8. Thus, the theory of polynomial ideals can

be seen to satisfy the conditions required for integration specified in Chapter 3.

The work presented in the thesis has several interesting fall-outs. In most in-

stances, an abstract description via transition rules of algorithms leads to suitable

generalizations of the algorithm. As a prime example of this fact, we note that our

procedure to construct Gröbner bases can handle polynomial rings over various co-

efficient domains [12]. Originally, the Gröbner basis algorithm was proposed to deal

with polynomial rings over fields. Later, when there were applications dealing with

the polynomial ring over integers (Z[X1, . . . , Xn]), there were techniques developed to

handle polynomial rings over Euclidean domains and principal ideal domains. Our de-

scription clearly brings out the minimal set of assumptions that the coefficient domain

needs to satisfy in order to admit an algorithm for construction of Gröbner bases.

One example of a ring that can be handled now is the ring K[X1, X2][X3, . . . , Xn],

where the ring K[X1, X2] forms the coefficient domain.

CHAPTER 9. CONCLUSIONS 161

Another powerful tool that comes out of this thesis is the use of extended signa-

tures. Introduction of new constants into the signature as names for subterms allows

for greater flexibility (in choosing term orderings for example) and formally capturing

the notion of “sharing” [13]. Term dag based algorithms for computing congruence

closure are naturally cast in the framework of abstract congruence closure using this

observation, as is shown in Chapter 5. Moreover, applications or algorithms that

crucially depend on structure sharing for efficiency can now be abstractly described

using an extended signature. Efficient algorithms for syntactic unification is one such

example (Section 7.2.4. Chapter 7 describes two other applications that essentially

use the abstract concept of congruence closure to obtain a class of algorithms for

non-oblivious normalization and rigid E-unification. In particular, a specialization

of our general method for normalization yields a new algorithm for efficient normal-

ization of a term with respect to a convergent system [10]. Similarly, we also obtain

a description of a class of algorithms for rigid E-unification using abstract congru-

ence closure, superposition and paramodulation that are more general in scope than

previously known algorithms [79].

Bibliography

[1] W. W. Adams and P. Loustaunau. An Introduction to Gröbner Bases, volume 3

of Graduate Studies in Mathematics. American Mathematical Society, 1994.

[2] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University

Press, Cambridge, 1998.

[3] F. Baader and K. U. Schulz. Unification in the union of disjoint equational

theories: Combining decision procedures. In C. Tinelli and M. Harandi, editors,

Proceedings of the 11th Int. Conference on Automated Deduction, pages 50–65.

Springer-Verlag, 1992. volume 607 of Lecture Notes in AI.

[4] F. Baader and W. Snyder. Unification theory. In A. Robinson and A. Voronkov,

editors, Handbook of Automated Reasoning. Elsevier Science Publisher B.V.,

2000.

[5] L. Bachmair. Canonical Equational Proofs. Birkhäuser, Boston, 1991.

[6] L. Bachmair and N. Dershowitz. Completion for rewriting modulo a congruence.

Theoretical Computer Science, 67(2 & 3):173–201, October 1989.

[7] L. Bachmair and N. Dershowitz. Equational inference, canonical proofs, and

proof orderings. J. of the Association for Computing Machinery, 41:236–276,

1994.

[8] L. Bachmair and H. Ganzinger. Buchberger’s algorithm: A constraint-based

completion procedure. In Constraints in Computational Logic, Lect. Notes in

Comput. Sci., Berlin, 1994. Springer-Verlag.

[9] L. Bachmair and D. Plaisted. Termination orderings for associative-commutative

rewriting systems. J. Symbolic Computation, 1:329–349, 1985.

162

BIBLIOGRAPHY 163

[10] L. Bachmair, C.R. Ramakrishnan, I.V.Ramakrishnan, and A. Tiwari. Normaliza-

tion via rewrite closures. In P. Narendran and M. Rusinowitch, editors, Rewriting

Techniques and Applications, RTA 1999, volume 1631 of Lecture Notes in Com-

puter Science, pages 190–204, Trento, Italy, July 1999. Springer-Verlag.

[11] L. Bachmair, I.V. Ramakrishnan, A. Tiwari, and L. Vigneron. Congruence clo-

sure modulo Associativity-Commutativity. In H. Kirchner and C. Ringeissen,

editors, Frontiers of Combining Systems, Third International Workshop, Fro-

CoS 2000, volume 1794 of Lecture Notes in Artificial Intelligence, pages 245–259,

Nancy, France, March 2000. Springer-Verlag.

[12] L. Bachmair and A. Tiwari. D-bases for polynomial ideals over commutative

noetherian rings. In H. Comon, editor, Rewriting Techniques and Applications,

RTA 1997, volume 1103 of Lecture Notes in Computer Science, pages 113–127,

Sitges, Spain, July 1997. Springer-Verlag.

[13] L. Bachmair and A. Tiwari. Abstract congruence closure and specializations.

In D. McAllester, editor, Conference on Automated Deduction, CADE 2000,

volume 1831 of Lecture Notes in Artificial Intelligence, pages 64–78, Pittsburgh,

PA, June 2000. Springer-Verlag.

[14] L. Bachmair and A. Tiwari. Congruence closure and syntactic unification. In

C. Lynch and D. Narendran, editors, 14th International Workshop on Unifica-

tion, 2000.

[15] A. M. Ballantyne and D. S. Lankford. New decision algorithms for finitely pre-

sented commutative semigroups. Comp. and Maths. with Appls., 7:159–165, 1981.

[16] G. Becher and U. Petermann. Rigid unification by completion and rigid paramod-

ulation. In B. Nebel and L.D. Fischer, editors, KI-94: Advances in Artificial

Intelligence, 18th German Annual Conf on AI, pages 319–330, 1994. LNAI 861.

[17] T. Becker and V. Weispfenning. Gröbner bases: a computational approach to

commutative algebra. Springer-Verlag, Berlin, 1993.

[18] B. Beckert. A completion-based method for mixed universal and rigid E-

unification. In A. Bundy, editor, 12th Intl Conf on Automated Deduction, CADE-

12, pages 678–692, 1994. LNAI 814.

BIBLIOGRAPHY 164

[19] S. Bensalem, et.al. An overview of SAL. In B.L. De Vito, editor, Langley

Workshop on Formal Methods, LFMW 2000, 2000.

[20] N. S. Bjorner. Integrating decision procedures for temporal verification. PhD

thesis, Stanford University, 1998.

[21] R. S. Boyer and J. S. Moore. A computational logic. Academic Press, New York,

1979.

[22] R. S. Boyer and J. S. Moore. Integrating decision procedures into heuristic

theorem provers: A case study of linear arithmetic. In Logic and Acquisition of

Knowledge, Machine Intelligence, pages 83–124, 1984.

[23] R. S. Boyer and J. S. Moore. A computational logic handbook. Academic Press,

Boston, 1988.

[24] B. Buchberger. An algorithm for finding a basis for the residue class ring of a

zero-dimensional ideal. PhD thesis, University of Innsbruck, Austria, 1965.

[25] B. Buchberger. A critical-pair completion algorithm for finitely generated ide-

als in rings. In Proc. Logic and Machines: Decision Problems and Complexity,

volume 171 of Lect. Notes in Comput. Sci., pages 137–161, Berlin, 1983. Springer-

Verlag.

[26] B. Buchberger. Gröbner bases: An algorithmic method in polynomial ideal the-

ory. In N. K. Bose, editor, Recent Trends in Multidimensional Systems Theory,

pages 184–232. Reidel, 1985.

[27] B. Buchberger. Symbolic computation: Computer algebra and logic. In F. Baader

and K. U. Schulz, editors, Frontiers of Combining Systems, pages 193–219, 1996.

Kluwer Academic Publishers.

[28] R. Bündgen. Buchberger’s algorithm: The term rewriter’s point of view. Theo-

retical Computer Science, 1996. To appear.

[29] L. P. Chew. An improved algorithm for computing with equations. In 21st

Annual Symposium on Foundations of Computer Science, 1980.

[30] L. P. Chew. Normal forms in term rewriting systems. PhD thesis, Purdue

University, 1981.

BIBLIOGRAPHY 165

[31] E. Clarke and X Zhao. Analytica - a theorem prover in mathematica. In C. Tinelli

and M. Harandi, editors, Proceedings of the 11th Int. Conference on Automated

Deduction, pages 50–65. Springer-Verlag, 1992. volume 607 of Lecture Notes in

AI.

[32] E. Clarke and X Zhao. Analytica - An experiment in combining theorem proving

and symbolic computation. Technical Report CMU-CS-92-17, School of Com-

puter Science, Carnegie Mellon University, 1992.

[33] M. Clavel and et. al. Maude: Specification and Programming in Rewriting Logic.

http://maude.csl.sri.com/manual/, SRI International, Menlo Park, CA, 1999.

[34] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison,

and M. Tommasi. Tree automata techniques and applications. Available on:

http://www.grappa.univ-lille3.fr/tata, 1997.

[35] D. Cyrluk, P. Lincoln, and N. Shankar. On Shostak’s decision procedure for

combination of theories. In M. A. McRobbie and J.K Slaney, editors, Proceedings

of the 13th Int. Conference on Automated Deduction, pages 463–477, 1996. Vol.

1104 of Lecture Notes in Computer Science, Springer, Berlin.

[36] A. Degtyarev and A. Voronkov. The undecidability of simultaneous rigid E-

unification. Theoretical Computer Science, 166(1–2):291–300, 1996.

[37] A. Degtyarev and A. Voronkov. What you always wanted to know about rigid

E-unification. Journal of Automated Reasoning, 20(1):47–80, 1998.

[38] N. Dershowitz and J. P. Jouannaud. Rewrite systems. In J. van Leeuwen,

editor, Handbook of Theoretical Computer Science (Vol. B: Formal Models and

Semantics), Amsterdam, 1990. North-Holland.

[39] N. Dershowitz and Z. Manna. Proving termination with multiset orderings.

Communications of the ACM, 22(8):465–476, 1979.

[40] E. Domenjoud and F. Klay. Shallow ac theories. In Proceedings of the 2nd CCL

Workshop, La Escala, Spain, September 1993.

[41] P. J. Downey, R. Sethi, and R. E. Tarjan. Variations on the common subexpres-

sions problem. J. of the Association for Computing Machinery, 27(4):758–771,

1980.

BIBLIOGRAPHY 166

[42] T. Evans. The word problem for abstract algebras. Journal of London Mathe-

matical Society, 26:64–71, 1951.

[43] T. Evans. Embeddability and the word problem. Journal of London Mathemat-

ical Society, 28:76–80, 1953.

[44] T. Evans. Word problems. Bulletin of the American Mathematical Society,

84(5):789–802, 1978.

[45] J. Gallier, P. Narendran, D. Plaisted, and W. Snyder. Rigid E-unification: Np-

completeness and applications to equational matings. Information and Compu-

tation, 87:129–195, 1990.

[46] J. Gallier, P. Narendran, S. Raatz, and W. Snyder. Theorem proving using equa-

tional matings and rigid E-unification. Journal of the Association for Computing

Machinery, 39(2):377–429, April 1992.

[47] J. Goubault. A rule-based algorithm for rigid E-unification. In G. Gottlob,

A. Leitsch, and D. Mundici, editors, Computational logic and proof theory. Proc.

of the third Kurt Godel Colloquium, KGC 93, pages 202–210, 1993. LNCS 713.

[48] B. Gramlich. Termination and confluence properties of structured rewrite sys-

tems. PhD thesis, Universitat Kaiserslautern, 1996.

[49] J.-P. Jouannaud and C. Kirchner. Solving equations in abstract algebras: A

rule-based survey of unification. In J.-L. Lassez and G. Plotkin, editors, Compu-

tational Logic: Essays in Honor of Alan Robinson, pages 257–321. MIT Press,

Cambridge, MA, 1991.

[50] A. Kandri-Rody and D. Kapur. Computing a Gröbner basis of a polynomial

ideal over a Euclidean domain. J. Symbolic Computation, 6:37–57, 1988.

[51] D. Kapur. Shostak’s congruence closure as completion. In H. Comon, editor,

Rewriting Techniques and Applications, RTA 1997, volume 1103 of Lecture Notes

in Computer Science, pages 23–37, Sitges, Spain, July 1997. Springer-Verlag.

[52] C. Kirchner, H. Kirchner, and M. Rusinowitch. Deduction with symbolic con-

straints. Revue Française d’Intelligence Artificielle, 4:9–52, 1990.

[53] H. Kirchner and C. Ringeissen. Frontiers of Combining Systems, Third Interna-

tional Workshop, FroCoS 2000. LNAI 1794, Springer, Berlin, Hiedelberg, 2000.

BIBLIOGRAPHY 167

[54] J. W. Klop. Term rewriting systems. In S. Abramsky, D. M. Gabbay, and T. S. E.

Maibaum, editors, Handbook of Logic in Computer Science, volume 1, chapter 6,

pages 2–116. Oxford University Press, Oxford, 1992.

[55] E. de Kogel. Rigid E-unification simplified. In P. Baumgartner, R. Hahnle, and

J. Posegga, editors, Theorem Proving with Analytic Tableaux and Related Meth-

ods, 4th International Workshop, TABLEAUX ’95, pages 17–30, 1995. LNAI

918.

[56] U. Koppenhagen and E. W. Mayr. An optimal algorithm for constructing the

reduced Gröbner basis of binomial ideals. In Y. D. Lakshman, editor, Proceedings

of the International Symposium on Symbolic and Algebraic Computation, pages

55–62, 1996.

[57] C. Lynch. Paramodulation without duplication. In D. Kozen, editor, Proceedings

10th IEEE Symposium on Logic in Computer Science, pages 167–177, 1995. San

Diego.

[58] K. Madlener and B. Reinert. Computing Gröbner bases in monoid and group

rings. In Proc. ISSAC 93, pages 254–263, 1993.

[59] C. Marche. On ground AC-completion. In R. V. Book, editor, 4th International

Conference on Rewriting Techniques and Applications, pages 411–422, 1991. Vol.

488 of Lecture Notes in Computer Science, Springer, Berlin.

[60] E. W. Mayr and A. R. Meyer. The complexity of the word problems for commu-

tative semigroups and polynomial ideals. Advances in Mathematics, 46:305–329,

1982.

[61] H. M. Möller. On the construction of Gröbner bases using syzygies. J. Symbolic

Computation, 6:345–359, 1988.

[62] P. Narendran and M. Rusinowitch. Any ground associative-commutative theory

has a finite canonical system. In R. V. Book, editor, 4th International Conference

on Rewriting Techniques and Applications, pages 423–434, 1991. Vol. 488 of

Lecture Notes in Computer Science, Springer, Berlin.

[63] G. Nelson and D. Oppen. Simplification by cooperating decision procedures.

ACM Transactions on Programming Languages and Systems, 1(2):245–257, Oc-

tober 1979.

BIBLIOGRAPHY 168

[64] G. Nelson and D. Oppen. Fast decision procedures based on congruence closure.

Journal of the Association for Computing Machinery, 27(2):356–364, April 1980.

[65] D. Oppen. Complexity, convexity and combinations of theories. Theoretical

Computer Science, 12:291–302, 1980.

[66] L. Pan. On the D-bases of polynomial ideals over principal ideal domains. J.

Symbolic Computation, 7:55–69, 1988.

[67] G. E. Peterson and M. E. Stickel. Complete sets of reductions for some equational

theories. J. of the Association for Computing Machinery, 28(2):233–264, April

1981.

[68] D. Plaisted and A. Sattler-Klein. Proof lengths for equational completion. In-

formation and Computation, 125:154–170, 1996.

[69] E. Poll and S. Thompson. Integrating computer algebra and reasoning through

the type system of Aldor. In H. Kirchner and C. Ringeissen, editors, Frontiers

of Combining Systems, Third International Workshop, FroCoS 2000, pages 136–

150, 2000. LNAI 1794.

[70] F. Richman. Constructive aspects of Noetherian rings. Proc. of the American

Mathematical Society, 44(2):436–441, 1974.

[71] C. Ringeissen. Cooperation of decision procedures for the satisfiability problem.

In F. Baader and K. U. Schulz, editors, Frontiers of Combining Systems, pages

121–139, 1996. Kluwer Academic Publishers.

[72] A. Rubio and R. Nieuwenhuis. A precedence-based total AC-compatible order-

ing. In C. Kirchner, editor, Proceedings of the 5 Intl. Conference on Rewriting

Techniques and Applications, pages 374–388, 1993. Vol. 690 of Lecture Notes in

Computer Science, Springer.

[73] N. Shankar, S. Owre, and J. M. Rushby. The PVS Proof Checker: A Reference

Manual. Computer Science Lab, SRI International, 1993.

[74] D. J. Sherman and N. Magnier. Factotum: Automatic and systematic sharing

support for systems analyzers. In Proc. TACAS, LNCS 1384, 1998.

[75] R. E. Shostak. Deciding combinations of theories. Journal of the ACM, 31(1):1–

12, 1984.

BIBLIOGRAPHY 169

[76] W. Snyder. A fast algorithm for generating reduced ground rewriting systems

from a set of ground equations. Journal of Symbolic Computation, 15(7), 1993.

[77] S. Stifter. A generalization of reduction rings. J. Symbolic Computation, 4:351–

364, 1987.

[78] C. Tinelli and M. Harandi. A new correctness proof of the Nelson-Oppen combi-

nation procedure. In F. Baader and K. U. Schulz, editors, Frontiers of Combining

Systems, pages 103–119, 1996. Kluwer Academic Publishers.

[79] A. Tiwari, L. Bachmair, and H. Ruess. Rigid E-unification revisited. In

D. McAllester, editor, Conference on Automated Deduction, CADE 2000, vol-

ume 1831 of Lecture Notes in Artificial Intelligence, pages 220–234, Pittsburgh,

PA, June 2000. Springer-Verlag.

[80] W. Trinks. On B. Buchberger’s method for solving algebraic equations. J.

Number Theory, 10(4):475–488, 1978. (German).

[81] R. M. Verma. A theory of using history for equational systems with applications.

J. of the Association for Computing Machinery, 42:984–1020, 1995.

[82] R. M. Verma and I. V. Ramakrishnan. Nonoblivious normalization algorithms

for nonlinear systems. In Proc. of the Int. Colloquium on Automata, Languages

and Programming, New York, 1990. Springer-Verlag.

