
Software Tools for Technology Transfer manuscript No.
(will be inserted by the editor)

Synthesizing Switching Logic using Constraint Solving?

Ankur Taly1, Sumit Gulwani2, Ashish Tiwari3

1 Computer Science Dept., Stanford University e-mail: ataly@stanford.edu
2 Microsoft Research, Redmond, WA 98052, e-mail: sumitg@microsoft.com
3 SRI International, Menlo Park, CA 94025, e-mail: tiwari@csl.sri.com

Received: date / Revised version: date

Abstract. For a system that can operate in multiple
different modes, we define the switching logic synthesis
problem as follows: given a description of the dynam-
ics in each mode of the system, find the conditions for
switching between the modes so that the resulting sys-
tem satisfies some desired properties. In this paper, we
present an approach for solving the switching logic syn-
thesis problem in the case when
(i) the dynamics in each mode of the system are given
using differential equations and, hence, the synthesized
system is a hybrid system, and
(ii) the desired property is a safety property.

Our approach for solving the switching logic synthe-
sis problem, called the constraint-based approach, con-
sists of two steps. In the first constraint generation step,
the synthesis problem is reduced to satisfiability of a
quantified formula over the theory of reals. In the second
constraint solving step, the quantified formula is solved.
This paper focuses on constraint generation.

The constraint generation step is based on the con-
cept of a controlled inductive invariant. The search for
controlled inductive invariant is cast as a constraint solv-
ing problem. The controlled inductive invariant is then
used to arrive at the maximally liberal switching logic.
We prove that the synthesized switching logic always
gives us a well-formed and safe hybrid system.

When the system, the safety property, and the con-
trolled inductive invariant are all expressed only using
polynomials, the generated constraint is an ∃∀ formula
in the theory of reals, whose satisfiability is decidable.

? Research supported in part by the National Science
Foundation under grants CNS-0720721, CSR-EHCS-0834810,
CSR-0917398 and CCF-1017483 and by NASA under Grant
NNX08AB95A. Work done when the first author was visiting SRI
International.

1 Introduction

Formal verification is beginning to play an important
role in the process of building reliable and certifiable
complex engineered systems. Rather than design and
then verify, an alternate approach is to automatically
synthesize correct systems. The synthesis approach is
attractive since it generates correct systems by design.
However, computationally, the synthesis problem appears
to be much harder than the verification problem and
there are few general approaches for solving it.

Approaches for verification can be broadly classified
into two classes based on whether they are based on it-
erative fixpoint calculations or computing abstractions.
Recently, a third approach, called the constraint-based
approach, for verification has been investigated [9,8].
The constraint-based approach works in two steps. In
the first step, called the constraint generation step, the
verification problem is reduced to satisfiability of an ∃∀
formula over some theory. In the second step, called the
constraint solving step, the generated constraint is solved
using an existing solver or some heuristic wrapper over a
symbolic Satisfiability Modulo Theory (SMT) solver or
a numeric solver. While both steps are crucial for success
of the constraint-based approach, the constraint gener-
ation step is particularly important since it decides the
size, form and complexity of the constraint. This paper
focuses on constraint generation.

The reduction of the verification problem to a con-
straint solving problem is achieved by noticing that ver-
ification of several important properties boils down to
finding an appropriate “witness”. For example, we can
verify safety by searching for a strong enough inductive
invariant: a set of states is an inductive invariant if it is
a superset of the set of all reachable states (the set is an
invariant) and the immediate successor of any (reach-
able or unreachable) state in the set is also in the set
(the set is inductive). Unfortunately, the space of possi-



2 Ankur Taly et al.: Synthesizing Switching Logic using Constraint Solving

ble invariants is huge and it is impractical to search over
this entire space. Here we take the help of the human
user. We assume that the user has an idea of the “form”
of the invariant. Using this knowledge of the form, the
“unbounded” search for invariants is “bounded” by fo-
cusing the search only on invariants that are of that spe-
cific form. The form of the invariant is specified using
a “template”, which is an expression containing some
holes. The existence (∃) of an appropriate instance of the
template that is also an inductive invariant (∀) naturally
maps to an ∃∀ formula. This is the essence of the con-
straint generation step. If the ∃∀ formula is valid (over
the underlying theory), then it means that there exists
an inductive invariant (of the given form) that proves
safety.

The constraint-based approach for verification natu-
rally generalizes to a constraint-based approach for syn-
thesis. Given an under-specified system, we can choose
templates for the unknown parts of the system, as well
as for the unknown inductive invariant. We can then si-
multaneously seach for the unknown parts of the system
and the unknown invariant. Specifically, we existentially
quantify on the “holes” in the system and the “holes”
in the template. The constraint solver then searches for
instances of all these “holes” so that the resulting sys-
tem is proved safe by the resulting invariant. In practice,
however, this naive approach does not work well for syn-
thesis because the constraint solver often chooses values
that result in a degenerate system (such as, a zeno sys-
tem, or a deadlocked system) where the safety property
is vacuously true. Moreover, the above method does not
take advantage of the correlations that exist between the
various unknowns and uses a separate template for each
unknown. Having too many templates contributes to the
incompleteness and reduces the effectiveness of the ap-
proach.

In this paper, we define a specific instance of the syn-
thesis problem, called the switching logic synthesis prob-
lem. We present a constraint-based approach, inspired
by [9], to solve the switching logic synthesis problem;
see Figure 1. The novelty in our approach here is that
we do not directly search for values to fill the “holes”
in the system; that is, we do not directly search for the
switching conditions. Instead we use constraint solving
to find an inductive controlled invariant set. Hence we
only have to choose a single template – for the inductive
control invariant – and none for the unknown switch-
ing conditions. In a final postprocessing step, we use the
generated controlled invariant to synthesize the actual
switching logic. This postprocessing step generates the
weakest (most general) possible controller from the con-
trolled invariant. Our approach is guaranteed to syn-
thesize a non-blocking hybrid system that is also safe,
whenever some such hybrid system exists.

Inductive Controlled Invariant. An invariant for a sys-
tem is any superset of the set of reachable states of that

system. Safety properties can be proved by finding suit-
able invariants. However, invariance is difficult to check
in general. A better alternative is to search for inductive
invariants. Inductive invariants are attractive because in-
ductiveness is a “local” property – for each state in the
inductive set, we only need to check that the immedi-
ate next states reached from that state (rather than all
reachable states) are also in the inductive set. Fortu-
nately, the set of reachable states is always inductive
and hence, the use of inductive invariants is a sound and
complete method for safety verification.

In this paper, we consider systems that contain con-
trollable choices, that is, the user/controller can make
selections to achieve some safety goal. For such systems,
the notion corresponding to invariant sets is called con-
trolled invariant. A controlled reach set is the set of
reachable states obtained for some choice of the con-
troller. A controlled invariant is a superset of some con-
trolled reach set. As before, the computationally inter-
esting notion is that of an inductive controlled invariant.
We can, therefore, synthesize safe controllers by gener-
ating the correct inductive controlled invariant. In this
paper, we pursue this idea in the context of hybrid sys-
tems, though the idea of inductive controlled invariant
is applicable more generally.

Hybrid Systems. There are two classic formalisms for
modeling dynamical systems, namely continuous dynam-
ical systems and discrete state transition systems. Con-
tinuous dynamical systems are used to model dynamics
of physical entities, such as temperature, pressure, speed
and angular velocity. In a continuous dynamical system
(CDS), the state variables take values in the reals, R,
and hence the state space is usually the n-dimensional
real space, Rn. The dynamics of a CDS are given using a
system of ordinary differential equations – one for each of
the n state variables. On the other hand, discrete state
transition systems are used to model the dynamics of
discrete states, such as states of a program or protocol.
The state variables take values in a finite or countable
set and the dynamics are given using rules that specify
how and when the state variables are updated.

Hybrid systems are obtained by combining the for-
malism of continuous dynamical systems and discrete
state transition systems. In this paper, we will focus on
switched systems: a system with finitely many modes,
where each mode is equivalent to a continuous dynami-
cal system, and a set of rules, so-called “switching logic”,
for switching between the different modes of the system.
Intuitively, at any given time, such a system is in a par-
ticular mode and evolving according to that CDS, until
some rule is enabled. When a rule is enabled, the system
“switches” to a different mode and evolves according to
the new CDS.

Often the switchings are controllable, and the goal
of switching logic synthesis is to find a switching logic
that will guarantee some desired property of the result-



Ankur Taly et al.: Synthesizing Switching Logic using Constraint Solving 3

Dynamical
System

Multimodal

Constraint
Generator

Switching
Logic
Synthesizer

Values
Ufor 

∃ U ∀X

Formula

Template for
Controlled Inv

SwL
Safety Property

Solvers:

QEPCAD
SMT 
Symbolic
Numeric

Fig. 1. Overview of the constraint-based approach for switching logic synthesis. Boxes denote software tools and arrows denote inputs
and outputs of the tools.

ing system. In this paper, we are interested in the class
of safety properties.

Contribution and Outline of the Paper. The outline of
the paper is as follows:

– We formally define the switching logic synthesis prob-
lem (Section 2).

– We formalize the notion of inductive controlled in-
variants for multi-modal systems and describe a sound
and complete approach for synthesizing switching logic
from an inductive controlled invariant (Section 3).
Our synthesis technique follows the constraint-based
approach and does not use the usual game theoretic
approach for controller synthesis, or the controlled
reachability approach (also see Section 9).

– Whereas inductiveness is easily definable for discrete
transitions, the concept of inductiveness for continu-
ous dynamical systems is not so easy to formulate in
a way that makes it checkable. We describe several
sufficient checks that guarantee that a set is induc-
tive with respect to some given continuous dynam-
ics (Section 4). These sufficient tests provide founda-
tional rules for verification of inductiveness in con-
tinuous systems.

– Using the sufficient checks for inductiveness for con-
tinuous systems, we arrive at a practical implementa-
tion of the constraint-based synthesis approach (Sec-
tion 5).

– We also describe some heuristics to generate large
controlled invariant sets, that lead to synthesis of lib-
eral controllers (Section 6).

The key contributions of the paper include sufficient
tests for verifying inductiveness in continuous systems
and a constraint-based approach for switching logic syn-
thesis. The focus of this paper is on presenting the prob-
lem definition and the theoretical results underlying the
correctness of the synthesis approach. We provide sev-
eral examples to illustrate the main definitions and the
overall approach throughout the paper. Preliminary ver-
sions of the results presented in this paper can be found
in [24,25,9].

2 The Switching Logic Synthesis Problem

In this section, we describe the synthesis problem con-
sidered in this paper. We motivate our formal definitions
with informal descriptions of the problem.

We are interested in controlling multi-modal con-
tinuous dynamical systems. A dynamical system is de-
fined by its state space, which is the set of all possible
configurations or states of the system, and its dynam-
ics, which defines how the system configuration changes
(with time). Formally, a continuous dynamical system
(CDS) is a tuple 〈X, f〉 where X is a set of n real-valued
variables that define the state space Rn and f : Rn 7→ Rn
is a vector field that specifies the continuous dynamics.
The dynamic behavior of the CDS is given by a tra-
jectory, which is a mapping x from time [0,∞) to the
state space Rn, that satisfies the system of differential
equations dx

dt = f(x).

We assume that f is locally Lipschitz at all points,
which guarantees the existence and uniqueness of solu-
tions of the above system of ordinary differential equa-
tions.

Proposition 1 (Theorem 2.3.1, p80 [4]). Consider
a Lipschitz vector field f and the system of differential

equations dx(t)
dt = f(x(t)), x(0) = x0. The solution of

this system of differential equations, denoted by F (x0, t),
always exists and is unique. Moreover, F (x0, t) depends
continuously on the initial state x0.

Often a single continuous dynamical system is in-
sufficient to describe all possible behaviors of a system.
Many systems have multiple modes and they have dif-
ferent dynamics in each mode. This happens, for exam-
ple, when we introduce actuators inside physical devices
that change the device’s dynamics. In such cases, the dy-
namics of a system is described by a collection of CDSs.
We call such a system a multi-modal dynamical system.
A multi-modal system has a finite number of different
modes and in each mode, it behaves like a different con-
tinuous dynamical system. For instance, consider the wa-
ter level in a tank with an inflow valve. Such a system
has two dynamics – one when the valve is closed and
one when it is open. Formally, we define a multi-modal
dynamical system (MDS) and its semantics as follows.



4 Ankur Taly et al.: Synthesizing Switching Logic using Constraint Solving

Definition 1 (Multi-modal Continuous Dynamical
System). A multi-modal continuous dynamical system,
MDS, is a tuple 〈X, f1, f2, . . . , fk, Init〉, where 〈X, fi〉
is a continuous dynamical system (representing the i-
th mode) and Init ⊆ RX is the set of initial states.
Given an initial state x0 ∈ Init, we say that a function
x(t) : [0,∞)→ RX is a trajectory for MDS, if there is an
increasing sequence 0 ≤ t1 < t2 < · · · (either finite or
diverging to ∞) such that

– x(0) = x0 and x(t) is continuous over t ≥ 0, and
– for each interval (ti, ti+1), there is a mode j ∈ I such

that x(t) is smooth and dx(t)
dt (t′) = fj(x(t′)) for all

t′ in the range ti < t′ < ti+1. When i = 0, then we
require j = 1; that is, mode 1 is the initial mode.

Note that we are fixing the domain of a trajectory
to always be the set [0,∞). Following Definition 1, a
multi-modal system can nondeterministically switch be-
tween its modes. However, switching between the dif-
ferent modes in a multi-modal dynamical system is of-
ten controllable. The goal of controlling a system is to
achieve safe operation with some desired performance.
For instance, in the water tank example, the transition
between the two modes can be controlled by opening and
closing the valve. The controller may be required to guar-
antee that the water level in the tank remains between
two thresholds. There are several controllers that can
achieve this property. A controller that opens the valve
just when the water level reaches the lower threshold and
closes it soon thereafter, will keep the level closer to the
lower threshold, but it is very restrictive as it prevents
the system from reaching several possible safe states.
We are interested in designing controllers that guaran-
tee safety, but that also do not unnecessarily restrict the
system from reaching safe states.

A controller for a multi-modal system is specified as
a switching logic.

Definition 2 (Switching Logic). A switching logic,
SwL, for a multi-modal dynamical system, MDS := 〈X,
(fi)i∈I , Init〉, is a tuple 〈(gij)i 6=j;i,j∈I , (Invi)i∈I〉, con-
taining guards gij ⊆ RX and state (location) invariants
Invi ⊆ RX .

Informally, the guard gij specifies the condition under
which the system could switch from mode i to mode j
and the state invariant Invi specifies the condition which
must be respected while in mode i.

A multi-modal system MDS can be combined with
a switching logic SwL to create a hybrid system HS :=
HS(MDS, SwL) in the following natural way:
(a) the hybrid system HS has |I| modes with dynamics

given by dx(t)
dt = fi(x(t)) in mode i,

(b) gij is the guard on the discrete transition from mode
i to mode j, and
(c) Invi is the state invariant in mode i.
The state space of the hybrid system is I×Rn. The initial
states are {1}×Init. The discrete transitions in HS have

identity reset maps, that is, the continuous variables do
not change values during discrete jumps. The semantics
of hybrid systems that define the set of reachable states
of hybrid systems are standard [1]. The set of trajecto-
ries of the hybrid system HS(MDS, SwL) is a subset of the
set of trajectories of the underlying MDS containing only
those trajectories whose mode switchings are consistent
with the switching logic SwL: specifically, a mode switch
from mode i to mode j at state x(t) is consistent with
SwL if
(i) x(t) ∈ gij and
(ii) x(t) ∈ Invi and x(t) ∈ Invj .

Technically, the reachable states of a hybrid system
are tuples (i,x), where i ∈ I is the mode and x ∈ Rn
is the continuous state, but we often project the set of
reachable states on its x component (and ignore the i
component) and consider this projection on Rn as the
set of reachable states of the hybrid system.

Though semantically well-defined, some hybrid sys-
tems have undesirable behaviors. For example, it can
happen that a hybrid system, in mode i, reaches a point
x on the boundary of Invi, but there is no valid tra-
jectory from x; that is, there is no discrete transition
enabled at x, and following mode i dynamics takes the
system out of Invi. The non-blocking requirement disal-
lows such cases. We are interested in synthesizing non-
blocking hybrid systems.

Definition 3. A hybrid system HS is said to be non-
blocking if for every mode i, and for every point x on the
boundary of the state invariant for mode i, there exists
a mode j (may be same as i) and ε > 0 such that
(i) i = j or x ∈ gij , and
(ii) the dynamics of mode j keeps the system within the
state invariant of mode j for at least ε time.

A hybrid system HS is safe with respect to a safety
property Safe ⊆ Rn if the set of its reachable states is
contained in Safe. Formally, we define the logic synthesis
problem as follows:

Definition 4 (Switching Logic Synthesis Problem).
Given a multi-modal dynamical system, MDS := 〈X, f1,
f2, . . ., fk, Init〉 and a safety property Safe ⊆ Rn,
the switching logic synthesis problem seeks to synthe-
size a switching logic SwL such that the hybrid system
HS(MDS, SwL) is non-blocking and safe with respect to
Safe.

3 The Synthesis Procedure

In this section we present a high-level procedure for solv-
ing the switching logic synthesis problem described in
Definition 4. We fix our notation and denote the given
multi-modal dynamical system by MDS, its initial set of
states by Init and the given safety property by Safe;
see also Table 1.

We first define the notion of a controlled invariant.



Ankur Taly et al.: Synthesizing Switching Logic using Constraint Solving 5

X : set or vector of n variables
f : vector field, Rn 7→ Rn

Inv, CInv : subset of Rn

Init, Safe : subset of Rn

p : polynomial over X; Rn 7→ R
x,y : point in the set Rn

Table 1. Summarizing the notation used in the paper. Note that
we do not distinguish between RX and Rn.

Definition 5 (Controlled Invariant). A set CInv is
said to be a controlled invariant for a MDS := 〈X, (fi)i∈I ,
Init〉 if for all x0 ∈ Init, there exists a trajectory (Def-
inition 1) x(t) such that x(0) = x0 and for all t ≥ 0,
x(t) ∈ CInv.

Note that an invariant requires that, for each initial
state, every trajectory (starting from that initial state)
remains inside the invariant. In contrast, a controlled
invariant only requires that, for each initial state, there
is some trajectory (starting from that initial state) that
remains inside the controlled invariant.

Example 1. Let ẋ denote dx
dt . Consider a multi-modal

system with two modes and over two variables x and y.

Mode 1 : ẋ = 1, ẏ = 0

Mode 2 : ẋ = 0, ẏ = 1

Suppose x = 0, y = 0 is the only initial state. Irrespective
of how the system switches modes, the value of x and y
will be non-negative. Hence, x ≥ 0∧y ≥ 0 is an invariant
of this multi-modal system. However, x ≥ 0∧y = 0 is not
an invariant since mode 2 can cause y to become positive.
But, there is a switching strategy – never switch to mode
2 and always remain in mode 1 – that guarantees that
y remains zero. Hence, x ≥ 0 ∧ y = 0 is a controlled
invariant. Finally, note that the set x+ y ≤ 0 is neither
an invariant nor a controlled invariant. ut

Definition 5 does not suggest any easy way to com-
pute nontrivial controlled invariants. Hence, we define
the notion of inductive controlled invariants. Since the
dynamics are continuous here, we first need to define a
few notions. Recall that the vector fields fi’s are Lip-
schitz and hence, by Proposition 1, we have a unique
trajectory Fi(x0, t) in mode i that starts from state x0.
By Fi(x0, (0, ε)) we denote the set of all points reached
in the time interval (0, ε); that is,

Fi(x0, (0, ε)) := {x | x = Fi(x0, t), 0 < t < ε}.

For a set S ⊆ Rn, let ∂S denote the boundary of S in the
topological sense. We are now ready to define inductive
controlled invariants.

Definition 6 (Inductive Controlled Invariant). A
closed set CInv is an inductive controlled invariant for
MDS := 〈X, (fi)i∈I , Init〉 if

(A1) Init ⊆ CInv and

(A2) ∀x ∈ ∂CInv : ∃i ∈ I : ∃ε > 0 : Fi(x, (0, ε)) ⊆ CInv

SynthSwitchLogic(MDS, Safe) :

1. Find a closed set CInv that satisfies

Conditions (A1) and (A2) from Definition 6 and

Condition (A3): CInv ⊆ Safe

If no such set is found, return failure

2. Let bdryi := {x ∈ ∂CInv | ∃ε > 0 : Fi(x, (0, ε)) ⊆ CInv}
for all i ∈ I

3. Let Invi := CInv for all i ∈ I
4. Let gij := bdryj ∪ Interior(CInv) for all i 6= j; i, j ∈ I,
Return SwL := 〈(gij)i6=j;i,j∈I , (Invi)i∈I〉

Fig. 2. Procedure for synthesizing switching logic presented at a
semantic level

Intuitively, Condition (A2) in Definition 6 says that for
every point on the boundary of CInv, there is a vector
field fi that points inwards and brings the system (in-
stantaneously) inside the set CInv, see also [3]. Just as
inductive invariants are also invariants, inductive con-
trolled invariants are also controlled invariants.

Proposition 2. If a closed set CInv is an inductive
controlled invariant for MDS, then it is also a controlled
invariant for MDS.

Proposition 2 is a direct consequence of the definitions of
controlled invariants and inductive controlled invariants.

The complete procedure, at a semantic level, for solv-
ing the switching logic synthesis problem is presented in
Figure 2. The key idea behind the synthesis procedure
is to find an inductive controlled invariant set CInv and
then design the switching logic so that the resulting hy-
brid system always remains in CInv. Conditions (A1)

and (A2) imply that CInv is an inductive controlled
invariant and Condition (A3):

(A3) CInv ⊆ Safe

implies that all states in the set CInv are safe. It follows
from Condition (A2) that the boundary ∂CInv of the set
CInv can be written as a union

∂CInv =
⋃
i∈I

bdryi (1)

where bdryi contains all points x on the boundary ∂CInv
such that ∃ε > 0 : Fi(x, (0, ε)) ⊆ CInv. This fact is used
to define the sets bdryi in Line 2. In Line 4, we use the
sets bdryi and CInv to define the guards for the discrete
transitions from mode i to mode j.

We next state and prove some properties of the pro-
cedure SynthSwitchLogic in Figure 2. We show that
the synthesized hybrid system is always non-blocking
and safe (soundness). Furthermore, if there is a safe hy-
brid system, then under some fairly general conditions,
the procedure SynthSwitchLogic will return a switch-
ing logic SwL and synthesize a safe system HS(MDS, SwL)
(completeness).

Theorem 1 (Soundness). For every switching logic
SwL returned by procedure SynthSwitchLogic(MDS,Safe),



6 Ankur Taly et al.: Synthesizing Switching Logic using Constraint Solving

the hybrid system HS(MDS, SwL) is non-blocking and safe
with respect to Safe.

Proof. We first prove that the hybrid system HS(MDS, SwL)
is non-blocking. Let x be any point on the boundary
∂CInv of the set CInv. From Equation (1), we know that
there is a set bdryj such that x ∈ bdryj . Also by def-
inition, for all i 6= j, gij = bdryj and hence, x ∈ gij .
Furthermore, we also know that ∀x ∈ bdryj : ∃ε :
Fj(x, [0, ε]) ⊆ CInv. This implies that there is an ε > 0
such that the system can stay in mode j for ε time. This
proves that the hybrid system is non-blocking.

Given a set CInv satisfying Condition (A1), Condi-
tion (A2) and Condition (A3), we have proved that the
switching logic SwL generated from CInv results in a non-
blocking hybrid system HS(MDS, SwL). Since the state in-
variant CInv satisfies CInv ⊆ Safe (Condition (A2)),
safety follows trivially for the non-blocking hybrid sys-
tem HS(MDS, SwL). ut

We prove completeness under a technical assump-
tion. We say a hybrid system HS has the min-dwell-time
property if there exists a fixed time duration ta such
that for all reachable states x, if the hybrid system per-
mits a mode switch from i to j at x, then there must
exist a mode k such that the hybrid system permits
a mode switch from i to k at x and the system can
stay in mode k for at least ta units of time starting at
x. The min-dwell-time property implies that successive
mode switchings can be forced to be ta units apart.

Example 2 (Illustrating min-dwell-time property). The
following hybrid system does not have the min-dwell-time
property:

Mode 1 : ẋ = −1, ẏ = 3, Inv1 := (x− y ≥ 0)
Mode 2 : ẋ = −1, ẏ = −3, Inv2 := (x+ y ≥ 0)

Guard g12 : x− y = 0
Guard g21 : x+ y = 0

where Inv1 and Inv2 are the mode invariants. It is easy
to see that, as the system state approaches (0, 0), the
time between successive switchings monotonically de-
creases, reaching 0 in the limit. Hence, this hybrid sys-
tem does not have the min-dwell-time property. ut

Theorem 2 (Completeness). If there exists a switch-
ing logic SwL such that the hybrid system HS(MDS, SwL)
is non-blocking, it is safe with respect to the closed set
Safe, and it satisfies the min-dwell-time property, then
the procedure SynthSwitchLogic(MDS,Safe) will return
a switching logic.

Proof. Consider the hybrid system HS = HS(MDS, SwL)
that is assumed to exist. Let I denote the modes of HS
and let X be the continuous variables of HS. Let RHS be
the set of reachable states of HS. Let R be the projection
of RHS on the continuous variables; that is,

R := {x ∈ RX | ∃i ∈ I : (i,x) ∈ RHS}

Consider the closure Cl(R) = R∪∂R of R. We will prove
the theorem by showing that the set Cl(R) satisfies the
three conditions (A1), (A2) and (A3).

First, since initial states are reachable by definition,
Init ⊆ Cl(R). Hence, (A1) holds. Next we show that
Cl(R) ⊆ Safe. Since HS is safe, we know that R ⊆ Safe.
Taking closure of both sides, we have Cl(R) ⊆ Cl(Safe).
Since Safe is a closed set, Cl(Safe) = Safe. Therefore
Cl(R) ⊆ Safe and hence (A3) holds.

Finally, we show that Cl(R) satisfies Condition (A2).
Let x ∈ ∂Cl(R). We need to show that there is a mode
i s.t. for some ε > 0, we have Fi(x, [0, ε]) ⊆ Cl(R).
Case 1 : x ∈ R. Let i be the mode s.t. (i,x) ∈ RHS. If x is
in the interior of the state invariant of mode i, then, since
we assume vector fields to be locally Lipschitz, there is
a small enough ε > 0 s.t. Fi(x, [0, ε]) ⊆ R. If x is on the
boundary of the state invariant of mode i, then, since HS

is assumed to be non-blocking, we know there is some
ε > 0 and some mode j s.t. Fj(x, [0, ε]) ⊆ R. Thus, in
both cases, we have established Condition (A2).
Case 2 : x ∈ Cl(R) − R. For any ε > 0, let Bε be an
ε-ball around x. Let Bε,i be points in this ball that are
reachable with mode i. Formally,

Bε := {y ∈ RX | ||y − x|| < ε}
Bε,i := {y ∈ Bε | (i,y) ∈ RHS}

Since x ∈ Cl(R), there will be reachable points close to
x. Hence, for some i, Bε,i will be nonempty. Since there
are only finitely many modes in I, there will be some
mode, say i∗, s.t. for all ε > 0, Bε,i∗ is nonempty. For a
point y ∈ Bε,i∗ , let te(y) denote the least time at which
a switch to a different mode is enabled in any trajectory
of HS. Formally,

te(y) := inf{t | at state Fi∗(y, t), HS permits mode switch

from mode i∗ to some mode j}

If HS does not permit a mode switch at state Fi∗(y, t)
for any t ≥ 0, then let te(y) =∞. Now, pick any infinite
sequence x1,x2,x3, . . . of points such that xn ∈ Bε/2n,i∗ .
By construction, this sequence of reachable points con-
verges to x. Consider now the sequence

te(x1), te(x2), . . . (2)

of time durations after which a mode switch is enabled.
There are two subcases. Either Sequence (2) con-

verges to 0 or it does not. First consider the case when
it does not. Then there exists some t∗ > 0 s.t. infinitely
many elements in Sequence (2) are greater than t∗. This
means that there are reachable points arbitrarily close to
x s.t. HS trajectories starting from those points remain
in mode i∗ and do not switch modes for at least t∗ time
units. Consider the following sequence of points in R,

Fi∗(x1, t
∗), Fi∗(x2, t

∗), . . . (3)

Proposition 1 says that Fi∗(x, t∗) is continuous in x, and
since the sequence x1,x2, . . . converges to x, it follows



Ankur Taly et al.: Synthesizing Switching Logic using Constraint Solving 7

that Sequence (3) converges to Fi∗(x, t∗). Hence, we can
conclude that Fi∗(x, t∗) ∈ Cl(R). The same reasoning
holds for any t between 0 and t∗ and hence Fi∗(x, [0, t∗]) ⊆
Cl(R). This establishes (A2).

Now we consider the case when Sequence (2) con-
verges to 0. In this case, consider the new sequence of
points

Fi∗(x1, te(x1)), Fi∗(x2, te(x2)), Fi∗(x3, te(x3)), . . . (4)

The first argument converges to x and the second argu-
ment converges to 0, hence this sequence converges to
Fi∗(x, 0), which is x. At each point in the sequence, by
definition, switching is enabled. Using the min-dwell-time
property, there is a sequence of destination modes j1, j2, . . .
s.t. HS can spend ta time in mode jn starting from the
state Fi∗(xn, te(xn)). Since there are only finitely many
modes, there is at least one mode, say j∗, s.t. HS can
spend ta time in mode j∗ starting from infinitely many
points in Sequence (4). Hence, this means that there are
reachable points arbitrarily close to x s.t. HS trajectories
starting from those points remain in mode j∗ (and do
not switch modes) for at least ta time units. As in the
previous case, we immediately conclude that this implies
Fj∗(x, [0, ta]) ⊆ Cl(R). This establishes (A2).

Thus, we conclude that Cl(R) satisfies Conditions (A1),
(A2) and (A3) and hence procedure SynthSwitchLogic

will return a switching logic. ut

Although the above procedure is sound and com-
plete, it is not computationally feasible as there is no
easy way to check for Condition (A2). In the next sec-
tion we will present effectively checkable sufficient condi-
tions for guaranteeing Condition (A2). This causes loss
of completeness, but it preserves soundness.

4 Checking Inductiveness for Continuous
Dynamics

The procedure for solving the switching logic synthesis
problem was described at a semantic level in the previous
section. Before that procedure can be concretely imple-
mented, we need to find ways to decide Condition (A2).
Condition (A2) is not easy to check because Fi’s are so-
lutions of differential equations and we usually do not
have access to them. In this section, we present methods
to check Condition (A2) without using the solution Fi
of the differential equations.

Ignoring the multiple modes for now, in order to
check Condition (A2), we need the ability to perform
the following critical test: for a given set IndInv, deter-
mine if all trajectories starting from a (boundary) point
of IndInv remain inside the region IndInv for some suf-
ficiently small ε time. This is really the “inductiveness”
condition for continuous dynamical systems. Formally,
we can write it as

∀x ∈ ∂IndInv : ∃ε > 0 : F (x, (0, ε)) ⊆ IndInv (5)

where F is the flow defined by some given vector field f .
Let us fix a point x on the boundary of IndInv. For

this point x, we need to determine if

F (x, (0, ε)) ⊆ IndInv (6)

where dX/dt = f(X) is some given continuous dynamics
whose (unknown) trajectories are described by F , and
IndInv is a given target set.

Whereas it is evident from Condition (A2) why de-
ciding Condition (5) is important for switching logic
synthesis, the reader will also note that deciding Con-
dition (5) is also of fundamental importance for verifica-
tion of continuous dynamical systems.

We will present some effective tests for checking Con-
dition (6) in this section. In Section 4.1, we will present
tests that can be peformed locally on the point x. In
Section 4.2, we will present a test that needs to be pe-
formed not only at x, but also at all points in an “open
region” around x. In Section 5, we will show how we can
effectively decide these tests to get an implementation
of our synthesis approach.

We first need to fix a representation for IndInv. We
use semi-algebraic sets as candidates for IndInv ⊆ RX .
Semi-algebraic sets can be symbolically represented us-
ing Boolean combinations of inequalities over polynomial
expressions. For simplicity, let us just focus on a single
polynomial inequality, namely, p(X) ≥ 0, where p(X) is
a polynomial over the variables X.

The key idea behind checking Condition (5) is to use
Lie derivatives. Intuitively, we can check that trajecto-
ries do not leave p ≥ 0 by checking that dp

dt is greater-
than zero whenever p = 0. Technically, the derivative
of p with respect to time, dp

dt , is called the Lie deriva-
tive, Lf (p), of p with respect to the vector field f . It
can be computed using the chain rule, as shown be-
low. Let X be a vector of n variables, and let dX/dt =
f(X) be a system of n differential equations; say, dx1

dt =

f1(X), . . . , dxn

dt = fn(X). We define the n-th derivative

of p with respect to time, L
(n)
f (p), as follows:

∇p := (
∂p

∂x1
,
∂p

∂x2
, . . . ,

∂p

∂xn
)

Lf (p) := ∇p · f (7)

L
(n)
f (p) :=

{
Lf (p) if n = 1
dL

(n−1)
f (p)

dt otherwise

where ∇p · f is the dot-product of the two vectors, i.e.,

∇p · f = (
∂p

∂x1
, . . . ,

∂p

∂xn
) · (f1, . . . , fn) =

n∑
i=1

∂p

∂xi
fi

If each fi is a polynomial (over the n variables X) and if
p is also a polynomial in Q[X], then Equation (7) shows

that L
(n)
f (p) is a polynomial in Q[X] and it can be sym-

bolically computed.
Illustration of Lie derivative computation can be found

in Example 3 and Example 4.



8 Ankur Taly et al.: Synthesizing Switching Logic using Constraint Solving

4.1 Sufficient Tests for Inductiveness

Assume that IndInv is the set (of all points y where)
p(y) ≥ 0. We have the following infinite family of candi-
date tests, parameterized by k, for checking the inclusion
in Formula (6)(

k−1∧
i=1

L
(i)
f (p)(x) = 0

)
∧ L

(k)
f (p)(x) > 0 (8)

In the special case when k = 1, we get the following
simple test for checking the inclusion in Formula (6)

Lf (p)(x) > 0 (9)

For every k, Test (8) is sufficient for proving Condi-
tion (6).

Lemma 1. Let F be a solution of the differential equa-
tion dX/dt = f(X). Let x be any point such that p(x) ≥
0. For any integer k > 0, if L

(i)
f (p) = 0 at x for i =

1, . . . , k− 1 and L
(k)
f (p) > 0 at x, then there is an ε > 0

such that F (x, (0, ε)) ⊆ {y | p(y) ≥ 0}. Formally, for
each k > 0,

∀x : (

k−1∧
i=1

L
(i)
f (p)(x) = 0 ∧ L(k)

f (p)(x) > 0)

⇒ ∃ε > 0 : F (x, (0, ε)) ⊆ {y | p(y) ≥ 0}

In the special case when k = 1, we get, for all x,

Lf (p)(x) > 0⇒ ∃ε > 0 : F (x, (0, ε)) ⊆ {y | p(y) ≥ 0}

Proof. Let x be any point such that p(x) ≥ 0. Consider
the value of p at the point F (x, ε), where ε is a small pos-
itive constant. Let us denote by p(t) the value p(F (x, t)).
For t close to 0, by Taylor expansion, we have (note that
all derivatives of p with respect to t are defined)

p(t) = p(0) + · · ·+ dip(0)

dti
ti

i!
+ · · ·

= p(0) + · · ·+ L
(i)
f (p)(x)

ti

i!
+ · · ·

For sufficiently small t, the sign of p(t) will be determined
by lower-order terms and we can ignore the higher-order
terms. If p(0), which is the value of p at x, is strictly pos-
itive, then, for sufficiently small t, p(t) remains positive
and hence the claim follows. The remaining case is when
p(0) = 0, which happens when x is on the surface p = 0
of p ≥ 0. By assumption, the first k terms in the above
summation are zero, and the (k + 1)-st term is positive.
Hence, for sufficiently small t, p(t) will be positive and
hence the claim follows. ut

For every k, we get a sufficient condition based on us-
ing Lie derivatives that allows us to verify Condition (A2)

without requiring the explicit computation of Fi. Each
of these tests is sufficient, but none is necessary for es-
tablishing that dynamics remain inside the given set for
some ε time, as shown in the following example.

Example 3 (Not Necessary). Consider the system CDS :=
({x}, {x = 0}, f) where f(x) = 0 and the set of states
x ≥ 0. Clearly, starting from x = 0, the dynamics re-
mains inside the set x ≥ 0. But, Lf (x) is not strictly
greater-than zero at x = 0.

Lf (x)|x=0 = (∂x/∂x∗dx/dt)|x=0 = 1∗f(x)|x=0 = 1∗0 = 0

It can be seen that L
(n)
f (x)|x=0 = 0 for all n ≥ 1 and

hence Test (8) fails for all k. ut

Since, for each k, Test (8) is a sufficient condition,
any disjunction of these conditions is also sufficient; for
example,

Lf (p)(x) > 0 ∨ (Lf (p)(x) = 0 ∧ L(2)
f (p)(x) > 0)(10)

It is tempting to think that replacing > by ≥ in one such
condition will make the test both necessary and suffi-
cient, but this is not true. The following example shows
why, for example, the test Lf (p) ≥ 0, which is a neces-
sary condition, is not sufficient; see also Platzer [18].

Example 4. Consider the system CDS := ({x}, {x = 0}, f)
where f(x) = 1 and the set of states −x2 ≥ 0. Note that

Lf (−x2) = ∂(−x2)/∂x ∗ dx/dt = −2x ∗ f(x) = −2x.

At x = 0, Lf (−x2) = 0, and hence Lf (−x2) ≥ 0. But, it
is easy to note that starting from x = 0 with dynamics
dx/dt = 1, we do not stay inside the set −x2 ≥ 0 for any
duration (0, ε). ut

Despite being a strong sufficient condition, Test (9)
has been used by Prajna, Jadbabaie and Pappas [20] and
Taly, Gulwani and Tiwari [24]. The variant of Test (9)
where > is replaced by ≥, despite being not sufficient in
general, is a sufficient check in many special cases, and it
has been used in the work by Gulwani and Tiwari [9] and
Prajna and Jadbabaie [19] for performing verification of
continuous and hybrid systems.

4.2 Another Sufficient Test for Inductiveness

In the previous section, we presented tests that are suf-
ficient for checking if trajectories starting from a point
enter a given region (Condition (6)). All these tests were
based on computations at the given point. However, the
tests were too strong: for example, if the trajectory start-
ing from the point stays on the surface, but does not
“enter” the interior of the region, then the tests fail. We
now present a different test that also works when the
trajectory remains on the surface.

The new test is again based on Lie derivatives. In-
tuitively, we again check that (whenever the point x is
on the boundary of the region p ≥ 0) the rate of change
of p be non-negative (so that it does not exit the region
p ≥ 0). Formally, we replace > by ≥ in Test (9). How-
ever, as we saw in Example 4, this modified test does not



Ankur Taly et al.: Synthesizing Switching Logic using Constraint Solving 9

guarantee that the trajectory from x will remain inside
p ≥ 0. The problem was that, intuitively, one expects
that the Lf (p)(x) = 0 should hold at point x only when
the vector field at x is “tangential” to the set p ≥ 0. Un-
fortunately, it also holds in some degenerate cases. One
such degenerate case is when ∇p = 0, because when
∇p(x) = 0 then Lf (p)(x) will be zero irrespective of the
value of f at x.

The new test, shown below as Test (11), explicitly
requires that ∇p be nonzero whenever Lf (p) is zero at
any point x. Geometrically, ∇p is nonzero at a point
whenever the surface is “smooth” at that point. The
new test is formally written as:

Lf (p)(x) ≥ 0 ∧ ∇p(x) 6= 0 (11)

The additional “smoothness” requirement prevents
us from (incorrectly) concluding that the trajectory start-
ing from x = 0 under dynamics dx/dt = 1 will remain
inside −x2 ≥ 0.

Example 5. Consider the dynamical system from Exam-
ple 4. We notice that Test (11) fails at point x = 0. In
fact if we use −x2 as the value of p, Test (11) reduces to
checking if, at x = 0, it is the case that −2x ≥ 0∧−2x 6=
0. This is false and hence Test (11) correctly fails. ut

Although it works on the above example, Test (11)
is still not sufficient for concluding Condition (6).

Example 6. Consider the dynamics dx/dt = 1, dy/dt =
0 and the set x2 + y2 ≤ 1. Consider the point (0, 1).
The reader can verify that the trajectory starting from
this point will move in the x-direction, and hence it will
move “out” of the circle. However, Test (11) evaluates
to true at the point (0, 1): at (0, 1), we need to check
if −2x ≥ 0 ∧ (−2x,−2y) 6= (0, 0), which is true since
0 ≥ 0 and (0,−2) 6= (0, 0). Thus, if we only check for
validity of Test (11) at the point (0, 1), then we can
incorrectly conclude that the trajectory from (0, 1) will
remain inside the circle for some time. ut

This problem is fixed by requiring that Test (11)
holds not just at x, but also at points around x. With
this modification, we can now state that the new test
implies Condition (6). We need some notation first. We
use |y| to denote the magnitude or length (L2 norm) of
the vector y. We use Bx,ε to denote an ε-ball around x:

Bx,ε := {y ∈ Rn | |y − x| < ε}

Lemma 2. Let F be a solution of the differential equa-
tion dX/dt = f(X). Let IndInv := {y | p(y) ≥ 0}. Let
x be a point such that p(x) = 0. If there is a δ > 0 s.t.

∀y : (p(y) = 0∧y ∈ Bx,δ)⇒ (Lf (p)(y) ≥ 0∧∇(p)(y) 6= 0),

then, there is an ε > 0 such that F (x, (0, ε)) ⊆ IndInv.

Proof. Let Dx,δ denote the disk on the surface p = 0
around x; formally,

Dx,δ := {y | p(y) = 0 ∧ y ∈ Bx,δ}

We are given that Lf (p)(y) ≥ 0 and ∇(p)(y) 6= 0 for all
points y ∈ Dx,δ.

For k = 1, 2, 3, . . ., define new vector fields fk as fol-
lows:

fk(y) = f(y) +
1

k
∇̂(p)(y)

where ∇̂(p)(y) denotes the unit vector in the direction of
∇(p)(y). Note that the vector fields f1, f2, . . . converge
to the vector field f in the limit. Note also that all vector
fields are Lipschitz continuous, since we have assumed
that f is Lipschitz continuous and since ∇(p) is Lipschitz
continuous (as p is a polynomial).

Let S be the “hemisphere” inside Bx,δ where p is
non-negative:

S := {y | p(y) ≥ 0 ∧ y ∈ Bx,δ}

For any fixed k and any y ∈ Dx,δ,

Lfk(p)(y) = Lf (p)(y) +
1

k
L∇̂(p)p(y)

≥ 0 +
1

k
(∇(p) · ∇̂(p))(y) > 0

Hence, using Lemma 1, we conclude that, for each k, the
trajectory under fk starting from y remains inside S for
some nonzero time.

Let tk and t, respectively, be the time it takes the
trajectory starting from x under dynamics fk and f ,
respectively, to exit S. We just showed that tk > 0. We
wish to prove that t > 0. Let us find a better lower bound
for tk. Since the trajectory can not exit S from any point
on D, it needs to reach some other boundary point of S
before it can exit S. All other boundary points of S are
at least δ distance away from x.

Now we use the crucial assumption that f , and hence
each fk, is Lipschitz. Hence, there is a constant M1 s.t.
for all y ∈ S, |f(y)| < M . Now let Mk = M + 1/k.
By definition of fk, it follows that |fk(y)| < Mk for all
y ∈ S. Hence, tk > δ/Mk. It then follows that tk >
δ/(M + 1/k). As k becomes larger, fk’s tend to f and
tk’s tend to t (by definition of tk’s). But we just proved
a lower bound of δ/M for t and hence t > 0. This is
exactly what we wanted to prove. ut

The fix suggested by Lemma 2 causes the new test
to correctly fail on Example 6.

1 Technically, when we say “Lipschitz”, we mean “locally Lip-
schitz at all points” and hence, M works for only some neigh-
bourhood of x. Hence, we need to intersect the set S with this
neighbourhood for the argument to go through. We ignore this
technicality here.



10 Ankur Taly et al.: Synthesizing Switching Logic using Constraint Solving

Example 7. Reconsider the scenario from Example 6.
Recall that Test (11) holds for the point (0, 1). How-
ever, it does not hold for points near (0, 1), such as
y := (ε,

√
(1− ε2)). At this point, Test (11) fails to hold

because, while ∇(p) continues to be nonzero, the Lie
derivative Lf (p)(y) = −2ε is strictly negative. ut

The assumption that f is Lipschitz is important for
the above lemma, as demonstrated by the following ex-
ample.

Example 8. Consider the differential equation dx/dt =
3x2/3. The vector field f(x) = 3x2/3 is not Lipschitz at
x = 0. Suppose we wish to determine if starting from
x = 0, under the above dynamics, the trajectories re-
main inside −x ≥ 0. The set −x ≥ 0 has only one bound-
ary point x = 0 and hence there are no other “nearby”
boundary points where we need to check Test (11). Let
p(x) = −x. At x = 0, Test (11) holds because

∇p|x=0 =
∂(−x)

∂x
|x=0 = −1|x=0 = −1 6= 0

Lf (p)|x=0 = −x2/3|x=0 = 0 ≥ 0

This seems to suggest that trajectories starting from x =
0 will remain inside −x ≥ 0 for some time. However, this
is not true for all solutions of the differential equation.
Starting from the point x = 0, there are two possible
trajectories, x(t) = 0 and x(t) = t3. The reader can
verify that both are solutions of the differential equation.
However the trajectory x(t) = t3 exits the region −x ≥ 0
immediately. ut

Note that if the vector field f is specified using poly-
nomials and if IndInv is a semi-algebraic set of the form
p ≥ 0, the Lie derivative of p is also a polynomial, and
hence all the above the tests are formulas in the first-
order theory of the reals, which is decidable [26].

5 Implementing the Procedure

The procedure for solving the switching logic synthesis
problem was described at a semantic level in Section 3.
In the last section, we presented some sufficient tests
that can be used to implement the semantic synthesis
procedure. In this section, we present further details on
how the semantic synthesis procedure can be concretely
implemented.

Recall that the semantic procedure, presented in Fig-
ure 2, is based on finding a closed set CInv that satisfies
Conditions (A1), (A2) and (A3). In other words, we
need to decide the satisfiability of the following formula:

∃CInv : ∀X : (A1) ∧ (A2) ∧ (A3)

Since CInv is a set, the above formula has a second-
order quantifier. We use the idea of templates to search

for CInv. A template is a formula (in the theory of re-
als) with free variables X ∪ U . Here U are the (real-
valued) unknown coefficients that need to be instanti-
ated to yield the desired CInv. We use boolean combi-
nations of polynomial equalities and inequalities (semi-
algebraic sets) as the formulas. Once a template is fixed,
we can write Conditions (A1), (A2) and (A3) as a first-
order ∃∀ formula over the theory of reals [9]. Concretely,
let p(U,X) be a polynomial and let p(U,X) ≥ 0 be
the chosen template for (searching for) CInv. Again,
we restrict ourselves to the case of a single inequality
p(U,X) ≥ 0 for simplicity of presentation. For exam-
ple, u1x1 + u2x2 ≥ u3 is a linear template over 2 vari-
ables X = {x1, x2} and 3 unknown coefficients U =
{u1, u2, u3}. The following formula replaces the existen-
tial quantification on CInv in the above formula by ex-
istential quantification on U and states that there is
a choice of values for U such that the resulting set,
p(U,X) ≥ 0, is a controlled invariant sufficient to prove
safety.

∃U∀X : (X ∈ Init⇒ p(U,X) ≥ 0) ∧
(p(U,X) ≥ 0⇒ X ∈ Safe) ∧
(p(U,X) = 0⇒

∨
i∈I
∃ε > 0 : Fi(X, (0, ε)) ⊆ CInv)

The only remaining hurdle in solving the above for-
mula is dealing with Fi. Now we use the results devel-
oped in the previous section and replace the reasoning
on Fi with reasoning on Lfi .

5.1 The ∃∀ Constraint

We first use the result from Section 4.1. We get the fol-
lowing ∃∀ formula:

∃U : ∀X : (X ∈ Init⇒ p(U,X) ≥ 0) ∧
(p(U,X) ≥ 0⇒ X ∈ Safe) ∧
(p(U,X) = 0⇒

∨
i∈I
Lfip(U,X) > 0) (12)

If Init and Safe are semi-algebraic sets, then the
membership tests (X ∈ Init and X ∈ Safe) can be
written as formulas using polynomials. If each vector
field, fi, is specified using polynomials (i.e., in each mode,
dX
dt is a vector of polynomials), then Lfip is simply a

polynomial. Thus, Formula (12) is a ∃∀ formula consist-
ing only of polynomial expressions.

Corollary 1. If Formula (12) is valid in the theory of
reals, then there is a controlled invariant CInv that proves
safety.

Proof. The corollary will follow from Theorem 2 if we
show that the condition

(p(U,X) = 0⇒
∨
i∈I
Lfip(U,X) > 0)



Ankur Taly et al.: Synthesizing Switching Logic using Constraint Solving 11

SynthSwitchLogicImpl(MDS,Init,Safe)

0. Choose a template for the controlled invariant,

say p(U,X) ≥ 0
1. Generate ∃∀ constraint for the template to be

a controlled invariant

∃U : ∀X : (X ∈ Init⇒ p ≥ 0) ∧ (p ≥ 0⇒ X ∈ Safe)∧
(p = 0⇒

∨
i∈I Lfip > 0)

1. Solve the ∃∀ constraint and get values u for U
2. Let bdryi := (p(u, X) = 0 ∧ Lfip > 0) for all i ∈ I
3. Let Invi := (p(u, X) ≥ 0) for all i ∈ I
4. Let gij := bdryj ∨ (p(u, X) > 0) for all i 6= j; i, j ∈ I,
Return SwL := 〈(gij)i 6=j;i,j∈I , (Invi)i∈I〉

Fig. 3. A sound procedure for solving the switching logic synthesis
problem.

implies Condition (A2). Let u be the value of the pa-
rameters that make Formula (12) true. Let x be a point
on the boundary of the set {X | p(u, X) ≥ 0}. Clearly,
p(u,x) = 0. The above condition immediately implies
that the following formula evaluates to true:∨

i∈I
Lfip(u,x) > 0

From Lemma 1, we know that Lfip(u,y) > 0 implies
∃ε : F1(y, (0, ε)) ⊆ (p ≥ 0) and we are done. ut

Corollary 1 immediately gives us a sound procedure
that reduces the switching logic synthesis problem to
solving of an ∃∀ constraint in the theory of reals. This
procedure is shown in Figure 3. On Lines 2,3 and 4, we
extract the guards and the state invariants from the set
CInv as we did in Figure 2. We illustrate the procedure
on the following example.

Example 9. Consider a train gate controller with two
modes: In the about to lower mode (1), distance x of the
train from the gate decreases according to ẋ = −50 and
the gate angle g does not change. In the gate lowering
mode (2), we have ẋ = −50 and ġ = −10. The initial
state is g = 90 ∧ x = 1000. We wish to synthesize the
switching logic so that the system always stays in the
safe region x > 0 ∨ g ≤ 0. We assume a template of the
form x + a1g ≥ a2 for the controlled invariant. Writing
out Formula (12), we get:

∃a1, a2 : ∀x, g :
(x = 1000 ∧ g = 90 ⇒ x+ a1g ≥ a2)∧ (A1)

(x+ a1g ≥ a2 ⇒ x > 0 ∨ g ≤ 0)∧ (A3)

(x+ a1g = a2 ⇒ −50 + 0 > 0 ∨ −50− 10a1 > 0) (A2)

Our solver returns a1 = −10, a2 = 50; that is, we get
x − 10g ≥ 50 as the controlled invariant. The resulting
hybrid system has x − 10g ≥ 50 as the state invari-
ant for each mode. The guards for transitions are g12 =
x−10g ≥ 50 (as dynamics for mode 2 points inwards ev-
erywhere on the boundary) and g21 = x− 10g > 50 (dy-
namics for mode 1 never points inwards on the bound-
ary, so no boundary point gets assigned to g21). So, if

the system starts in mode 1, it can continue in 1 until
x − 10g = 50 is true, whence the system will have to
shift to mode 2. The resulting hybrid system is safe and
non-blocking. ut

5.2 Another ∃∀ Constraint

We use the test in Section 4.2 to get a different ∃∀
constraint for synthesizing controlled invariants. Instead
of requiring some vector field to point strictly inwards
(Lfip > 0), we now allow vector fields to be tangential
to the controlled invariant (Lfip ≥ 0). However, to be
sound, we need the controlled invariant to have a smooth
surface (as we noted in Section 4.2). Thus, we have the
following weakened version of Formula (12):

∃U∀X : (X ∈ Init⇒ p(U,X) ≥ 0) ∧
(p(U,X) ≥ 0⇒ X ∈ Safe) ∧
(p(U,X) = 0⇒

∨
i∈I
Lfip ≥ 0) ∧

(p(U,X) = 0⇒∇p(U,X) 6= 0) ∧
p(U,X) = 0 ∧

∧
i∈I
Lfip ≤ 0⇒ ∃!i ∈ I : Lfip = 0

The notation ∃! denotes the “exists exactly one” quan-
tifier.

Let us analyze the above constraint in more detail.
Consider any point x on the boundary. Suppose no vec-
tor field points strictly inwards at x. Therefore, all vec-
tor fields point tangential or outwards (Lfjp(x) ≤ 0 for
all j). Since our constraint above says that some vec-
tor should be tangential or inwards (∨i∈ILfip ≥ 0), it
follows that there will be a vector field, say fi, that is
tangential at x (Lfip(x) = 0). Since we wish to apply
Lemma 2 for proving correctness, we additionally need
that the same vector field, namely fi, remain “tangen-
tial or inwards” on points on the surface that are in some
neighbourhood of x. How to guarantee this? If all other
vector fields point strictly outwards at x (Lfjp(x) < 0,
for all j 6= i), then there will be a small enough neigh-
bourhood of x where these other vector fields will con-
tinue to point strictly outwards, and hence, by our re-
quirement that some vector field be “tangential or in-
wards”, it will follow that fi will remain “tangential or
inwards”. Thus, the requirement that fi be the unique
vector field that is tangential at x enables us to prove
correctness of the new constraint in Corollary 2 below.

The above formula can be succinctly rewritten as

∃U∀X : (X ∈ Init⇒ p(U,X) ≥ 0) ∧
(p(U,X) ≥ 0⇒ X ∈ Safe) ∧
p(U,X) = 0⇒ (∇p(U,X) 6= 0 ∧ (13)

(∃i ∈ I :Lfip > 0 ∨ ∃!i ∈ I : Lfip = 0))

Formula (13) says that at the boundary (p = 0) of the
controlled invariant (p ≥ 0), the gradient of p is nonzero



12 Ankur Taly et al.: Synthesizing Switching Logic using Constraint Solving

and either some vector field, say fi, points strictly in-
wards (Lfip > 0), or exactly one vector field is tangential
(Lfip = 0).

We can now replace the constraint in Step (1) of the
procedure in Figure 3 by Formula (13) and get a new
and more powerful procedure for solving the switching
logic synthesis problem. We can again prove soundness
of the technique.

Corollary 2. If Formula (13) is valid in the theory of
reals, then there is a controlled invariant CInv that proves
safety.

Proof. We only need to argue that the conjunction

(p(U,X) = 0⇒ ∇p(U,X) 6= 0) ∧
p(U,X) = 0⇒ (∃i ∈ I :Lfip > 0 ∨ ∃!i ∈ I : Lfip = 0)

implies Condition (A2). Let u be the value of the pa-
rameters that make Formula (13) true. Define IndInv

to be the set {x | p(u,x) ≥ 0}. From the formula above,
we know that ∇p 6= 0 on all points on the bound-
ary of IndInv. Let y be a point on the boundary of
IndInv. Clearly, p(u,y) = 0. The above formula also
immediately implies that either (i) there is a mode i s.t.
Lfip(u,y) > 0, or (ii) there is exactly one mode i s.t.
Lfip = 0 and for all modes j 6= i, Lfjp(u,y) < 0.

Now consider the two cases. If some Lfip evaluates
to a strictly positive real at y, then we are done by
Lemma 1. Therefore, assume that for all i ∈ I, Lfip ≤ 0.
Case (ii) guarantees that there is an i such that

Lfip = 0 ∧
∧
j 6=i

Lfjp < 0.

Since Lfjp < 0 for all j 6= i at y, it implies that there
is a small neighbourhood around y s.t. Lfjp < 0, for
all j 6= i, at all points in this small neighbourhood. On
all points in this neighbourhood that are also on the
surface p = 0, by the formula above, we necessarily have
Lfip = 0. Now, using Lemma 2, we conclude that ∃ε :
Fi(y, (0, ε)) ⊆ {x | p(u,x) ≥ 0}. ut

The following example illustrates the advantage of
using Formula (13) over using Formula (12).

Example 10. Consider a system with continuous vari-
able x and y and two modes. In mode 1, ẋ = 0, ẏ = −1
and in mode 2, ẋ = −1, ẏ = 0. The initial state is
x = 10, y = 10 and the desired safety property is y ≥ 0.
We start with the template a1x+ a2y ≥ a3. When there
are more than one mode, the requirement that ∇p 6= 0
on all boundary points is implied by the other require-
ments and hence we ignore it. Formula (13) then be-
comes:

∃a1, a2, a3 : ∀x, g :
(x = 10 ∧ y = 10⇒ a1x+ a2y ≥ a3)∧ (A1)

(a1x+ a2y ≥ a3 ⇒ y ≥ 0)∧ (A3)

(a1x+ a2y = a3 ⇒ (−a1 > 0 ∨ −a2 > 0∨ (A2)

(−a1 = 0 ∧ −a2 6= 0) ∨ (−a2 = 0 ∧ −a1 6= 0)))

We get a solution a1 = 0, a2 = 1, a3 = 1. So the invari-
ant obtained is y ≥ 1. Note that on the boundary of
the controlled invariant, the dynamics in mode 2 moves
along the boundary and that of mode 1 points outwards.
On the same problem and using the same template, if
we use Formula (12), the resulting ∃∀ formula is unsat-
isfiable. Hence, the previous method would fail to find a
controlled invariant for this example. ut

Example 11. Consider the train gate controller model
from Example 9. Observe that the controller synthesized
is very conservative and forces the system to switch from
mode 1 to 2 in less-than 1 time units. Applying the vari-
ant procedure on this example, we get the following ∃∀
formula:

∃a1, a2 : ∀x, g :
(x = 1000 ∧ g = 90⇒ x+ a1g ≥ a2)∧ (A1)

(x+ a1g ≥ a2 ⇒ x > 0 ∨ g ≤ 0)∧ (A3)

(x+ a1g = a2 ⇒ −50 > 0 ∨ −50− 10a1 > 0∨
(−50 = 0 ∧ −50− 10a1 < 0)∨
(−50− 10a1 = 0 ∧ −50 < 0)) (A2)

One possible solution now is a1 = −5, a2 = 50, which
gives x−5g ≥ 50 as the controlled invariant. These values
for a1 and a2 do not make Formula (12) satisfiable and
hence this solution could not have been discovered by
the previous method. Corresponding to these values for
a1 and a2, the resulting hybrid system has x − 5g ≥ 50
as the state invariant for each mode and the guards are
computed as g12 = x − 5g ≥ 50 and g21 = x − 5g > 50.
In this case, the switch from mode 1 to mode 2 could be
delayed by as much as 10 time units. ut

6 Synthesizing a Good Controller

In the previous section, two sound approaches were pre-
sented for solving the switching logic synthesis problem.
Neither method gives any guarantee on the quality of
the generated controller. A controller that minimally re-
stricts the dynamics – and consequently results in a sys-
tem with a maximal reach set – is preferable since it
provides more opportunities for being refined later for
other requirements. In this section, we present heuris-
tics that improve the quality of solution generated by
the two approaches presented in Section 5.

The size of the generated controlled invariant is a
good measure of the quality of the solution. We desire
to synthesize the largest possible inductive controlled in-
variant CInv because this would allow the maximal pos-
sible behaviors. It is not immediately clear how this can
be achieved in our approach. Intuitively, the problem of
finding the largest inductive controlled invariant is nat-
urally seen as an optimization problem, whereas in our
approach of using constraints, we are casting the prob-
lem as a satisfiability problem that asks for some solution
and not the “best” solution. We now present three dif-
ferent ways to address the above problem.



Ankur Taly et al.: Synthesizing Switching Logic using Constraint Solving 13

6.1 Binary Search

The first solution for finding good controllers is based on
iteratively searching for larger controlled invariants. In
the first iteration, we use one of the methods from Sec-
tion 5 to compute CInv. In each subsequent iteration,
we add an additional constraint that forces search for
a larger set CInv. For example, if we use the template
p(U,X) ≥ 0, and the first iteration returns the controlled
invariant p(u, X) ≥ 0, then in the next iteration we use
the template p′(v,X) := p(u, X) ≥ v (containing only
one parameter v) and add an additional constraint v ≤
−1. If the second iteration is successful, then the con-
trolled invariant generated in the second iteration will
necessarily contain the controlled invariant generated in
the first iteration. In the case when we know a lower
bound on v, say lb < 0, then we can search for the opti-
mal v by using a binary search in the interval [lb, 0]. This
approach can be used to find the largest controlled in-
variant in the set {p(u, X) ≥ v | v ∈ [lb, 0], v an integer}
in O(log ‖lb‖) calls to the procedure in Section 5.

6.2 Encoding Optimality Constraints Directly

We now present a different technique for capturing the
optimality requirement. It is based on adding more con-
straints to the ∃∀ formula. Intuitively, the new constraints
say that at least one of the implications in the ∃∀ formula
is tight.

A reasonable heuristic for identifying if CInv is max-
imally large is to test if the boundary of CInv touches
the boundary of the unsafe set Safe. Hence, we intro-
duce the following additional constraint in the original
∃∀ formula:

∂CInv ∩ ∂Cl(Safe) 6= ∅

This constraint can be written as an ∃ formula. Since
we assume the sets CInv and Safe are given using poly-
nomial inequalities, the boundaries of these sets can be
expressed using polynomial equations and inequalities.
The above constraint corresponds to tightening Condi-
tion (A3).

Example 12. Consider the train gate controller from ex-
ample 11. The controlled invariant obtained by using the
variant procedure on this example is x−5g ≥ 50. Observe
that this is not the largest controlled invariant possible
because when x = 0, this invariant implies g ≤ −10,
whereas safety just requires g ≤ 0. If we add an addi-
tional constraint for tightening condition (A3), which in
this case is ∃x1, g1 : x1 + a1g = a2 ∧ x = 0 ⇒ g = 0,
to the ∃∀ formula, we get x − 5g ≥ 0 as the controlled
invariant. This is the largest controlled invariant for the
template x− 5g ≥ v. ut

Rather than tightening Condition (A3), we can alter-
natively tighten Condition (A2). However, we can not do

that in general, but only for a specific SMT-based back-
end ∃∀ solver [9]. The SMT-based ∃∀ solver works in
two steps. In the first step, the ∀ quantifier is eliminated
and replaced by new ∃ quantifiers. The result of the first
step is a purely existentially quantified formula which is
solved using SMT solvers in the second step. The first
step is achieved using a variant of Farkas Lemma – which
is a technique for replacing ∀ by ∃ quantification.

Lemma 3. It is the case that Formula (14) is implied
by Formula (15).

∃U : ∀X : ((
∧
j

pj = 0) ∧ (
∧
k

qk > 0)⇒ p ≥ 0) (14)

∃U, νj , λk, λ, µ : λk ≥ 0 ∧ λ ≥ 0 ∧ µ > 0 ∧

∀X :
∑
p

νjpj +
∑
k

λkqk + λ− µp = 0 (15)

Lemma 3 can be used to eliminate the internal ∀X quan-
tifier by noting that the polynomial in Formula (15) is
zero for all X, if and only if, all coefficients of all power
products of X in that polynomial are identically 0. We
note that the term λ in Formula (15) is a “slack” term.
If Formula (15) is satisfied when λ = 0, then we say that
the implication of Formula (14) is tight.

Now consider Condition (A2) that encodes the induc-
tiveness condition. In Section 5, this condition was ap-
proximately captured in Formula (12) and Formula (13).
Using elementary logical manipulations, we can rewrite
these formulas in the form

∃U :
∧
i

(∀X : (
∧
j

pij = 0) ∧ (
∧
k

qik > 0)⇒ pi ≥ 0)(16)

Apply Lemma 3 to each outer conjunct and let λi be the
slack term for the i-th conjunct.

Now we are ready to state the constraint that en-
forces tightness on Condition (A2). This new constraint
is not added to the ∃∀ formula. It is added to the ex-
istential formula generated after the ∀ quantifiers have
been eliminated using Lemma 3. The constraint we add
is the following:

φopt :=
∨
i

(λi = 0) (17)

If the existential formula, with φopt added, is satisfiable
and we get a controlled invariant p(u, X) ≥ 0, then we
can show the obtained controlled invariant is the “best
possible” among the set {p(u, X) ≥ α | α ∈ R}.
Theorem 3 (Correctness). Let u be a set of values
for variables U that satisfy the existential formula φ∃ ∧
φopt , where φ∃ is the existential formula generated from
Formula (12) (or Formula (13)) using Lemma 3. Then,
there is no controlled invariant p(u, X) ≥ α for any
α < 0 that also satisfies the existential formula generated
from Formula (12) (or Formula (13)) using p(u, X) ≥ α
as a template.

The above theorem follows from the definition of the
slack terms λi’s above. Its proof is technical and not very
illuminating and hence it is not included here.



14 Ankur Taly et al.: Synthesizing Switching Logic using Constraint Solving

7 Extensions and Future Work

In our presentation so far, we have restricted all dis-
cussion, for simplicity, to simple templates of the form
p(U,X) ≥ 0. However, the two procedures described in
Section 5 can be generalized to the case when the tem-
plate is a boolean combination of nonstrict polynomial
inequalities. When the template is a conjunction, say
p1 ≥ 0 ∧ p2 ≥ 0, then Formula (12) generalizes to

∃U∀X : (X ∈ Init⇒ p1 ≥ 0 ∧ p2 ≥ 0) ∧
(p1 ≥ 0 ∧ p2 ≥ 0⇒ X ∈ Safe) ∧
(p1 = 0 ∧ p2 > 0⇒

∨
i∈I
Lfip1 > 0) ∧

(p1 > 0 ∧ p2 = 0⇒
∨
i∈I
Lfip2 > 0) ∧

(p1 = 0 ∧ p2 = 0⇒
∨
i∈I
Lfip1 > 0 ∧ Lfip2 > 0)

When the template is a disjunction, say p1 ≥ 0∨p2 ≥ 0,
then Formula (12) generalizes to

∃U∀X : (X ∈ Init⇒ p1 ≥ 0 ∨ p2 ≥ 0) ∧
(p1 ≥ 0 ∨ p2 ≥ 0⇒ X ∈ Safe) ∧
(p1 = 0 ∧ p2 < 0⇒

∨
i∈I
Lfip1 > 0) ∧

(p1 < 0 ∧ p2 = 0⇒
∨
i∈I
Lfip2 > 0) ∧

(p1 = 0 ∧ p2 = 0⇒
∨
i∈I
Lfip1 > 0 ∨ Lfip2 > 0)

We can similarly generalize Formula (13) for the case
when the template is a disjunction or conjunction of
polynomial inequalities. The following example illustrates
this case.

Example 13. Consider a thermostat controller with two
continuous variables temperature (t) and power (p) and
two modes on and off. In the on mode, the dynamics
is ṗ = +1 ∧ ṫ = p − 10 and in the off mode, it is
ṗ = −1 ∧ ṫ = p − 10. The initial state is p = 10, t =
75 and the mode is on. The desired safety property is
70 ≤ t ≤ 80. We start with the following conjunctive
template for the controlled invariant: a1p

2 + a2p+ a3t+
a4 ≥ 0 ∧ b1p2 + b2p + b3t + b4 ≤ 0. Using the gener-
alization of Formula (13) to conjunctive templates, we
get a ∃∀ formula. Solving this formula, we get a1 =
−1, a2 = 20, a3 = 2, a4 = −172, b1 = 1, b2 = −20, b3 =
100, b4 = 23 as one possible solution. This gives the in-

variant −(p−10)
2

2 + t ≥ 72∧ (p−10)2
2 + t ≤ 77. The switch-

ing conditions can be obtained from the controlled in-
variant by using the procedure SynthSwitchLogic. It is
easy to see that this is a safe controller. However it is
not the most liberal controller. If we add an additional
constraint to tighten the Condition (A3) (make the con-
trolled invariant touch the boundary of the unsafe set),

then we obtain −(p−10)
2

2 + t ≥ 70 ∧ (p−10)2
2 + t ≤ 80 as

the controlled invariant. In fact, this is the most liberal
controller for this system. ut

Our basic approach can be adapted to handle nat-
ural variants of the switching logic synthesis problem.
First, note that we have assumed that each mode of the
multi-modal system has the complete state space as its
given state invariant. If the given modes have nontrivial
state invariants, we can use them in our constraints and
the synthesized controller can potentially refine them.
Second, our synthesized controller could have zeno be-
haviors. It appears that making the constraints stronger
(as done in Section 5) already reduces the possibility
of synthesizing zeno hybrid systems. This aspect needs
further investigation.

Our constraint-based technique relies on the user for
picking the template for the controlled invariant. We cur-
rently start with linear or quadratic templates that have
1 to 4 conjuncts or disjuncts. It will be interesting to find
classes of systems for which a given class of templates is
complete.

8 Case Study: Inverted Pendulum

A classic benchmark example used in the area of con-
trol is the inverted pendulum system. In this system,
an inverted pendulum is attached to a cart that can
be moved along a horizontal track (by applying exter-
nal force). The goal is to prevent the inverted pendulum
from falling and keeping it around its unstable equilib-
rium position.

The system is nonlinear and can be described using
two state variables, X = [θ, ω], denoting the angle the
pendulum makes with the vertical axis (θ) and its angu-
lar velocity (ω). The dynamics are given by the following
differential equations:

dθ

dt
= ω

dω

dt
=
g sin(θ)

l
+

cos(θ)

l

F −mlω2 sin(θ) +mg cos(θ) sin(θ)

M +m−m cos2(θ)

where l = 0.3 is the length of the pendulum, m = 0.5
is its mass, g = 10 is the acceleration due to gravity,
M = 0.5 is the mass of the cart, and F is the ex-
ternal force on the cart. Let us assume that F is the
control input and it can take values from the finite set
{0,−1.5, 1.5,−2, 2}. Thus, we have five modes and let
fi, i = 1, . . . , 5 denote the five vector fields. The goal
is to control the switching between the five modes (by
setting the value of F ) so that the system remains in-
side the safe set Safe := {〈θ, ω〉 | −1/20 ≤ θ ≤ 1/20}.
Suppose the set Init of initial states contains all states
where ω = 0 and −1/40 ≤ θ ≤ 1/40.

We first note that the differential equations above in-
volve trigonometric functions (sin, cos), which our con-
straint solvers can not handle. Hence, we approximate



Ankur Taly et al.: Synthesizing Switching Logic using Constraint Solving 15

these functions by the first term of their Taylor series
expansion; so, for θ close to zero, we use the approxima-
tions sin(θ) ≈ θ and cos(θ) ≈ 1, which gives us

dω

dt
=
gθ

l
+
F −mlω2θ +mgθ

lM

Let us pick a quadratic template θ2 + bω2 ≤ c for
the controlled invariant CInv. Let p := (−θ2 − bω2 + c).
Using Test (10) for checking inductiveness, we get the
following ∃∀ constraint for this example:

∃b, c : ∀θ, ω : (−140 ≤ θ ≤
1
40 ∧ ω = 0⇒ θ2 + bω2 ≤ c) ∧

(θ2 + bω2 ≤ c⇒ −1
20 ≤ θ ≤

1
20 ) ∧

(θ2 + bω2 = c⇒
∨5
i=1(Lfip > 0 ∨ Lfip = 0 ∧ L(2)

fi
p > 0))

where Lfip is calculated as

−2θ
dθ

dt
− 2bω

dω

dt
= −2θω − 2bω(

gθ

l
+
Fi −mlω2θ +mgθ

lM
)

where (Fi)i=1,...,5 = 〈0,−1.5, . . . , 2〉. After replacing the
parameters (l,m,M, g) by their values, the above ∃∀ for-
mula can be solved using a tool for performing quantifier
elimination (using cylindrical algebraic decomposition)
QEPCAD [10] and we get b = 1/200 and c = 1/500 as
a possible solution for the existentially quantified vari-
ables.

Using the controlled invariant CInv := (θ2+1/200ω2 ≤
1/500), we can construct a switching logic to preserve
safety as shown in Figure 3. Recall that when we are on
the boundary of CInv, we need to switch to a mode that
takes the system back into the set CInv, and when we
are in the interior, we are free to be in any mode. For
one deterministic implementation of the synthesized con-
troller, we simulated the original model of the inverted
pendulum system (model with trigonometric functions)
starting from a particular initial state. For this simu-
lation, Figure 4 shows the angle and (scaled) angular
velocity of the pendulum against time.

9 Related Work

Constraint-based techniques have been used for safety
verification of hybrid systems [9,21,19], wherein ∃∀ con-
straints are generated from the user-provided invariant
templates. The various approaches differ in the form of
the invariants considered, the technique used to gener-
ate the ∃∀ formula, and the approach for solving it. In
this paper, we present a constraint-based technique for
the synthesis problem that also involves generating and
solving a ∃∀ formula from template controlled invari-
ants. The novelty of our work lies in the formalization of
inductive controlled invariant approach for solving syn-
thesis problem and showing that it can be reduced to
solving ∃∀ constraints.

There is a lot of work on synthesis of controllers for
hybrid systems, which can be broadly classified into two

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

Time

An
gl

e 
th

et
a,

 V
el

oc
ity

 th
et

ad
ot

theta
thetadot/sqrt(200)
Safe Set
Safe Set
Zero

Fig. 4. A simulation of the synthesized inverted pendulum system.
Note that the trajectory remains inside the safe set.

categories. The first category finds controllers that meet
some liveness specifications, such as synthesizing a tra-
jectory to drive a hybrid system from an initial state to
a desired final state [16,12]. The second category finds
controllers that meet some safety specification. Our work
falls in this category. For a detailed discussion on the re-
lated work in this category, we refer the reader to Asarin
et.al. [2]. There are two main approaches for synthesis:
direct approaches that compute the controlled reach-
able states in the style of solving a game [2,27], and
abstraction-based approaches that do the same, but on
an abstraction or approximation of the system [17,7].
Some of these approaches are limited in the kinds of
continuous dynamics they can handle. They all require
some form of iterative fixpoint computation. Our work
here, based on synthesizing inductive controlled invari-
ants, is an entirely different approach for controller syn-
thesis that does not require any fixpoint computation.

There is a large body of work in the area of program
synthesis [15,22,23]. These works differ in the kind of
program synthesized and the techniques used. The only
work that uses a constraint-based approach is that of
Colón, who synthesizes imperative programs computing
polynomial functions from partially specified programs
and their invariants [6]. The formulation of our “switch-
ing logic synthesis” problem is reminiscent of the work
on synthesis from component libraries [14] and Sketch-
ing [23]. In Sketching, programs are synthesized starting
from a template program. Our approach for solving the
synthesis problem also bears a high-level resemblance
to Sketching, which also follows a constraint-based ap-
proach. However, the details are different: our focus is
on dynamical systems and switching logics, our prop-
erty of interest is safety properties, and our constraint
encodes existence of an (controlled) inductive invariant.
In Sketching, the focus is on programs and instantiat-
ing unknown constants in the program sketches, and the
constraint does not encode a search for an inductive in-



16 Ankur Taly et al.: Synthesizing Switching Logic using Constraint Solving

variant. Recently, the Sketching approach has been ex-
tended to perform parameter synthesis for control pro-
grams [5] bringing it closer to our application area.

One natural extension of our work is to go beyond
safety properties. In fact, the traditional goal for synthe-
sizing switching logics has been to guarantee asymptotic
stability [13]. Recently, we have extended our work to
also consider dwell time requirements and proposed a
different approach – based on simulation and fixpoint
computation – for solving the switching logic synthe-
sis problem [11]. Another possible future extension con-
cerns adding performance requirements. There is plenty
of work on synthesis for optimizing some function using
finite horizon or gradient descent techniques [5].

10 Conclusion

This paper formalized the notion of inductive controlled
invariants and showed that inductive controlled invari-
ants can be used to synthesize controllers that satisfy
some safety requirements. Theoretically, this approach
is sound and complete. We adapted this approach to the
problem of synthesizing switching logic for multi-modal
systems. We presented several sufficient conditions for
a set to be an inductive (controlled) invariant set for a
(multi-modal) dynamical system. These sufficient condi-
tions were used to synthesize controllers using template-
based techniques, which were then adapted to generate
optimal controlled invariants.

References

1. R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Hen-
zinger, P.-H. Ho, X. Nicollin, A. Olivero, J. Sifakis, and
S. Yovine. The algorithmic analysis of hybrid systems.
Theoretical Computer Science, 138(3):3–34, 1995.

2. E. Asarin, O. Bournez, T. Dang, O. Maler, and A. Pnueli.
Effective synthesis of switching controllers for linear sys-
tems. Proc. IEEE, 88(7):1011–1025, 2000.

3. F. Blanchini. Set invariance in control. Automatica,
35:1747–1767, 1999.

4. K. Burns and M. Gidea. Differential Geometry and
Topology: With a view to dynamical systems. Chapman
& Hall, 2005.

5. S. Chaudhuri and A. Solar-Lezama. Smooth interpre-
tation. In ACM Conference on Programming Language
Design and Implementation PLDI, 2010.

6. M. Colón. Schema-guided synthesis of imperative pro-
grams by constraint solving. In LOPSTR, pages 166–181,
2004.

7. J. Cury, B. Krogh, and T. Niinomi. Supervisory con-
trollers for hybrid systems based on approximating au-
tomata. IEEE Trans. Aut. Control, 43:564–568, 1998.

8. S. Gulwani, S. Srivastava, and R. Venkatesan. Program
analysis as constraint solving. In Proc. ACM Conf. on
Prgm. Lang. Desgn. and Impl. PLDI, pages 281–292,
2008.

9. S. Gulwani and A. Tiwari. Constraint-based approach
for analysis of hybrid systems. In CAV, volume 5123 of
LNCS, pages 190–203. Springer, 2008.

10. H. Hong. Quantifier elimination procedure by cylin-
drical algebraic decomposition. 1995. Available
at http://www.gwdg.de/~cais/systeme/saclib,http:

//www.eecis.udel.edu/~saclib/.
11. S. Jha, S. Gulwani, S. Seshia, and A. Tiwari. Synthe-

sizing switching logic for safety and dwell-time require-
ments. In ACM/IEEE Intl. Conf. on Cyber-Physical Sys-
tems, ICCPS, 2010.

12. T. Koo and S. Sastry. Mode switching synthesis for
reachability specification. In Proc. HSCC 2001, LNCS
2034, pages 333–346, 2001.

13. D. Liberzon and A. S. Morse. Benchmark problems in
stability and design of switched systems. IEEE Control
Systems Magazine, pages 59–70, October 1999.

14. Y. Lustig and M. Vardi. Synthesis from component li-
braries. In Proc. FoSSaCS, pages 395–409, 2009.

15. Z. Manna and R. Waldinger. A deductive approach to
program synthesis. ACM TOPLAS, 2(1):90–121, 1980.

16. P. Manon and C. Valentin-Roubinet. Controller synthesis
for hybrid systems with linear vector fields. In Proc.
IEEE Symp. on Intell. Control, pages 17–22, 1999.

17. T. Moor and J. Raisch. Discrete control of switched lin-
ear systems. In Proc. Eur. Control Conf. ECC’99, 1999.

18. André Platzer. Differential-algebraic dynamic logic
for differential-algebraic programs. J. Log. Comput.,
20(1):309–352, 2010. Advance Access published on
November 18, 2008.

19. S. Prajna and A. Jadbabaie. Safety verification of hybrid
systems using barrier certificates. In HSCC, volume 2993
of LNCS, pages 477–492, 2004.

20. S. Prajna, A. Jadbabaie, and G. Pappas. A framework
for worst-case and stochastic safety verification using
barrier certificates. IEEE Trans Aut Control, 52(8), 2007.

21. S. Sankaranarayanan, H. Sipma, and Z. Manna. Con-
structing invariants for hybrid systems. In HSCC, vol-
ume 2993 of LNCS, pages 539–554, 2004.

22. Ehud Y. Shapiro. Algorithmic Program DeBugging. MIT
Press, Cambridge, MA, USA, 1983.

23. Armando Solar-Lezama, Liviu Tancau, Rastislav Bod́ık,
Sanjit Seshia, and Vijay Saraswat. Combinatorial sketch-
ing for finite programs. In ASPLOS, 2006.

24. A. Taly, S. Gulwani, and A. Tiwari. Synthesizing switch-
ing logic using constraint solving. In Proc. 10th Intl.
Conf. on Verification, Model Checking and Abstract In-
terpretation, VMCAI, volume 5403 of LNCS, pages 305–
319. Springer, 2009.

25. A. Taly and A. Tiwari. Deductive verification of con-
tinuous dynamical systems. In IARCS Annual Conf.
on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS 2009), volume 4 of Leibniz
International Proceedings in Informatics (LIPIcs), pages
383–394. Schloss Dagstuhl–Leibniz-Zentrum fuer Infor-
matik, 2009.

26. A. Tarski. A Decision Method for Elementary Algebra
and Geometry. University of California Press, 1948. Sec-
ond edition.

27. C. Tomlin, L. Lygeros, and S. Sastry. A game-theoretic
approach to controller design for hybrid systems. Proc.
of the IEEE, 88(7):949–970, 2000.


