
UNPUBLISHED REPORT 1

Formal Semantics and Analysis Methods for
Simulink Stateflow Models

A. Tiwari

Abstract—Embedded control systems typically comprise continuous con-
trol laws combined with discrete mode logic. The Simulink graphical envi-
ronment of MathWorks’ tool suite is a popular choice for modeling and de-
signing embedded controllers. Mode logic in Simulink models is described
in terms of hierarchical state machines specified in a variant of Statecharts
called Stateflow. The semantics of Stateflow is quite complex and it is valu-
able if these designs can be formally analyzed for both early error detection
and positive assurance.

It is important that formal analysis should be unobtrusive and accept-
able to engineering practice. We motivate a methodology called “invisible
formal methods” that provides a graded sequence of formal analysis tech-
nologies ranging from extended typechecking, through approximation and
abstraction, to model checking and theorem proving. As an instance of
invisible formal methods, we describe the formal semantics of a fragment
of Stateflow based on a modular representation calledcommunicating push-
down automata. We show how this semantics can be used to analyze simple
properties of Stateflow models.

Keywords—Hybrid dynamical systems, Invariant, Symbolic Simulation.

I. I NTRODUCTION

HYBRID systems involve a combination of discrete and con-
tinuous dynamics and are used for modeling embedded

control systems. Many of the embedded control systems are
safety critical and require formal guarantees of safe operation.
Formal design and analysis of hybrid system models has re-
ceived much attention in the research community recently, from
both the computer science and control theory worlds.

The systems that have been traditionally studied in the com-
puter science community have been discrete. Such systems
evolve in discrete time steps. Moreover, given a current state
of the system, the state in the next discrete time instance is as-
sumed to come from afinite (and countable, at worst) set of
states. Good advances have been made in the techniques and
tools for analyzing discrete systems [9,24]. Some of the most ef-
fective techniques includemodel checkingandabstraction. Ab-
straction is typically used to reduce the possibly infinite state
space system into a finite state space abstract system, and model
checking is subsequently used to exhaustively search through all
behaviors of the finite abstraction.

Hybrid systems differ from purely discrete systems in that
they also contain a continuous component. Such systems evolve
in continuous time with discrete jumps at particular time in-
stances. The techniques developed for discrete systems are thus
not directly applicable. First, the state space now is uncountably
infinite. Second, from a given state, a hybrid system can make a
transition such that the next state comes from anuncountableset
of states. Furthermore, certain undecidability results can be es-

Research supported by DARPA under the MoBIES program administered by
AFRL under contract F33615-00-C-1700 and NASA Langley Research Center
contract NAS1-00108 to Rannoch Corporation.

All authors are with the Computer Science Laboratory, SRI In-
ternational, 333 Ravenswood Ave, Menlo Park, CA, U.S.A. E-mail:
{tiwari }@csl.sri.com

tablished for checking reachability in even simple classes of hy-
brid systems (for example, systems whose continuous dynamics
involves variables that proceed at two constant slopes [18]).

One approach to overcoming undecidability involves restrict-
ing the continuous dynamics of the hybrid system so that suit-
able abstractions can be successfully applied to yield conserva-
tive discrete transition systems. Timed automata [2], multirate
automata [1], and rectangular automata [18] are some such ex-
amples. Another approach is to restrict the discrete transitions
and the continuous flows so that finite abstractions can again be
constructed. The idea of o-minimal hybrid systems [25] is mo-
tivated by this.

Due to the undecidability results for general systems and
known decidability results for rather restricted classes of hybrid
systems, there is a huge gap between the interesting large and
complex systems that are typically used in practice, and the re-
stricted and simple systems that the analysis techniques can han-
dle. Furthermore, the available techniques are still far removed
from the tools engineers most often use in practice to design
embedded control systems.

One of the most extensively used tools for modeling, simula-
tion, and rapid prototyping of control designs for embedded ap-
plications is the Simulink/Stateflow development suite provided
by MathWorks Inc. The addition of formal analysis capabili-
ties to such a tool would offer benefits in early error detection
and more complete assurance of the designs. But this dream is
hampered by the lack of formal and rigorous semantics for the
modeling language of this tool. It is potentially valuable, there-
fore, to provide formal semantics and to develop formal analysis
techniques for important features of the modeling language pro-
vided by the MathWorks tool.

MathWorks’ Simulink/Stateflow development suite consists
of two modeling languages: Simulink is used to model the con-
tinuous dynamics and Stateflow is used to specify the discrete
control logic and the modal behavior of the system. The first part
of this paper discusses semantic issues of Simulink/Stateflow
models. SectionII provides a formal semantics to the Stateflow
modeling language. We achieve this by translating a Stateflow
model into a set ofcommunicating pushdown automata. The re-
sulting pushdown automata are then translated into a transition
system specification language, called SAL, for which many for-
mal analysis tools are available. SAL is described in some detail
in SectionV-A.

The Stateflow modeling language is based on hierarchical
state machines with discrete transitions between states. Hence,
it is not surprising that we can translate a Stateflow model into
a guarded transition formalism. In SectionIII , we show how
to deal witharbitrary continuous dynamical systems. The ap-
proach is based on using the simulation semantics to discretize
the differential equations into difference equations. The dis-

cretization parameter is left symbolic. The resulting difference
equations are easily cast into the guarded transition system for-
malism over which we build our analysis tools.

The second part of the paper describes formal analyses tech-
niques that are based on the semantics and translations described
in the first part. We can statically determine useful properties of
Stateflow charts such as absence of undesirable cycles of broad-
cast events. Analysis tools for a full Simulink/Stateflow model
include symbolic simulation, invariance checking, typecheck-
ing, abstraction, and model checking. This tool set provides a
graded sequence of formal analysis technologies. On one end
are completely automated techniques that determine bounds on
recursive event calls and perform extended typechecking. Al-
though such analysis helps in early error detection, it does not
provide full verification. Abstraction and invariant generation is
used to make the model amenable for exhaustive search. Thus,
complete assurance can be provided using theorem proving and
model checking. Case studies are used to illustrate some of these
techniques.

Currently available versions of the Simulink modeling tool
are lacking in static analysis capabilities. They only offer simple
simulation facilities that show how the model would behave un-
der a particular input vector. A hybrid dynamical system evolves
in time via different trajectories through its state space. In a de-
terministic system, a fixed given input induces a unique behav-
ior. The complete behavior of the system is given by the set of
simulations of the system under all possible input vectors. Ex-
haustive simulation, however, is not feasible, as the number of
possible inputs is usually infinite (even uncountable). In Sec-
tion V-C, we generalize the notion of simulation to symbolic
simulation and show how it can be useful.

Symbolic simulation forms the basis of our tool suite. It is
used in different ways to do forward and backward propagation,
reachability computation, invariance checking, and typecheck-
ing. We illustrate this using simple examples from the hybrid
systems literature.

II. STATEFLOW SEMANTICS

We provide semantics for Stateflow diagrams via a two-step
translation: First, a Stateflow chart is transformed into a set of
communicating pushdown automata. Subsequently, the commu-
nicating pushdown automata is straightforwardly mapped into a
SAL module. The translation from a Stateflow model into SAL
preserves the modularity of the original design, thereby allowing
analysis of subcomponents of the original design while suitably
abstracting other components and the environment.

The communication between different pushdown automata
allows for passing of control between any two automata and not
only between automata adjacent in thehierarchyspecified in the
original model. This is required for the translation of important
features likesupertransitionsanddirected event broadcastingin
the Stateflow language. In addition, the automata share a global
pushdown stack that is used to keep track of events that have
been broadcast.

A. Stateflow Charts

Mode control logic in Simulink models is described in terms
of hierarchical state machines specified in a variant of State-

charts called Stateflow. A Stateflow chart is described by a tuple
SF = (D,E, S, T, f), where
(i) D = DI ∪ DO ∪ DL is a finite set of typed variables that
is partitioned into input variablesDI , output variablesDO, and
local variablesDL;
(ii) E = EI ∪EO∪EL is a finite set of events that is partitioned
into input eventsEI , output eventsEO, and local eventsEL;
(iii) S is a finite set of states, where each state is a tuple consist-
ing of three kinds ofactions: entry, exit, andduring; anaction
is either an assignment of an expression to a variable (as in im-
perative programming languages) or anevent broadcast;
(iv) T is a finite set of transitions, where each transition is given
as a tuple(src, dst, e, c, ca, ta) in which src ∈ S is the source
state,dst ∈ S is the destination state,e ∈ E ∪ {ε} is an event,1

c ∈WFF (D) is a condition given as a well-formed formula in
predicate logic over the variablesD, andca, ta are set of actions
(called condition actions and transition actions, respectively);
(v) f : S 7→ ({and, or} × 2S) is a mapping from the set
S to the cartesian product of{and, or} with the power set
of S and satisfies the following properties: (a) there exists a
unique root statesroot, i.e.,sroot 6∈ ∪idescendants(si), where
descendants(si) is the second component off(si), (b) ev-
ery nonroot states has exactly one ancestor state, that is, if
s ∈ descendants(s1) ands ∈ descendants(s2), thens1 = s2,
and (c) the functionf contains no cycles, that is, the relation
< on S defined bys1 < s2 iff s1 ∈ descendants(s2) is a
strict partial order. Iff(s) = (and, {s1, s2}), then the state
s is an AND-state consisting of two substatess1 and s2. If
f(s) = (or, {s1, s2}), thens is an OR-state with substatess1

ands2.2

A configurationc ∈ 2S×D of a Stateflow chart is a tuple con-
taining the set ofactivestates and a valuation for all the variables
inD. The set of all valuations of a variable setD will be denoted
by D. If a nonleaf OR-state is active, then exactly one of its de-
scendant substates should be active, and if a nonleaf AND-state
is active, then every descendant substate should be active. The
set of all configurations that satisfy these conditions, denoted by
C, is called the set ofvalid configurations. The formal Stateflow
semantics is given by a function|SF | : C ×DI×EI 7→ C. This
function maps a configuration, a valuation of the input variables,
and an input event to a new configuration.

This semantics function is specified informally through exam-
ples in the Matlab documents. Broadly speaking, an input event
e causes execution of the root state. A stateexecutesby firing
any of its transitions that can be fired. If none of the transitions
can be fired, the state causes execution of its (either one or all,
depending on if it is an OR-state or AND-state) descendants. A
transitiont = (src, dst, e, c, ca, ta) can fire if evente is present,
conditionc is true, and statesrc is active. A transitiont executes
by preemptingthe source statesrc, executingcondition actions
ca, enteringthe destination statesrc, and finallyexecutingthe
transition actionsta. Executing an assignment actionx := expr
updates the value of the variablex to expr. Executing an event
broadcast action is similar to doing a function call and involves
executing the target state of the broadcast event. A state ispre-

1If e is ε, then the transition can fire on any event.
2In the syntactic description of a Stateflow chart, we have ignored here objects

calledjunctionsfor simplicity.

2

emptedby first recursively preempting all its substates and fi-
nally marking the state inactive. A state isenteredby executing
its default transitions.

The informal semantics of Stateflow is clearly different from
the semantics of Statecharts. Stateflow works only on one
event at a time and there is no notion of “maximal and non-
conflicting” transitions. Event broadcasting is recursive. More-
over, after an event is processed, control needs to return to the
state that generated that event. We need a stack to store this
additional information.

B. Pushdown Systems

We provide formal semantics for Stateflow diagrams via a
translation to communicating pushdown systems. LetAi =
(Σi, Qi,Γ, si0,∆

i) be a pushdown system, whereΣi is the in-
put alphabet,Qi is the set of states ofAi, Γ is the stack alpha-
bet,si0 is the initial state, and∆i ⊆ (Qi × Γi) × Σi × (Qi ×
{push(Γi), pop, ε}) is the transition relation. Based on the cur-
rent control state, the symbol on the top of the stack, and the
input symbol, the machine can update the control state and ei-
ther push a symbol on top of the stack, pop the top symbol, or
leave the stack unchanged. The setQi consists of valuations of a
finite set of typed variablesV i = V iI ∪V iO ∪V iL∪VG, which are
usually classified as input, output, local (state), and global3 vari-
ables. Thus, the setQi of states could possibly be uncountable.
The input alphabet consists of valuations for the input variables
V iI .

Let F = {A1, . . . , An} be a finite set of pushdown systems
with mutually disjoint local variable sets. A functionf from the
combined set of input variables to the combined output variable
set ofF , that is,

f : ∪iV iI 7→ ∪iV iO

is a renaming function. A communicating pushdown system is a
tuple (F, f) whereF is a finite set of pushdown automata andf is
a renaming function. Note that all the automata share the same
stack, stack alphabet, and global variables. A communicating
pushdown system itself can be flattened into a single pushdown
automata.

C. Mapping Stateflow Charts to Pushdown Systems

A Stateflow modelSF = (D,E, S = {s1, . . . , sn}, T, f) is
translated into a communicating pushdown system({A1, . . . , An}, f)
by transforming every Stateflow statesi ∈ S into a pushdown
automataAi = (Σi, Qi,Γ, si0,∆

i).
• Each pushdown automataAi inherits as global, input, and out-
put variables the Stateflow chartSF ’s local, input, and output
variables, respectively.
• Each pushdown automataAi contains additional boolean
input variables that are unique to it:defaultPorti and
controlFPorti, resultPorti and controlBPorti (only
nonleaf states), andpreemptionPorti (only nonroot states).
The controlFPort of an automata is true only if the control is
with this automata and the control was passed on to this au-
tomata from the “parent” automata. ThecontrolBPort of an
automata is true only if the control is with this automata and the

3Global variables are considered to be both input and output.

control was passed on to this automata from one of its “descen-
dants” or from the destination of a directed event broadcast. An
automata can be requested to preempt itself by setting itspre-
emptionPort to true. An automata can be requested to activate
itself by setting itsdefaultPort to true.
• Each pushdown automataAi contains a unique boolean out-
put variable calledstatei. The state variable of an automata
indicates if the corresponding Stateflow state is marked active
or not.
• Each pushdown automataAi contains a unique boolean local
variabletempVar of typeStackAlphabet that is used to keep
a copy of the event (present on the top of the stack). An AND-
state uses this for passing the event to all its descendants.
• Each pushdown automataAi contains a local variable corre-
sponding to every transitiont ∈ T whose sourcesrc and des-
tinationdst states are such thatsi = lca(src, dst). We define
lca(src, dst) to be the least common ancestor of statessrc and
dst if src 6= dst. In casesrc = dst, lca(src, dst) is defined to
be the parent ofsrc anddst.4 The local variable corresponding
to t is true whenever it ist’s turn to execute.
• All events (local, input from Simulink, output from Simulink)
are declared as stack alphabet symbols. The stack alphabet type
also contains a unique identifier corresponding to each nonleaf
state. This identifier serves as the return address passing control
back. There is also a unique symbol in the stack alphabet type
that marks the end of the stack.

Now consider a transitiont = (src, dst, e, c, ca, ta) ∈ T in
the Stateflow chart(D,E, S, T, f). First assume thatsrc and
dst are descendants oflca = lca(src, dst).5 The transitiont
gives rise to the following transitions in the automataAlca:
1. If statesrc is active, evente is present on the top of the stack,
and variablet is true, then perform condition actions: Note that
assignment actions are easily performed. In case of an evente1
broadcast action, a new stack symbol, sayet1, is pushed on the
stack, followed by pushing a symbol representing statelca (re-
turn address) ande1 on the stack. The automataAlca detects the
completion of the broadcast event action processing by testing if
its controlBPort is true and the top of stack iset1. In this way,
all condition actions are processed.
2. If all condition actions have been completed, then push a new
symbol, sayet2, on the stack and preemptsrc: The automata
Asrc is preempted by settingAsrc’s preemptionPort andcon-
trolFPort to true and settingAlca’s controlFPort to false.
3. If statesrc has preempted, then perform transition actions:
AutomataAlca detects ifsrc has preempted by checking if top
of stack iset2 and its owncontrolBPort is true. Transition ac-
tions are performed in the same way as the condition actions.
4. If the transition actions have been completed, then push a
new symbol, sayet3, on the stack and activate the destination
statedst: The destination statedst is activated by setting its
controlFPort anddefaultPort to true.
5. If the destination statedst has been activated then indicate
that the transitiont has been successfully completed: We test if
dst has been activated by checking if the top of the stack iset3

4We are ignoring inner transitions here.
5We add tolca an input variable that indicates ifsrc is active and four output

variables that, respectively, set thedefaultPort andcontrolFPort of dst and
preemptionPort andcontrolFPort of src.

3

and ifAlca’s controlBPort is true. We indicate that transitiont
was successfully completed by settingtempVar andresultPort
accordingly.

Next consider the case where the least common ancestorlca
of the src anddst states is such thatsrc anddst are not both
immediate descendants oflca. In this case, additional tran-
sitions are required to make sure that the correct destination
state is activated. This can be done in a straightforward way,
though it involves addition of extra transitions into certain au-
tomata. More specifically, if(s0 = lca, s1, . . . , sk = dst) is
the path from the statelca to the statedst, then new transitions
and new input/output variables must be added to the automata
As0 , As1 ,

Note that entry and exit actions that are associated with a state
in a Stateflow chart can be suitably included in the transitions
that are activated by thedefaultPort and thepreemptionPort,
respectively. The during action can be similarly performed when
control is passed on to an already active state.

Finally, additional transitions are required for capturing other
aspects of the semantics of Stateflow.

Hierarchy : Whenever an automataAs corresponding to an
AND-states is activated, it explicitly (through additional tran-
sitions) activates each of its descendant automata. Similarly,
whenever automataAs is preempted, it explicitly preempts each
of its descendant automata.
Priority between transitions: Some transitions are tested be-
fore others in a Stateflow chart. This is captured by additional
transitions that set the local variables corresponding to a transi-
tion t to true or false based on whether or not they are allowed
to fire. If a transition is unable to fire, then the local variable for
the next transition is set to true.
Control transitions : In Stateflow semantics, control is passed
starting from the root down the hierarchy to the leaf states, and
back the opposite way. This is violated only in the case of di-
rected event broadcast actions. Thus, we need transitions that
read the return address from the top of the stack and pass con-
trol back to the respective state.
When an active state gets control, it checks to see if any of its
transitions can be fired. This is done in order of the priority
of the transitions. In case a state is unable to fire any transi-
tions locally, it passes control down the hierarchy. On return,
the descendant state passes the control back to its parent indi-
cating whether or not it was able to “use” the event (through the
resultPort variable).
Preemption transitions: If the preemptionPort andcontrolF-
Port variables are true, then the automata needs to be preempted
(i.e., made inactive). Preemption involves recursively preempt-
ing all the descendants, marking oneself inactive, and passing
control back to the state on top of the stack.
Default transitions: If the defaultPort andcontrolFPort vari-
ables are true, then the automata fires its default transitions and
marks itself active before returning control.
Junctions and flow graphs: Junctions are translated into local
boolean variables and the special semantics associated with tran-
sitions over junctions are again encoded explicitly. We skip the
details here.

D. Analysis of the Pushdown System

The Stateflow chart represented as a pushdown system can
be statically analyzed. By using the algorithm for reachability
in pushdown systems [10], it can be determined if a pushdown
system requires a bounded or an unbounded stack depth. An
unbounded stack depth corresponds to infinite recursive event
broadcasting in the Stateflow charts. The Simulink/Stateflow
tool detects loops in event broadcasting at simulation time. So
that the bounded stack depth analysis can be performed, all non-
boolean data variables are abstracted and the analysis is per-
formed on a finite state abstraction. The pushdown system can
also be analyzed to detect any nondeterminacy in the Stateflow
chart and other such properties. All of this analysis can be per-
formed in an completely automated and non-intrusive way. For
some theoretical results on analysis of recursive state machines,
the reader is referred to [3].

III. C ONTINUOUS DYNAMICAL SYSTEMS

In this section, we consider the other extreme of a hybrid
system, that is, one in which there is no discrete component.
Simulink provides a rich language for modeling such systems.
For the purpose of discussion in this paper, we assume that
Simulink models are purely continuous dynamical systems. A
continuous dynamical system is a tuple(XC , UC , YC , I, f, h)
whereXC , UC , YC are, respectively, open subsets ofRn, Rm,
R
p, for some finite values ofn,m, p, I ⊂ XC , f : XC ×UC 7→

TXC andh : XC × UC 7→ YC . HereTXC denotes the tan-
gent space ofXC . We assume thatf satisfies the standard as-
sumptions for existence and uniqueness of solutions to ordinary
differential equations.

The semantics of a continuous dynamical system(XC , UC , YC , f, h)
over an intervalτ = [ti, tf] is a collection of tuples(x, y, u)
with x : τ 7→ XC , y : τ 7→ YC , andu : τ 7→ UC satisfying
(a) initial condition:x(ti) ∈ I,
(b) continuous evolution: for allt ∈ [ti, tf], ẋ(t) =
f(x(t), u(t)), and
(c) output evolution: for allt ∈ [ti, tf], y(t) = h(x(t), u(t)).

Note that Simulink models can describe much richer systems,
too. For instance, a model could contain discrete blocks, as
well as a mixture of discrete and continuous blocks. (The dis-
crete blocks introduce discrete statesXD into the state space
X = XD ∪ XC , and other definitions need suitable modifica-
tion). Furthermore, Simulink blocks can also express algebraic
constraints via zero-time loops.

Example 1:As an example of a purely continuous system,
we consider simplified leader control from the design of auto-
mated highway systems [34]. Suppose vehicle A is following
vehicle B in a lane. Letgap denote the distance between the
two vehicles,v0 be the velocity of vehicle A, andv1 be the ve-
locity of vehicle B. In the leader control mode, vehicle A follows
vehicle B by suitably adjusting its velocity based on the sensor
reading giving the gap (and the rate of change of gap) between
the two vehicles. Let us assume that the dynamics of the system
are given by the following equations:

v̇1 = a1
v̇0 = a1 + v1− v0
˙gap = v1− v0

4

Let us say that the initialization condition, or equivalently the
condition under which this control mode is triggered, is given
by gap ≥ 2 andv1 ≥ v0. The problem is to show that the rear
car does not crash into the car in front, that is,gap ≥ 0 at all
times.

1

Out1

1
s

Integrator2
1
s

Integrator1

1
s

Integrator

1

In1
a1 v1

v0

gap

Fig. 1

SIMULINK MODEL OF THE LEADER CONTROL MODE INAHS

This leader control dynamic system can be modeled in
Simulink as shown in Figure1. However, the initial conditions
gap ≥ 2 ∧ v1 ≥ v0 cannot be represented in Simulink.
Similarly, the accelerationa1 of the car in front cannot be left
unspecified, and a specific funtion is required for performing a
simulation. See Example4 for an analysis using symbolic tech-
niques that reason about the complete state space.

A. Simulink Simulation Semantics

Simulink computes the values of functionsx : τ 7→ XC

and y : τ 7→ YC for a given inputu : τ 7→ YC by nu-
merically integrating the state’s derivatives. The numerical in-
tegration task is performed by either a fixed-step solver or a
variable-step solver. Assuming the use of a fixed-step solver
with step sizeδ, the semantics of the continuous dynamical sys-
tem (XC , UC , YC , I, f, h) over an intervalτ = [ti, tf] is the
collection of tuples(x, y, u) satisfying
(a) initial condition:x(ti) ∈ I,
(b) continuous evolution: for allt ∈ [ti, tf], x(t+ δ) = x(t) +
δf(x(t), u(t)), and
(c) output evolution: for allt ∈ [ti, tf], y(t) = h(x(t), u(t)).

In case of a variable-step solver, the semantics of the contin-
uous dynamical system(XC , UC , YC , I, f, h) over an interval
τ = [ti, tf] is the collection of tuples(x, y, u) satisfying
(a) initial condition:x(ti) ∈ I,
(b) continuous evolution: for allt ∈ [ti, tf], x(t+ δ) = x(t) +
δf(x(t), u(t)) for some0 < δ < ε, and
(c) output evolution: for allt ∈ [ti, tf], y(t) = h(x(t), u(t)).
Hereε is some bound on the sample time the variable-step solver
uses.

In subsequent sections, we show that even though analysis
of continuous dynamical systems with respect to their original
semantics might be infeasible, simple tools can be developed
that perform analysis with respect to these alternate simulation
semantics. When combined with the various techniques that
have been developed for analyzing discrete systems, this gives
us an approach for developing tools for hybrid systems. The
discretized systems we consider are not theoretically sound ab-
stractions of the original systems. However, for a very large
class of systems and for most practical systems, they do provide
good insight on the behavior of the actual systems. We do not

attempt to make the precise connection between the two models
in this paper.

IV. H YBRID SYSTEMS

Hybrid systems involve the interaction of discrete and contin-
uous dynamics. In the Matlab modeling environment, discrete
behavior in the plant and controller is usually specified using
Stateflow charts and the continuous behavior using Simulink
blocks. Systems modeled using Simulink and Stateflow differ
from traditional hybrid dynamical systems in that all Simulink
models are deterministic (with respect to the simulation se-
mantics). A generic Simulink/Stateflow model that contains
only one Stateflow chart is shown in Figure2. For purposes

SubSystem

Chart

1

In1 (x,y)

x’

u

Fig. 2

A GENERICSIMULINK /STATEFLOW MODEL

of simulation, the Matlab tool considers the Stateflow chart
as just another direct feedthrough6 Simulink block. Stateflow
charts in a Simulink model inherit their sample rate from the
Simulink blocks, unless their sample rate has been explicitly
specified. Stateflow charts could also be triggered by signals
from Simulink blocks. An unusual feature of Matlab is that a
direct feedthrough loop through a Stateflow chart is treated as
an algebraic loop (constraint). For discussion in this paper, we
assume that no such loops are present.

Given an intervalτ = [ti, tf], a Matlab simulation run is de-
fined over a particulartrajectory{[t′0, t1], [t′1, t2], . . . , [t′n−1, tn]},
wheret′0 = ti, tn = tf , andti = t′i < ti+1. The choice of
the tk ’s where the Stateflow block executes and makes discrete
jumps to the state is governed by the sample rate of the State-
flow chart. The semantics in each interval[t′k, tk+1] is given as
described in SectionIII-A . The state at timet′i is given using the
Stateflow semantics applied on the initial state at time instance
ti.

Note that the semantics of a hybrid dynamical system is de-
fined as a collection of all tuples(τ, x, y, u) such thatτ is any
trajectory andx : τ 7→ XD × XC , y : τ 7→ YD × YC , and
u : τ 7→ UD × UC are mappings that satisfy the conditions (a)–
(c) of SectionIII-A for all intervals[t′k, tk+1] ∈ τ and the con-
dition for discrete evolution at everyti, i = 1, . . . , n− 1.

Example 2:As a simple example of a hybrid system, con-
sider a thermostat that controls the temperaturex of a room.
The thermostat senses the temperature and turns a heater on and
off if the threshold valuesxmin andxmax are reached, where

6Blocks whose current outputs depend on the current inputs are called direct
feedthrough blocks.

5

0 < xmin < xmax andxmin, xmax ∈ R+. When the heater is
off, the temperature of the room decreases and when the heater
is turned on, the temperature increases according to the follow-
ing dynamics:

off : ẋ = −Kx
on : ẋ = −K(x− h)

Here, the parameterK ∈ R+ is the room constant and the pa-
rameterh > xmin+xmax is a real-valued constant that depends
on the power of the heater.

The discrete logic to switch between these two modes is given
by the following two guarded transitions:

state = off ∧ x ≤ xmin −→ state = on
state = on ∧ x ≥ xmax −→ state = off

Let us say that the initial condition is given byx ≥ xmin ∧
x ≤ xmax and the heater is off.

This hybrid model of the thermostat can be represented in
Simulink and Stateflow as shown in the figures below. The com-
plete system contains a Stateflow chart that keeps track of the
mode of the system and Simulink blocks that describe the con-
tinuous dynamics. See Figure3.

In1 Out2

In1 Out2

NOT

xmode

Chart

x

Fig. 3

SIMULINK MODEL OF THE THERMOSTAT EXAMPLE

The Stateflow chart contains two states corresponding to
whether the heater is “on” or “off” and transitions between these
two modes and is shown in Figure4.

[x <= xmin]

[x >= xmax]

offmode
entry:mode=0

onmode
entry:mode=1

Fig. 4

STATEFLOW COMPONENT IN THE THERMOSTAT MODEL

The Stateflow chart outputs the mode based on which the
Simulink component chooses a particular dynamics. The two

1

Out2

1
sxo

−K−

Enable

1

In1
xdot

x

Fig. 5

SIMULINK MODEL OF THE HEATER “ OFF” MODE

1

Out2

1
sxo

−K−

100

Constant

Enable

1

In1

xdot

x

Fig. 6

SIMULINK MODEL OF THE HEATER “ ON” MODE

triggered Simulink subsystem blocks describe the dynamics of
the temperature in each of the two modes and are shown in Fig-
ures5 and6.

Note that we have used some hypothetical values for the con-
stantsh,K, xmin, andxmax in the Simulink model. See Exam-
ple 6 in SectionV-E for symbolic analysis of the more general
example with symbolic parameter values.

V. A NALYSIS FOR HYBRID SYSTEMS

We describe new techniques for formal verification of hy-
brid models. We showed that hybrid system models in
Simulink/Stateflow can be translated into transition systems.
These transition systems are represented in SAL and techniques
for their analysis are implemented as tools over SAL. This
makes the tools more generally applicable and independent of
the Simulink/Stateflow modeling language.

A. An Overview of SAL

Symbolic Analysis Laboratory (SAL) is a framework for
combining different tools to perform symbolic analysis of dis-
crete systems. At the core of SAL is a language for specifying
transition systems in a compositional way. This language serves
as the target for translators that extract the transition system
description from various domain-specific modeling languages.
The intermediate language also serves as a description from
which different analysis tools can be driven. Existing analy-
sis tools are interfaced with SAL by translating the intermediate
language to the input format for the tools and translating the
output of these tools back to the SAL intermediate language.

A transition systemmodulein SAL consists of astate type,
an initialization conditionon this state type, and a binarytran-
sition relation on the state type. The state type is defined by

6

four pairwise disjoint sets ofinput, output, global, and local
variables. The initialization and transition relation are specified
using guarded assignments over a strongly typed expression lan-
guage. Aguarded assignmentconsists of a guard and a list of
assignments. Aguard is a boolean expression in the current
local, global, and output variables and current and next input
variables. Anassignmentis an equality between a left-hand-
side next variable (i.e., value of the variable in the next discrete
time step) and a right-hand-side expression in current and next
variables. New modules can also be defined using synchronous
and asynchronous composition of existing modules using a re-
naming facility to avoid name clashes.

The semantics of a SAL moduleM is given in terms of a
Kripke structure(Q,E,L), whereQ is the set of states (a state
is a valuation of the input, output, local, and global variables),
E ⊂ Q×Q is a binary relation on the state spaceQ induced by
the guarded transitions, andL is a labeling function that maps
each edge inE to the name of the guarded transition that induces
that edge. Properties of a SAL module can be stated in any
temporal logic, and the interpretation is the usual one [33].

B. Simulink/Stateflow Models and Hybrid Systems in SAL

Following the discussion in SectionsII and III-A , we can
transform certain Simulink/Stateflow models into SAL. To see
this, note that each pushdown automata is translated directly into
a SAL basemodule. Furthermore, the differential equations aris-
ing from the Simulink component are converted into difference
equations as shown in SectionIII-A . Note that we have a choice
of using the discretization based on either the fixed step simula-
tion semantics or the variable step simulation semantics. Using
the same ideas, we can also represent suitable discretized mod-
els of hybrid dynamical systems in SAL. We show the benefit of
doing this via some illustrations in later sections.

Example 3:We can describe the leader control continuous
dynamical system outlined in Example1 in SAL by using the
variable step simulation semantics for the differential equations
as follows:
AHS1 : CONTEXT =
BEGIN

leader : MODULE =
BEGIN

INPUT a1 : REAL, δ : REAL
LOCAL gap, v1, v0 : REAL
INITIALIZATION

gap ≥ 2 AND v1 ≥ v0
TRANSITION

[
0 < δ ∧ δ ≤ 1 −→

v1’ = v1 + δ * a1;
v0’ = v0 + δ * (a1 + v1 - v0);
gap’ = gap + δ * (v1 - v0)]

END;
END

Note that SAL allows us to state the initial condition symboli-
cally. It also explicitly specifies the accelerationa1 of the lead-
ing car to be an input variable so that analysis tools can suitably
deal with it. See Example4.

In the above description,δ is constrained to be between0
and 1. In different instances, the upper bound (which is1 in
this case) may need to be different. In case of a fixed time step
semantics,δ is replaced by a constant.

C. Symbolic Simulation

The Matlab Simulink tool provides extensive simulation facil-
ity. Simulation refers to traversing one trajectory of the system
behavior from the possible infinite. To run a simulation, the de-
signer must (a) specify initial conditions by giving values of all
state variables, (b) choose a particular input function (in case the
system has inputs coming from the environment), (c) give some
default values to all parameters used in the modeling of the sys-
tem, and optionally (d) choose a solver and/or a sample time for
certain blocks. The simulation tool then computes the system
behavior under these specific choices.

Even after doing several simulations with different choices
for (a)–(d) above, the designer cannot be sure that the system
works correctly inall possible scenarios. For instance, in the
leader control system of Example1, simulation would show the
behavior of the system under a particular profile of the acceler-
ation of the car in front. But, safety requires that there be no
crash undereverypossible acceleration maneuver of the leading
car. Similarly, running simulation on the thermostat model of
Example2 will show that the thermostat works as desired for
the particular values of parametersh, K, xmin, andxmax that
were chosen for the simulation.

Symbolic simulationrefers to performing simulation on sets
of states represented symbolically. Thus, symbolic simulation
differs from regular simulation in two respects. First, it simulta-
neously traverses a bunch of trajectories instead of a single tra-
jectory through the state space. Second, a set of states is repre-
sented symbolically rather than explicitly. This allows represen-
tation of a potentially infinite number of states and simulation
of a potentially infinite number of trajectories in one symbolic
simulation.

We use the language of first-order logic to symbolically rep-
resent sets of states. We recall that a state is a valuation of all
the state and output variables. A set of states can be specified
using a first-order formula over the state and output variables.
A crucial step in performing symbolic simulation is the compu-
tation of the set of all states that are reachable from the current
set of states (represented as a first-order formula). Ifφ(x, y) is
a first-order formula that represents the current set of states, and

ψ(x, y, u, u′) −→
∧
i

(x′i = ei(x, y, u, u′))

is a guarded transition with guardψ(x, y, u) and assignments
x′i = ei(x, y, u, u′),7 then the set of states reached after taking
this transition is given by

∃(x̄, ȳ, ū, ū′) : [φ(x̄, ȳ, ū, ū′) ∧ ψ(x̄, ȳ) ∧∧
i(xi = ei(x̄, ȳ, ū, ū′)) ∧

∧
j(xj = x̄j)].

Note that thexj ’s in the above formula are all the state and out-
put variables that are left unchanged by the guarded transition.

7Thexi’s are state and output variables and theei’s are expressions that can
contain variablesx, y, u, andu′. The expressionei evaluates to a value of the
same type asxi.

7

Note also that the input variables are existentially quantified,
which means no assumption is being made on them. However,
if the input is known to satisfy certain constraints, then these can
be incorporated in this framework as well.

The existential quantifier in the expression above must be
eliminated to ensure that the formulas do not get arbitrarily large
very soon, and we discuss this in SectionV-D.

Other approaches to performing simulation that are not based
on the use of a quantifier elimination procedure have been dis-
cussed in the literature as well. A particular case of symbolic
simulation is the idea of using intervals to represent sets of
states. The polygonal state space can then be simulated using
particular numerical methods. There is a need to do an over-
approximation whenever the state set is not representable by a
polygon [12].

D. Quantifier Elimination

The cylindrical algebraic decomposition (CAD) algo-
rithm [13, 21] decides the full first-order theory (equality and
the greater-than relation included) of ordered real closed fields.
Given a set of polynomials overn variables, the CAD proce-
dure decomposes the realn-dimensional space into a finite set
of regions where each polynomial’s evaluation is sign-invariant.
The quantifier elimination procedure for real closed fields is ob-
tained as a side effect of the CAD decomposition. Over the last
25 years, the CAD algorithm has been improved and made more
efficient [29,27,19]. One such efficient implementation is avail-
able via the tool QEPCAD [20], which is built over a symbolic
algebra library called SACLIB [11].

The tool QEPCAD can be used to perform quantifier elimi-
nation over the first-order theory of real closed fields and, con-
sequently, it can be used as a decision procedure for the same
theory. As seen above, quantifier elimination is a crucial step
in symbolic simulation and reachability algorithms. Note that
the QEPCAD tool cannot handle variables that are not of type
real, and hence it can be used only on formulas in which all the
nonreal variables can be eliminated by suitable preprocessing.

Example 4:Following up on Examples1 and 3, we now
show a symbolic simulation step for the system described in Ex-
ample3:

φ0 : gap ≥ 2 ∧ v1 ≥ v0
φ1 : ∃(¯gap, v̄1, v̄0, ā1, δ) : ¯gap ≥ 2 ∧ v̄1 ≥ v0 ∧

v1 = v̄1 + δā1 ∧
v0 = v̄0 + δ(ā1 + v̄1− v̄0) ∧
gap = ¯gap + δ(v̄1− v̄0) ∧
0 < δ ≤ 1

φ′1 : (gap > 2 ∧ 9gap + v0 − v1 − 18 ≤ 0) ∨
(v0 ≤ v1 ∧ 9gap+ v0− v1− 18 ≥ 0)

We have shown only one simulation step in the example above
because we canprove that gap ≥ 0 always using the results
from this one symbolic propagation step. See Example5.

The quantifier elimination problem has a high time and space
complexity. Consequently, techniques for simplification are re-
quired before the quantifier elimination tool can be used. In
particular, we perform the following two simplifications:

Solving for quantified variable: Certain quantified variables
can be easily eliminated by solving for them. For example, given
the equalityx + y = z + 5, one can solve forx to obtainx =
z+5−y. Thus, a quantified formula∃x : x+y = z+5 ∧ φ(x)
is equivalent to the formulaφ(x/z+ 5− y), wherex/z+ 5− y
denotes that we replace all occurrences ofx in φ by the expres-
sionz + 5− y.
Logical simplification : We can use logical equivalences to re-
duce the size of the formula that is given to the quantifier
elimination tool. One of the tautologies that is very useful is
(∃x : φ(x) ∧ ψ)↔ (∃x : φ(x)) ∧ ψ, if x does not occur inψ.
This allows us to move parts of the formula that do not contain
the quantified variable outside the scope of the quantifier, thus
reducing the size of the quantified formula in the process.

Finally, the quantifier elimination procedure is quite sensi-
tive to the ordering of quantified variables. Logically equivalent
quantified formulas∃x∃y : φ(x, y) and∃y∃x : φ(x, y) may take
drastically different time and space resources for computation.

E. Invariant Generation and Checking

Symbolic simulation can be used to compute the reachability
region as well. In thei-th simulation step, the symbolic simula-
tion procedure yields the set of states that are reached in exactly
i transitions. Thus, in order to compute the reachable state set,
one must collect the set of all states that are reachable ini-steps
for i = 0, 1, 2, Each successive iteration would then yield
successive approximations of the reachable state set. The exact
reachable state space is obtained only in the condition that this
process terminates. In case of termination, the set of reachable
states is obtained as a formula, which by definition is also the
strongest invariant for the given transition system.

Example 5: In Example4 we showed a symbolic simulation
step for the the leader control system. Assuming the same no-
tation and same formulasφi’s from before, successive approxi-
mationsψi’s of the reachability set would be

ψ0 = φ0 = gap ≥ 2 ∧ v1 ≥ v0
ψ1 = ψ0 ∨ φ1

ψ′1 = ψ0 ∨ (gap > 2 ∧ 9gap + v0 − v1 − 18 ≤ 0) ∨
(v0 ≤ v1 ∧ 9gap+ v0− v1− 18 ≥ 0)

The last formulaψ′1 is logically equivalentto the formulagap ≥
2 ∧ v1 ≥ v0 . This logical equivalence can also be shown us-
ing the quantifier elimination decision procedure that is used in
the symbolic simulation steps. This establishes that the formula
ψ0 is an invariant of the system. The invariantψ0 implies that
gap > 0 , and this establishes that the rear car never crashes onto
the car in front under the given leader control law.

The method outlined above for generating an invariant as-
sertion by computing the exact reachable region using forward
symbolic propagation is, in general, not sufficient in many cases.
In some of these other cases, a combination of approaches based
on forward and backward propagation with suitable narrowing
and widening might be required. See [35] for the details. For an
example of some of these ideas, see also Example6.

However, the technology outlined above issufficientfor in-
variantchecking. To check if a formulaφ is an inductive invari-
ant, we test (i) if the formula describing the initial states implies

8

the formulaφ and (ii) if the result of symbolic propagation start-
ing from the formulaφ (logically) implies the formulaφ. Both
of these tests can be done using a quantifier elimination proce-
dure. In fact, Examples4 and5 can also be seen as checking
that the formula given as the initial condition is an inductive in-
variant.

Simple invariants on the values of variables can also be spec-
ified using types. Richer type system allows specification of
more complex relations between the values of different vari-
ables. Invariant checking can be used to performtypechecking
on such rich type systems. The designer can easily annotate his
Simulink/Stateflow model by such type information using addi-
tional Simulink blocks.

To illustrate that the symbolic propagation method can in fact
generateinvariants, we consider the thermostat example.

Example 6:The thermostat hybrid system discussed in Ex-
ample2 can be expressed using guarded transitions. Let us as-
sume that the variablesx, xmin, xmax, andh are state (local)
variables declared to be reals. The variableδ is declared to be a
real input variable and is constrained to be between0 and1/K.

state = off ∧ x ≤ xmin −→ state ′ = on
state = on ∧ x ≥ xmax −→ state ′ = off
state = on ∧ x < xmax ∧ δ > 0 ∧ K δ ≤ 1 −→

x′ = x+ δ(−K)(x− h)
state = off ∧ x > xmin ∧ δ > 0 ∧ K δ ≤ 1 −→

x′ = x+ δ(−Kx)

The parametersxmin, xmax, andh could be any real numbers
that satisfy the condition0 < xmin < xmax < h (this is part
of the specification of the problem). We do not explicitly men-
tion this conjunct in the expressions below, but it is implicitly
assumed in the computation.

Starting with an initial state in which we assume nothing on
the value ofx andstate variables, symbolic simulation gives the
following:

φ0 : true
φ1 : (∃(¯state) : ¯state = off ∧ x ≤ xmin ∧ state = on)

∨ (∃(¯state) : ¯state = on ∧ x ≥ xmax ∧ state = off)
∨ (∃(x̄, δ) : state = on ∧ x̄ < xmax ∧

0 < δ ≤ 1/K ∧ x = x̄−Kδ(x̄− h))
∨ (∃(x̄, δ) : state = off ∧ x̄ > xmin ∧

0 < δ ≤ 1/K ∧ x = x̄−Kδx̄)
φ1 : (state = on ∧ x ≤ xmin) ∨

(state = off ∧ x ≥ xmax) ∨
(state = on ∧ x < h) ∨
(state = off ∧ x > 0)

φ1 : (state = on ∧ x < h) ∨ (state = off ∧ x > 0)

We do not show the rest of the computation here, but it can be
checked that we get the same formula after the second symbolic
simulation step as well. Thus, the set of states represented byφ1

is an invariant of the system.
Note that we can get a stronger invariant if we make a stronger

assumption on the parameterδ. As δ is constrained to be in a

smaller neighborhood of0+, the upper and lower bound onx in
the invariant gets closer toxmax andxmin, so that in the limit,
the invariant is(state = on ∧ x ≤ xmax) ∨ (state =
off ∧ x ≥ xmin).

We emphasize here that in this computation, no assumption
was made on (i) the values for the parametersh, xmin, and
xmax, or (ii) the initial state of the system.

F. Abstraction of the Continuous Component

An abstraction of a system is any system that exhibits all the
behaviors (trajectories) of the original system, possibly more.
Abstract systems are usually smaller and are obtained by suit-
able generalization or pruning of information from the original
system. Abstraction is essential for analyzing systems contain-
ing a large number of state variables. Since fairly efficient model
checking tools are available for searching through a large, but
finite, (discrete) state space, one of the challenges in building
analysis tools for hybrid systems is to come up with suitable ab-
stractions for the continuous components that are refined enough
to suffice for proving the properties of interest.

In the most simple form, one could use the most coarse ab-
straction of the continuous component of a hybrid model. The
most coarse and trivial abstraction of any system is the system
that accepts all behaviors. This corresponds to having no in-
formation about the continuous subsystem. This means that we
execute the discrete transitions in a completely nondeterminis-
tic environment. The resulting discrete transition system can be
model checked, but such an analysis is unlikely to give any use-
ful information about the model.

More refined abstractions can be constructed using invariants
that are established using the techniques of SectionV-E.

In general, construction of an abstraction for a transition sys-
tem involves
(i) defining the abstract states: In case of predicate abstraction,
certain predicates over the original local, input, and output vari-
ables are mapped onto boolean variables (losing information in
the process); and
(ii) mapping the transitions to abstract transitions: In case of
predicate abstraction, this amounts to mapping the guard and as-
signments of the original system into abstract guards and tran-
sitions over the new boolean variables. This requires certain
theorem proving capabilities.

Invariants are useful in both of the above steps. The atomic
formulas that appear in an invariant can be used as predicates
that are mapped to new boolean variables. Furthermore, the in-
variants also help to discharge some of the proof obligations that
arise in step (ii) of the above process.

Example 7:Controllers for hybrid systems are often de-
signed under a multiobjective setting [28, 36]. Most often, the
requirements are that of safety (i.e., all the system trajectories
satisfy certain constraints) and efficiency (i.e., optimizing cer-
tain other parameters). We showed in Example6 that the switch-
ing law between the two modes of operation of the thermostat
control is safe. Now if there is an additional controller hierarchi-
cally above the simple mode switching one, which, for example,
controls the power of the heater (value of the parameterh) to op-
timize power consumption, we could verify that by using a suit-
able abstraction of the original system model. The abstraction

9

could be a simple one based on the inductive invariant property
we established for the base system in Example6.

The combination of building abstractions using information
from the invariants generated by symbolic propagation and
model checking the resulting system is a powerful tool chain
for scaling the techniques proposed in this paper to larger and
more complex embedded control systems.

VI. CONCLUSION

Much work has been done in the design and analysis of hybrid
systems [14,7,4,8,17]. This paper is an attempt to develop tools
and techniques for performing formal analysis on models that
are developed in Simulink and Stateflow. This MathWorks soft-
ware is one of the leading tool suites available to engineers for
designing hybrid and embedded control systems. But the tech-
niques developed in this paper are not specific to this particular
input formalism. We have implemented our analysis tools over
SAL, which is an intermediate format for representing transition
systems, quite independent of any modeling language.

We have presented a wide range of formal technologies for
hybrid control systems starting from completely automated and
invisible techniques like static analysis of simple program prop-
erties and symbolic simulation, through extended typechecking,
to abstraction and invariant generation. These analysis tools can
be embedded into design languages like Stateflow/Simulink to
provide greater assurance and quick error detection.

Stateflow design language is based on the concept of hier-
archical automata from Statecharts [15], but the semantics of
Stateflow diagrams is different from the semantics of Statecharts
in several ways. There have been efforts at providing semantics
to Statecharts [16]. Hierarchical automata were used for this
purpose in [30], and a set of several different semantics for Stat-
echarts was given in [37].

Quantifier elimination tools have been used in the hybrid sys-
tem world in a variety of contexts. Formulas and expressions
over the first-order theory of real closed fields arise naturally
when linear and non-linear control systems are described. Many
problems in control theory can be reduced to finding solutions
of systems of polynomial equations, disequations, and inequali-
ties [22]. Quantifier elimination is also used in obtaining decid-
ability results for reachability in safety-critical embedded sys-
tems and hybrid systems [26]. Many applications, especially
in mechanical engineering and in numerical analysis, lead to
formulas with trignometric functions involved [32]. In fact,
CAD-based quantifier elimination procedures have been used
to solve problems regarding stationarity, stability, and reacha-
bility of control system designs [23]. Requiem [31] is a tool for
performing exact reachability state set computation for linear
systems specified using nilpotent matrices. It uses the quantifier
elimination procedure implemented inside Mathematica. The
computation of the reach set for parametric inhomogenous lin-
ear differential systems is done using implicitization and quan-
tifier elimination in [6].

A finite decomposition of the real spaceRn into open sets
and points such that each partition element preserves a first-
order formula over reals is crucial not only for getting a deci-
sion procedure for the first-order theory, but also for obtaining
finite abstractions of certain hybrid systems [5]. In fact, a model-

theoretic structure over the reals in which every (first-order) de-
finable subset ofRn is afiniteunion of points and open intervals
is called ao-minimalstructure. It is shown in [5] that hybrid
systems that are definable over some o-minimal structure admit
finite abstractions. The class of o-minimal structures over the
reals includes structures with richer signatures as well.

The transition system we associate with a hybrid system in
this paper is different from the usual one. In particular, the tran-
sition system that corresponds to the continuous flow in hybrid
systems, as defined in in SectionIII-A , is an approximation and
is different from the standard definition, as in [5].

REFERENCES

[1] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger,
P.-H. Ho, X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine.
The algorithmic analysis of hybrid systems.
Theoretical Computer Science, 138(3):3–34, 1995.
1

[2] R. Alur and D. Dill.
A theory of timed automata.
Theoretical Computer Science, 126:183–235, 1994.
1

[3] R. Alur, K. Etessami, and M. Yannakakis.
Analysis of recursive state machines.
In G. Berry, H. Comon, and A. Finkel, editors,Computer
Aided Verification, 13th International Conference, CAV
2001, Paris, France, July 18-22, 2001, Proceedings, vol-
ume 2102 ofLecture Notes in Computer Science. Springer,
2001.
4

[4] R. Alur, T. Henzinger, and E. D. Sontag (eds.).
Hybrid Systems III.
Springer-Verlag, Berlin, 1996.
volume 1066 ofLecture Notes in Computer Science.
10

[5] Rajeev Alur, Tom Henzinger, Gerardo Lafferriere, and
George J. Pappas.
Discrete abstractions of hybrid systems.
Proceedings of the IEEE, 88(2):971–984, July 2000.
10

[6] H. Anai and V. Weispfenning.
Reach set computations using real quantifier elimination.
In M. D. Di Benedetto and A. Sangiovanni-Vincentelli, ed-
itors, Hybrid Systems: Computation and Control HSCC
2001, volume 2034 ofLNCS, pages 63–76. Springer-
Verlag, 2001.
10

[7] P. Antsaklis, W. Kohn, A. Nerode, and S. Sastry (eds.).
Hybrid Systems II.
Springer-Verlag, Berlin, 1995.
volume 999 ofLecture Notes in Computer Science.
10

[8] P. Antsaklis, W. Kohn, A. Nerode, and S. Sastry (eds.).
Hybrid Systems IV.
Springer-Verlag, Berlin, 1997.
volume 1273 ofLecture Notes in Computer Science.
10

[9] Gérard Berry, Hubert Comon, and Alain Finkel, editors.

10

Computer Aided Verification, 13th International Confer-
ence, CAV 2001, Paris, France, July 18-22, 2001, Proceed-
ings, volume 2102 ofLecture Notes in Computer Science.
Springer, 2001.
1

[10] A. Bouajjani, J. Esparza, and O. Maler.
Reachability analysis of pushdown automata: Application
to model-checking.
In A. W. Mazurkiewicz and J. Winkowski, editors,CON-
CUR 97: 8th International Conference on Concurrency
Theory, volume 1243 ofLNCS, pages 135–150. Springer-
Verlag, 1997.
4

[11] B. Buchberger, G. E. Collins, M. J. Encarnacion, H. Hong,
J. R. Johnson, W. Krandick, R. Loos, A. M. Mandache,
A. Neubacher, and H. Vielhaber.
SACLIB 1.1 user’s guide.
In RISC-Linz Report Series, Tech Report No 93-19. Kurt
Gödel Institute, 1993.
www.eecis.udel.edu/ ∼saclib/ .
8

[12] Alongkrit Chutinam and Bruce H. Krogh.
Verification of polyhedral-invariant hybrid automata using
polygonal flow pipe approximations.
In Frits W. Vaandrager and Jan H. van Schuppen, editors,
Hybrid Systems: Computation and Control, volume 1569
of LNCS, pages 76–90. Springer-Verlag, 1999.
8

[13] G. E. Collins.
Quantifier elimination for the elementary theory of real
closed fields by cylindrical algebraic decomposition.
In Proc. Second GI Conf. Automata Theory and Formal
Languages, pages 134–183, 1975.
Vol. 33 of Lecture Notes in Comp. Sci., Springer, Berlin.
8

[14] R. L. Grossman, A. Nerode, A. P. Ravn, and H. Rischel
(eds.).
Hybrid Systems.
Springer-Verlag, Berlin, 1993.
volume 736 ofLecture Notes in Computer Science.
10

[15] D. Harel.
Statecharts: A visual formalism for complex systems.
Sci. Comput. Program., 8:231–274, 1987.
10

[16] D. Harel and A. Naamad.
The statemate semantics of statecharts.
ACM Transactions on Software Engineering and Method-
ology, 5(4):293–333, October 1996.
10

[17] T. Henzinger and S. Sastry (eds.).
Hybrid Systems: Computation and Control.
Springer-Verlag, Berlin, 1998.
volume 1386 ofLecture Notes in Computer Science.
10

[18] T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya.
What’s decidable about hybrid automata?
Journal of Computer and System Sciences, 57:94–124,

1998.
1

[19] H. Hong.
An improvement of the projection operator in cylindrical
algebraic decomposition.
In Proc. ISAAC 90, pages 261–264, 1990.
8

[20] H. Hong.
Quantifier elimination in elementary algebra and geometry
by partial cylindrical algebraic decomposition version 13.
In The world wide web, 1995.
http://www.gwdg.de/ ∼cais/systeme/-
saclib, www.eecis.udel.edu/ ∼saclib/ .
8

[21] Mats Jirstrand.
Cylindrical algebraic decomposition - an introduction.
Technical Report LiTH-ISY-R-1807, Dept of EE.
Linköping University, S-581 83 Link̈oping, Sweden, Dec
1995.
Available by anonumous ftp at ftp.control.ee.liu.se.
8

[22] Mats Jirstrand.
Algebraic methods for modeling and design in control.
Licentiate thesis LIU-TEK-LIC-1996:05 Linkping Studies
in Science and Technology. Thesis No 540, Department of
Electrical Engineering, Li, 1996.
10

[23] Mats Jirstrand.
Nonlinear control system design by quantifier elimination.
Journal of Symbolic Computation, 24(2):137–152, Aug
1997.
10

[24] Warren A. Hunt Jr. and Steven D. Johnson, editors.
Formal Methods in Computer-Aided Design, Third Inter-
national Conference, FMCAD 2000, Austin, Texas, USA,
November 1-3, 2000, Proceedings, volume 1954 ofLec-
ture Notes in Computer Science. Springer, 2000.
1

[25] G. Lafferriere, G. J. Pappas, and S. Sastry.
O-minimal hybrid systems.
Mathematics of Control, Signals, and Systems, 13(1):1–21,
2000.
1

[26] Gerardo Lafferriere, George J. Pappas, and Sergio Yovine.
Symbolic reachability computations for families of linear
vector fields.
J. Symbolic Computation, 2001.
To appear.
10

[27] D. Lazard.
An improved projection for cylindrical algebraic decom-
position.
Technical Report, Informatique, Universite Paris IV, F-
75252 Paris Cedex 05, France, 1990.
8

[28] John Lygeros, Claire Tomlin, and Shankar Sastry.
Controllers for reachability specifications for hybrid sys-
tems.

11

Automatica, Special Issue on Hybrid Systems, 35(3),
March 1999.
9

[29] S. McCallum.
An improved projection operator for cylindrical algebraic
decomposition of three dimensional space.
J. Symbolic Computation, 5:141–161, 1988.
8

[30] E. Mikk, Y. Lakhnech, and M. Siegel.
Hierarchical automata as model for statecharts.
In Asian Computing Science Conference (ASIAN’97), vol-
ume 1345 ofLNCS. Springer-Verlag, 1997.
10

[31] P. Mishra and G. J. Pappas.
Reachability using quantifier elimination.
In University of Pennsylvania hybrid systems group web-
page, 2001.
www.seas.upenn.edu/hybrid/requiem.html .
10

[32] Petru Pau and Josef Schicho.
Quantifier elimination for trignometric polynomials by
cylindrical algebraic trignometric decomposition.
www.risc.uni-linz.ac.at/people/ppau, Research Institute
for Symbolic Computation, Johannes Kepler University,
A-4040 Linz, Austria, 1999.
10

[33] A. Pnueli.
The temporal logic of programs.
In Proceedings of the 18th annual symposium on founda-
tions of computer science, pages 46–57. IEEE computer
society press, 1977.
7

[34] A. Puri and P. Varaiya.
Driving safely in smart cars.
In Proceedings of the 1995 American Control Conference,
1995.
4

[35] A. Tiwari, H. Rueß, H. Säıdi, and N. Shankar.
A technique for invariant generation.
In Tiziana Margaria and Wang Yi, editors,TACAS 2001 -
Tools and Algorithms for the Construction and Analysis of
Systems, volume 2031 ofLNCS, pages 113–127, Genova,
Italy, April 2001. Springer-Verlag.
8

[36] Claire Tomlin, John Lygeros, and Shankar Sastry.
Synthesizing controllers for nonlinear hybrid systems.
In S. Sastry and T. Henzinger, editors,Hybrid Systems:
Computation and Control, volume 1386 ofLNCS, pages
360–373. Springer-Verlag, 1998.
9

[37] M. von der Beek.
A comparison of stateflow variants.
In L. de Roever and J. Vytopil, editors,Formal techniques
in real-time and fault tolerant systems, volume 863 of
LNCS, pages 128–148. Springer-Verlag, 1994.
10

12

	Introduction
	Stateflow Semantics
	Stateflow Charts
	Pushdown Systems
	Mapping Stateflow Charts to Pushdown Systems
	Analysis of the Pushdown System

	Continuous Dynamical Systems
	Simulink Simulation Semantics

	Hybrid Systems
	Analysis for Hybrid Systems
	An Overview of SAL
	Simulink/Stateflow Models and Hybrid Systems in SAL
	Symbolic Simulation
	Quantifier Elimination
	Invariant Generation and Checking
	Abstraction of the Continuous Component

	Conclusion
	References

