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Simulink Stateflow Models
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Abstract—Embedded control systems typically comprise continuous con- tablished for checking reachability in even simple classes of hy-
trol laws combined with discrete mode logic. The Simulink graphical envi-  prid systems (for example systems whose continuous dynamics
ronment of MathWorks’ tool suite is a popular choice for modeling and de- . . ' o
signing embedded controllers. Mode logic in Simulink models is described involves variables that procegd attwo ?Onst?‘nF slop&.[ .
in terms of hierarchical state machines specified in a variant of Statecharts ~ One approach to overcoming undecidability involves restrict-
called Stateflow. The semantics of Stateflow is quite complex and itis valu- jng the continuous dynamics of the hybrid system so that suit-
ggf"jggﬁig gzzﬁgig:” be formally analyzed for both early error detection 516 ahstractions can be successfully applied to yield conserva-

It is important that formal analysis should be unobtrusive and accept- tive discrete transition systems. Timed automafarhultirate
able to engineering practice. We motivate a methodology called “invisible automata [], and rectangular automatad] are some such ex-
formal methods” that provides a graded sequence of formal analysis tech- amples. Another approach is to restrict the discrete transitions
nologies ranging from extended typechecking, through approximation and d th . fl hat fini b . in b
abstraction, to model checking and theorem proving. As an instance of and the contmuou; ows so t. a_‘t Inite a .StraCt'onS can again be
invisible formal methods, we describe the formal semantics of a fragment constructed. The idea of o-minimal hybrid systems] s mo-
of Stateflow based on a modular representation calledommunicating push- tivated by this.

g?g\éggiuetg Z}aé?;’y;lzwxggg}gh's semantics can be used to analyze simple Due to t_he g_ndecidability results for .general systems ar_1d
Keywords—Hybrid dynamical systems, Invariant, Symbolic Simulation. KNOWn decidability results for rather restricted classes of hybrid
systems, there is a huge gap between the interesting large and
complex systems that are typically used in practice, and the re-
I. INTRODUCTION stricted and simple systems that the analysis techniques can han-

dle. Furthermore, the available techniques are still far removed

HYBRlD systems involve a combination of discrete and cOfirom the tools engineers most often use in practice to design
tinuous dynamics and are used for modeling embeddgghpedded control systems.

control systems. Many of the embedded control systems argyne of the most extensively used tools for modeling, simula-
safety cr|t|cgl and require fprmal guqrantees of safe operatigpn and rapid prototyping of control designs for embedded ap-
Formal design and analysis of hybrid system models has [fiations is the Simulink/Stateflow development suite provided
ceived much attentlor) in the research community recently, fro(gg MathWorks Inc. The addition of formal analysis capabili-
both the computer science and control theory worlds. ties to such a tool would offer benefits in early error detection
The systems that have been traditionally studied in the Coglg more complete assurance of the designs. But this dream is
puter science community have been discrete. Such systefggpered by the lack of formal and rigorous semantics for the
evolve in discrete time steps. Moreover, given a current staigeling language of this tool. It is potentially valuable, there-
of the system, the state in the next discrete time instance is gz, to provide formal semantics and to develop formal analysis
sumed to come from &nite (and countable, at worst) set ofiechniques for important features of the modeling language pro-
states. Good advances have been made in the techniques, gy by the MathWorks tool.
tools for analyzing discrete systemsi“]. Some of the mostef-  \athworks’ Simulink/Stateflow development suite consists
fective techniques includ@odel checkingndabstraction Ab- ot o modeling languages: Simulink is used to model the con-
straction is typically used to reduce the possibly infinite stafgy,ous dynamics and Stateflow is used to specify the discrete
space system into a finite state space abstract system, and modglo| |ogic and the modal behavior of the system. The first part
checking is subsequently used to exhaustively search throughylinis paper discusses semantic issues of Simulink/Stateflow
behaviors of the finite abstraction. _ ~models. Sectiofi provides a formal semantics to the Stateflow
Hybrid systems differ from purely discrete systems in th@hodeling language. We achieve this by translating a Stateflow
they also contain a continuous component. Such systems evoly§yel into a set otommunicating pushdown automatene re-
in continuous time with discrete jumps at particular time ins;iting pushdown automata are then translated into a transition
stances. The techniques developed for discrete systems are $dgm specification language, called SAL, for which many for-

not directly applicable. First, the state space now is uncountalfy| analysis tools are available. SAL is described in some detall
infinite. Second, from a given state, a hybrid system can makg,a&5ection\-A .

transition such that the next state comes frommarpuntableset The Stateflow modeling language is based on hierarchical

of states. Furthermore, certain undecidability results can be gste machines with discrete transitions between states. Hence,
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cretization parameter is left symbolic. The resulting differenaarts called Stateflow. A Stateflow chart is described by a tuple
equations are easily cast into the guarded transition system f8F = (D, E, S, T, f), where
malism over which we build our analysis tools. () D = Dy U Do U Dy is a finite set of typed variables that
The second part of the paper describes formal analyses tdstpartitioned into input variableB;, output variabled, and
nigues that are based on the semantics and translations desciieal variablesD ;
in the first part. We can statically determine useful properties @f) £ = E;U Eo U Ep, is a finite set of events that is partitioned
Stateflow charts such as absence of undesirable cycles of braatd input eventdr;, output eventsry, and local event#; ;
cast events. Analysis tools for a full Simulink/Stateflow modélii) S is a finite set of states, where each state is a tuple consist-
include symbolic simulation, invariance checking, typecheckig of three kinds ofctions entry, exit, andduring;, anaction
ing, abstraction, and model checking. This tool set providedsaeither an assignment of an expression to a variable (as in im-
graded sequence of formal analysis technologies. On one @edative programming languages) oreuent broadcast
are completely automated techniques that determine boundgignT is a finite set of transitions, where each transition is given
recursive event calls and perform extended typechecking. Al a tuplg(sre, dst, e, ¢, ca, ta) in which src € S is the source
though such analysis helps in early error detection, it does mstate,dst € S is the destination state,c E U {¢} is an event,
provide full verification. Abstraction and invariant generation is € W F F'(D) is a condition given as a well-formed formula in
used to make the model amenable for exhaustive search. Thuedicate logic over the variablés andca, ta are set of actions
complete assurance can be provided using theorem proving &alled condition actions and transition actions, respectively);
model checking. Case studies are used to illustrate some of th@3ef : S — ({and,or} x 2°) is a mapping from the set
techniques. S to the cartesian product ofand, o with the power set
Currently available versions of the Simulink modeling toadf S and satisfies the following properties: (a) there exists a
are lacking in static analysis capabilities. They only offer simplénique root state”*, i.e., s"°! ¢ U;descendants(s;), where
simulation facilities that show how the model would behave udescendants(s;) is the second component df(s;), (b) ev-
der a particular input vector. A hybrid dynamical system evolvesy nonroot states has exactly one ancestor state, that is, if
in time via different trajectories through its state space. In a de< descendants(s1) ands € descendants(sz), thens; = s,
terministic system, a fixed given input induces a unique behand (c) the functionf contains no cycles, that is, the relation
ior. The complete behavior of the system is given by the setafon S defined bys; < sy iff s1 € descendants(ss) is a
simulations of the system under all possible input vectors. Estrict partial order. Iff(s) = (and, {s1,s2}), then the state
haustive simulation, however, is not feasible, as the numbersofs an AND-state consisting of two substatesand s,. If
possible inputs is usually infinite (even uncountable). In Se¢f{s) = (or, {s1, s2}), thens is an OR-state with substates
tion V-C, we generalize the notion of simulation to symboli@ands,.?
simulation and show how it can be useful. A configuratione € 2% x D of a Stateflow chart is a tuple con-
Symbolic simulation forms the basis of our tool suite. It isaining the set ofictivestates and a valuation for all the variables
used in different ways to do forward and backward propagatidn,D. The set of all valuations of a variable dewill be denoted
reachability computation, invariance checking, and typechedky D. If a nonleaf OR-state is active, then exactly one of its de-
ing. We illustrate this using simple examples from the hybriscendant substates should be active, and if a nonleaf AND-state
systems literature. is active, then every descendant substate should be active. The
set of all configurations that satisfy these conditions, denoted by
Il. STATEFLOW SEMANTICS C, is called the set ofalid configurations. The formal Stateflow
We provide semantics for Stateflow diagrams via a two-st&gmantics is given by a functigf F'| : C x Dy x Er +— C. This
translation: First, a Stateflow chart is transformed into a set fgiction maps a configuration, a valuation of the input variables,
communicating pushdown automata. Subsequently, the comr@0d an input event to a new configuration.
nicating pushdown automata is straightforwardly mapped into aThis semantics function is specified informally through exam-
SAL module. The translation from a Stateflow model into SAples in the Matlab documents. Broadly speaking, an input event
preserves the modularity of the original design, thereby allowimgcauses execution of the root state. A siecutedy firing
analysis of subcomponents of the original design while suitakiypy of its transitions that can be fired. If none of the transitions
abstracting other components and the environment. can be fired, the state causes execution of its (either one or all,
The communication between different pushdown automaiapending on if it is an OR-state or AND-state) descendants. A
allows for passing of control between any two automata and fitansitiont = (sre, dst, e, ¢, ca, ta) can fire if event is present,
only between automata adjacent in therarchyspecified in the conditionc is true, and staterc is active. A transitiort executes
original model. This is required for the translation of importartty preemptinghe source staterc, executingcondition actions
features likesupertransitionsnddirected event broadcasting ca, enteringthe destination staterc, and finallyexecutingthe
the Stateflow language. In addition, the automata share a gldlsahsition actionga. Executing an assignment action= expr
pushdown stack that is used to keep track of events that haypslates the value of the variableo expr. Executing an event
been broadcast. broadcast action is similar to doing a function call and involves
executing the target state of the broadcast event. A state-is

A. Stateflow Charts
- . . . . . LIf e is ¢, then the transition can fire on any event.
Mode control logic in Simulink models is described in term52ln the syntactic description of a Stateflow chart, we have ignored here objects

of hierarchical state machines specified in a variant of Stat@#edjunctionsfor simplicity.



emptedby first recursively preempting all its substates and fcontrol was passed on to this automata from one of its “descen-
nally marking the state inactive. A statedsteredby executing dants” or from the destination of a directed event broadcast. An
its default transitions. automata can be requested to preempt itself by settinréts

The informal semantics of Stateflow is clearly different fronremptionPort to true. An automata can be requested to activate
the semantics of Statecharts. Stateflow works only on oitgelf by setting it<defaultPort to true.
event at a time and there is no notion of “maximal and nor-Each pushdown automat; contains a unique boolean out-
conflicting” transitions. Event broadcasting is recursive. Morgut variable calledstate;. The state variable of an automata
over, after an event is processed, control needs to return to ith@dicates if the corresponding Stateflow state is marked active
state that generated that event. We need a stack to store thigot.

additional information. « Each pushdown automats contains a unique boolean local
variabletempVar of type StackAlphabetthat is used to keep
B. Pushdown Systems a copy of the event (present on the top of the stack). An AND-

sfate uses this for passing the event to all its descendants.
« Each pushdown automatd, contains a local variable corre-
sponding to every transition € 7" whose sourcarc and des-
G P tination dst states are such that = lca(sre, dst). We define
ut alphabet@)*® is the set of states of’, I is the stack alpha- ’
P P (@ P lca(sre, dst) to be the least common ancestor of statesand

bet, sj is the initial state, and\® C (Q% x T') x ¥ x (Q" x : . .

{push(T?), pop, €}) is the transition relation. Based on the curngtt'r: sre # Cis(; In Cajff;i ;_hdsf‘ lcﬁ(src_’ Ctl)slt) IS deﬁneddtp

rent control state, the symbol on the top of the stack, and thg 1€ Parent ofrc anddst.” The local variable corresponding
t is true whenever it ig’s turn to execute.

. : t0.
input symbol, the machine can update the control state and QL ; . . . .
Put sy P Il events (local, input from Simulink, output from Simulink)

ther push a symbol on top of the stack, pop the top symbol, o
Ieavé3 the stac)I/< unchangeg. The@é‘consi;spof valua?cioﬁs ofa &€ declared as stack alphabet symbols. The stack alphabet type

finite set of typed variableg’ = Vi UVi UVi U Ve, which are also contains a unique identifier corresponding to each nonleaf
- VI [0 L '

usually classified as input, output, local (state), and glolsi- state. This identifier serves as the return address passing control

ables. Thus, the s€}’ of states could possibly be uncountablebaCk' There is also a unique symbol in the stack alphabet type
t marks the end of the stack.

The input alphabet consists of valuations for the input variabl ) - ]
V. Now consider a transition = (src,dst, e, ¢, ca,ta) € T in
Let F = {A;,...,A,} be a finite set of pushdown systeméhe Stateflow chartD, E, S, T, f). First assume thatrc and

- 5 .
with mutually disjoint local variable sets. A functighfrom the  @st are descendants éfa = lca(src, dst).” The transitiont

combined set of input variables to the combined output varia§J/es ise to the following transitions in the automaita, :
set of F, that is, 1. If statesrcis active, event is present on the top of the stack,

L RYg and variablet is true, then perform condition actionilote that
fuVy = U V4 ) : .
assignment actions are easily performed. In case of an event

is a renaming function. A communicating pushdown system iss@oadcast action, a new stack symbol, say is pushed on the
tuple (F, f) whereF is a finite set of pushdown automata ghi$  stack, followed by pushing a symbol representing state(re-
a renaming function. Note that all the automata share the sajm address) anel on the stack. The automat,., detects the
stack, stack alphabet, and global variables. A communicatiogmpletion of the broadcast event action processing by testing if
pushdown system itself can be flattened into a single pushdoitgxcontrolBPort is true and the top of stack is;. In this way,

We provide formal semantics for Stateflow diagrams via
translation to communicating pushdown systems. Hét=
(34, Q4 T, s, A?) be a pushdown system, whexg is the in-

automata. all condition actions are processed.
_ 2. Ifall condition actions have been completed, then push a new
C. Mapping Stateflow Charts to Pushdown Systems symbol, say,,, on the stack and preemptc: The automata

A Stateflow modelSF = (D, E, S = {s1,...,s,}. T, f) is Agc is preempted by setting ,,..'s preemptionPort andcon-

translated into a communicating pushdown systésy . .., A, }, 9IFPort to true and settingl;.,'s controlFPort to false.

by transforming every Stateflow state € S into a pushdown 3 If state src has preempted, then perform transition actions
automatad; = (X7, Q', T, si,, A?). Automatad,., detects ifsrc has preempted by checking if top

of stack ise;» and its owncontrolBPort is true. Transition ac-
tions are performed in the same way as the condition actions.
4. If the transition actions have been completed, then push a
new symbol, say;s, on the stack and activate the destination
statedst: The destination statdst is activated by setting its

« Each pushdown automath inherits as global, input, and out-
put variables the Stateflow cha$tF"s local, input, and output
variables, respectively.
« Each pushdown automatd,; contains additional boolean
input variables that are unique to itdefaultPort; and

controlFPort anddefaultPort to true.

controlFPort;, resultPort; and controlBPort; (only 5 If the destinati tatelst has b tivated then indicat
nonleaf states), andreemptionPort; (only nonroot states). tH tth et es I'?'arItOI: S"’t‘) st has eerf1 T}C lvate | t& ;n ;C.? €
The controlFPort of an automata is true only if the control is at the fransitiory has been successiully comp'e esti

with this automata and the control was passed on to this :ﬁfﬁ has been activated by checking if the top of the stackyis
tomata from the “parent” automata. TieentrolBPort of an 4. 416 ignoring inner transitions here.

automata is true only if the control is with this automata and the&we add taca an input variable that indicatessf-c is active and four output
variables that, respectively, set tHefaultPort and controlFPort of dst and
3Global variables are considered to be both input and output. preemptionPort andcontrolFPort of src.



and if A;.,’s controlBPort is true. We indicate that transitian D. Analysis of the Pushdown System
was successfully completed by settiegnpVar andresultPort

) The Stateflow chart represented as a pushdown system can
accordingly.

be statically analyzed. By using the algorithm for reachability

Next consider the case where the least common andestorn Pushdown systems ], it can be determined if a pushdown
of the src anddst states is such thatrc anddst are not both SyStem requires a bounded or an unbounded stack depth. An
immediate descendants &fa. In this case. additional tran-Unbounded stack depth corresponds to infinite recursive event
sitions are required to make sure that the correct destinatfjigadcasting in the Stateflow charts. The Simulink/Stateflow
state is activated. This can be done in a straightforward wige! detects loops in event broadcasting at simulation time. So
though it involves addition of extra transitions into certain ajbat the bounded stack depth analysis can be performed, all non-
tomata. More specifically, ifsy = lca, s; sp = dst) is boolean data variables are abstracted and the analysis is per-
: : NP Vi .
the path from the statiea to the statelst, then new transitions formed on a finite state abstraction. The pushdown system can

and new input/output variables must be added to the autom@P e analyzed to detect any nondeterminacy in the Stateflow
A. A chart and other such properties. All of this analysis can be per-

S S e . . .
o7 formed in an completely automated and non-intrusive way. For

. Note that entry and exit act|o_ns that are assolmated with ?‘,Sté‘(r)%e theoretical results on analysis of recursive state machines,
in a Stateflow chart can be suitably included in the transitiol$e reader is referred t6]f

that are activated by theefaultPort and thepreemptionPort,
respectively. The during action can be similarly performed when [1l. CONTINUOUS DYNAMICAL SYSTEMS

control is passed on to an already active state. In this section, we consider the other extreme of a hybrid

Finally, additional transitions are required for capturing otheystem, that is, one in which there is no discrete component.
aspects of the semantics of Stateflow. Simulink provides a rich language for modeling such systems.
For the purpose of discussion in this paper, we assume that

Hierarchy - Whenever an automatd, corresponding to an Simulink models are purely continuous dynamical systems. A

AND-states is activated, it explicitly (through additional tran- ontinuous dynamical system is a tuglEc, U, Yo, I, f, h)
sitions) activates each of its descendant automata. Similagly,. . Uc, Ye are, respectively, opencéugéetgﬂztif’ I[ém
whenever automatd, is preempted, it explicitly preempts eachy, for sgr’necfi’nife vaIL’Jes of.m.p I’ C Xon f: Xo x (}C '_)

(Fa)f.|ts.?ets)c§lcdanttauto.rt‘rjata. S i it tested b TXc andh : X x Ug — Ye. HereT X denotes the tan-
rlority between transitions >ome transitions are tested beqq space o. We assume thaf satisfies the standard as-

fore c_)t_hers in a Statefiow chart: This is captured_by add't'or%umptions for existence and uniqueness of solutions to ordinary
transitions that set the local variables corresponding to a trar}ﬁ(j‘ferenti al equations

tion ¢ to true or false based on whether or not they are allowe The semantics of a continuous dynamical systéf, Uc, Ye, f, h)
to fire. Ifatrar.1§|t|o'n is unable to fire, then the local variable fo(fver an intervalr = [t;, ;] is a collection of tuplez, y, u)
the next transition is set to true.

" ] . . ithz:7— X¢g,y:7— Yo, andu : 7 — Ug satisfying
Control transitions: In Stateflow semantics, control is passe\é;1 initial condition: z(t;) € I,

starting from the root down the hierarchy to the leaf states, a continuous evolution: for allt € [t tf], () =
back the opposite way. This is violated only in the case of '(x(t) u(t)), and RREAY
rected event broadcast actions. Thus, we need transitions ?toui ut e\,/olution' for alk € [t;, ¢7], y(t) = h(z(t), u(t))

read the return address from the top of the stack and pass cofjote that Simulink models can describe much richer systems,
trol back to the respective state. _ too. For instance, a model could contain discrete blocks, as
When an active state gets control, it checks to see if any of {8 a5 a mixture of discrete and continuous blocks. (The dis-
transitions can be fired. This is done in order of the priorityete plocks introduce discrete stat into the state space

of the transitions. In case a state is unable to fire any trangi- _ Xp U X, and other definitions need suitable modifica-

tions locally, it passes control down the hierarchy. On returgyn) . Furthermore, Simulink blocks can also express algebraic
the descendant state passes the control back to its parent igghstraints via zero-time loops.

cating whether or not it was able to “use” the event (through theExampIe 1:As an example of a purely continuous system

resultPort variable). _ we consider simplified leader control from the design of auto-
Preemption transitions If the preemptionPort andcontrolF- 1 otaq highway system&4]. Suppose vehicle A is following
Port variables are true, then the automata needs to be preempigdicie B in a lane. Leyap denote the distance between the
_(i.e., made inactive). Preempti_on involves _recur_sively Preemplo vehicles0 be the velocity of vehicle A, and! be the ve-

ing all the descendants, marking oneself inactive, and passiggty of vehicle B. In the leader control mode, vehicle A follows
control back to the state on top of the stack. ~ vehicle B by suitably adjusting its velocity based on the sensor
Default transitions: If the defaultPort andcontrolFPort vari- reading giving the gap (and the rate of change of gap) between
ables are true, then the automata fires its default transitions g3 wvo vehicles. Let us assume that the dynamics of the system

marks itself active before returning control. _ are given by the following equations:
Junctions and flow graphs Junctions are translated into local ]

boolean variables and the special semantics associated with tran- vl = al

sitions over junctions are again encoded explicitly. We skip the 0 = al+vl—20
details here. gap = vl —0



Let us say that the initialization condition, or equivalently thattempt to make the precise connection between the two models
condition under which this control mode is triggered, is giveim this paper.

by gap > 2 andvl > v0. The problem is to show that the rear

car does not crash into the car in front, thatdsp > 0 at all IV. HYBRID SYSTEMS

times. Hybrid systems involve the interaction of discrete and contin-
uous dynamics. In the Matlab modeling environment, discrete
2 behavior in the plant and controller is usually specified using
In —» 1 (1)  Stateflow charts and the continuous behavior using Simulink
gap . . . .
outl blocks. Systems modeled using Simulink and Stateflow differ
from traditional hybrid dynamical systems in that all Simulink
models are deterministic (with respect to the simulation se-
Integratorl mantics). A generic Simulink/Stateflow model that contains
only one Stateflow chart is shown in FiguPe For purposes

Integrator2

Fig. 1
SIMULINK MODEL OF THE LEADER CONTROL MODE INAHS
CO——»rPa |
In1 —P> xy)
This leader control dynamic system can be modeled in SubSystem

Simulink as shown in Figuré. However, the initial conditions
gap > 2 A wl > o0 cannot be represented in Simulink.
Similarly, the accelerationl of the car in front cannot be left ‘ <
unspecified, and a specific funtion is required for performing a E <
simulation. See Exampléfor an analysis using symbolic tech-

nigues that reason about the complete state space. Chart
Fig. 2
A. Simulink Simulation Semantics A GENERIC SIMULINK /STATEFLOW MODEL

Simulink computes the values of functions: r — X¢
andy : 7 — Y for a given inputu : 7 — Yo by nu- ) ) .
merically integrating the state’s derivatives. The numerical i Simulation, the Matlab tool considers the Stateflow chart
tegration task is performed by either a fixed-step solver or2§ 1ust another direct feedthrotig8imulink block. Stateflow
variable-step solver. Assuming the use of a fixed-step sohfjarts in a Simulink model inherit their sample rate from the

with step sizeJ, the semantics of the continuous dynamical Sy§_imu|ink blocks, unless their sample rate has been explicitly
tem (Xc, Uc, Yo, I, f, h) over an intervalr = [t;,¢/] is the specified. Stateflow charts could also be triggered by signals
collection of 'Euplés(;: 7y u) satisfying ni from Simulink blocks. An unusual feature of Matlab is that a

(a) initial condition: z(t;) € I direct feedthrough loop through a Stateflow chart is treated as
(b) continuous evolution: for all € [t;, /], z(t + §) = x(t) + an algebraic loop (constraint). For discussion in this paper, we
Sf(x(t), u(t)), and assume that no such loops are present.
(c) output evolution: for alk € [t;, ¢/], y(t) = h(x(t), u(t)). _ Given an mtervair :_[ti,tf], a/MatIabIS|muIat|onlrun is de-

In case of a variable-step solver, the semantics of the contifed overa particularajectory{[t;, '5/1]’ [th,ta], - - [t 1, tal},
uous dynamical systetiXc, Uc, Ye, I, £, h) over an interval Wheréty = ti, t, = ty, andt; = t; < ti41. The choice of
7 = [t;, t7] is the collection of tuplegz, y, u) satisfying thet,'s where the Stateflow block executes and makes discrete
@) initial condition: z(t;) € I e jumps to the state is governed by the sample rate of the State-
(b) continuous evolution: for all € [t;, t/], z(t + §) = x(t) + flow chart. The semantics in each interVigl, ¢ 1] is given as
5f(x(t), u(t)) for somed < § < ¢, and described in Sectiohl-A . The state at timé is given using the
(c) output evolution: for alk € [t;, ¢f], y(t) = h(z(t), u(t)). Stateflow semantics applied on the initial state at time instance
Heree is some bound on the sample time the variable-step solVer ) . ) )
uses. Note that the semantics of a hybrid dynamical system is de-

In subsequent sections, we show that even though analy¥t§d as a collection of all tuple-, z, y, u) such thatr is any
of continuous dynamical systems with respect to their origingjectory andc : 7 — Xp x X¢, y : 7 — Yp x Y¢, and
semantics might be infeasible, simple tools can be developed™ — Up x Uc are mappings that satisfy the conditions (a)—
that perform analysis with respect to these alternate simulatié of Sectionlll-A for all intervals|t}, tx+1] € 7 and the con-
semantics. When combined with the various techniques tigion for discrete evolution at every,i = 1,...,n — 1.
have been developed for analyzing discrete systems, this give§xample 2:As a simple example of a hybrid system, con-
us an approach for developing tools for hybrid systems. THiler a thermostat that controls the temperaturef a room.
discretized systems we consider are not theoretically sound AB€ thermostat senses the temperature and turns a heater on and
stractions of the original systems. However, for a very larg¥f if the threshold values:,,,i, andx.q. are reached, where

class f)f S_yStemS and for mPSt practical systems, they do prowd%locks whose current outputs depend on the current inputs are called direct
good insight on the behavior of the actual systems. We do netdthrough blocks.



0 < Timin < Tmaz aANATin, Tmaex € RT. When the heater is

off, the temperature of the room decreases and when the heater Enable
is turned on, the temperature increases according to the follow-
ing dynamics: » xdo m%
Out2
off : © = —-Kzx ) ’
on : & = —K(x—h) Flg. 5

SIMULINK MODEL OF THE HEATER “OFF’ MODE
Here, the parametdk € RT is the room constant and the pa-
rametem > T.,in +Tmaz 1S a real-valued constant that depends

on the power of the heater.
The discrete logic to switch between these two modes is given Enable
by the following two guarded transitions:
state = off N © < Ty — State = on et _K+
state = on A T > Tmes —— State = off )
Let us say that the initial condition is given by> x,,., A — % s
2 < Tmae and the heater is off. out2
This hybrid model of the thermostat can be represented in D, :("-)
Simulink and Stateflow as shown in the figures below. The com- In1 100
plete system contains a Stateflow chart that keeps track of the
mode of the system and Simulink blocks that describe the con- Constant
tinuous dynamics. See Figuge Fig. 6

SIMULINK MODEL OF THE HEATER “ON” MODE

|-> In1 out2

f

o] x triggered Simulink subsystem blocks describe the dynamics of
[ror the temperature in each of the two modes and are shown in Fig-
i Ot ures5 and®6.

r Note that we have used some hypothetical values for the con-
[—] stantsh, K, Tin, anNdz,,.. in the Simulink model. See Exam-
mod&, x|« ple 6 in SectionV-E for symbolic analysis of the more general
%J example with symbolic parameter values.

Fig. 3
SIMULINK MODEL OF THE THERMOSTAT EXAMPLE

V. ANALYSIS FORHYBRID SYSTEMS

We describe new techniques for formal verification of hy-
brid models. We showed that hybrid system models in
The Stateflow chart contains two states corresponding $imulink/Stateflow can be translated into transition systems.
whether the heater is “on” or “off” and transitions between theSénese transition systems are represented in SAL and techniques
two modes and is shown in Figude for their analysis are implemented as tools over SAL. This
makes the tools more generally applicable and independent of
the Simulink/Stateflow modeling language.

A. An Overview of SAL
offmode

entry:mode=0 Symbolic Analysis Laboratory (SAL) is a framework for
combining different tools to perform symbolic analysis of dis-
crete systems. At the core of SAL is a language for specifying
transition systems in a compositional way. This language serves
as the target for translators that extract the transition system
description from various domain-specific modeling languages.
The intermediate language also serves as a description from
which different analysis tools can be driven. Existing analy-
Fig. 4 sis tools are interfaced with SAL by translating the intermediate
STATEFLOW COMPONENT IN THE THERMOSTAT MODEL language to the input format for the tools and translating the
output of these tools back to the SAL intermediate language.
A transition systemmodulein SAL consists of sstate type
The Stateflow chart outputs the mode based on which theinitialization conditionon this state type, and a binainan-
Simulink component chooses a particular dynamics. The twiion relationon the state type. The state type is defined by

[X <= xmin]

onmode
entry:mode=1

6



four pairwise disjoint sets oihput, output global, andlocal In the above descriptionj is constrained to be betweén
variables. The initialization and transition relation are specifiethd 1. In different instances, the upper bound (whichligh
using guarded assignments over a strongly typed expression lais case) may need to be different. In case of a fixed time step
guage. Aguarded assignmermonsists of a guard and a list ofsemantics§ is replaced by a constant.
assignments. Ayuard is a boolean expression in the current
local, global, and output variables and current and next ingat Symbolic Simulation
variables. Anassignments an equality between a left-hand- The Matlab Simulink tool provides extensive simulation facil-
side next variable (i.e., value of the variable in the next discretg. Simulation refers to traversing one trajectory of the system
time step) and a right-hand-side expression in current and neghavior from the possible infinite. To run a simulation, the de-
variables. New modules can also be defined using synchronelgmer must (a) specify initial conditions by giving values of all
and asynchronous composition of existing modules using a ggate variables, (b) choose a particular input function (in case the
naming facility to avoid name clashes. system has inputs coming from the environment), (c) give some
The semantics of a SAL modul®f is given in terms of a default values to all parameters used in the modeling of the sys-
Kripke structure(Q, E, L), whereQ is the set of states (a statetem, and optionally (d) choose a solver and/or a sample time for
is a valuation of the input, output, local, and global variableg)ertain blocks. The simulation tool then computes the system
E c Q x Q is a binary relation on the state spagenduced by behavior under these specific choices.
the guarded transitions, ardis a labeling function that maps Even after doing several simulations with different choices
each edge i to the name of the guarded transition that inducéder (a)—(d) above, the designer cannot be sure that the system
that edge. Properties of a SAL module can be stated in angrks correctly inall possible scenarios. For instance, in the
temporal logic, and the interpretation is the usual ¢ii&. [ leader control system of Examplesimulation would show the
behavior of the system under a particular profile of the acceler-
B. Simulink/Stateflow Models and Hybrid Systems in SAL  ation of the car in front. But, safety requires that there be no
crash undeeverypossible acceleration maneuver of the leading
Following the discussion in Sectioris and Ill-A, we can car. Similarly, running simulation on the thermostat model of
transform certain Simulink/Stateflow models into SAL. To seBxample2 will show that the thermostat works as desired for
this, note that each pushdown automata is translated directly ite particular values of parametérs K, zpin, andz,,q, that
a SAL basemodule. Furthermore, the differential equations afjgere chosen for the simulation.
ing from the Simulink component are converted into difference Symbolic simulatiomefers to performing simulation on sets
equations as shown in SectidhA . Note that we have a choiceof states represented symbolically. Thus, symbolic simulation
of using the discretization based on either the fixed step simufiffers from regular simulation in two respects. First, it simulta-
tion semantics or the variable step simulation semantics. Usifgously traverses a bunch of trajectories instead of a single tra-
the same ideas, we can also represent suitable discretized m@gtory through the state space. Second, a set of states is repre-
els of hybrid dynamical systems in SAL. We show the benefit génted symbolically rather than explicitly. This allows represen-
doing this via some illustrations in later sections. tation of a potentially infinite number of states and simulation
Example 3:We can describe the leader control continuous a potentially infinite number of trajectories in one symbolic
dynamical system outlined in Examplein SAL by using the simulation.
variable step simulation semantics for the differential equationsWe use the language of first-order logic to symbolically rep-

as follows: resent sets of states. We recall that a state is a valuation of all
AHS1 : CONTEXT = the state and output variables. A set of states can be specified
BEGIN using a first-order formula over the state and output variables.
leader :' MODULE = A crucial step in performing symbolic simulation is the compu-
BEGIN tation of the set of all states that are reachable from the current
INPUT al : REAL, § : REAL set of states (represented as a first-order formulap(df y) is
LOCAL gap, vi, vO : REAL a first-order formula that represents the current set of states, and
INITIALIZATION ) ) ,
gap > 2 AND vl > V0 U(x,y, u,u’) — /\(xz =ei(z,y,u,u))
TRANSITION ‘
[ is a guarded transition with guard(z,y,«) and assignments
0<oNdI<1— r} = e;(x,y,u,u),” then the set of states reached after taking
vl’ = vl + ¢ * al; this transition is given by
vO' = v0 + 4 * (al + vl - vO), o o, o
gap’ = gap + 4 * (vl - vO) ] Az, g,a,a): [oZ,g,a,49) A w(g“,J)
END: Ni(zi = €i(2,9,u,u)) A N\;(z; = 25)].

END Note that ther ;s in the above formula are all the state and out-
Note that SAL allows us to state the initial condition symbolipyt variables that are left unchanged by the guarded transition.

cally. It also explicitly specifies the acceleratioh of the lead- TThes-'s are state and outout bl da that
. . . . . z; state and output variables and #'s are expressions that can
ing car to be an input variable so that analysis tools can SU'ta'B tain variables, y, u, andu’. The expressior; evaluates to a value of the

deal with it. See Examplé. same type as;.



Note also that the input variables are existentially quantifie8plving for quantified variable Certain quantified variables
which means no assumption is being made on them. Howewan be easily eliminated by solving for them. For example, given
if the input is known to satisfy certain constraints, then these ctre equalityx + y = z + 5, one can solve fog to obtainz =

be incorporated in this framework as well. z+5—y. Thus, a quantified formuldz : z+y = 2+5 A ¢(x)

The existential quantifier in the expression above must Eeequivalent to the formula(xz/z + 5 — y), wherez/z +5—y
eliminated to ensure that the formulas do not get arbitrarily largenotes that we replace all occurrences of ¢ by the expres-
very soon, and we discuss this in SectioD. sionz + 5 —y.

Other approaches to performing simulation that are not badeatjical simplification: We can use logical equivalences to re-
on the use of a quantifier elimination procedure have been disice the size of the formula that is given to the quantifier
cussed in the literature as well. A particular case of symbolimination tool. One of the tautologies that is very useful is
simulation is the idea of using intervals to represent sets @fx : ¢(z) A ¥) < (3z : ¢(z)) A 9, if  does not occur inp.
states. The polygonal state space can then be simulated u3ihig allows us to move parts of the formula that do not contain
particular numerical methods. There is a need to do an ovilte quantified variable outside the scope of the quantifier, thus
approximation whenever the state set is not representable lyeducing the size of the quantified formula in the process.

polygon [LZ]. Finally, the quantifier elimination procedure is quite sensi-
N o tive to the ordering of quantified variables. Logically equivalent
D. Quantifier Elimination quantified formulagiz3y : ¢(z,y) andIyIz : ¢(x, y) may take
The cylindrical algebraic decomposition (CAD) algodrastically different time and space resources for computation.
rithm [13, 21] decides the full first-order theory (equality and

the greater-than relation included) of ordered real closed fielgs. Invariant Generation and Checking

Given a set of polynomials over variables, the CAD proce- Symbolic simulation can be used to compute the reachability

dure decomposes the realdimensional space into a finite setregion as well. In the-th simulation step, the symbolic simula-

of regions where each polynomial’s evaluation is sign-invariariton procedure yields the set of states that are reached in exactly

The quantifier elimination procedure for real closed fields is obtransitions. Thus, in order to compute the reachable state set,

tained as a side effect of the CAD decomposition. Over the laste must collect the set of all states that are reachabistieps

25 years, the CAD algorithm has been improved and made méoei = 0,1,2,.... Each successive iteration would then yield

efficient [29,27,19). One such efficient implementation is availsuccessive approximations of the reachable state set. The exact

able via the tool QEPCADZ], which is built over a symbolic reachable state space is obtained only in the condition that this

algebra library called SACLIBI1]. process terminates. In case of termination, the set of reachable
The tool QEPCAD can be used to perform quantifier elimstates is obtained as a formula, which by definition is also the

nation over the first-order theory of real closed fields and, cosirongest invariant for the given transition system.

sequently, it can be used as a decision procedure for the samexample 5:In Example4 we showed a symbolic simulation

theory. As seen above, quantifier elimination is a crucial stsgep for the the leader control system. Assuming the same no-

in symbolic simulation and reachability algorithms. Note thdation and same formulag’s from before, successive approxi-

the QEPCAD tool cannot handle variables that are not of typsationsi;’s of the reachability set would be

real, and hence it can be used only on formulas in which all the

nonreal variables can be eliminated by suitable preprocessingo = ®o = gap =2 N vl = v0

Example 4:Following up on Exampled and 3, we now ¢; = g V ¢
shovxllz;symbolic simulation step for the system described in Exc  — 4, v (gap > 2 A 9gap + v0 — vl — 18 < 0) V
ample3:

(v0 <wl A 9gap +v0 — vl — 18 > 0)

: > > . . .
Po gap 2 2 A vl 200 The last formula) is logically equivalento the formulagap >

b1 3(9@17,07171):07517(75) tgap >2 A vl >0 A 2 A wl > v0. This logical equivalence can also be shown us-
vl =vl+dal A ing the quantifier elimination decision procedure that is used in
00 = v0 + &(al + vl — v0) A the symbolic simulation steps. This establishes that the formula

g IS an invariant of the system. The invariafyf implies that

gap = gap + o(v1 = v0) A gap > 0, and this establishes that the rear car never crashes onto

0<o<1 the car in front under the given leader control law.
&)+ (gap > 2 A 9gap +v0 — vl — 18 < 0) V The method outlined above for generating an invariant as-
(v0 < vl A 9gap +v0 — vl — 18 > 0) sertion by computing the exact reachable region using forward

symbolic propagation is, in general, not sufficient in many cases.
We have shown only one simulation step in the example abdwesome of these other cases, a combination of approaches based
because we caprovethat gap > 0 always using the results on forward and backward propagation with suitable narrowing
from this one symbolic propagation step. See Exarbple and widening might be required. Se&] for the details. For an

The quantifier elimination problem has a high time and spaegample of some of these ideas, see also Exatple

complexity. Consequently, techniques for simplification are re- However, the technology outlined abovesisfficientfor in-
quired before the quantifier elimination tool can be used. imriantchecking To check if a formulap is an inductive invari-
particular, we perform the following two simplifications: ant, we test (i) if the formula describing the initial states implies



the formulag and (ii) if the result of symbolic propagation startsmaller neighborhood af*, the upper and lower bound anin

ing from the formulap (logically) implies the formulap. Both the invariant gets closer to,,,, andz,,;,, SO that in the limit,

of these tests can be done using a quantifier elimination protlee invariant is(state = on A z < Zye) V  (state =

dure. In fact, Exampled and5 can also be seen as checkingff A z > Zin)-

that the formula given as the initial condition is an inductive in- We emphasize here that in this computation, no assumption

variant. was made on (i) the values for the parameters.,,;,, and
Simple invariants on the values of variables can also be speg;..., or (i) the initial state of the system.

ified usingtypes Richer type system allows specification of

more complex relations between the values of different vafi- Abstraction of the Continuous Component

ables. Invariant checking can be used to perftypechecking  an apstraction of a system is any system that exhibits all the

on such rich type systems. The designer can easily annotateqaifaviors (trajectories) of the original system, possibly more.
Simulink/Stateflow model by such type information using addjxpstract systems are usually smaller and are obtained by suit-

tional Simulink blocks. _ _ ~able generalization or pruning of information from the original
Toillustrate that the symbolic propagation method can in fag{stem. Abstraction is essential for analyzing systems contain-
generatenvariants, we consider the thermostat example.  jng a large number of state variables. Since fairly efficient model

Example 6:The thermostat hybrid system discussed in Exhecking tools are available for searching through a large, but
ample2 can be expressed using guarded transitions. Let us figite, (discrete) state space, one of the challenges in building
sume that the variables, z,in, Zmaz, @ndh are state (local) analysis tools for hybrid systems is to come up with suitable ab-
variables declared to be reals. The variable declared to be a stractions for the continuous components that are refined enough
real input variable and is constrained to be betV\lee.ndl/K to suffice for proving the properties of interest.

, In the most simple form, one could use the most coarse ab-
state = off N & < Tmin — Smte, =on straction of the continuous component of a hybrid model. The
state = on N\ T 2 Tmag —  state’ = off most coarse and trivial abstraction of any system is the system
state = on A T < Tmaz N 0> 0 N KO <1 — that accepts all behaviors. This corresponds to having no in-

@ = a4+ (=K)(x—h) formation about the continuous subsystem. This means that we
state = off N &> Tmin N 6> 0 N Ko< 1 — execute the discrete transitions in a completely nondeterminis-
@' =z +6(-Kz) tic environment. The resulting discrete transition system can be
model checked, but such an analysis is unlikely to give any use-
ful information about the model.
More refined abstractions can be constructed using invariants
at are established using the techniques of Settign

The parameters,,,;,, Tmaz,» andh could be any real numbers
that satisfy the conditiod < x,,in < Tmae < h (this is part
of the specification of the problem). We do not explicitly ment-h
tion this conjunct in the expressions below, but it is implicitly In general, construction of an abstraction for a transition sys-
assumed in the computation. tem involves, Y
Starting with an initial state in which we assume nothing 0(il) defining the abstract states: In case of predicate abstraction,

the value oft andstate variables, symbolic simulation gives the ; : - : .
certain predicates over the original local, input, and output vari-

following: : Lo o
9 ables are mapped onto boolean variables (losing information in
) the process); and
oo : true . . o o
. o < B (i) mapping the transitions to abstract transitions: In case of
¢ (H(St‘_lte)  state = off N &< tmin A state = on)  predicate abstraction, this amounts to mapping the guard and as-
vV (3(state) : state = on A T > Tymee A state = off)  signments of the original system into abstract guards and tran-
Vo (3(z,0) : state = on A T < Taz A sitions over the new boolean variables. This requires certain
0<8<1/K A a=7— Ko —h)) theorem proving capabilities.

Invariants are useful in both of the above steps. The atomic

V. (3(2,9) : state = off N T > Tmin A formulas that appear in an invariant can be used as predicates

0<6<1/K N z=2— Kdzx) that are mapped to new boolean variables. Furthermore, the in-
¢ (state=on A T < Tyin) V variants also help to discharge some of the proof obligations that
(state = off A &> Tyas) V arise in step (ii) of the above process.
- Example 7:Controllers for hybrid systems are often de-
(state = on Az <h) V signed under a multiobjective settingc] 3¢]. Most often, the
(state = off N x> 0) requirements are that of safety (i.e., all the system trajectories
01 (state = on A z < h) V (state = off N x> 0) satisfy certain constraints) and efficiency (i.e., optimizing cer-

tain other parameters). We showed in Exantjtleat the switch-
We do not show the rest of the computation here, but it can g law between the two modes of operation of the thermostat
checked that we get the same formula after the second symbobatrol is safe. Now if there is an additional controller hierarchi-
simulation step as well. Thus, the set of states represented bycally above the simple mode switching one, which, for example,
is an invariant of the system. controls the power of the heater (value of the paranmiétey op-
Note that we can get a stronger invariant if we make a strondimnize power consumption, we could verify that by using a suit-
assumption on the parameter As § is constrained to be in a able abstraction of the original system model. The abstraction

9



could be a simple one based on the inductive invariant propettygoretic structure over the reals in which every (first-order) de-
we established for the base system in Exangple finable subset dR™ is afinite union of points and open intervals
The combination of building abstractions using informatiois called ao-minimal structure. It is shown in5] that hybrid

from the invariants generated by symbolic propagation asgistems that are definable over some o-minimal structure admit
model checking the resulting system is a powerful tool chafimite abstractions. The class of o-minimal structures over the
for scaling the techniques proposed in this paper to larger amgls includes structures with richer signatures as well.

more complex embedded control systems. The transition system we associate with a hybrid system in

this paper is different from the usual one. In particular, the tran-

VI. CONCLUSION sition system that corresponds to the continuous flow in hybrid

Much work has been done in the design and analysis of hybfstems, as defined in in SectibhA , is an approximation and
systems [4,7,4,8,17]. This paper is an attempt to develop tool¢S different from the standard definition, as &j.[

and techniques for performing formal analysis on models that
are developed in Simulink and Stateflow. This MathWorks soft-

ware is one of the leading tool suites available to engineers fof
designing hybrid and embedded control systems. But the tech-
niques developed in this paper are not specific to this particular
input formalism. We have implemented our analysis tools over
SAL, which is an intermediate format for representing transition

systems, quite independent of any modeling language. [2]

We have presented a wide range of formal technologies for
hybrid control systems starting from completely automated and
invisible techniques like static analysis of simple program prop-
erties and symbolic simulation, through extended typecheckirg}
to abstraction and invariant generation. These analysis tools can
be embedded into design languages like Stateflow/Simulink to
provide greater assurance and quick error detection.

Stateflow design language is based on the concept of hier-
archical automata from Statecharis], but the semantics of
Stateflow diagrams is different from the semantics of Statecharts
in several ways. There have been efforts at providing semantics
to Statecharts1[5]. Hierarchical automata were used for thig4]
purpose in §0], and a set of several different semantics for Stat-
echarts was given ir8[/].

Quantifier elimination tools have been used in the hybrid sys-
tem world in a variety of contexts. Formulas and expressions
over the first-order theory of real closed fields arise naturallg]
when linear and non-linear control systems are described. Many
problems in control theory can be reduced to finding solutions
of systems of polynomial equations, disequations, and inequali-
ties [27]. Quantifier elimination is also used in obtaining decid-
ability results for reachability in safety-critical embedded sy$6]
tems and hybrid systemg{]. Many applications, especially
in mechanical engineering and in numerical analysis, lead to
formulas with trignometric functions involved?]. In fact,
CAD-based quantifier elimination procedures have been used
to solve problems regarding stationarity, stability, and reacha-
bility of control system designs2[]. Requiem B1] is a tool for
performing exact reachability state set computation for linepd]
systems specified using nilpotent matrices. It uses the quantifier
elimination procedure implemented inside Mathematica. The
computation of the reach set for parametric inhomogenous lin-
ear differential systems is done using implicitization and quan-
tifier elimination in []. [8]

A finite decomposition of the real spa@®® into open sets
and points such that each partition element preserves a first-
order formula over reals is crucial not only for getting a deci-
sion procedure for the first-order theory, but also for obtaining
finite abstractions of certain hybrid systerak [In fact, amodel- [9]
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