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Abstract
In this paper, we study the problem of automatically solving
ruler/compass based geometry construction problems. We first in-
troduce a logic and a programming language for describing such
constructions and then phrase the automation problem as a program
synthesis problem. We then describe a new program synthesis tech-
nique based on three key insights: (i) reduction of symbolic reason-
ing to concrete reasoning (based on a deep theoretical result that re-
duces verification to random testing), (ii) extending the instruction
set of the programming language with higher level primitives (rep-
resenting basic constructions found in textbook chapters, inspired
by how humans use their experience and knowledge gained from
chapters to perform complicated constructions), and (iii) pruning
the forward exhaustive search using a goal-directed heuristic (sim-
ulating backward reasoning performed by humans). Our tool can
successfully synthesize constructions for various geometry prob-
lems picked up from high-school textbooks and examination pa-
pers in a reasonable amount of time. This opens up an amazing
set of possibilities in the context of making classroom teaching
interactive.

Categories and Subject Descriptors D.1.2 [Programming Tech-
niques]: Automatic Programming; I.2.2 [Artificial Intelligence]:
Program Synthesis; K.3.1 [Computers and Education]: Computer
uses in Education

General Terms Algorithms, Theory

Keywords Program synthesis, Ruler-Compass geometry con-
structions, Abstraction, Forward and Backward Analysis

1. Introduction
Program Synthesis is the task of automatically synthesizing a pro-
gram in some underlying language from a given specification using
some search technique [12]. It has been used for a wide variety of
applications targeted towards various classes of users.
• Discovery of new algorithms for Algorithm Designers: Bit-

vector algorithms [14], Mutual exclusion algorithms [3, 21],
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Concurrent algorithms [34, 39], parameters of embedded sys-
tems [6, 37].
• General purpose programming assistance for Software Develop-

ers: Partial programming [4, 23, 33], Template based program-
ming [35, 36], Automated debugging [40], Program understand-
ing [18].
• Automating repetitive tasks for End-users: Programming by

Demonstration systems [9, 26], Programming by Example sys-
tems [13, 15], shell scripts [25].
However, we feel that the most revolutionary application of pro-

gram synthesis technology can be in K-12 education. The potential
impact size of target population is simply mind boggling: billion
students and teachers (compared to say ten thousand algorithmic
designers, million software developers, and hundred million end-
users).

Program synthesis technology can be applied to automating
constructions for various domains in high-school curriculum. Ex-
amples of such constructions include (i) ruler/compass based geo-
metric constructions in mathematics (ii) constructions of chemical
compounds or biological proteins using (bio)chemical reactions un-
der appropriate conditions governed by catalysts, temperature and
pressure in chemistry and biology, (iii) constructions of electrical
circuits using series and parallel composition of resistances and ca-
pacitances in physics, and so on.

One might wonder what is the connection between program
synthesis and automating constructions. Programming languages
allow us to formally describe these constructions. Take the example
of geometric constructions that involve constructing a set of objects
O with desired properties φ2 from an initial set of objects I with
certain properties φ1 using a series of steps S, where each step
involves using ruler or compass to create new objects. The objects
I and O are like program variables and S is the program whose
instruction set includes ruler/compass operations.1 The formulas φ1

and φ2 play the role of precondition and postcondition respectively.
Checking the correctness of a given geometric construction is like
checking the validity of the Hoare triple 〈φ1, S, φ2〉, which is a
program verification problem. In fact, this verification problem has
been studied intensively in the context of geometric constructions.
Synthesizing the geometric construction S, given φ1 and φ2, is the
program synthesis problem, which is what we address in this paper
in the context of geometric constructions.

We focus on automating geometry constructions because ge-
ometry is regarded to be one of the most difficult as well as im-
portant subjects in high-school curriculum. Geometry education is
supposed to help exercise logical abilities of the left-brain, visu-
alization abilities of the right-brain, and hence enables students to
make the two connect and work together as one. Geometric con-

1 In fact, a programming language for drawing such geometric objects is
used to motivate freshman and non-major students to take up programming
lang. course at UCSD [29].



structions have a close connection to axiomatic logic. The skills
needed to figure out how to construct, say, a square without a pro-
tractor, are closely related to the thinking skills needed to prove
theorems about squares [1]. The visual nature of geometry makes
it initially more accessible than other parts of mathematics, such
as algebra or number theory. “Construction can reinforce proof and
lend visual clarity to many geometric relationships.” [30] “They
give the secondary school student, starved for a Piagetian concrete-
operational experience, something tangible.” [28].

One might also wonder why we insist on high-school curricu-
lum as opposed to undergraduate/graduate curriculum for our suc-
cess metric. We want to build tools that are scalable, predictive in
their power and can have a real practical impact. Given scalabil-
ity limitations of program synthesis techniques in terms of being
able to automatically synthesize only relatively small snippets of
code in a reasonable amount of time, high-school problem solving
(where solution size is relatively small enough and are less involved
compared to undergraduate/graduate problems) is an excellent fit.

We present a new program synthesis technique for automating
geometry constructions. Our program synthesis technique is based
on exhaustive search, but exploits three key ideas, inspired by
human experience and intelligence, to make it scalable.

Idea 1: Reducing symbolic reasoning to concrete First, we re-
duce the problem of symbolic reasoning to concrete reasoning. We
reduce the problem of “obtaining a construction that can transform
input objects I with precondition φ1 to output objects O with post-
condition φ2” to that of “obtaining a construction that can perform
the transformation on a randomly chosen concrete model for I and
O that satisfies constraints φ1 and φ2”. In our implementation, we
generate such a random model using a numerical (multivariate)
function minimization procedure. The probabilistic soundness of
this reduction relies on a deep theoretical result that is an exten-
sion of randomized polynomial identity testing theorem. (This re-
sult is analogous to reducing verification of a straight-line program
to testing on a random input.) This reduction is critically important
because symbolic reasoning would not scale - it would make our
technique multiple orders of magnitude slower, and hence useless
in an interactive setting. This reduction is inspired by how humans
also work out geometric constructions by visually working out the
construction on a randomly chosen configuration.

Idea 2: Using extended set of common constructions When hu-
mans typically solve a construction problem, they don’t attempt to
construct everything from first principles. They think in terms of
some key higher level abstractions, where they exploit their knowl-
edge of how to perform some key multi-step constructions. Our
technique, which is based on exhaustive search, exploits this obser-
vation by working with an extended set of common constructions
found in textbook chapters (Table 2) as opposed to simply working
with a basic minimal set of constructions (Table 1). This can also
be thought of as giving preference to certain combinations of basic
construction steps, which is related to the notion of using priors in
the machine learning community. This allows for transforming the
search process with small width and large depth to one with large
width and small depth.

Idea 3: Performing goal-directed search We prune our forward
exhaustive search by applying a construction (from the extended set
of constructions) only when the goodness measure function sug-
gests that it may be useful to apply that construction. For example,
the goodness measure function might suggest that if a construction
results in a line L1 that passes through a given output point P , then
it may be useful to apply that construction (since we might be able
to construct another line L2 in the future that also passes through
P , and hence intersection of L1 and L2 can yield desired point P ).
This is inspired by backward reasoning performed by humans in

doing such constructions. This can also be thought of as pruning
the forward search by integrating it with backward search.

Based on these ideas, we built a tool for automating geometry
constructions. Our tool could solve most standard geometry con-
struction problems in less than a second. Surprisingly, it could also
solve some nontrivial problems whose solution is not immediately
clear, such as, constructing a square whose (extended) sides pass
through four given points. While our focus is on synthesizing ge-
ometry constructions, the basic concepts used here could be appli-
cable in other domains as well.2

Another interesting application of our algorithm is in the con-
text of dynamic geometry, or creating animations. Suppose we can
find a model for declarative constraints using numerical methods in
1 second, and it takes 5 seconds to synthesize an equivalent con-
struction for the declarative problem specification. The importance
of having the construction (besides education purposes) is that run-
ning that construction will take micro-seconds. So, if the goal is
to quickly re-compute coordinates of various points after assigning
a new value to the free variables, running the construction will be
faster by orders of magnitude compared to using numerical meth-
ods.

This paper makes the following key contributions.

• Using the specific example of geometry constructions, the paper
points out the role that programming languages, logic, and
program synthesis can play in the area of building automated
tutoring systems, which is traditionally considered to be a sub-
field of AI.
• We present a novel search algorithm that combines three key

ideas picked up from different research areas: property testing
(theoretical computer science), higher-level abstractions (pro-
gramming languages), and goal-directed reasoning (AI). We
believe that the principles underlying our search algorithm are
general enough to be applicable to other automated problem
solving domains, and other program synthesis applications.
• We report on a successful experimental prototype thereby es-

tablishing the feasibility of building automated tutoring sys-
tems around the important high-school subject of ruler-compass
based geometry constructions.

2. Overview of our Approach
Consider the problem: Construct a triangle, given its base, a base
angle and sum of the other two sides. We wish to synthesize a
program S that performs the above construction using ruler and
compass instructions. Before we can discover S, we first need to
formally state its inputs ~I , output ~O, its precondition φpre and its
postcondition φpost.

The inputs ~I consist of a line segment (points p1, p2, and a line
L = Line(p1, p2)) that defines the base of the desired triangle, a
length r and an angle a.3 The desired output ~O consists of a single
point p.

The precondition φpre arises from the triangle inequality as

r > Length(p1, p2) (1)

2 The idea of representing knowledge as a library and then constructing new
structures by composing elements of the library can be viewed as one way
of interpreting (Turing award winner) Ed Feigenbaum’s recent remarks in
an interview in ACM Communications, where he calls out for having a
way for computer to read books and learn to solve problems after that, as
opposed to building domain specific tools [32].
3 In our formalization of geometry constructions, we distinguish between
the cases when we have just two points on a plane versus when we also
have the line segment connecting those two points explicitly drawn on the
plane.



The postcondition φpost can be stated as,

Angle(p, p1, p2) = a ∧ Length(p, p1) + Length(p, p2) = r (2)

After we have a formal description of the inputs ~I , outputs ~O,
precondition φpre and postcondition φpost, we next find a (ran-
dom) concrete input-output pair that is consistent with the pre/post
specification (Idea 1). In other words, we need to find coordinates
of the input points p1, p2, the distance r, the angle a, and the coor-
dinates of the output point p such that the conditions in Equation 1
and Equation 2 are satisfied. These conditions are (multivariate)
nonlinear constraints over the reals. We translate these nonlinear
constraints into a multivariate nonlinear optimization problem (as
described in Section 6.2) and then use a (numerical) multivariate
nonlinear optimization routine to find a concrete input-output pair.
During this process, we ensure that the concrete input-output pair is
picked sufficiently randomly. Let us say that we find the following
concrete input-output pair:

L = Line(〈81.62, 99.62〉, 〈99.62, 83.62〉)
r = 88.07 a = 0.81 radians
p = 〈131.72, 103.59〉

Let (~Ic, ~Oc) denote these concrete input-output objects. (Here all
numerals are truncated to 2 digits after decimal, but the implemen-
tation uses a much higher precision).

Now we have a concrete input-output pair, (~Ic, ~Oc), for the
problem. The geometry synthesis problem is also given an exe-
cutable library of functions that should be used to synthesize S.
For example, assume we have a library that implements the “ruler-
compass” functions in Table 1 (the functions take concrete inputs
and output concrete objects).

Our tool now searches for a program S that works correctly on
this one input-output pair (~Ic, ~Oc). It searches for S by enumerat-
ing programs up to a certain length. However, to reduce the size of
the search space, rather than using the basic library in Table 1, we
use an extended library that additionally implements functions in
Table 2 (Idea 2). Furthermore, we use a heuristic goodness metric
to make the search for S goal-directed (Idea 3).

When searching for S, we generate several partial programs.
These partial programs will, when given the input ~Ic, generate dif-
ferent geometric objects like points, lines and circles - all of which
are represented using points. Figure 1 shows all these intermediate
points in two different settings. On the left, we show the points gen-
erated when we use the goodness metric to prune the search space,
and on the right, we show the points generated when we do not use
the goodness metric. It is clearly evident that when we do not use a
goodness metric to prune the search space, then the approach does
not scale.

Once we find a program S that works on input ~Ic, we return it
if it also works correctly on a second randomly sampled concrete
input. The program synthesized by our tool for the above problem
(using the extended library in Table 2) is:

Test10(p1,p2,L,r,a):

L1 := ConstructLineGivenAngleLinePoint(L,a,p1);
C1 := ConstructCircleGivenPointLength(p1,r);
(p3,p4) := LineCircleIntersection(L1,C1);
L2 := PerpendicularBisector2Points(p2,p3);
p5 := LineLineIntersection(L1,L2);
return p5;

The line L1 is good because the output point p lies on it. The
circle C1 is good because it intersects an existing object (namely,
line L1) at a good point p3: p3 is good because it is equidistant
from the output point p and the input point p2. Similarly, we can
establish goodness of all the other intermediate objects. Without

using goodness, the search for S fails to terminate in allocated
time. Fig. 1(right) shows the points constructed during a truncated
search.

The above program was synthesized in 3.5 seconds. When
rewritten in terms of the basic library, the above program expands
to a program with 17 instructions. We remark that our implementa-
tion distinguishes between lines and rays, but we do not show this
distinction here for simplicity.

3. Geometry Programming Language
We describe a programming language for geometric constructions.
We will later synthesize programs in this programming language
starting from a given specification.

Traditional (imperative) programming languages manipulate
values of variables. These values are typically integers, floats,
Booleans, or addresses (pointers). The entities that our program-
ming language for geometry manipulates are objects, such as
points, lines and circles. Specifically, our programming language
for geometry has the following set of object types:

Point. A point is a primitive object in our language. It is repre-
sented using Cartesian coordinates. In this paper, we restrict
ourselves to 2-dimensional geometry and a point is represented
using its x- and y-coordinates that remain hidden.

Line. A line is represented by a pair of two distinct points that lie
on it. The constructor Line(p1, p2) returns a line object that is
defined by the points p1 and p2.

Angle. An angle is a number in the range [0, 2 ∗ π). An angle
is represented using three points. The function ExplodeAngle
returns these three points.

Length. A length is a number in the range [0,∞). The constructor
Length(p1, p2) returns a length object denoting the distance
between points p1 and p2.

Circle. A circle is represented as a pair of a point and a length. For
a point p and length l, the constructor Circle(p, l) returns the
circle with center p and radius l. The radius of a circle is always
a nonzero positive number.

Program variables are typed and are given one of the five types
defined above. A program takes some objects as inputs, and using
a predefined library Lib of functions F1, . . . , Fk, it constructs new
objects and outputs one or more of these objects. Thus, a program
takes as input ~I and uses (tuples of) temporary variables ~ti to
compute the output ~O as follows:

geoProgram(~I):

~t1 := Fπ1(~V1);
...

~tn := Fπn(~Vn);
~O := ~Vn+1;

return ~O;

where
• each variable in ~Vi is either an input variable from ~I , or a

temporary variable from ~tj such that j < i, and
• 1 ≤ πi ≤ k.

3.1 The Expression Language
There is only one kind of expression in our geometry programming
language, namely a function call Fi(~V ), where Fi is a function
from a given library. The library for “ruler-and-compass” construc-
tions is shown in Table 1. It consists of functions for constructing
lines, circles, and lengths from points, and functions for construct-
ing points from line-line intersection, line-circle intersection, and
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Figure 1. Points visited in a goal-directed search (left) and a brute-force search (right). The concrete inputs and output were picked
independently in the two runs. The output point was not reached in the brute-force search and the search had to be truncated.

Function Description
L = Line(p1,p2) L is the line joining p1 and p2 (provided p1 6= p2).
C = Circle(p,r) C is the circle with center p and radius r.
r = Length(p1,p2) r is the length of the segment from p1 to p2 (provided p1 6= p2).
p = LineLineXn(L1,L2) p is the point that lies at the intersection of L1 and L2 (provided L1, L2 are not parallel).
~p = LineCircleXn(L1,C1) ~p is the vector containing (1 or 2) points that lie on both L1, C1 (provided they intersect).
~p = CircleCircleXn(C1,C2) ~p is the vector containing (1 or 2) points that lie on both C1, C2 (provided they intersect).
~p = ExplodeAngle(a) ~p is the vector of (three) points that define angle a.

Table 1. Library functions in the geometry programming language: the type of p1, p2, . . . is Point, ~p is a vector of points, L is a line, C a
circle, a an angle, and r a length.

circle-circle intersection. It also consists of a function to expose
points that define a given angle. It is not difficult to observe that
programs in our geometry programming language correspond di-
rectly to “ruler-and-compass” constructions on paper.

However, the library shown in Table 1 contains only the primi-
tive “ruler-and-compass” operations. It can be extended by includ-
ing new (derived) functions such as those in Table 2. We later show
that such an extension enables synthesis of nontrivial geometry pro-
grams.

3.2 The Specification Language
The specification language is used to write the precondition and the
postcondition of a geometry program.

A specification is given as a conjunction of atomic facts. An
atomic fact is an equality or inequality between two arithmetic
expressions. An arithmetic expression is built using the standard
arithmetic operations, +,−, ∗, applied on numeral objects, the
Length and Angle functions, and the functions:
• distL(p,L) returns distance between point p and line L.
• slope(L) returns the slope of line L.

We found that these functions were sufficient to describe almost
all high-school geometry problems. For example, note that we can
specify that “point p lies on line joining points p1 and p2” as an
equality between two slopes,

slope(p, p1) = slope(p1, p2),

and we can specify that Line(p1, p2) and Line(p3, p4) are perpen-
dicular as an equality between arithmetic expressions:

slope(p1, p2) ∗ slope(p3, p4) = −1

4. Problem Definition
Our goal is to synthesize programs in our geometry programming
language given their specification in the form of precondition and
postcondition. Here we will formally define the synthesis problem
for the geometry domain.

The synthesis problem is given the specification of the desired
program and also the executable code implementing a given library.
The goal of the geometry synthesis problem is to discover a pro-
gram in the geometry programming language that correctly imple-
ments the specification.

Formally, the geometry synthesis problem requires the user to
provide the following:

• A specification 〈~I, ~O, φpre(~I), φpost(~I, ~O)〉 of the desired
program, which includes

• a tuple of typed input variables ~I and output variables ~O.
• a formula φpre(~I) that specifies the precondition and a

formula φpost(~I, ~O) that specifies the postcondition.

• A library of executable specifications

Lib := {〈~Ii, ~Oi, Fi(~Ii)〉 | i = 1, . . . , k},

where Fi is an executable implementation of the i-th library
function.



The geometry program synthesis problem seeks to synthesize a
geometry program S – a composition of the primitive operations
from Lib – that implements the given specification; that is, the
following correctness criterion holds:

∀~I, ~O : (φpre(~I) ∧ ~O = fS(~I)) ⇒ φpost(~I, ~O) (3)

where fS is the function computed by the program S.
We note here that the problem definition above does not require

a formal specification of the library functions, but only an exe-
cutable specification. This is one important point that distinguishes
our work from other work on synthesis; see also Section 7.

The synthesis procedure needs to find a program from the huge
space of all possible programs that works correctly for all concrete
inputs.

5. The Synthesis Procedure
In this section, we present our synthesis approach for automatically
discovering geometry programs that meet some given specification.

As a first approach, one can perform an exhaustive search on
the space of all possible programs (of some fixed length). In other
words, one could enumerate all possible compositions of library
functions and then verify if any one implements the given speci-
fication. This is, however, not feasible for two reasons. First, the
number of possible programs (even of a fixed depth) is huge, and
expensive to exhaustively enumerate. Second, verifying whether a
program implements a given specification is a hard “geometry the-
orem proving” problem. Specifically, it involves checking the valid-
ity of a nonlinear formula in the theory of reals. While this theory
is decidable [38], decision procedures are not practical in our set-
ting since solving a single synthesis problem will involve making a
large number of verification queries.

We use a new and different approach for synthesis that com-
pletely avoids all symbolic reasoning and significantly prunes the
search space of all programs. Figure 2 presents the pseudocode of
our synthesis procedure. The program GeoSynth takes two inputs:
a specification (φpre, φpost) of the desired program and a library
Lib of available functions. It first generates a concrete input-output
pair (~Ic, ~Oc) that satisfies the given specification. It then calls the
recursive function GeoSynthRec with the arguments ~Ic, ~Oc, Lib
and an empty program P . If the concrete output objects ~Oc are al-
ready contained in the available objects ~Ic, then there is nothing
to synthesize and the function GeoSynthRec returns the program
P (after checking that it works on a second concrete input-output
pair). If not, then the synthesis procedure generates new objects
from the available objects and adds them to the set of available ob-
jects if they are new and good, and recursively calls itself.

The procedure in Figure 2 for synthesis completely avoids all
symbolic reasoning and significantly prunes the search space of all
programs. It achieves this using three key ideas:

Concretization: From Symbolic to Numeric We discover the pro-
gram by finding a program that works for a concrete input-
output pair. By using a concrete input-output pair, we avoid
doing any symbolic reasoning on nonlinear constraints. How-
ever, we still need to solve symbolic nonlinear constraints to
generate a concrete input-output pair. This we do by using nu-
merical techniques for nonlinear optimization.

Acceleration: Using Extended Library While searching for the
correct program, we use a library of high-level functions. Each
high-level function can be implemented using the basic func-
tions in the given library. A high-level function performs a
frequently-used subtask. A few calls to high-level functions of-
ten suffice to achieve what many calls to basic functions can
achieve. This helps in reducing the search space of programs.

GeoSynth(φspec, Lib):

// Input φspec := (φpre, φpost) is the specification

// Input Lib:= 〈(Fi)i=1,2,...〉, where Fi implements
the i-th library function

// Output: A program or "Failure"
~Ic := Random concrete objects s.t.φpre(~Ic) holds
~Oc := Concrete objects s.t. φpost(~Ic, ~Oc) holds

return GeoSynthRec(~Ic, ~Oc, Lib, ε, φspec);

GeoSynthRec(~Ic, ~Oc, Lib, P, φspec):

// Input ~Ic, concrete objects we have constructed

// Input ~Oc, concrete objects we wish to construct
// Input P, the program (so far)

if ( ~Oc are contained in ~Ic) return(Verify(P, φspec));
forall functions Fi ∈ Lib {
forall possible choices of arguments args for Fi

picked from ~Ic {
newObj := Fi(args);
if (newObj is Good and

newObj is not already present in ~Ic) {
newP := (P ;~t := Fi(args));

newI := ~Ic ∪ {newObj};
result := GeoSynthRec(newI, ~Oc,Lib,newP,φspec);
if (result 6= "Failure") return(result);

}
}

}
return "Failure"

Verify(P, φspec):

// Check if P works correctly on a second input
~Ic := Random concrete objects s.t.φpre(~Ic) holds
~Oc := fP (~Ic);

if (φpost(~Ic, ~Oc) == true) return(P);
else return "Failure";

Figure 2. GeoSynthesizer’s Synthesis procedure.

Goal-Directed Search: Goodness Measure A naive search for
the correct program based on enumerating all programs is blind
to the goal. We can make the search goal-directed by develop-
ing a measure for the progress toward the goal. For any newly
created object (using the basic/high-level library), the good-
ness function returns a measure of its goodness with respect to
(achieving) the goal.

We provide more details on these three techniques below.

5.1 Concretization: Symbolic to Numeric
Recall that the goal is to synthesize a program P that works for
all inputs; that is, it meets the given correctness criterion in For-
mula 3. The problem of even verifying that a given program sat-
isfies the given correctness criterion is not easy. First, the set of
all possible inputs is unbounded. The traditional solution is to rea-
son about one arbitrary symbolic input. Formula 3 is a nonlinear
formula in the theory of reals. For example, the atomic formula
Length(p1,p2)=Length(p1,p3), when expanded using coordinates
(xi, yi) for pi, takes the form

(x2 − x1)2 + (y2 − y1)2 = (x3 − x1)2 + (y3 − y1)2

which is a quadratic formula over 6 real variables. Nonlinear for-
mulas are hard to decide symbolically. There are some symbolic



geometry theorem proving tools that can automatically prove For-
mula 3, but in a synthesis procedure, one requires to check For-
mula 3 not once, but several times, while searching for the correct
P . Hence, symbolic techniques are unlikely to scale for synthesis.

GeoSynth avoids all symbolic manipulation by synthesiz-
ing programs that work for some concrete input-output pairs.
GeoSynth assumes that the library functions are provided as exe-
cutable code that compute the concrete output objects given con-
crete input objects. From the descriptions of the functions in Ta-
ble 1, the implementation should be immediately clear. For exam-
ple, the function LineLineXn(L1, L2) computes the x- and y-
coordinates of the unique point, if any, that lies on the intersection
of concrete lines L1 = Line(p1, p2) and L2 = Line(p3, p4) as
follows:

x = [(x1y2 − y1x2)(x3 − x4)− (x1 − x2)(x3y4 − y3x4)]/D
y = [(x1y2 − y1x2)(y3 − y4)− (y1 − y2)(x3y4 − y3x4)]/D

whereD = (x1−x2)(y3−y4)−(y1−y2)(x3−x4), p1 = (x1, y1),
p2 = (x2, y2), p3 = (x3, y3), and p4 = (x4, y4). Similarly, we
can get algebraic expression that implement the other functions.
The functions are implemented using floating point representation
for the reals.

By using executable code for the library functions, GeoSynth
synthesizes a program that works for one concrete input. How do
we argue that the synthesized program also works for all other
inputs? The key observation here is that if a geometry construction
is correct for a concrete input that is randomly chosen from the
space of all valid inputs (inputs that satisfy the precondition), then,
with very high probability, it is correct for all valid inputs. The
only assumption required is that the postcondition φpost(~I, ~O)

be such that for any concrete input ~Ic, there is at most one (more
generally, a constant fraction of the input space) output ~Oc such
that φpost(~Ic, ~Oc) holds.

THEOREM 1. Let P be a geometry program constructed using
the library Lib from Table 1 and let fP denote the function P
computes. Let (φpre(~I), φpost(~I, ~O)) be a specification, where

the number of inputs, |~I|, is n. Let ~Ic be a concrete input point
obtained by sampling uniformly at random the subspace {~c ∈
Rn | φpre(~c)} that represents all non-degenerate inputs. If ~Oc =
fP (~Ic) and if φpost(~Ic, ~Oc) also holds, then with probability one
it is the case that

∀~I, ~O : (φpre(~I) ∧ ~O = fP (~I)) ⇒ φpost(
~I, ~O)

PROOF: (Sketch) Assume the specification is deterministic so
that there is a function fspec that computes, for any given valid
(non-degenerate) input, the output that is consistent with the
specification φpost; that is, fspec has the property that

∀~Ic : φpre(~Ic)⇒ φpost(~Ic, fspec(~Ic))

Consider the functions fP and fspec . It is well-known property
of ruler-and-compass constructions that these two functions can
be described using compositions of the arithmetic +,−, ∗, /
operations and the square-root operation, and hence we can argue
that they are analytic over the domain of valid (non-degenerate)
inputs (analytic with respect to each variable). Now consider
the function fP − fspec . It is analytic too. Hence, unless it is
identically zero, the space of zeros of this function has measure
zero in the space of all inputs. Hence, for a random (valid non-
degenerate) input ~Ic, since we have fP (~Ic) − fspec(~Ic) = 0, it
follows that, with probability one, fP − fspec is identically zero
and hence, the claim holds. �

The theorem is a generalization of a similar result for poly-
nomial identity testing [31]. Similar results have been folklore in
geometry theorem proving where it has been noted that geometry
theorems can be proved by testing them on one random concrete in-
stance [43]. The “probability one” claim in Theorem 1 assumes that
exact computation on the reals is performed and we sample the real
space. However, this is not possible and the implementation only
uses finite precision floating point representation and samples over
floating point numbers. These issues will slightly increase the prob-
ability of our procedure giving wrong answers, but, as one would
expect, the probability will continue to remain very low.

Theorem 1 states that the probability of returning a specific
wrong program P is very low. But the space of programs is large,
and these probabilities could add up so that the probability of re-
turning some wrong program from the space of all programs could
become substantial. Hence, GeoSynth uses one concrete input-
output pair to synthesize the program, and then another randomly
sampled input-output pair to check it again (see the Verify func-
tion in the pseudocode). Therefore, GeoSynth can return a wrong
answer only if the specific program P (that is synthesized using
one concrete input-output pair) does not match the specification on
a randomly sampled input. By Theorem 1, we know this is very
low, and this establishes the probabilistic soundness of GeoSynth.
In fact, in our experiments (reported in Section 6), the Verify func-
tion never returned “Failure”. If Verify fails, note that the pseu-
docode continues its search for the correct program.

5.2 Acceleration: Extended Library
Discovering a geometry program that works correctly on even a
single concrete input is not easy. This is because the search space
of all possible programs is huge. We need ways to efficiently
search this large state space. We use ideas from program analysis –
forward and backward analysis – to significantly prune the search
space. We argue that this is also the way that humans perform the
search.

Consider the size of the search space of all programs. If the li-
brary has M functions that take, say, two arguments each, then the
state space of all programs of length N that can be constructed
using the library functions is O((M(N + |~I|)2)N ). This is super-
exponential in N . This shows that we can not search for very long
programs. Unfortunately, even for performing simple tasks, geom-
etry programs P that are built using the library shown in Table 1
can be very long.

GeoSynth works on an extended library. Apart from the prim-
itive functions listed in Table 1, the extended library also contains
the functions listed in Table 2. Each new library function can be
implemented using the primitive functions. Using the extended li-
brary, however, we can find much shorter programs P that meet
the given specification. Hence, we can discover the correct P by
searching for shorter programs using the extended library, rather
than searching for long programs using the primitive library.

Table 2 lists the new functions in the extended library. For ex-
ample, consider the function PerpendicularBisector2Points.
Constructing the perpendicular bisector of two points will require
at least three steps using the functions provided in the primitive
library in Table 1. However, it is a commonly used “subroutine”
when performing geometry constructions and it is useful to add
such a function in the extended library, as it will likely reduce the
length of the program P we are trying to discover by at least three.

The use of extended library for discovering the correct pro-
gram matches the way humans synthesize programs. Rather than
working with low-level primitives, complex systems are built by
composing higher-level components. In geometry programs, the
extended library contains high-level constructions that encode the
knowledge the student is taught to solve more complex geometry



Function Name Description
L = PerpendicularBisector2Points(p1,p2) L is the perpendicular bisector of line joining p1 and p2.
p = MirrorPointLine(p1,L) p is the reflection of p1 about line L.
~C = CircleGivenChordAngle(L,a) ~C is a vector of (1 or 2) circles C s.t. L is a chord of C subtending angle a.
L = ConstructLineGivenAngleLinePoint(L1,a,p) L is at an angle a with L1 at point p (on L1).
C = ConcentricCircle(C1,r) C is concentric to C1 and at distance r away from it.
L = PerpendicularToLineThruPoint(p,L1) L is perpendicular to L1 and passes through p.
~L = AngularBisectorLines(L1,L2) ~L is the tuple of (two) lines that are angular bisectors of L1 and L2.
p = MidpointGiven2points(p1,p2) p is the midpoint between p1 and p2.
~L = TangentPointToCircle(p,C) ~L is the vector of (two) lines that are tangent to C and pass through p.
L = ParallelLine(p,L1) L is the line parallel to L1 and passing through p.
~L = ParallelLineGivenLength(L1,r) ~L is the vector of (two) lines that are parallel to L1 and distance r away from it.

Table 2. Extended Library

construction exercises. In fact, GeoSynth takes the library as an in-
put, and hence, as the student learns more concepts, the library can
be extended too, which will then enable GeoSynth to synthesize
more complex geometry constructions.

In the experimental results in Section 6, we show the impact of
using extended library by comparing it against the use of primitive
library.

The use of extended library also has its analogue in the field of
program analysis. It corresponds to using forward search (forward
propagation) to see what search space is reachable in a few steps.
The technique of acceleration in program analysis [5] explicitly
computes high-level (multi-step transition) functions that are com-
positions of low-level (one-step transition) functions.

Besides efficiency, the idea of using library functions may pro-
vide another important benefit. By changing the library functions,
the tool can be forced to be find constructions that use a particular
primitive construction step. It is fairly common that exercises at the
end of textbook chapters are framed so that their solution requires
students to use the concepts introduced in that chapter. Using our
tool, the same effect can be achieved. Teachers could re-inforce the
learning of constructions taught in a certain chapter by just manip-
ulating the library.

5.3 Goal-Directed Search: Goodness Measure
Introduction of an extended library reduces the depth of the pro-
grams that we need to search for finding the correct program. De-
spite this reduction, exhaustive enumeration of all possible pro-
grams remains infeasible. We use the third key idea – using back-
ward analysis – to enable a more goal-directed search for the cor-
rect program.

GeoSynth performs a goal-directed search for the correct pro-
gram by using a heuristic goodness measure that determines if an
intermediate object could be useful in finally constructing the out-
put objects. How to compute the goodness measure? Ideally, an in-
termediate object is good if an output object can be constructed us-
ing the intermediate object and the other existing objects. How can
we efficiently check an intermediate object is good without contin-
uing with the forward search? We can do so by performing some
backward analysis starting from the output objects.

Performing exact backward analysis is challenging. Consider,
for example, the case when the output object is a point p. Now
consider one of the library functions, for example, the func-
tion CircleCircleXn(C1, C2). There are infinitely many circles
(C1, C2) whose intersection could give p, so backward analysis
would involve representing all these cases. However, if we fix C1

to be an existing circle and we also fix the center of C2 to be an
existing point, then this fixes the circle C2. This way of performing
partial backward analysis can make backward analysis feasible.

Rather than explicitly performing partial backward analysis,
GeoSynth directly tests if an intermediate object is backward
reachable from the goal using multiple partial backward steps.
These tests are coded using a goodness function. Specifically, the
Good function takes as argument the set currObjs of objects we
have already constructed, the set ~O of objects we need to construct,
the object ~t whose goodness we are trying to evaluate, and the li-
brary Lib of available functions. Good returns a Boolean answer
– indicating if ~t is possibly useful for eventually constructing ~O.
Depending on the type of the object ~t, Good performs different
checks.
• A point ~t is good if either

• ~t is an output point in ~O.
• ~t is on an output line or circle.
• ~t lies on a line joining an existing point in currObjs with

an output point in ~O.
• ~t lies on a circle defined by a combination of some existing

point(s) and output point(s).
• A line ~t := Line(p1, p2) is good if either

• ~t is an output line in ~O.
• an output point in ~O lies on ~t.
• ~t is parallel or perpendicular to a line defined by output

objects ~O and existing objects currObjs.
• the intersection of the line ~t with an existing line or circle

object in currObjs gives a good point.
• A circle ~t := Circle(p, r) is good if either

• ~t is an output circle in ~O.
• some output point in ~O lies on ~t or is the center of ~t.
• the intersection of the circle ~t with an existing line or circle

object in currObjs gives a good point.
These rules for goodness clearly measure the progress ~t makes

toward the goal ~O. The rules essentially test if ~t lies in the set
of objects obtained from the goal ~O objects using a few selected
partial backward steps.

The extended library encodes the facts a student is taught in a
chapter, and the goodness function attempts to encode the intuition
(search strategy) the student is expected to apply (in conjunction
with the facts in the extended library) to solve the exercises at the
end of the chapter.

GeoSynth uses the function Good to prune its search space. In
the pseudocode in Figure 2, Good is used in the condition guarding
the recursive call. A newly created object ~t is added to the set of
currently available objects only if it is Good. GeoSynth allows the
user to turn-off goodness checking. In Section 6 we will compare



1. Find the circumcenter of a triangle.
2. Find the incenter of a triangle.
3. Find the orthocenter of a triangle.
4. Construct a regular hexagon inside a circle.
5. Construct length a+b given lengths a and b.
6. Construct a triangle given length of its 3 sides.
7. Construct a triangle given two sides and an included angle.
8. Construct a triangle given two angles and an included side.
9. Construct a4 given two sides and the angle opposite one.

10. Construct a triangle, given its base, a base angle and sum of
other two sides.

11. Construct a triangle, given its base, a base angle and difference
of other two sides.

12. Construct a4, given its perimeter and its two base angles.
13. Draw a pair of tangents to a circle that make an angle of 60◦

with each other.
14. Construct a triangle given a side and two altitudes.
15. Construct a triangle given one angle, the side opposite this

angle, and the length of altitude to that side.
16. Construct a© that is inscribed in a given quadrant of a©.
17. Given point A, line L not passing through A, and point B on L,

construct a© passing through A that is tangent to L at B.
18. Given points A and B on the same side of a line L, find point C

on L such that AC and BC make the same angle with L
19. Find the centroid of a triangle.
20. Given non-parallel lines L1 and L2 and a radius r, construct a

circle of radius r that is tangent to both L1 and L2.
21. Draw arcs of radius r that are tangent to a given line and to a

given circle.
22. Draw arcs of radius r that are tangent to two given circles.
23. Construct a square whose extended sides pass through 4 given

points.
24. Construct a right4 given one acute angle and sum of legs.
25. Given a circle and points D and E in its interior, construct an

inscribed right triangle such that one leg contains D and other
leg contains E.

Table 3. Informal description (in English) of the 25 benchmarks
used to report results in this paper.

the effect of turning on-and-off the goodness check when synthe-
sizing geometry programs.

6. Experimental Results
We implemented GeoSynth and tested it on a variety of high-
school geometry construction exercises obtained from books and
examination papers. Table 4 reports details of the runs of GeoSynth
on selected 25 examples. As Column 4 indicates, GeoSynth suc-
cessfully solved all the problems in a few seconds: 18 problems
were solved in less than a second and only 3 problems required
more than 10 seconds. We experimentally evaluated the efficacy
of our two key ideas – using an extended library (E vs B) and
using goal-directed search (G vs N) – by varying the inputs and
command-line flags of GeoSynth. Specifically, Table 4 provides
values of the following functions for the 25 examples:

T EG: time when using Extended library and Goodness
T EN: time when using Extended library and No goodness
T BG: time when using Basic library and Goodness
T BN: time when using Basic library and No goodness

6.1 Benchmarks
GeoSynth works off a fairly intuitive front-end language for writ-
ing the specification formulas describing the desired geometry con-
struction:

GIVEN 〈 list of input objects ~I 〉
that satisfy φpre(~I)

CONSTRUCT 〈 list of output objects ~O 〉
that satisfy φpost(~I, ~O)

The formula φpre(~I) specifies the constraints on the input
objects, and the formula φpost(~I, ~O) specifies the relationship
between the input and output objects. The language of the formulas
was described in Section 3.2.

In the selected benchmarks used for experimental study, Test1–
Test9 and Test19 are standard problems in geometry, Test10–Test13
were taken from a Mathematics textbook for high-school students4,
and the rest were taken from course webpages and other websites
devoted to such problems5. An informal description of the 25
examples is given in Table 3.

As an example of the specification of a benchmark in the above
front-end language, consider our running example: Construct a
triangle given its base, base angle, and the sum of its other two
sides. This is presented to GeoSynth as:

GIVEN Segment(p1,p2), Length(p3,p4), Angle(p5,p6,p7)
that satisfy Length(p3,p4) > Length(p1,p2)
CONSTRUCT Point(p)
that satisfy

Length(p,p1) + Length(p,p2) = Length(p3,p4) and
Angle(p,p1,p2) = Angle(p5,p6,p7)

We note that the English text specification of a geometry construc-
tion problem is often ambiguous. In the example above, the English
specification does not tell us how the sum of the two side is given
or how the angle is given. The formal specification needs to elimi-
nate this ambiguity. In the example above, the formal specification
has assumed that the sum of the two sides is given as the distance
between two new points p3 and p4, as opposed to, say, by point(s)
that lies on the line extending the triangle’s base.

6.2 Multivariate Optimizers
GeoSynth finds a (random) concrete input-output pair that satisfies
the given precondition and postcondition using a numerical multi-
variate optimizer. GeoSynth currently uses an off-the-shelf imple-
mentation of such a function.

Recall that the precondition and the postcondition is a conjunc-
tion of nonlinear constraints. These constraints are difficult to solve
symbolically. We instead use numerical techniques to get a feasi-
ble solution. First, we transform all inequalities, say p > 0, where
p is a multivariate polynomial, to an equality constraint, namely
p− u2 = 0, where u is a new real-valued variable. Next, we trans-
form a conjunction of equality constraints, say p = 0 ∧ q = 0,
into a function minimization problem: minimize (p2 + q2). The
minimum value is zero iff the nonlinear constraints have a solution.
Thus, using a multivariate function minimizer, GeoSynth finds a
concrete input-output (~Ic, ~Oc) that satisfies the given specification.

Recall that we also have to ensure that the concrete input-output
pair is chosen at random. We achieve this by using heuristics to
partition the set of unknowns into independent and dependent vari-
ables. Then, we randomly pick concrete values for the independent
variables and fix them. We use the multivariate optimizer to find

4 http://ncertbooks.prashanthellina.com/class_9.
Mathematics.Mathematics/chap-11\%20(02-12-2005).pdf
5 Test14–Test15 from http://www-math.cudenver.edu/~wcherowi/
courses/m3210/lecchap5.pdf, Test16–Test18, Test20–Test22 from
www.geometer.org/mathcircles/construct.pdf, Test23 from
http://puhep1.princeton.edu/~mcdonald/examples/4point.
pdf and Test24–Test25 from http://www.misterhoffman.com/
downloads/SpringProblemSets.pdf



Test Extended Library Basic Library Numerical Solving
LoCE d,w Time(T EG) T EN LoCB #Makes T BG T BN Mean Min.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
Test1 3 2,2 0.131 0.147 7 6 NoSol 0.146 0.24 0.004
Test2 3 2,2 0.194 3.290 21 8 NoSol Timeout 0.61 0.003
Test3 3 2,2 0.331 2.569 13 8 NoSol Timeout 0.75 0.009
Test4 2 2,1 0.095 0.078 4 3 0.114 1.010 0.04 0.005
Test5 3 3,1 0.123 0.180 3 1 0.101 0.960 0.04 0.009
Test6 4 3,2 0.132 3.018 4 2 0.122 0.134 0.04 0.003
Test7 4 3,2 0.179 3.074 13 5 NoSol Timeout 0.03 0.004
Test8 3 2,2 0.144 0.193 21 8 NoSol Timeout 0.03 0.004
Test9 4 3,2 0.176 3.357 13 5 NoSol Timeout 0.15 0.006
Test10 6 6,1 3.149 Timeout 17 8 NoSol Timeout 0.28 0.006
Test11 6 6,1 3.550 Timeout 17 8 NoSol Timeout 0.06 0.019
Test12 7 5,2 63.028 Timeout 45 19 NoSol Timeout 3.91 0.555
Test13 3 3,1 0.121 0.093 4 2 0.118 0.100 1.84 0.157
Test14 5 4,2 13.684 44.198 22 14 NoSol Timeout 0.11 0.019
Test15 4 3,2 0.150 4.185 32 20 NoSol Timeout 1.54 0.030
Test16 6 6,1 82.613 Timeout 26 11 NoSol Timeout 0.06 0.011
Test17 3 2,1 0.128 0.390 10 7 NoSol Timeout 0.07 0.010
Test18 3 3,1 0.139 1.966 8 5 NoSol Timeout 1.35 0.021
Test19 5 3,2 0.203 1.902 13 10 NoSol Timeout 0.16 0.029
Test20 3 2,2 0.189 2.528 25 13 NoSol Timeout 0.90 0.002
Test21 4 3,2 0.148 570.550 23 12 NoSol Timeout 0.03 0.004
Test22 4 3,2 0.130 211.220 14 6 NoSol Timeout 0.04 0.004
Test23 13 8,2 1.929 Timeout 25 17 NoSol Timeout 20.35 2.616
Test24 6 6,1 2.301 Timeout 29 13 NoSol Timeout 0.33 0.086
Test25 4 4,1 0.125 212.359 8 5 NoSol Timeout 0.27 0.044

Table 4. Experimental results for 25 construction exercises. Column 2–5 report results when using the extended library: Column 2 is the
length of program constructed; Column 3 gives the depth(d) and width(w) of this program; Column 4-5 give the time (in sec.) taken to
synthesize the program when using goodness (Col. 4) and when not using goodness (Col. 5). Column 6–9 report results when using the basic
library: Column 6 is the length of program; Column 7 is the number of constructor calls in this program; Column 8-9 give the time (in sec.)
for synthesizing the program with (Col. 8) and without (Col. 9) using goodness. Column 10–11 report time taken for finding one concrete
input-output pair using nonlinear optimization: Column 10 is the mean and Column 11 is the minimum (both in sec.) of 15 runs. NoSol
indicates ’procedure terminated but failed to find a solution’. Timeout indicates ’procedure did not terminate in 10 min.’.

values only for the dependent variables, having randomly fixed the
values for the independent variables.

To illustrate the approach, consider the precondition and post-
condition from the example in Section 2.

r > Length(p1, p2)

Angle(p, p1, p2) = a

Length(p, p1) + Length(p, p2) = r

Let x1, y1 (respectively x2, y2 and x, y) denote the coordinates of
point p1 (respectively point p2 and point p). Thus, the above con-
straint has 8 variables. We identify x1, y1, x2, y2, a as the indepen-
dent variables and we pick values for them randomly. We determine
the values for the other three variables, x, y and r, by solving the
above constraint. We find x, y, r by minimizing the following non-
linear function over these three variables and the auxiliary variable
u:

(r − Length(p1, p2)− u2)2 + (Angle(p, p1, p2)− a)2 +
(Length(p, p1) + Length(p, p2)− r)2

The time taken by the minimization routine varies across differ-
ent runs, and hence, in Table 4, we report the average (Column 10)
and minimum (Column 11) time spent on finding a concrete input-
output pair for each benchmark. (We performed 15 different runs
for this purpose.) The time spent is proportional to the complexity
of the postcondition constraint; in particular, the number of output

objects. (Test23 seeks to construct a square, and hence the output
has 4 points, which is 8 variables.)

6.3 Extended Library vs. Basic Library
We compared the performance of GeoSynth when it was given the
basic library with its performance when it was given the extended
library. There are two cases to consider depending on whether or
not we use the “goodness” heuristic.

First, consider the case when we do not use the “goodness”
heuristic for pruning the search space. When using the basic library,
GeoSynth fails to find the correct program in 10 minutes of allo-
cated time (Col. 9). In contrast, when using the extended library,
GeoSynth successfully finds the correct solution in 19 out of the
25 examples (Col. 5).

Second, consider the case when we do use the “goodness”
heuristic. When it is given the basic library, GeoSynth terminates
without finding the solution in 21 examples (Col. 8). This is be-
cause the “goodness” measure (incorrectly) pruned the branches
that had solutions. Note that “goodness” heuristic performs only
a few backward steps, and the objects created by the basic li-
brary functions fail to be “good”. In contrast, the extended library
can quickly (in a few steps) create “good” objects. As shown in
Col. 4, when using extended library, all examples were successfully
solved.

Why is using the extended library better? The reason is that
when we use the extended library, we find small correct solutions.



Comparing Column 2 with Column 6, we note program lengths
(lines of code) varied between 2 and 13 for the 25 benchmarks
when using the extended library (Col. 2), whereas its range was
3–45 for basic library (Col. 6). Smaller programs translated to
smaller search space and hence, better timing, for synthesizing the
programs.

6.4 Goodness vs. No Goodness
Let us now compare the effect of using goodness. Without good-
ness, GeoSynth performs a brute-force search, whereas with good-
ness, it performs a goal-directed search.

There are two cases depending on whether we use the basic
library or the extended library. The case when we use the basic
library is uninteresting: with goodness, the search is pruned too
aggressively (Col 8), without goodness, the search explodes and
seldom terminates (Col 9). When we use the extended library, the
use of goodness (Col. 4) significantly improves the runtime of
GeoSynth over the case when we do not use goodness (Col. 5).
The reason is clear: goal-directed search explores much fewer paths
than an exhaustive search (see Figure 1).

6.5 Variations in T EG
Looking at Column 4 of Table 4, we notice that GeoSynth solves
18 of the examples in less than a second, and takes more than 10
seconds on only 3 examples. Without goodness (Col. 5), GeoSynth
fails to terminate on 6 examples. To understand the reason for
this variation, we also provide the depth (d) and width (w) of the
solution in Column 3. (Intuitively, whereas lines of code (LoC)
is the sequential complexity, depth (d) is the parallel complexity,
and width (w) is the number of parallel processors required.) The
ability to find the correct solution when performing exhaustive
search (Col. 5) is directly correlated with the depth of the solution.
Exhaustive search fails when depth of the solution is 5 or higher.
However, the depth does not explain the variation in Column 4.
Certain property of Test12, Test14 and Test16 interferes with the
goodness measure making it less effective in pruning the search
space.

7. Related Work
Program Synthesis using Brute-force Search [12] provides a
good survey of various program synthesis techniques: brute-force
search, logical reasoning, probabilistic inference, and version-
space algebras. Our algorithm is closely related to the brute-force
search strategy. There have been few success stories of using brute-
force search for program synthesis. It has been used to discover
new algorithms (mutual-exclusion algorithms [3] and bitvector al-
gorithms [11]). It has been used to search for desired small func-
tional programs by generating a sequence of type-correct programs
in a systematic and exhaustive manner and evaluating them against
given specifications [20]. In comparison, our algorithm leverages
some sophisticated novel concepts, essential for it to scale: ob-
viating need for symbolic reasoning, performing a goal-directed
search, and transforming the search space to one with larger width
but smaller depth.

Program Synthesis using Input-Output Examples There is a lot
of work on inductive program synthesis where the specification
from the user comes in the form of multiple input-output examples:
string manipulation macros [13], table manipulation programs [15],
bit-vector algorithms [18], graph algorithms [16]. In contrast, our
system accepts logical specifications, but for scalability reasons, in-
ternally transforms the logical specification into a (probabilistically
equivalent) input-output example based specification.

Existing inductive program synthesis techniques are based on
version space algebras [13, 15] or combinatorial search using

SAT/SMT solvers [16, 18]. In case of geometry, the mathematical
semantics of the operators involves higher order algebraic equa-
tions: any symbolic reasoning (including reduction to SAT using
bit-vector blasting) would be prohibitively expensive, and it is noto
clear how to use version space algebras in this context.

Interactive Geometry Systems There are several dynamic geom-
etry systems such as Geometer’s sketchpad [17] and Cabri Geome-
ter [24] that allow users/students to create geometric constructions,
invent conjectures, and check facts. Recent systems also permit one
to build proofs (e.g., [2]), or to check facts using an automated
theorem prover (e.g., Geometry Expert [10], Cinderella [22], and
Geometry Explorer [41]). Automated geometry theorem proving
(consisting of several techniques such as Wu’s method [42], Grob-
ner basis method [19], and angle method [7]) is one of the most
successful areas of automated reasoning. In contrast, we address
a technically harder problem of synthesizing constructions, as op-
posed to the problem of producing correctness proof of a given con-
struction. Our scalable solution relies on a novel approach of using
randomness to avoid performing symbolic reasoning. Also, another
useful advantage of our framework is that teachers can configure
the extended library to ensure that the tool generates small solu-
tions that emphasize use of certain concepts (e.g., ones taught in
an earlier chapter). Existing automated geometry theorem proving
systems tend to produce arbitrary proofs in the underlying logical
domain that may not be readable and may be beyond the vocabulary
taught in the class.

GRAMY [27] is an interesting system for proving theorems that
in its search for a proof, performs some constructions to enable the
application of certain postulates. All computations in GRAMY are
symbolic, whereas our search is completely numeric. Our tool dis-
covers a construction, but does not output any symbolic proof of
its correctness. GRAMY can only discover proofs that do not in-
volve arithmetic operations. For example, it can not find proofs that
involve inequalities, ratios, and coincident intersections. Our tool
can generate constructions whose correctness relies on arithmetic
reasoning; several of our benchmark examples have this feature.
GRAMY uses an exhaustive forward symbolic search, followed by
a symbolic backward step to suggest a construction. The backward
step enables new forward steps, and the process repeats. Unlike
GRAMY, in our case, forward search is non-terminating and nu-
meric. Our backward goal-directed strategy is also numeric, and it
is used to prune, and not expand, the forward search.

Chou et. al. [8] also consider the problem of discovering ge-
ometry constructions. However, there are several differences: (i) A
necessary condition for their approach to work is that the locus of
every intermediate point should be a point, line or circle. We do not
require this condition. For example, given points A,B, the loci of
point C s.t. AC+CB=1 is an ellipse, and hence this paper can not
handle such constraints (which we can handle). This severely lim-
its the kind of examples (from highschool textbooks) that their ap-
proach can handle. (ii) Their approach does not use any backward
goal-directed strategy. As we have demonstrated, forward search
needs to be pruned by backward reasoning both for handling large
examples, and also to make the tool more useful for pedagogical
purposes. (iii) Their approach uses symbolic reasoning (theorem
proving), and not numeric computation, to solve the problem. This
can affect scalability by orders of magnitude. (iv) Our system is
better suited for pedagogical purposes, as we can generate specific
kinds of solutions that involve using certain concepts taught in a
certain chapter of a certain textbook for a certain grade (by sim-
ply changing the library used by our synthesizer). This is in line
with the kind of solution that the teacher expects the students to
produce. Our system can also extend a partial solution of a student
to produce the nearest correct solution as opposed to producing an
arbitrary solution.



8. Conclusion and Future Work
We presented a novel synthesis algorithm based on combining nu-
merical methods with symbolic methods, and apply it to synthesiz-
ing ruler-compass based geometry constructions.

It may be tempting to question the relevance of plane geometry
constructions. Here one should note that plane geometry provides
a good platform for teaching logical reasoning abilities while keep-
ing it simple, visual, and fun. “They are just the rules of a game
mathematicians play. There are many other ways to do construc-
tions, but the compass and straightedge were chosen as one set of
tools that make a construction challenging, by limiting what you are
allowed to do, just as sports restrict what you can do (e.g. touch-
ing but not tackling, or tackling but no nuclear weapons) in order
to keep a game interesting. Other tools could have been chosen
instead; for example, geometric constructions can be done using
origami.” [1]

This paper is the first in the planned series of works on automat-
ing high-school education, and in particular, high-school geometry
education. We have taken the first step towards this goal and we are
in the process of building an end-to-end system that can interact
with users in natural language. There is ongoing work on build-
ing a natural language front-end for our system that will translate
English description of geometry problems to the logical problem
representation described in this paper. There is also ongoing work
on building a paraphrasing back-end for our system that will trans-
late the construction in the programming language described in this
paper to natural language.

The technology proposed in this paper forms the foundation for
the following technical problems that we plan to tackle next, which
will help take this technology to classrooms. The work done in
software engineering community can play a big role in addressing
some of these problems.
• Provide hints to students instead of the entire solution.
• Point out bugs in an incorrect solution of a student (taking

inspiration from the work on bug localization techniques in the
programming languages and software engineering community),
and suggest fixes to an incorrect solution of student (perhaps
using ideas from automated bug fixing techniques [40]),
• Quantify difficulty level of a given problem (by correlating

various metrics of a problem, its solution, and scores of students,
using ideas from work on software metrics)
• Generate problems of a measured difficulty level.

Solutions to these problems would help in realizing the goal of
personalized learning or making teaching interactive. However,
this is just a short-term goal. The real prize for investing into
synthesizers for such domains lies in enabling building of an ultra-
intelligent computer, and also a complete model of how the human
mind works [32].
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