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Abstract Very recently a polynomial time decision procedure for the
first problem was independently presented in [4].

We present a polynomial time algorithm for deciding Confluence and termination are two fundamental prop-
confluence of ground term rewrite systems. We generalizeerties of rewrite systems, which respectively guarantee the
the decision procedure to get a polynomial time algorithm, existence of at most one and at least one normal form for
assuming that the maximum arity of a symbol in the signa- each term. If interest is in reaching a normal form, con-
ture is a constant, for deciding confluence of rewrite systemsfluence ensures that the order of rewrites does not mat-
where each rule contains a shallow linear term on one side ter. Although these properties are undecidable for general
and a ground term on the other. The existence of a poly-rewrite systems, these, and several others, are decidable
nomial time algorithm for deciding confluence of ground for ground rewrite systems. Decidability of confluence for
rewrite systems was open for a long time and was indepen-ground rewrite systems was shown using tree automata and
dently solved only recently [4]. Our decision procedure is ground tree transducers [10, 5]. These results can be gener-
based on the concepts of abstract congruence closure [2]alized to left-linear right-ground rewrite systems [5] and to
and abstract rewrite closure [12]. the full first-order theory of ground rewriting [6].

In our previous work [12], we introduced the concept
of an abstract rewrite closure along the lines of an abstract
congruence closure [2]. In essence, abstract rewrite closure
represents certain kinds of ground tree transducers. Just as
abstract congruence closure can be used to efficiently de-

The problem of checking confluence of an arbitrary term cide the congruence relation induced by a set of ground
rewrite system is undecidable. This problem was shown equations, an abstract rewrite closure efficiently decides the
to be decidable for the special cases of ground rewrite sys-ewrite relation, or reachability, induced by a set of directed
tems and left-linear right-ground rewrite systems in [5] (the equations. In this paper, we use the concepts of an ab-
ground case was also solved independently in [10]), but thestract congruence closure and abstract rewrite closure to ob-
resulting algorithms had an EXPTIME complexity. In this tain a polynomial time algorithm to decide the confluence
paper, we present (a) a polynomial time decision procedureof ground term rewrite systems. The abstract congruence
to decide the confluence of ground term rewrite systems,closure and abstract rewrite closure concepts can be easily
and (b) a polynomial time decision procedure to decide the generalized to more general classes of rewrite systems, for
confluence of term rewrite systems containing rules with example, to systems where shallow linear terms occur on
shallow linear terms on one side and ground terms on theone side and ground terms on the other. This observation
other. We assume that the maximum arity of a function leads to a polynomial time decision procedure to decide the
symbol is a constant in the second case. confluence of these systems (assuming maximum arity of

The existence of a polynomial time decision procedure Symbols in the signature is a constant) as well.
for these problems has been open for past severallyears For example, leR = {a — f(a,b), f(a,b) — f(b,a)}
be a ground rewrite system. We observe that th&3snot
*This research was supported in part by the National Science Foun-confluent as the two termb, a) and f(f(b, a), b), though
gf‘;'r?t”N‘;”Sdf_ro%Ba;”gs CCR-0082560 and CCR-0086096, and under NASA 3 qrent modul®, are not both reducible to any common
1See Problemt2, submitted inl991, in the RTA list of open problems  term viaRR. In order to decide iR is confluent, our proce-

at http://www.Iri.fr/"rtaloop/index.html dure first constructs an abstract rewrite closure for this set,

1. Introduction




followed by a congruence closure for the rewrite closure.
Finally, we deduce thaR is not confluent using a test on
the two closures, see Example 1 for details.

1.1. Preliminaries

Let ¥ be a set, called aignature with an associated
arity functiona : ¥ —N. We define7 (X) as the small-
est set such thaf(ty,...,t,) € 7(X) wheneverf € 3,
a(f) =nandty,..., t, € T(X). The elements of the sets
¥ and7 (X) are respectively calletunction symbolsnd
ground termgoverY). Note that elementsin X for which
a(a) = 0, calledconstantsare included in the sef (%).
The symbolss, ¢, u, ..., with possible subscripts, are used
to denote termsy, g, ..., function symbols; and,b,.. .,
constants. Thsize ||t||, of atermt = f(¢y,...,t,) is de-
finedasl + ., ||t;]|. We writet[s] to indicate that a term
t containss as a subterm and (ambiguously) denote oy
the result of replacing a particular occurrence @f ¢ by w.

An (undirected) equatioins an unordered pair of terms,
writtens =~ t. A directed equatiomr rule is an ordered pair
of terms, writtens — t. The size of an equation ~ ¢ or
arules — tis defined to bés| + ||¢t||. If E is a set of
rules, then we defin&~ = {s - ¢t : ¢t — s € E} and
E* = EU E~. Therewrite relation—  induced by a set
of ground rulesE is defined by:u —g v if, and only if,

u contains! as a subterm and is obtained by replacing

by r in u, wherel — risin E. A setE of (ground) rules

is called a(ground) rewrite systenThesize || E||, of a set

FE of ground equations and rules is the sum of the sizes of
individual equations or rules ifi. The cardinality of a set

E is denoted byE)|.

If — is a binary relation, ther- denotes its inverse,»
its symmetric closure~ its transitive closure anes* its
reflexive-transitive closure. Thus;-r and — - denote
identical relations. A set of ruleg is terminatingif there
exists no infinite reduction sequengg —g s;1 —g So---
of terms. Aproof of s —% t (in E) is a finite sequence
5 =580 —E 51, 51 —E 52, ~**,5—1 —E Sk = t(k > 0),
which is usually written in abbreviated form as= s — g
S1 —EFE " —F Skzt(k‘ZO).

Any irreflexive and transitive relation on the SE(X) of
terms is called amrdering An ordering iswell-founded
or Noetherian if there is no infinite sequence of terms
81, 89, -+ such thats; > s5, so = s3, and so on. An or-
dering > is closed under contextf u[s] > u[t] whenever
s » t. A reduction orderingis a well-founded ordering
which is also closed under contexts. If the rewrite relation
induced by a ground rewrite system is contained in a reduc-
tion ordering, then the rewrite system is terminating.

A ground rewrite system is confluent if for all terms
€ 7(X) whenevers <7, t, there exists a term €

s,t
(3) such thats —7%, u <73 t. Ifeveryrulel — rin E

T

is such that is not reducible byF — {I — r} andr is in
E-normal form, then¥ is said to beully reduced A con-
fluent and terminating rewrite system is called convergent.
A fully reduced ground rewrite system is convergent [11].

2. Abstract Rewrite Closure

We shall assume that is an infinite set of constants dis-
joint from X. We usec, d, with possible subscripts, to de-
note elements aff and K to denote finite subsets 6f. An
abstract rewrite closure [12] gives a succinct representation
for the rewrite relation induced by a set of ground rewrite
rules, much in the same way as an abstract congruence clo-
sure [2] does for the congruence relation induced by a set of
ground equations.

Definition 1 Let XY be a signature and{ be a set of con-
stants disjoint from>. A D-rule (with respect toX and
K) is a rewrite rule of the formf(cy,...,cx) c
where f € ¥ is a k-ary function symbol ands, . .., ¢, c
are constants in the sek. A rewrite rule of the form
¢ — f(c1,...,c,) will be called areverseD-rule. A
C-rule (with respect taK) is arulec — d, wherec andd
are constants irk.

—

A set of D-rules andC-rules (with respect t@& and
K) is a specification of a bottom-up tree automaton tran-
sitions [3]. The setK represents “states” in the tree au-
tomaton andD-rules andC-rules represent regular anrd
transitions respectively. A constanin K is said torep-
resenta term¢ € 7 (X U K) via the rewrite systenk’ if
t—gc

A ground tree transduceror GTT in short, is a pair
of bottom-up tree automata defined over the same signa-
ture ¥ and over the same set of stat&s see [3]. Itis
well-known [5] that the rewrite relation induced by a set
of ground rewrite system can be represented BTa. An
abstract rewrite closure for a ground rewrite systemaga
with certain restrictions. Intuitively, an abstract rewrite clo-
sure for a ground rewrite systeR (over X) is a rewrite
systemRC over an extended signatureJ K such thatRC
conservatively extends the rewrite relatiesg and every
reachability proof inRC is representable as a normal-form
proof, or valley proof, of some sort.

Definition 2 LetX: be a signature K be a set of constants
disjoint fromX, andR be a set of ground rules (ové&r(%)).
A tuple (E, F, B) is said to be ar(abstract) rewrite clo-
sure (with respect toX and K) for (the rewrite relation
induced by)R if

(i) £ is a set ofD-rules, F' is a set ofD-rules andC-
rules, B is a set of reversé-rules andC-rules such that
each constant € K represents some terine 7 (%) via
E,



(ii) the rewrite system& U F'and E'U B~ are terminat-
ing; and for all termss,t € 7 (%), if s —% t then
s —pup © “pup- Land

(iii) for all terms s and¢ in 7 (%), s

—EturuB b

The tuple(E, F, B) defines aGTT [3]: the setE U I

defines the transitions of the first automaton and thé’set

EfUFUB

—g tifand only if

B~ defines the transitions of the second automaton (over

the same sef( of “states”). Such a pair defines a binary

relation—7%,,» o « 7}, z- on the set of ground terms.

For the sake of completeness, we reproduce heret
from [12], the set of inference rules (based on superposition
and ordered chaining) to construct an abstract rewrite Clo'andr — ¢. The setCP

sure(E, F, B) for a ground rewrite systef overX. The

inference rule system is more general and will be used to
construct an abstract congruence closure in Section 3. Thef(

construction rules are parameterized by an infinite count-
able set/ of new names and a total orderimg; on this
set. The finite sekl C U is chosen by the procedure from
the set/. The ordering- restricted tak, denoted by-

is well-founded (onk).

We use- to denote the recursive path orderingdb(-uU
K) generated using a precedence in which eyeeyX: has
higher precedence than anye K and the precedence on
K coincides with> . Note that aD-rule is oriented from
left to right in this ordering. The ordering is a reduction
ordering [7].

The transition rules operate on tuples E, R), where
I is a set of ground rules (ovét U K), F is a set ofD-

wheres — cis aD-rule,u — c is either aD-rule or a
C-rule withu = ¢, u — v is either aC-rule, D-rule, or
a reverseD-rule,t € T(X U K) is any termc € U is a
new constant in th&xtension rule, and — d € E in the
Conposition rule. The two deduction ruleSuperposition
andChaning, are:

(I, EU{s[t] = d}, R)
(I,E,R)

(I,EU{l - r},R)
(I,E,RU{u — v})

l_Sup
I_Cha

whereu — v € CP(R)U CP(E,R) andl — r is ob-
ained by collapsing[t] — d byt — ¢ € E, i.e., either (i)
s[t] # ¢, 1 = s[c], andr = d; or, (i) s[t] = ¢, d > ¢, l = d,
(E, R) of critical pairs between rules
in E andR is defined as:CP(E,R) = {f(...,d,...) —
c: f(...,d,...) - ¢c€ Ed— d € B}U{c —
dyoo) s f(e.,d,. ) - c€e Ed — d e F}.
The setCP(R) of cntlcal pairs between rules iR is de-
fined as:CP(R) = {t[d] - ¢:d — s € B,t[s] —» c €
FiU{c—t[d]:c—t[s] € B,s —d e F}.HereFUB s
a partition ofR into forward and backward rules, as defined
above.

Theorem 1 Let R be a ground rewrite system over some
signature . Let m denote the maximum arity of any
function symbol inX. Then, an abstract rewrite closure
(E, F,B) (overX U K) for R can be constructed (using
the inference rules given above with the Beaind ordering
=u) in O(N3(m + 1)%) time, whereN = 2|3||K|™*! +
|K|?, such that

rules (andC-rules, in case of abstract congruence closure ' { he cardinalityl K| of the set’ U is O(|[R]),

construction) andR is a set of (reversep-rules andC-
rules. The seR? can be partitioned into the sét = {s —

t € R: s > t} of forward rules and the seB = {s —

t € R:t > s} of backwardrules. In order to construct a
rewrite closure foiR, we start in a statéR, @, §) and apply
the following rules until the components of the state tuple
stabilize. We will show that the final state is of the form
(0, E,R) and the tupl€ E, F, B), whereR = F'U B, is an
abstract rewrite closure fdR.

Extensionflattens terms by introducing new constants,
Simplificationsimplifies terms using rules iff, Orientation
moves undirected equations and directed ruleE &nd R
respectivelyDeletiondeletes trivial rules, an@omposition
simplifies right-hand sides df-rules.

(Is), B, R) Fp ([, BU{s — ¢}, R)
(Ul EU{u— ¢}, R) Fsimi (Ilel, EU{u— c},R)
(IU{u=c},E,R) Fori (I,EU{u—c},R)
(IU{u — v}, E,R) Fori (I,E,RU{u— v})
(IU{t~t},E,R) Fpe (I,E,R)
(IU{t—t},E,R) Fpe (I,E,R)
(IE,RU{t — t}) Fpa (I, E,R)

(I, EU{u—>c} R[u]) Fsime (I,EU{u— c}, R[c])
(I, FU{u — c},R) Feom (I,EU{u— d},R)

2. the rewrite systemB U F and F U B~
with respect to-, and

3. the rewrite systenE is fully reduced with|E| =
O(||R]|) and it contains n@-rules.

are reducing

Proof. Starting in statdRR, 0, @), we apply the inference
rules given above using the following strategy: (i) apipk¢
tensionandSimplificationlexhaustively, applying the latter
eagerly, (ii) applyDeletion and Orientation exhaustively,
and finally (iii) apply Chainingand Simplification2 possi-
bly followed by Deletion until no new inferences can be
done. This derivation ends in a final stéfe F, R), and if
F U B is a partition ofR into forward and backward rules,
then the tuplé E, F, B) is an abstract rewrite closure f&,
see [12].

Now we count the number of inference steps applied:
Step (i) involves application of at mo&t(||R||) inference
rules as each rule eliminates at least Bagymbol from the
input R. This implies that at mosD(||R||) equations are
added toE and hence|K| = O(||R]|). SinceSimplifica-
tionlis eagerly applied, the sétis fully reduced and there
are noSuperpositiorsteps applicable. The sét remains
unchanged after Step (i) and hence property (3) holds. The



number ofDeletion and Orientation step is bounded by X, the tuple(E, F, B) is an abstract rewrite closure f&
O(||R]|) since each such step removes one rule from theover the signatur®U K constructed using the ordering;
transformed seR of input rules. The number of steps of (as in Theorem 1), the séi-( is a fully reduced abstract
Chainingis bounded by the number of distinbtrules, re- congruence closure far U F' U B over the signatur& U
verseD-rules, and”-rules, which isV. On any givenwUB K constructed using the same ordering (as in Theorem 2),
rule, at most on&Simplification2step can be applied and the ordering- is the rpo on7 (¥ U K') obtained using the
hence the number @implification2steps isO(N). There precedence- i as described above, and the constéine
are noCompositiorinferences possible. 2|3||K|™*t + | K|? is an upper bound on the total number
We can check if an inference rule is applicable in of distinct D-rules, reversé-rules, and”-rules over: U
O(N?(m + 1)) time (assuming trivial data structures to K.
store the rules). An inference rule can be applie@{m + _
1) time. Thus, a maximal derivation can be constructed in Lemma 1 For everyc € K, there exists a term € 7 (%)

O(N3(m + 1)?) time. m  suchthats —j c.
Proof. Using Definition 2, we know that for every €
3. Abstract Congruence Closure K, there is as € 7(X) such thats <% c. SinceFE is
convergent and it contains r@-rules (by Property (3) in
An abstract congruence closuf@] (with respect tox Theorem 1), the claim follows. ]
and K) is a setE¢¢ of D-rules andC-rules (w.r.t. > and
K) such thatEq¢ is convergent and each constant K Lemma 2 The number of rules ifvc¢ is O(N) and for all
represents some tertre 7 (X) via Ecc. An abstract con-  termss,t € 7(X U K), itis the case that <7, ¢ if and
gruence closurtor a seff of ground equations (ovétUK) onlyifs <5 pup t-

is an abstract congruence closilies (w.r.t. ¥ andKUK")
such that for any two termsandt (overX U K), s < t iff
8 <. t- In[2], we showed that an abstract congruence
closure can be constructed in time polynomial in the size
of the inputE. The construction of an abstract congruence

closure requires a univeréé of constants and an ordering | aryma 3 The rewrite systerR is confluent (ove (%))
ruonitas well if and only if the rewrite systenv® U F U B is confluent
Theorem 2 Let (E, F, B) be an abstract rewrite closure (overT (XU K)).

(overX U K) for the ground rewrite systei with respect Proof.  SupposeR is confluent. Lets,t € T(S U K)

Proof.  Construction of an abstract congruence closure
guarantees tha¥c-| < |E U F U B| and hence the first
claim follows. The second claim follows from the definition
of an abstract congruence closure [2]. ]

to the ordering~;. A fully reduced abstra_ct CONGruence g ch thats —%i pup b Using Lemma 1, it follows that

closureEcc (overX U K) for EU F'U B (with respectto  inere exist terms’ and # in T(%) such thats' —% s

the same ordering-;;) can be constructed i®(N?) time, andt’ —% t. It follows thats’ «<%. . ., and Prop-
: UFU !

where N is defined as in Theorem 1. The rewrite systems erty (iii) of Definition 2 yieldss’ < ¢'. SinceR is conflu-

EccandEUFU B~ are both reducing with respectto the  gnt \we have’ % o & ¢/, which impliess’ =%, . »
’ ’ ETUFU

ordering - defined above. o . pup t (using Property (iii) of Definition 2), and

. hences —% 0«3 t.

Proof.  Starting from the stat¢f), E U F U B~,{)) and E*UFUB E*UFYB .
applying the inference rules given above (see also [2]) ex- Conversely, suppose that™ U 'U B is C(:nfluen;c. I

. : . . s andt are two terms irZ (X) such thats <3 o —¢ t,
haustively (using the ordering i), we reach a final state thens «* o + and using confluence
(0, Ecc, 0). It follows from the results in [2] thaEcc is we havesEiLiFUB uEigFUB I ggT(E) then .
a fully reduced abstract congruence closurefar F' U B we can liftu t]éi;tFeL?r?m’ in Q’E,Es’ﬁgm Lemma 1 SL;Ch that
and this can be obtained in quadratic time. Since the firsts o 9
component is empty in the starting state, we cannotixse E*UFUB

u' <51 pup t- Then, using Property (iii) of
: . ] Definition 2, it follows thats — = L. [ |
tensionand hence no new constants are introduced in the TR° R

L . o Given an abstract congruence closle, we define
derivation. Since we use the same ordering, it is easy to )
- a signatureto be a term of the forny(cy,...,c,), where
see that the last claim is true as well. [ ] . ] .
f € ¥ andcy,...,c, are Egc-irreducible constants in
) K. Ift = f(t1,...,tn) € T(X U K) is a term, then we
4. Properties of Abstract Closures sayf(ci,...,c,) is asignature oft (with respect toFcc)
if f(c1,...,c,) IS @ signature and; “ho. ¢iforalli.

For the rest of this paper, we fix the following notation: Note that the symbof could have arity0, in which case
the setR denotes a ground rewrite system over a signaturen = 0 above. The total number of signatures is bounded



by |X||K’|™, wherem is the maximum arity of a function
symbol inYX and K’ C K is the set of allEcc-irreducible
constants. The following properties of signatures will be
used in the subsequent proofs.

Proposition 1 Let Fo¢ be an abstract congruence closure
with respect td&- and K. The following is true of signatures
defined with respect tB¢c:

1. Aterm¢ € 7(X) has at most one signature.

2. Atermt € T(X U K) suchthat «7__ chas asigna-
ture.

3. If the two termss f(s1,...,8,) and t
f(t1,...,t,) (over¥X U K) have signatures, then these sig-
natures are distinct iff; P Eee ti for somei.

5. Confluence of Ground Rewrite Systems

Corresponding to each constante K, we associate
a setIRRSIG(c) consisting of all signatures q¢ff U F')-
irreducible terms, i.e.,

IRRSIG(c) = {f(c1y...ycn)
fle1, ..., cn) is a signature of an (E U F)-irreducible
term f(s1,...,8,) € T(XUK)}

and a sefRRCON (c) consisting of al( EU F')-irreducible
constants equivalent tg i.e.,

IRRCON(c) ={d € K :d <7,
irreducible}.

tce=f, flen, oo en) and

cand dis (EUF)-

Note that if c and d are two constants in the same con-
gruence class (i.e¢ <% . d), then IRRSIG(c) =
IRRSIG(d) and IRRCON(¢) = IRRCON (d). Hence,
we can consider the setfRRSIG(c) and IRRCON (c)

(c) for all d,e € IRRCON(c), it is the case that

d % e.

E3
EUB- °

EuB—
Proof. =: Suppose&s® U F' U B is confluent.

Proof of condition (a):Assume thatf(cy, ..., c,) and
g(di,...,d,) are two distinct signatures iiRRSIG(c)
that represent the(E U F)-irreducible termss
f(s1,...,sm) andt = g(t1,...,t,) respectively. Then,
$ “hoe U and hences <. 5 t. By confluence,
s —=piurup © T rrurup b andusing Property (i) in
Definition 2 of rewrite closures

* * * *
5§ —EuF © " guB- © —EUB- ° < EuUF b

*

Sinces andt are £ U F-irreducible, we have «7, -
o =5~ t, whichimpliesf = g, m = n, ands; <
t; for all ¢. But, this is impossible since the signatures
fler,...,em) andg(dy, ..., dy), of s andt respectively,
are distinct (using Property (3) of Proposition 1).

Proof of condition (b):Let s = f(s1,...,s,) be the
(E U F)-irreducible term represented by Sinces <7,
d, it follows thats <73, . 5 ¢. Using the fact that
E* U F U Bis confluent¢” ands are(E U F)-irreducible,
and(E, F, B) is a rewrite closure, we get

f<81, ces

o —*

/ *
C < EUB-

EUB-— y8n)-

Thus, the claim follows.

Proof of condition (c): Condition (c) follows directly
from the definition of confluence, abstract rewrite closure,
and noting that! ande are(E U F)-irreducible.

«: Suppose conditions (a)—(c) are true, but the/set
F U B is not confluent. Let{s,t} be a minimal witness
(with respect to the multiset extensio™ of the ordering

as being defined on congruence classes, or equivalently;-) to the non-confluence, i.e.,

on Ecc-irreducible constants. In this case, the defini-
tions above can be simplified by replacing the condition
flers o oyen) =5, cby flei,... cn) —Eqc candre-
placingd <% . cbyd —g.. c. This follows from the
facts thatEq is fully-reduced andf(cy, ..., ¢,) is a sig-
nature.

The main technical result characterizes confluence
of E*¥ UFUB in terms of the setsIRRSIG(c) and
IRRCON (c).

Lemma4 LetX, K, R, E, F, B, and Ec¢c be as fixed
above. ThenE* U F U B is confluent iff the following
three conditions are true for alt € K in Ecc-normal

form:

(a) the setf RRSIG(c) contains at most one element, i.e.,
|IRRSIG(c)| <1,

(b) if IRRSIG(c) = {f(cy,..
IRRCON (c), there is a ruled — f(cf,...
E~ U B such that; <%, ¢, and

Ecc

.,cn)}, then for all¢ €

c)in

ren

8 <hoet, but =3u:s —Li pipUpeypupt-
The termss andt are (E U F')-irreducible, for if they are
not, then we can find a smaller witness. We distinguish the

following cases.

1. s= f(sl, RN Sn), t= f(tl, e ,tn), ands; H*ECC t;
for all 7: This cannot be the case since for soimthe
pair {s;, t; } will give a smaller witness.

2. s = f(s1,.-.,8m), t = g(t1,...,1,), and eitherf #
g or s; 74}:300 t; for somesi: In this case there is a
top rewrite step in the proof <7 t. Therefore, we
have

s= f(s1,...

Since the signatures of and ¢ are distinct (Prop-
erty (2) and (3) of Proposition 1), it follows that
|[IRRSIG(c)| > 2, which contradicts condition (a).

1 8m) “Eee € CBee 9ty tn) =L



3. Boths andt are constants ifx; Condition (c) leads to
a contradiction.

. Exactly one ofs andt is a constant ink: Without
loss of generality, assume that= ¢’ is a constant,
s = f(s1,.-.,8m), andc is the Ecc-normal form
of s (and¢’). Clearly,¢ € IRRCON(c) and the
signature ofs, say f(ci,...,cm), IS in IRRSIG(c).

It follows from condition (b) that there exists a rule
c — f(c,...,c,) € ET U Bsuchthat; <% c.
Now, note that{s,c} >™ {s;,c;}, and therefore,
8i = prupup Wi —peurup G- Putting all of these
proofs together, we get a proof for

s Un)
1 Cn)

ES
T EtUFUB
TE-UB c.

s —piopup (Ui, ...

fld, ...
This leads to a contradiction.

This completes the proof of the lemma. ]
The final step of our proof consists of showing that the

Proof. Let c be anEcc-irreducible constant. Note that
|[IRRCON (c)| < |K|. Define the binary relatiofh C K x

Kby:d7Teiff d —3, 5- o =5, 5- e We show how to
computel. DefineSrc(d) = {d' € K : d' —%}, - d}.

Note thatd € Src(d). Clearly, we can computére(d), for
all constantsl, in time O(| K |?).

Now, d 1 e is true if either (1)Src(d) N Src(e) is
nonempty, or (2)I' 1 ¢’ is true for somel’ € Src(d) and
e’ € Sre(e), or (3) there exists ruleg(dy,...,d,) — d
andf(ey,...,e,) — ein EU B~ such that; 1 e; is true
for all 4.

Using the above characterization, the relatjooan be
computed using a least fixed point computation again: we
initialize the relation? with pairs(d, e¢) that satisfy condi-
tion (1) and subsequently we add elements to this relation
when either condition (2) or (3) holds. The initialization
process take®(|K|*) and the fixed point iterations take
anotherO(|K|?(|K|? +|E U B|*>m)) time, which clearly is
O(N? + N3m). [ ]

three conditions in Lemma 4 can be checked in polynomial Theorem 3 If R is a ground term rewrite system, then the

time. We show thalRRSIG(¢) and IRRCON (¢) can be
computed in polynomial time.

Lemma 5 For eachEcc-irreducible constant € K, the
sets IRRSIG(c) and TRRCON (c¢) can be computed in
O(N3(m + 1)) time.

Proof. Let ¢ be in Egc-normal form. SinceEqc is
fully reduced, a constand € K is in IRRCON (¢) if
(1) d —E.e ¢ and (2)d is (E U F)-irreducible. In
time O(|E U F||K|) we can determine, for all constants
c € K, if cis (E U F)-reducible. Hence, we can compute
IRRCON (¢), forallc,in O(|Ecc|| K|+ |EUF||K|) time.

A signature f(cy,...,c,) is in the setIRRSIG(c)
iff (1) fler,...,cn) € FEcc and either
(2a) f(d,...,c,) is (E U F)-irreducible for some
¢y € IRRCON(c1),¢4 € IRRCON(cq),...,c, €
IRRCON (cy,), or (2b)IRRSIG (¢;) is non-empty for some
i. We compute the sefR RSIG(c), for all Ecc-irreducible
constants:, by initializing the setsYRRSIG(c) by signa-

— c

tures that satisfy (1) and (2a) and finally adding signatures

which satisfy (1) and (2b) (least fixed point computation).
Note that there are at modt’| iterations of the fixed point
computation and each iteration takegn|Ec¢|) time. The
initialization step take®) (| Ecc||K|™m|E U F|) time.

Thus, the total time taken (| Ecc||K|™m|E U F| +
|Ecc||K|), which clearly isO(N3(m + 1)). ]

Using Lemma 5 it is easy to see that Conditions (a)
and (b) in Lemma 4 can be checked efficiently.

Lemma 6 Condition (c) of Lemma 4 can be checked in
O(N? + N3m) time.

confluence oR can be decided i®(N?3(m? + 1)) time.

Proof. We outline the complete algorithm here.

1. Construct an abstract rewrite closytg, F, B) for R
using a set’ C U of constants and an orderingy over
this set. This can be done ®(N3(m + 1)?) time (Theo-
rem1l).

2. Construct an abstract congruence closbg- for
E U F U B using the same ordering - in O(N?) time
(Theorem 2).

3. Construct the setBRRSIG(c) and IRRCON (c) for
each constant € K thatis inEcc-normal form. It follows
from Lemma 5 that this step can be don€I\?(m + 1))
time.

4. Check Conditions (a), (b), and (c) for eaéhc-
irreducible constant. If all conditions are satisfied, then
R is confluent, otherwise it is not. It follows from Lemma 6
that this step can be done@(N? + N3m) time.

The correctness of the procedure follows from Lemma 4.
This procedure runs i®(N3(m? + 1)) time. ]

Corollary 1 The confluence of a ground term rewrite sys-
tem is decidable in polynomial time.

Proof. Since a ground rewrite system can be trans-
formed, while preserving confluence, into a rewrite system
where the maximum arity of any function symbol is at most
two [8, 4], we can assume that < 2. Using Theorem 3,
we get aO(||R||”) time complexity procedure for deciding
confluence of a GTRR. ]

We illustrate our decision procedure on two examples
taken from [5].



Example 1 Consider the rewrite systeri {a —
fab, fab — fba}. IfU = {c1,ca,...} and -y is defined
byc; = ¢y = ---, then the following illustrates the four
steps used for decidingli is confluent:

1. An abstract rewrite closure fdR is:

E = {a—ci, b—co, ferea — c3}
F = {c¢; —cs}
B = {c3 — feaer, 3 — fegea, c3 — feacs}

2. An abstract congruence closure fBru F' U B is:

Ecc {a = c1, b—ca, fezca — c3,

c1 — c3, feacs — c3}
3. Constants ik = {c1, ¢c2, c3} that are Ec¢-irreducible
are c, andcs.
[RRSIG(CQ) = @, IRRSIG(Cg) = {ngCQ, fCQCg}

4. SincelRRSIG(c3) is not singleton, we conclude that the
rewrite systenR is not confluent.

Example 2 Consider the rewrite systel® = {gfa —
fafa,gfa — ffa,ffa — fa}. LetU and =y be as

in Example 1. The following illustrates the four steps used
for deciding ifR is confluent:

1. An abstract rewrite closure fdR is:
E = {a—c, feo — e, gea — 3}
F = {fes—ca feg — c2, ges — c3}
B = {cz— fes, c3 — fez, c3 — 2}

2. An abstract congruence closure fBru F' U B is:

{a = ¢c1, fer — c3, ges — e,

Ecc
fes — c3, ca — e}

3. TheE¢c-irreducible constants i = {c;, ca,c3} are
Cc1 and63.

IRRCON (¢1) = {c1}, IRRSIG(¢1) =
IRRCON(Cg) = {02703}, IRRSIG(Cg) =

4. Conditions (a) and (b) are vacuously true here. In order
to check condition (c), we compu$ec(cz) and Src(cs) as
Sre(eq) = {ea} and Sre(es) = {ea,c3}. SinceSre(cz) N
Sre(es) is nonempty, condition (c) is true as well. Hence,
we conclude thaR is confluent.

0
0

6. Shallow-Linear Ground Rewrite Systems

6.1. Definitions

Let V denote a denumerable set wdriables disjoint
fromX U U. Atermtin 7(X UU,V) is said to bdinear
if any variable occurs at most oncetinand it isshallowif
all variables occur at depth at most one. We say that a term
rewrite systenR is shallow-linear groundf for each rule
I — rin R, eitherl is a shallow and linear term andis
ground, orr is shallow and linear antis ground. The size
of a term, rule, and rewrite system is defined by suitably
generalizing the definitions given previously for the ground
case. The rewrite relatiorg induced by a shallow-linear
ground TRS is defined byu — v iff v = w[lo] contains
lo as a subterm and = u[ro] is obtained by replacingr
in u by ro, for some ruld — r € R and substitutiom.

6.2. Abstract Rewrite Closure

Let 3 be a signature an#’ be a set of constants disjoint
fromX. A D-rule (with respect t@ andK) is a rewrite rule
ofthe formf(v1,...,v) — cwheref € ¥ is ak-ary func-
tion symbol,c € K is a constant, each € KUV is either a
constant ink’ or a variable iV, and the terny (1, ..., )
is linear. Arulec — f(v1,...,v) is areverseD-rule if
f(r,.--,vk) — cisaD-rule. Arulec — d, wherec and
d are constants ik is aC-rule.

Using these generalized definitions Dfrules, reverse
D-rules, and”-rules, we can define abstract rewrite clo-
surefor a shallow-linear ground TRB.

Definition 3 A tuple (E, F, B) (over 7(X U K,V)) is
an abstract rewrite closure for a shallow-linear ground
rewrite systenR (over7 (%, V)) if:

(i) E and F' are sets ofD-rules andC-rules, B is a set of
reverseD-rules andC'-rules (with respect t& and K), and
each constant € K represents some tertre 7 (3, V) via
E,

(ii) the rewrite system#’ U F' and E U B~ are termi-
nating; and for all termss, t € 7(X, V), if s =54 pup t
thens — %4 o <5 p- t, and

(i) for all terms s and ¢ in T(X,V), s —f t iff

X
8 —gturup t-

We can construct an abstract rewrite closure for a
shallow-linear ground TRR using suitably generalized
variants of the inference rules given before [13]. In par-
ticular, D-rules, C-rules, and revers®-rules refer to the

In this section, we generalize the results of the previous new definitions of these terms. The other differences are (i)

sections to allow certain kinds of non-ground terms, specif-

ically shallow and linear, on one of the two sides of rewrite
rules inR. We assume here that the input rewrite sysiem

the Extensionrule is restricted to introducing only ground
D-rules, (i) theOrientationrule is used to move-rules
and reverseb-rules containing variables from the first to

is such that a variable does not occur as left- or right-handthe third component (for constructing a rewrite closure) and

side of a rule inR, since any shallow-linear ground rewrite
system which violates this assumption is trivially confluent.

from first to the second (for constructing a congruence clo-
sure), (iii) the Simplificationrules use standarghatching



procedures to simplify a term, while (iv) tf&uperposition Lemma 7 Let E, F, B, Ec¢, andR be as defined above.
andChainingrules usaunificationto compute critical pairs.  Then,

A crucial observation here is that the critical pairs gen- 1. for everyc € K, there exists a ground terme 7 (%)
erated by theSuperpositiorandChainingrules are always  such thats —7, ¢,
either D-rules, reverseéD-rules, orC-rules. The linearity 2. the number of rules ik¢¢ is O(N), and
assumption ensures that variable chaining is not required 3. the rewrite systef® is confluent (ovef (%, V)) if, and
for completeness and shallowness guarantees that terms camly if, the rewrite systen’* U F'U B is confluent (over
be flattened byExtension The correctness argument for 7 (X U K, V)).
the inference rules is shown using proof simplification tech-
nigues [13]. If we consider two terms that are identical upto 6.5. Confluence of shallow-linear ground TRS
variable renaming (alpha conversion) as being equal, then
the total number of possiblB-rules, reversé-rules, and A linear term of the formf(v1,...,v,), wheref € %,

C-rules, is bounded above by = 2|X[(|K] + DR and eachy; is either anE¢c-irreducible constant ink,
|K|?. The termination argument is identical to that of the or a variable, is called aignature The signature of a

ground case and the time complexity for constructing an term f(s1,...,5,) is a signaturef(vi,...,7,) such that
abstract rewrite closure for a shallow-linear ground term V(i iy € K)oy oo siandv(i v € V)i = s
rewrite system i€)(N?(m + 1)?) following the arguments  Note that Proposition 1 holds for the general case with these
of Theorem 1, see [13]. We define the recursive path order-new definitions. The total number of signatures, upto vari-

ing > with respect to which the rewrite systefinJ F'U B~ able renaming, is bounded By||K’ + 1|™, wherem is the

are reducing in the same way as before. maximum arity of a function symbol i and K’ C K is
the set of allE--irreducible constants.

6.3. Abstract Congruence Closure We define the setBRRSIG (c) andIRRCON (¢), where

¢ € K is an E¢c-irreducible constant, as before but using
An abstract congruence closure can be defined andthis new definition of signature of a term.

constructed using the generalized inference rules outlined A non-ground rewrite systerR is confluent if for all
above for abstract rewrite closure. For our purposes herefermss,t € 7(%,V), whenevers < t, there exists a
we only need to construct an abstract congruence closuréermu € 7(X,V) such thats —; u <5 t. For exam-
forasetE U FU B (over7 (X U K,V)) where(E, F, B) ple, the shallow-linear ground rewrite syst@&m= {fa —
is a rewrite closure. As before, we can efficiently compute fz, fa — a} overX = {f,a} is not confluent, although it
an abstract congruence closute for E U F U B with is confluent over the term univer§gX).
the following properties [13]: ()Fcc is a set ofD-rules
andC-rules (with respect t& and K) as defined above, (ii)
every constant € K represents some terine 7 (%,V)
via Ecc, (iii) the equational theory-7%, -5 induced by
E U F U B is identical to the equational theory induced by
Eccover7 (UK, V), and (iv) the rewrite systeicc is
convergent and fully reduced.

The construction of an abstract congruence closure of (a) the set/RRSIG(c) contains at most one ground sig-

Lemma 8 Let (E, F, B) be an abstract rewrite closure
(over signatureX U K) for the shallow-linear ground

rewrite systemR. Let Ecc be an abstract congruence
closure for E U F' U B over the same signature. Then,
E* U F U B is confluent iff the following three conditions
are true for allc € K in Ecc-normal form:

a rewrite closure involves n&xtensionsteps. Note that nature and no non-ground signatures,

the critical pairs generated b$uperpositionare all D-

equations oC-equations. The correctness of a fair deriva- (b) if IRRSIG(c) = {f(c1,...,¢,)}, then for alld €
tion follows from standard results in term rewriting and IRRCON (c), there is a ruled — f(c},...,¢c,) in
termination argument is similar to that for computing the E~ U B such thatvi. ¢; <, ¢, and

rewrite closure. The time complexity for computing a

fully-reduced abstract congruence closure is, therefore, (c) for f‘” d,e € IRRCON(c), it is the case that

O(N3(m + 1)2), where N andm denote the same quan- “BuB- © “EUB- ©

tities as in the last subsection, see [13] for details. Proof. Suppose EX* UF U B is confluent. I
. f(n,-..,vm) is a non-ground signature iRRSIG(c) of

6.4. Properties an (E U F)-irreducible terms, thens and so, whereo is

any variable renaming such that=# zo for somez in s,

If (E, F, B) is an abstract rewrite closure constructed by are such that <7, so (since both are equivalent t9).

the strategy outlined in the proof of Theorem 1, then the setHence,s <7,z so, and by confluences —%. 5
E would contain only ground-rules and na’-rules. o «pi,pup S0. Following the argument from proof of



Lemma 4, we conclude that 73, o, o —} 5z s0, Theorem 4 If R is a left-linear right-ground rewrite sys-
which impliesz = xo for all variablesz in s, which con-  tem, then the confluencelican be decided i (N3 (m?+
tradicts the assumption an In caselRRSIG(c) has two 1)) time.

ground signatures, we can argue as in proof of Lemma 4P (N hat th v diff in th lexi
to get a contradiction. This proves condition (a). Condi- root. ote that the only difference in the complexity

tions (b) and (c) are proved using the same argument as irf’m"’IIySIS comes from the computatlon of the apstract con-
the proof of Lemma 4. gruence closure for the rewrite closure frbut this com-

Suppose conditions (a)—(c) are true, but thefset) F U plexity is clearly bounded by that of construction of an ab-
B is not confluent. Lefs,t} be a minimal witness (with stract rewrite closure. u

respect to the multiset extensieri” of the ordering-) to Example 3 Consider the rewrite syste® = {fa —
the non-confluence, as in the proof of Lemma 4. The terms ¢, ¢, _, fa}. If U and = is as in Example 1, then

s andt are (E U F)-irreducible, and using a case split as g following illustrates the four steps used for deciding if
before, we note that the argument for the first and third casesy is confluent:

is as before. In the second case, #indt are asincase (2)in 1 an abstract rewrite closure fdR is:

proof of Lemma 4, then the signaturessadndt are distinct

(Property (1) and (3) of Proposition 1) and therefore, either E = {a—ci, fo1— e}

|IRRSIG(c)| > 2 or IRRSIG(c) contains a non-ground F (fz — e}

signature, which contradicts condition (a). The argument

for case (3) is identical. Finally, for Case 4, note that if B {ez = fea}

s,t = ¢ andc are as described in the other proof, then if 5 A apstract congruence closure fBrU F U B is:
the signature of is ground, then we use the same argument.

The case where signature ©fs non-ground is impossible Ece = {a—ci, for—co}
because of condition (a). [ | _ _ _
Finally, we show that the three conditions in Lemma 8 3. Constants iK' = {c1, c»} that are Ecc-irreducible are
can be checked in polynomial time. c1andes.
IRRCON(¢;) = {ei}, IRRSIG(¢;) =

Lemma 9 For eachEqc-irreducible constant € K, the
sets IRRSIG(¢) and IRRCON (c¢) can be computed in

O(N?(m + 1)) time. 4. Since the three conditions are easily verified, we con-
clude that the rewrite systelis confluent.

0
IRRCON(c3) = {ca}, IRRSIG(c;) = 0

Proof. The setsI[RRCON (c) can be constructed
as in proof of Lemma 5. A signaturg(yi,...,v) .
(upto variable renaming) is in the séRRSIG(c) iff (1) 7. Related Work and Conclusion

f(r1,---s7) — ¢ € Ecc, and (2) f(71,-..,7,) IS not o
an instance of a left-hand side of a rule U F, and We have shown that the problem of deciding confluence

either (3a)f(1},...,7,) is E U F-irreducible for some  ©Of ground term rewrite systems is in polynomial time. The
Ni,...,~, such thatv(i : 7; € K). 7, € IRRCON(c;) algorithm obtained is quite simple and is based on the con-
andV(i:v; € V). 7/ = v, or (3b) for somei such that ~ Cepts of abstract congruence closure and abstract rewrite
vi € K, [RRS[G(fyl) is non-empty_ We Compute the sets closure. We also showed that the same algorithm, with
IRRSIG(c), for all Eq¢-irreducible constants, using the minor generalizations, also applies to the class of shallow-

above definition as before. The time complexity of the pro- linear ground term rewrite systems.
cedure remains unchanged. m Confluence was shown decidable in polynomial time

for ground rewrite systems over signatures containing at
Lemma 10 Condition (c) of Lemma 8 can be checked in mostone unary function symbol and finitely many constants
O(N? 4+ N3m) time. in [9]. For arbitrary signatures, the polynomial time de-

cidability was independently demonstrated first in [4]. The
Proof. The proof is a minor modification of the proof approach used in that paper is based on transforming the
of Lemma 10. In particular, now 71 e is true if either input R using a curry transformation and a conservative
(1) Sre(d) N Sre(e) is nonempty, or (2)' 1 €’ is true for introduction of new constants. These two steps also ap-
somed’ € Src(d) ande’ € Src(e), or (3) there exists rules  pear, respectively, in the proof of Corollary 1 and as the
f(v1y-.oym) — dandf(é1,...,6,) — ein EU B~ such Extension rule in our paper. While the new definitions
thatV(i: v, € K).v; 1 d; istrueandv(i : v; € V). §; € V added by theExtension rule are treated as directed equa-
is true. The complexity analysis remains unchanged.m tions (part of E-component) in this paper, they are explic-

We can now state the following result. itly added bi-directionally (both — ¢ andt — c are added)



in [4]. An explicit closure of the rewrite relation over a References

term universe is computed next in [4]. We compute a clo-
sure undemrderedchaining and superposition inferences
in our approach. Consequently, whereas rewrite proofs can
be madeincreasingin [4], our closure computation trans-
forms rewrite proofs to so-calledhlley proofs. This differ-
ence is crucial, because it allows us to give a simple char-
acterization of confluence (Lemma 4) using abstract rewrite
and congruence closures, which can be proved by induction
schema defined using the orderingw.r.t. which the clo-
sures are constructed). On the contrary, the proof in [4] pro-
gresses by defining “stability” and “stabilizability” of top
function symbol in a term and showing that these properties
can be decided in polynomial time. Finally, [4] completes

the proof by presenting some necessary conditions on con- [4]

fluence and assuming them, showing deep joinability of all
left-hand sides of rules iR with themselves. The stabil-

ity properties are related to the concept of “signatures” in
our work and can also be decided using an abstract rewrite
closure. The computation of deep joinability involves some
fixed point computation similar in idea to the one used in
proofs of Lemmas 5 and 6.

The first proofs of decidability of confluence for ground
systems were based on tree-automata techniques and there-
fore, it is not surprising that abstract rewrite closure, which
can be seen as a ground tree transducer, is central to our al-
gorithm. TheO(N?3(m?+1)) time complexity computed in
Theorem 3, and consequently t&|[R ) time complex-
ity of Corollary 1, is based on simple arguments and need
not be optimal even for the decision algorithm described in
this paper. A more careful analysis of a particular imple-
mentation that uses appropriate data-structures and term in-
dexing mechanisms can potentially improve the worst case

time complexity. In case of shallow-linear ground rewrite [10]

systems, a curry transformation cannot be performed with-
out changing the rewrite relation, and hence in this case, our

procedure is in polynomial time only under the assumption [11]

that the maximum arityn is a constant.

The notion of an abstract congruence closure has beer;llz]

extended to handle signatures containing associative an
commutative (AC) symbols [1]. Similarly, it is possible to

extend the inference rules for computing rewrite closures to
handle certain kinds of AC symbols in the signature [12].

Thus, we conjecture that the techniques in this paper can bel13]

used to obtain algorithms for deciding confluence of ground

rewrite systems over such richer signatures. Additionally,

our approach could also be used for other kinds non-ground
term rewrite systems.
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