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Abstract

We present a polynomial time algorithm for deciding
confluence of ground term rewrite systems. We generalize
the decision procedure to get a polynomial time algorithm,
assuming that the maximum arity of a symbol in the signa-
ture is a constant, for deciding confluence of rewrite systems
where each rule contains a shallow linear term on one side
and a ground term on the other. The existence of a poly-
nomial time algorithm for deciding confluence of ground
rewrite systems was open for a long time and was indepen-
dently solved only recently [4]. Our decision procedure is
based on the concepts of abstract congruence closure [2]
and abstract rewrite closure [12].

1. Introduction

The problem of checking confluence of an arbitrary term
rewrite system is undecidable. This problem was shown
to be decidable for the special cases of ground rewrite sys-
tems and left-linear right-ground rewrite systems in [5] (the
ground case was also solved independently in [10]), but the
resulting algorithms had an EXPTIME complexity. In this
paper, we present (a) a polynomial time decision procedure
to decide the confluence of ground term rewrite systems,
and (b) a polynomial time decision procedure to decide the
confluence of term rewrite systems containing rules with
shallow linear terms on one side and ground terms on the
other. We assume that the maximum arity of a function
symbol is a constant in the second case.

The existence of a polynomial time decision procedure
for these problems has been open for past several years1.

∗This research was supported in part by the National Science Foun-
dation under grants CCR-0082560 and CCR-0086096, and under NASA
grant NAS1-00079.

1See Problem#12, submitted in1991, in the RTA list of open problems
athttp://www.lri.fr/˜rtaloop/index.html

Very recently a polynomial time decision procedure for the
first problem was independently presented in [4].

Confluence and termination are two fundamental prop-
erties of rewrite systems, which respectively guarantee the
existence of at most one and at least one normal form for
each term. If interest is in reaching a normal form, con-
fluence ensures that the order of rewrites does not mat-
ter. Although these properties are undecidable for general
rewrite systems, these, and several others, are decidable
for ground rewrite systems. Decidability of confluence for
ground rewrite systems was shown using tree automata and
ground tree transducers [10, 5]. These results can be gener-
alized to left-linear right-ground rewrite systems [5] and to
the full first-order theory of ground rewriting [6].

In our previous work [12], we introduced the concept
of an abstract rewrite closure along the lines of an abstract
congruence closure [2]. In essence, abstract rewrite closure
represents certain kinds of ground tree transducers. Just as
abstract congruence closure can be used to efficiently de-
cide the congruence relation induced by a set of ground
equations, an abstract rewrite closure efficiently decides the
rewrite relation, or reachability, induced by a set of directed
equations. In this paper, we use the concepts of an ab-
stract congruence closure and abstract rewrite closure to ob-
tain a polynomial time algorithm to decide the confluence
of ground term rewrite systems. The abstract congruence
closure and abstract rewrite closure concepts can be easily
generalized to more general classes of rewrite systems, for
example, to systems where shallow linear terms occur on
one side and ground terms on the other. This observation
leads to a polynomial time decision procedure to decide the
confluence of these systems (assuming maximum arity of
symbols in the signature is a constant) as well.

For example, letR = {a → f(a, b), f(a, b) → f(b, a)}
be a ground rewrite system. We observe that the setR is not
confluent as the two termsf(b, a) andf(f(b, a), b), though
congruent moduloR, are not both reducible to any common
term viaR. In order to decide ifR is confluent, our proce-
dure first constructs an abstract rewrite closure for this set,



followed by a congruence closure for the rewrite closure.
Finally, we deduce thatR is not confluent using a test on
the two closures, see Example 1 for details.

1.1. Preliminaries

Let Σ be a set, called asignature, with an associated
arity functionα : Σ→N. We defineT (Σ) as the small-
est set such thatf(t1, . . . , tn) ∈ T (Σ) wheneverf ∈ Σ,
α(f) = n andt1, . . . , tn ∈ T (Σ). The elements of the sets
Σ andT (Σ) are respectively calledfunction symbolsand
ground terms(overΣ). Note that elementsa in Σ for which
α(a) = 0, calledconstants, are included in the setT (Σ).
The symbolss, t, u, . . ., with possible subscripts, are used
to denote terms;f, g, . . ., function symbols; anda, b, . . .,
constants. Thesize, ‖t‖, of a termt = f(t1, . . . , tn) is de-
fined as1+

∑n
i=1 ‖ti‖. We writet[s] to indicate that a term

t containss as a subterm and (ambiguously) denote byt[u]
the result of replacing a particular occurrence ofs in t by u.

An (undirected) equationis an unordered pair of terms,
writtens ≈ t. A directed equationor rule is an ordered pair
of terms, writtens → t. The size of an equations ≈ t or
a rules → t is defined to be‖s‖ + ‖t‖. If E is a set of
rules, then we defineE− = {s → t : t → s ∈ E} and
E± = E ∪ E−. Therewrite relation→E induced by a set
of ground rulesE is defined by:u →E v if, and only if,
u containsl as a subterm andv is obtained by replacingl
by r in u, wherel → r is in E. A setE of (ground) rules
is called a(ground) rewrite system. Thesize, ‖E‖, of a set
E of ground equations and rules is the sum of the sizes of
individual equations or rules inE. The cardinality of a set
E is denoted by|E|.

If → is a binary relation, then← denotes its inverse,↔
its symmetric closure,→+ its transitive closure and→∗ its
reflexive-transitive closure. Thus,←E and→E− denote
identical relations. A set of rulesE is terminatingif there
exists no infinite reduction sequences0 →E s1 →E s2 · · ·
of terms. Aproof of s →∗E t (in E) is a finite sequence
s = s0 →E s1, s1 →E s2, · · · , sk−1 →E sk = t(k ≥ 0),
which is usually written in abbreviated form ass = s0 →E

s1 →E · · · →E sk = t(k ≥ 0).
Any irreflexive and transitive relation on the setT (Σ) of

terms is called anordering. An ordering iswell-founded,
or Noetherian, if there is no infinite sequence of terms
s1, s2, · · · such thats1 � s2, s2 � s3, and so on. An or-
dering� is closed under contextsif u[s] � u[t] whenever
s � t. A reduction orderingis a well-founded ordering
which is also closed under contexts. If the rewrite relation
induced by a ground rewrite system is contained in a reduc-
tion ordering, then the rewrite system is terminating.

A ground rewrite system is confluent if for all terms
s, t ∈ T (Σ) whenevers ↔∗E t, there exists a termu ∈
T (Σ) such thats →∗E u ←∗E t. If every rulel → r in E

is such thatl is not reducible byE − {l → r} andr is in
E-normal form, thenE is said to befully reduced. A con-
fluent and terminating rewrite system is called convergent.
A fully reduced ground rewrite system is convergent [11].

2. Abstract Rewrite Closure

We shall assume thatU is an infinite set of constants dis-
joint from Σ. We usec, d, with possible subscripts, to de-
note elements ofU andK to denote finite subsets ofU . An
abstract rewrite closure [12] gives a succinct representation
for the rewrite relation induced by a set of ground rewrite
rules, much in the same way as an abstract congruence clo-
sure [2] does for the congruence relation induced by a set of
ground equations.

Definition 1 Let Σ be a signature andK be a set of con-
stants disjoint fromΣ. A D-rule (with respect toΣ and
K) is a rewrite rule of the formf(c1, . . . , ck) → c
wheref ∈ Σ is a k-ary function symbol andc1, . . . , ck, c
are constants in the setK. A rewrite rule of the form
c → f(c1, . . . , ck) will be called areverseD-rule. A
C-rule (with respect toK) is a rulec → d, wherec andd
are constants inK.

A set of D-rules andC-rules (with respect toΣ and
K) is a specification of a bottom-up tree automaton tran-
sitions [3]. The setK represents “states” in the tree au-
tomaton andD-rules andC-rules represent regular andε-
transitions respectively. A constantc in K is said torep-
resenta termt ∈ T (Σ ∪ K) via the rewrite systemE if
t↔∗E c.

A ground tree transducer, or GTT in short, is a pair
of bottom-up tree automata defined over the same signa-
ture Σ and over the same set of statesK, see [3]. It is
well-known [5] that the rewrite relation induced by a set
of ground rewrite system can be represented by aGTT. An
abstract rewrite closure for a ground rewrite system is aGTT
with certain restrictions. Intuitively, an abstract rewrite clo-
sure for a ground rewrite systemR (over Σ) is a rewrite
systemRC over an extended signatureΣ∪K such thatRC
conservatively extends the rewrite relation→R and every
reachability proof inRC is representable as a normal-form
proof, or valley proof, of some sort.

Definition 2 Let Σ be a signature,K be a set of constants
disjoint fromΣ, andR be a set of ground rules (overT (Σ)).
A tuple(E,F,B) is said to be an(abstract) rewrite clo-
sure (with respect toΣ andK) for (the rewrite relation
induced by)R if

(i) E is a set ofD-rules,F is a set ofD-rules andC-
rules,B is a set of reverseD-rules andC-rules such that
each constantc ∈ K represents some termt ∈ T (Σ) via
E,



(ii) the rewrite systemsE ∪F andE ∪B− are terminat-
ing; and for all termss, t ∈ T (Σ), if s →∗E±∪F∪B t then
s →∗E∪F ◦ ←∗E∪B− t, and

(iii) for all terms s andt in T (Σ), s →∗
R
t if and only if

s→∗E±∪F∪B t.

The tuple(E,F,B) defines aGTT [3]: the setE ∪ F
defines the transitions of the first automaton and the setE∪
B− defines the transitions of the second automaton (over
the same setK of “states”). Such a pair defines a binary
relation→∗E∪F ◦ ←∗E∪B− on the set of ground terms.

For the sake of completeness, we reproduce here
from [12], the set of inference rules (based on superposition
and ordered chaining) to construct an abstract rewrite clo-
sure(E,F,B) for a ground rewrite systemR overΣ. The
inference rule system is more general and will be used to
construct an abstract congruence closure in Section 3. The
construction rules are parameterized by an infinite count-
able setU of new names and a total ordering�U on this
set. The finite setK ⊂ U is chosen by the procedure from
the setU . The ordering�U restricted toK, denoted by�K ,
is well-founded (onK).

We use� to denote the recursive path ordering onT (Σ∪
K) generated using a precedence in which everyf ∈ Σ has
higher precedence than anyc ∈ K and the precedence on
K coincides with�K . Note that aD-rule is oriented from
left to right in this ordering. The ordering� is a reduction
ordering [7].

The transition rules operate on tuples(I, E,R), where
I is a set of ground rules (overΣ ∪ K), E is a set ofD-
rules (andC-rules, in case of abstract congruence closure
construction) andR is a set of (reverse)D-rules andC-
rules. The setR can be partitioned into the setF = {s →
t ∈ R : s � t} of forward rules and the setB = {s →
t ∈ R : t � s} of backwardrules. In order to construct a
rewrite closure forR, we start in a state(R, ∅, ∅) and apply
the following rules until the components of the state tuple
stabilize. We will show that the final state is of the form
(∅, E,R) and the tuple(E,F,B), whereR = F ∪B, is an
abstract rewrite closure forR.

Extensionflattens terms by introducing new constants,
Simplificationsimplifies terms using rules inE, Orientation
moves undirected equations and directed rules toE andR
respectively,Deletiondeletes trivial rules, andComposition
simplifies right-hand sides ofE-rules.

(I[s], E,R) `Ext (I[c], E ∪ {s→ c}, R)
(I[u], E ∪ {u→ c}, R) `Sim1 (I[c], E ∪ {u→ c}, R)
(I ∪ {u ≈ c}, E,R) `Ori (I, E ∪ {u→ c}, R)
(I ∪ {u→ v}, E,R) `Ori (I, E,R ∪ {u→ v})
(I ∪ {t ≈ t}, E,R) `Del (I, E,R)
(I ∪ {t→ t}, E,R) `Del (I, E,R)
(I, E,R ∪ {t→ t}) `Del (I, E,R)
(I, E ∪ {u→ c}, R[u]) `Sim2 (I, E ∪ {u→ c}, R[c])
(I, E ∪ {u→ c}, R) `Com (I, E ∪ {u→ d}, R)

wheres → c is aD-rule, u → c is either aD-rule or a
C-rule with u � c, u → v is either aC-rule,D-rule, or
a reverseD-rule, t ∈ T (Σ ∪ K) is any term,c ∈ U is a
new constant in theExtension rule, andc → d ∈ E in the
Composition rule. The two deduction rules,Superposition
andChaining, are:

(I, E ∪ {s[t]→ d}, R) `Sup (I, E ∪ {l→ r}, R)
(I, E,R) `Cha (I, E,R ∪ {u→ v})

whereu → v ∈ CP(R) ∪ CP(E,R) and l → r is ob-
tained by collapsings[t] → d by t → c ∈ E, i.e., either (i)
s[t] 6= t, l = s[c], andr = d; or, (ii) s[t] = t, d � c, l = d,
andr = c. The setCP(E,R) of critical pairs between rules
in E andR is defined as:CP(E,R) = {f(. . . , d, . . .) →
c : f(. . . , d′, . . .) → c ∈ E, d → d′ ∈ B} ∪ {c →
f(. . . , d, . . .) : f(. . . , d′, . . .) → c ∈ E, d′ → d ∈ F}.
The setCP(R) of critical pairs between rules inR is de-
fined as:CP(R) = {t[d] → c : d → s ∈ B, t[s] → c ∈
F}∪{c→ t[d] : c→ t[s] ∈ B, s→ d ∈ F}.HereF ∪B is
a partition ofR into forward and backward rules, as defined
above.

Theorem 1 Let R be a ground rewrite system over some
signature Σ. Let m denote the maximum arity of any
function symbol inΣ. Then, an abstract rewrite closure
(E,F,B) (over Σ ∪ K) for R can be constructed (using
the inference rules given above with the setU and ordering
�U ) in O(N3(m + 1)2) time, whereN = 2|Σ||K|m+1 +
|K|2, such that
1. the cardinality|K| of the setK ⊂ U isO(‖R‖),
2. the rewrite systemsE ∪ F andE ∪ B− are reducing

with respect to�, and
3. the rewrite systemE is fully reduced with|E| =

O(‖R‖) and it contains noC-rules.

Proof. Starting in state(R, ∅, ∅), we apply the inference
rules given above using the following strategy: (i) applyEx-
tensionandSimplification1exhaustively, applying the latter
eagerly, (ii) applyDeletion and Orientation exhaustively,
and finally (iii) applyChainingandSimplification2, possi-
bly followed by Deletion, until no new inferences can be
done. This derivation ends in a final state(∅, E,R), and if
F ∪ B is a partition ofR into forward and backward rules,
then the tuple(E,F,B) is an abstract rewrite closure forR,
see [12].

Now we count the number of inference steps applied:
Step (i) involves application of at mostO(‖R‖) inference
rules as each rule eliminates at least oneΣ-symbol from the
input R. This implies that at mostO(‖R‖) equations are
added toE and hence,|K| = O(‖R‖). SinceSimplifica-
tion1 is eagerly applied, the setE is fully reduced and there
are noSuperpositionsteps applicable. The setE remains
unchanged after Step (i) and hence property (3) holds. The



number ofDeletion and Orientation step is bounded by
O(‖R‖) since each such step removes one rule from the
transformed setR of input rules. The number of steps of
Chainingis bounded by the number of distinctD-rules, re-
verseD-rules, andC-rules, which isN . On any givenF∪B
rule, at most oneSimplification2step can be applied and
hence the number ofSimplification2steps isO(N). There
are noCompositioninferences possible.

We can check if an inference rule is applicable in
O(N2(m + 1)) time (assuming trivial data structures to
store the rules). An inference rule can be applied inO(m+
1) time. Thus, a maximal derivation can be constructed in
O(N3(m+ 1)2) time.

3. Abstract Congruence Closure

An abstract congruence closure[2] (with respect toΣ
andK) is a setECC of D-rules andC-rules (w.r.t. Σ and
K) such thatECC is convergent and each constantc ∈ K
represents some termt ∈ T (Σ) viaECC . An abstract con-
gruence closurefor a setE of ground equations (overΣ∪K)
is an abstract congruence closureECC (w.r.t. Σ andK∪K ′)
such that for any two termss andt (overΣ∪K), s↔∗

E
t iff

s ↔∗ECC t. In [2], we showed that an abstract congruence
closure can be constructed in time polynomial in the size
of the inputE. The construction of an abstract congruence
closure requires a universeU of constants and an ordering
�U on it as well.

Theorem 2 Let (E,F,B) be an abstract rewrite closure
(overΣ ∪K) for the ground rewrite systemR with respect
to the ordering�U . A fully reduced abstract congruence
closureECC (overΣ ∪K) for E ∪ F ∪ B (with respect to
the same ordering�U ) can be constructed inO(N2) time,
whereN is defined as in Theorem 1. The rewrite systems
ECC andE∪F ∪B− are both reducing with respect to the
ordering� defined above.

Proof. Starting from the state(∅, E ∪ F ∪ B−, ∅) and
applying the inference rules given above (see also [2]) ex-
haustively (using the ordering�K), we reach a final state
(∅, ECC , ∅). It follows from the results in [2] thatECC is
a fully reduced abstract congruence closure forE ∪ F ∪ B
and this can be obtained in quadratic time. Since the first
component is empty in the starting state, we cannot useEx-
tensionand hence no new constants are introduced in the
derivation. Since we use the same ordering�U , it is easy to
see that the last claim is true as well.

4. Properties of Abstract Closures

For the rest of this paper, we fix the following notation:
the setR denotes a ground rewrite system over a signature

Σ, the tuple(E,F,B) is an abstract rewrite closure forR
over the signatureΣ∪K constructed using the ordering�U
(as in Theorem 1), the setECC is a fully reduced abstract
congruence closure forE ∪ F ∪ B over the signatureΣ ∪
K constructed using the same ordering (as in Theorem 2),
the ordering� is the rpo onT (Σ ∪K) obtained using the
precedence�K as described above, and the constantN =
2|Σ||K|m+1 + |K|2 is an upper bound on the total number
of distinctD-rules, reverseD-rules, andC-rules overΣ ∪
K.

Lemma 1 For everyc ∈ K, there exists a terms ∈ T (Σ)
such thats→∗E c.

Proof. Using Definition 2, we know that for everyc ∈
K, there is as ∈ T (Σ) such thats ↔∗E c. SinceE is
convergent and it contains noC-rules (by Property (3) in
Theorem 1), the claim follows.

Lemma 2 The number of rules inECC isO(N) and for all
termss, t ∈ T (Σ ∪K), it is the case thats↔∗ECC t if and
only if s↔∗E±∪F∪B t.

Proof. Construction of an abstract congruence closure
guarantees that|ECC | ≤ |E ∪ F ∪ B| and hence the first
claim follows. The second claim follows from the definition
of an abstract congruence closure [2].

Lemma 3 The rewrite systemR is confluent (overT (Σ))
if and only if the rewrite systemE± ∪ F ∪B is confluent
(overT (Σ ∪K)).

Proof. SupposeR is confluent. Lets, t ∈ T (Σ ∪ K)
such thats ↔∗E±∪F∪B t. Using Lemma 1, it follows that
there exist termss′ and t′ in T (Σ) such thats′ →∗E s
and t′ →∗E t. It follows thats′ ↔∗E±∪F∪B t′, and Prop-
erty (iii) of Definition 2 yieldss′ ↔∗

R
t′. SinceR is conflu-

ent, we haves′ →∗
R
◦ ←∗

R
t′, which impliess′ →∗E±∪F∪B

◦ ←∗E±∪F∪B t′ (using Property (iii) of Definition 2), and
hences→∗E±∪F∪B ◦ ←

∗
E±∪F∪B t.

Conversely, suppose thatE± ∪ F ∪B is confluent. If
s and t are two terms inT (Σ) such thats ←∗

R
◦ →∗

R
t,

thens ←∗E±∪F∪B ◦ →
∗
E±∪F∪B t and using confluence,

we haves →∗E±∪F∪B u ←∗E±∪F∪B t. If u 6∈ T (Σ), then
we can liftu to a termu′ in T (Σ) using Lemma 1 such that
s→∗E±∪F∪B u′ ←∗E±∪F∪B t. Then, using Property (iii) of
Definition 2, it follows thats→∗

R
◦ ←∗

R
t.

Given an abstract congruence closureECC , we define
a signatureto be a term of the formf(c1, . . . , cn), where
f ∈ Σ and c1, . . . , cn areECC-irreducible constants in
K. If t = f(t1, . . . , tn) ∈ T (Σ ∪ K) is a term, then we
sayf(c1, . . . , cn) is asignature oft (with respect toECC)
if f(c1, . . . , cn) is a signature andti ↔∗ECC ci for all i.
Note that the symbolf could have arity0, in which case
n = 0 above. The total number of signatures is bounded



by |Σ||K ′|m, wherem is the maximum arity of a function
symbol inΣ andK ′ ⊆ K is the set of allECC-irreducible
constants. The following properties of signatures will be
used in the subsequent proofs.

Proposition 1 LetECC be an abstract congruence closure
with respect toΣ andK. The following is true of signatures
defined with respect toECC :
1. A termt ∈ T (Σ) has at most one signature.
2. A termt ∈ T (Σ∪K) such thatt↔∗ECC c has a signa-

ture.
3. If the two termss = f(s1, . . . , sn) and t =

f(t1, . . . , tn) (overΣ ∪K) have signatures, then these sig-
natures are distinct iffsi 6↔∗ECC ti for somei.

5. Confluence of Ground Rewrite Systems

Corresponding to each constantc ∈ K, we associate
a setIRRSIG(c) consisting of all signatures of(E ∪ F )-
irreducible terms, i.e.,

IRRSIG(c) = {f(c1, . . . , cn) : c↔∗ECC f(c1, . . . , cn) and
f(c1, . . . , cn) is a signature of an (E ∪ F )-irreducible
term f(s1, . . . , sn) ∈ T (Σ ∪K)}

and a setIRRCON (c) consisting of all(E∪F )-irreducible
constants equivalent toc, i.e.,

IRRCON (c) = {d ∈ K : d↔∗ECC c and d is (E ∪ F )-
irreducible}.

Note that if c and d are two constants in the same con-
gruence class (i.e.,c ↔∗ECC d), then IRRSIG(c) =
IRRSIG(d) and IRRCON (c) = IRRCON (d). Hence,
we can consider the setsIRRSIG(c) and IRRCON (c)
as being defined on congruence classes, or equivalently,
on ECC-irreducible constants. In this case, the defini-
tions above can be simplified by replacing the condition
f(c1, . . . , cn) ↔∗ECC c by f(c1, . . . , cn) →ECC c and re-
placingd ↔∗ECC c by d →ECC c. This follows from the
facts thatECC is fully-reduced andf(c1, . . . , cn) is a sig-
nature.

The main technical result characterizes confluence
of E± ∪ F ∪B in terms of the setsIRRSIG(c) and
IRRCON (c).

Lemma 4 Let Σ, K, R, E, F , B, andECC be as fixed
above. Then,E± ∪ F ∪B is confluent iff the following
three conditions are true for allc ∈ K in ECC-normal
form:

(a) the setIRRSIG(c) contains at most one element, i.e.,
|IRRSIG(c)| ≤ 1,

(b) if IRRSIG(c) = {f(c1, . . . , cn)}, then for all c′ ∈
IRRCON (c), there is a rulec′ → f(c′1, . . . , c

′
n) in

E− ∪B such thatci ↔∗ECC c
′
i, and

(c) for all d, e ∈ IRRCON (c), it is the case that
d←∗E∪B− ◦ →

∗
E∪B− e.

Proof. ⇒: SupposeE± ∪ F ∪B is confluent.
Proof of condition (a):Assume thatf(c1, . . . , cm) and

g(d1, . . . , dn) are two distinct signatures inIRRSIG(c)
that represent the(E ∪ F )-irreducible terms s =
f(s1, . . . , sm) and t = g(t1, . . . , tn) respectively. Then,
s ↔∗ECC t, and hence,s ↔∗E±∪F∪B t. By confluence,
s →∗E±∪F∪B ◦ ←

∗
E±∪F∪B t, and using Property (ii) in

Definition 2 of rewrite closures

s→∗E∪F ◦ ←∗E∪B− ◦ →
∗
E∪B− ◦ ←

∗
E∪F t.

Sinces and t areE ∪ F -irreducible, we haves ←∗E∪B−
◦ →∗E∪B− t, which impliesf = g, m = n, andsi ↔∗ECC
ti for all i. But, this is impossible since the signatures
f(c1, . . . , cm) and g(d1, . . . , dn), of s and t respectively,
are distinct (using Property (3) of Proposition 1).

Proof of condition (b): Let s = f(s1, . . . , sm) be the
(E ∪ F )-irreducible term represented byc. Sinces ↔∗ECC
c′, it follows that s ↔∗E±∪F∪B c′. Using the fact that
E± ∪ F ∪B is confluent,c′ ands are(E ∪F )-irreducible,
and(E,F,B) is a rewrite closure, we get

c′ ←∗E∪B− ◦ →
∗
E∪B− f(s1, . . . , sn).

Thus, the claim follows.
Proof of condition (c): Condition (c) follows directly

from the definition of confluence, abstract rewrite closure,
and noting thatd ande are(E ∪ F )-irreducible.
⇐: Suppose conditions (a)–(c) are true, but the setE±∪

F ∪ B is not confluent. Let{s, t} be a minimal witness
(with respect to the multiset extension�m of the ordering
�) to the non-confluence, i.e.,

s↔∗ECC t, but ¬∃u : s→∗E±∪F∪B u←∗E±∪F∪B t.

The termss andt are(E ∪ F )-irreducible, for if they are
not, then we can find a smaller witness. We distinguish the
following cases.

1. s = f(s1, . . . , sn), t = f(t1, . . . , tn), andsi ↔∗ECC ti
for all i: This cannot be the case since for somei, the
pair{si, ti} will give a smaller witness.

2. s = f(s1, . . . , sm), t = g(t1, . . . , tn), and eitherf 6=
g or si 6↔∗ECC ti for somei: In this case there is a
top rewrite step in the proofs↔∗ECC t. Therefore, we
have

s = f(s1, . . . , sm)↔∗ECC c↔
∗
ECC g(t1, . . . , tn) = t.

Since the signatures ofs and t are distinct (Prop-
erty (2) and (3) of Proposition 1), it follows that
|IRRSIG(c)| ≥ 2, which contradicts condition (a).



3. Boths andt are constants inK: Condition (c) leads to
a contradiction.

4. Exactly one ofs and t is a constant inK: Without
loss of generality, assume thatt = c′ is a constant,
s = f(s1, . . . , sm), and c is theECC-normal form
of s (and c′). Clearly, c′ ∈ IRRCON (c) and the
signature ofs, sayf(c1, . . . , cm), is in IRRSIG(c).
It follows from condition (b) that there exists a rule
c′ → f(c′1, . . . , c

′
n) ∈ E− ∪ B such thatc′i ↔∗ECC ci.

Now, note that{s, c} �m {si, c′i}, and therefore,
si →∗E±∪F∪B ui ←∗E±∪F∪B c′i. Putting all of these
proofs together, we get a proof for

s →∗E±∪F∪B f(u1, . . . , un) ←∗E±∪F∪B
f(c′1, . . . , c

′
n) ←E−∪B c′.

This leads to a contradiction.

This completes the proof of the lemma.
The final step of our proof consists of showing that the

three conditions in Lemma 4 can be checked in polynomial
time. We show thatIRRSIG(c) andIRRCON (c) can be
computed in polynomial time.

Lemma 5 For eachECC-irreducible constantc ∈ K, the
sets IRRSIG(c) and IRRCON (c) can be computed in
O(N3(m+ 1)) time.

Proof. Let c be in ECC-normal form. SinceECC is
fully reduced, a constantd ∈ K is in IRRCON (c) if
(1) d →ECC c, and (2) d is (E ∪ F )-irreducible. In
time O(|E ∪ F ||K|) we can determine, for all constants
c ∈ K, if c is (E ∪ F )-reducible. Hence, we can compute
IRRCON (c), for all c, inO(|ECC ||K|+ |E∪F ||K|) time.

A signature f(c1, . . . , cn) is in the set IRRSIG(c)
iff (1) f(c1, . . . , cn) → c ∈ ECC and either
(2a) f(c′1, . . . , c

′
n) is (E ∪ F )-irreducible for some

c′1 ∈ IRRCON (c1), c′2 ∈ IRRCON (c2), . . . , c′n ∈
IRRCON (cn), or (2b)IRRSIG(ci) is non-empty for some
i. We compute the setsIRRSIG(c), for allECC-irreducible
constantsc, by initializing the setsIRRSIG(c) by signa-
tures that satisfy (1) and (2a) and finally adding signatures
which satisfy (1) and (2b) (least fixed point computation).
Note that there are at most|K| iterations of the fixed point
computation and each iteration takesO(m|ECC |) time. The
initialization step takesO(|ECC ||K|mm|E ∪ F |) time.

Thus, the total time taken isO(|ECC ||K|mm|E ∪ F |+
|ECC ||K|), which clearly isO(N3(m+ 1)).

Using Lemma 5 it is easy to see that Conditions (a)
and (b) in Lemma 4 can be checked efficiently.

Lemma 6 Condition (c) of Lemma 4 can be checked in
O(N2 +N3m) time.

Proof. Let c be anECC-irreducible constant. Note that
|IRRCON (c)| ≤ |K|. Define the binary relation↑ ⊆ K ×
K by: d ↑ e iff d ←∗E∪B− ◦ →

∗
E∪B− e. We show how to

compute↑. DefineSrc(d) = {d′ ∈ K : d′ →∗E∪B− d}.
Note thatd ∈ Src(d). Clearly, we can computeSrc(d), for
all constantsd, in timeO(|K|2).

Now, d ↑ e is true if either (1)Src(d) ∩ Src(e) is
nonempty, or (2)d′ ↑ e′ is true for somed′ ∈ Src(d) and
e′ ∈ Src(e), or (3) there exists rulesf(d1, . . . , dn) → d
andf(e1, . . . , en) → e in E ∪ B− such thatdi ↑ ei is true
for all i.

Using the above characterization, the relation↑ can be
computed using a least fixed point computation again: we
initialize the relation↑ with pairs(d, e) that satisfy condi-
tion (1) and subsequently we add elements to this relation
when either condition (2) or (3) holds. The initialization
process takesO(|K|4) and the fixed point iterations take
anotherO(|K|2(|K|2 + |E ∪B|2m)) time, which clearly is
O(N2 +N3m).

Theorem 3 If R is a ground term rewrite system, then the
confluence ofR can be decided inO(N3(m2 + 1)) time.

Proof. We outline the complete algorithm here.
1. Construct an abstract rewrite closure(E,F,B) for R

using a setK ⊂ U of constants and an ordering�U over
this set. This can be done inO(N3(m + 1)2) time (Theo-
rem 1).

2. Construct an abstract congruence closureECC for
E ∪ F ∪ B using the same ordering�K in O(N2) time
(Theorem 2).

3. Construct the setsIRRSIG(c) and IRRCON (c) for
each constantc ∈ K that is inECC-normal form. It follows
from Lemma 5 that this step can be done inO(N3(m+ 1))
time.

4. Check Conditions (a), (b), and (c) for eachECC-
irreducible constantc. If all conditions are satisfied, then
R is confluent, otherwise it is not. It follows from Lemma 6
that this step can be done inO(N2 +N3m) time.

The correctness of the procedure follows from Lemma 4.
This procedure runs inO(N3(m2 + 1)) time.

Corollary 1 The confluence of a ground term rewrite sys-
tem is decidable in polynomial time.

Proof. Since a ground rewrite system can be trans-
formed, while preserving confluence, into a rewrite system
where the maximum arity of any function symbol is at most
two [8, 4], we can assume thatm ≤ 2. Using Theorem 3,
we get aO(‖R‖9) time complexity procedure for deciding
confluence of a GTRSR.

We illustrate our decision procedure on two examples
taken from [5].



Example 1 Consider the rewrite systemR = {a →
fab, fab → fba}. If U = {c1, c2, . . .} and�U is defined
by c1 � c2 � · · ·, then the following illustrates the four
steps used for deciding ifR is confluent:
1. An abstract rewrite closure forR is:

E = {a→ c1, b→ c2, fc1c2 → c3}
F = {c1 → c3}
B = {c3 → fc2c1, c3 → fc3c2, c3 → fc2c3}

2. An abstract congruence closure forE ∪ F ∪B is:

ECC = {a→ c1, b→ c2, fc3c2 → c3,

c1 → c3, fc2c3 → c3}

3. Constants inK = {c1, c2, c3} that areECC-irreducible
are c2 andc3.

IRRSIG(c2) = ∅, IRRSIG(c3) = {fc3c2, fc2c3}

4. SinceIRRSIG(c3) is not singleton, we conclude that the
rewrite systemR is not confluent.

Example 2 Consider the rewrite systemR = {gfa →
fgfa, gfa → ffa, ffa → fa}. Let U and�U be as
in Example 1. The following illustrates the four steps used
for deciding ifR is confluent:
1. An abstract rewrite closure forR is:

E = {a→ c1, fc1 → c2, gc2 → c3}
F = {fc2 → c2, fc3 → c2, gc3 → c3}
B = {c3 → fc3, c3 → fc2, c3 → c2}

2. An abstract congruence closure forE ∪ F ∪B is:

ECC = {a→ c1, fc1 → c3, gc3 → c3,

fc3 → c3, c2 → c3}

3. TheECC-irreducible constants inK = {c1, c2, c3} are
c1 andc3.

IRRCON (c1) = {c1}, IRRSIG(c1) = ∅
IRRCON (c3) = {c2, c3}, IRRSIG(c3) = ∅

4. Conditions (a) and (b) are vacuously true here. In order
to check condition (c), we computeSrc(c2) andSrc(c3) as
Src(c2) = {c2} and Src(c3) = {c2, c3}. SinceSrc(c2) ∩
Src(c3) is nonempty, condition (c) is true as well. Hence,
we conclude thatR is confluent.

6. Shallow-Linear Ground Rewrite Systems

In this section, we generalize the results of the previous
sections to allow certain kinds of non-ground terms, specif-
ically shallow and linear, on one of the two sides of rewrite
rules inR. We assume here that the input rewrite systemR
is such that a variable does not occur as left- or right-hand
side of a rule inR, since any shallow-linear ground rewrite
system which violates this assumption is trivially confluent.

6.1. Definitions

Let V denote a denumerable set ofvariables disjoint
from Σ ∪ U . A term t in T (Σ ∪ U,V) is said to belinear
if any variable occurs at most once int, and it isshallowif
all variables occur at depth at most one. We say that a term
rewrite systemR is shallow-linear groundif for each rule
l → r in R, eitherl is a shallow and linear term andr is
ground, orr is shallow and linear andl is ground. The size
of a term, rule, and rewrite system is defined by suitably
generalizing the definitions given previously for the ground
case. The rewrite relation→R induced by a shallow-linear
ground TRS is defined by:u →R v iff u = u[lσ] contains
lσ as a subterm andv = u[rσ] is obtained by replacinglσ
in u by rσ, for some rulel→ r ∈ R and substitutionσ.

6.2. Abstract Rewrite Closure

Let Σ be a signature andK be a set of constants disjoint
from Σ. AD-rule (with respect toΣ andK) is a rewrite rule
of the formf(γ1, . . . , γk)→ cwheref ∈ Σ is ak-ary func-
tion symbol,c ∈ K is a constant, eachγi ∈ K∪V is either a
constant inK or a variable inV, and the termf(γ1, . . . , γk)
is linear. A rulec → f(γ1, . . . , γk) is a reverseD-rule if
f(γ1, . . . , γk) → c is aD-rule. A rulec → d, wherec and
d are constants inK is aC-rule.

Using these generalized definitions ofD-rules, reverse
D-rules, andC-rules, we can define anabstract rewrite clo-
surefor a shallow-linear ground TRSR.

Definition 3 A tuple (E,F,B) (over T (Σ ∪ K,V)) is
an abstract rewrite closure for a shallow-linear ground
rewrite systemR (overT (Σ,V)) if:

(i) E andF are sets ofD-rules andC-rules,B is a set of
reverseD-rules andC-rules (with respect toΣ andK), and
each constantc ∈ K represents some termt ∈ T (Σ,V) via
E,

(ii) the rewrite systemsE ∪ F andE ∪ B− are termi-
nating; and for all termss, t ∈ T (Σ,V), if s →∗E±∪F∪B t
thens→∗E∪F ◦ ←∗E∪B− t, and

(iii) for all terms s and t in T (Σ,V), s →∗
R
t iff

s→∗E±∪F∪B t.

We can construct an abstract rewrite closure for a
shallow-linear ground TRSR using suitably generalized
variants of the inference rules given before [13]. In par-
ticular, D-rules,C-rules, and reverseD-rules refer to the
new definitions of these terms. The other differences are (i)
the Extensionrule is restricted to introducing only ground
D-rules, (ii) theOrientation rule is used to moveD-rules
and reverse-D-rules containing variables from the first to
the third component (for constructing a rewrite closure) and
from first to the second (for constructing a congruence clo-
sure), (iii) theSimplificationrules use standardmatching



procedures to simplify a term, while (iv) theSuperposition
andChainingrules useunificationto compute critical pairs.

A crucial observation here is that the critical pairs gen-
erated by theSuperpositionandChainingrules are always
eitherD-rules, reverseD-rules, orC-rules. The linearity
assumption ensures that variable chaining is not required
for completeness and shallowness guarantees that terms can
be flattened byExtension. The correctness argument for
the inference rules is shown using proof simplification tech-
niques [13]. If we consider two terms that are identical upto
variable renaming (alpha conversion) as being equal, then
the total number of possibleD-rules, reverseD-rules, and
C-rules, is bounded above byN = 2|Σ|(|K| + 1)m+1 +
|K|2. The termination argument is identical to that of the
ground case and the time complexity for constructing an
abstract rewrite closure for a shallow-linear ground term
rewrite system isO(N3(m+ 1)2) following the arguments
of Theorem 1, see [13]. We define the recursive path order-
ing� with respect to which the rewrite systemE∪F ∪B−
are reducing in the same way as before.

6.3. Abstract Congruence Closure

An abstract congruence closure can be defined and
constructed using the generalized inference rules outlined
above for abstract rewrite closure. For our purposes here,
we only need to construct an abstract congruence closure
for a setE ∪ F ∪ B (overT (Σ ∪K,V)) where(E,F,B)
is a rewrite closure. As before, we can efficiently compute
an abstract congruence closureECC for E ∪ F ∪ B with
the following properties [13]: (i)ECC is a set ofD-rules
andC-rules (with respect toΣ andK) as defined above, (ii)
every constantc ∈ K represents some termt ∈ T (Σ,V)
via ECC , (iii) the equational theory↔∗E∪F∪B induced by
E ∪ F ∪ B is identical to the equational theory induced by
ECC overT (Σ∪K,V), and (iv) the rewrite systemECC is
convergent and fully reduced.

The construction of an abstract congruence closure of
a rewrite closure involves noExtensionsteps. Note that
the critical pairs generated bySuperpositionare all D-
equations orC-equations. The correctness of a fair deriva-
tion follows from standard results in term rewriting and
termination argument is similar to that for computing the
rewrite closure. The time complexity for computing a
fully-reduced abstract congruence closure is, therefore,
O(N3(m + 1)2), whereN andm denote the same quan-
tities as in the last subsection, see [13] for details.

6.4. Properties

If (E,F,B) is an abstract rewrite closure constructed by
the strategy outlined in the proof of Theorem 1, then the set
E would contain only groundD-rules and noC-rules.

Lemma 7 LetE,F,B, ECC , andR be as defined above.
Then,

1. for everyc ∈ K, there exists a ground terms ∈ T (Σ)
such thats→∗E c,
2. the number of rules inECC isO(N), and
3. the rewrite systemR is confluent (overT (Σ,V)) if, and

only if, the rewrite systemE± ∪ F ∪B is confluent (over
T (Σ ∪K,V)).

6.5. Confluence of shallow-linear ground TRS

A linear term of the formf(γ1, . . . , γn), wheref ∈ Σ,
and eachγi is either anECC-irreducible constant inK,
or a variable, is called asignature. The signature of a
term f(s1, . . . , sn) is a signaturef(γ1, . . . , γn) such that
∀(i : γi ∈ K).γi ↔∗ECC si and∀(i : γi ∈ V).γi = si.
Note that Proposition 1 holds for the general case with these
new definitions. The total number of signatures, upto vari-
able renaming, is bounded by|Σ||K ′+ 1|m, wherem is the
maximum arity of a function symbol inΣ andK ′ ⊆ K is
the set of allECC-irreducible constants.

We define the setsIRRSIG(c) andIRRCON (c), where
c ∈ K is anECC-irreducible constant, as before but using
this new definition of signature of a term.

A non-ground rewrite systemR is confluent if for all
termss, t ∈ T (Σ,V), whenevers ↔∗

R
t, there exists a

term u ∈ T (Σ,V) such thats →∗
R
u ←∗

R
t. For exam-

ple, the shallow-linear ground rewrite systemR = {fa →
fx, fa → a} overΣ = {f, a} is not confluent, although it
is confluent over the term universeT (Σ).

Lemma 8 Let (E,F,B) be an abstract rewrite closure
(over signatureΣ ∪ K) for the shallow-linear ground
rewrite systemR. Let ECC be an abstract congruence
closure forE ∪ F ∪ B over the same signature. Then,
E± ∪ F ∪B is confluent iff the following three conditions
are true for allc ∈ K in ECC-normal form:

(a) the setIRRSIG(c) contains at most one ground sig-
nature and no non-ground signatures,

(b) if IRRSIG(c) = {f(c1, . . . , cn)}, then for all c′ ∈
IRRCON (c), there is a rulec′ → f(c′1, . . . , c

′
n) in

E− ∪B such that∀i. ci ↔∗ECC c
′
i, and

(c) for all d, e ∈ IRRCON (c), it is the case that
d←∗E∪B− ◦ →

∗
E∪B− e.

Proof. SupposeE± ∪ F ∪B is confluent. If
f(γ1, . . . , γm) is a non-ground signature inIRRSIG(c) of
an (E ∪ F )-irreducible terms, thens andsσ, whereσ is
any variable renaming such thatx 6= xσ for somex in s,
are such thats ↔∗ECC sσ (since both are equivalent toc).
Hence,s ↔∗E±∪F∪B sσ, and by confluence,s →∗E±∪F∪B
◦ ←∗E±∪F∪B sσ. Following the argument from proof of



Lemma 4, we conclude thats ←∗E∪B− ◦ →
∗
E∪B− sσ,

which impliesx = xσ for all variablesx in s, which con-
tradicts the assumption onσ. In caseIRRSIG(c) has two
ground signatures, we can argue as in proof of Lemma 4
to get a contradiction. This proves condition (a). Condi-
tions (b) and (c) are proved using the same argument as in
the proof of Lemma 4.

Suppose conditions (a)–(c) are true, but the setE±∪F ∪
B is not confluent. Let{s, t} be a minimal witness (with
respect to the multiset extension�m of the ordering�) to
the non-confluence, as in the proof of Lemma 4. The terms
s and t are(E ∪ F )-irreducible, and using a case split as
before, we note that the argument for the first and third cases
is as before. In the second case, ifs andt are as in case (2) in
proof of Lemma 4, then the signatures ofs andt are distinct
(Property (1) and (3) of Proposition 1) and therefore, either
|IRRSIG(c)| ≥ 2 or IRRSIG(c) contains a non-ground
signature, which contradicts condition (a). The argument
for case (3) is identical. Finally, for Case 4, note that if
s, t = c′ andc are as described in the other proof, then if
the signature ofs is ground, then we use the same argument.
The case where signature ofs is non-ground is impossible
because of condition (a).

Finally, we show that the three conditions in Lemma 8
can be checked in polynomial time.

Lemma 9 For eachECC-irreducible constantc ∈ K, the
sets IRRSIG(c) and IRRCON (c) can be computed in
O(N3(m+ 1)) time.

Proof. The setsIRRCON (c) can be constructed
as in proof of Lemma 5. A signaturef(γ1, . . . , γn)
(upto variable renaming) is in the setIRRSIG(c) iff (1)
f(γ1, . . . , γn) → c ∈ ECC , and (2)f(γ1, . . . , γn) is not
an instance of a left-hand side of a rule inE ∪ F , and
either (3a)f(γ′1, . . . , γ

′
n) is E ∪ F -irreducible for some

γ′1, . . . , γ
′
n such that∀(i : γi ∈ K). γ′i ∈ IRRCON (ci)

and∀(i : γi ∈ V). γ′i = γi, or (3b) for somei such that
γi ∈ K, IRRSIG(γi) is non-empty. We compute the sets
IRRSIG(c), for all ECC-irreducible constantsc, using the
above definition as before. The time complexity of the pro-
cedure remains unchanged.

Lemma 10 Condition (c) of Lemma 8 can be checked in
O(N2 +N3m) time.

Proof. The proof is a minor modification of the proof
of Lemma 10. In particular, nowd ↑ e is true if either
(1) Src(d) ∩ Src(e) is nonempty, or (2)d′ ↑ e′ is true for
somed′ ∈ Src(d) ande′ ∈ Src(e), or (3) there exists rules
f(γ1, . . . , γn)→ d andf(δ1, . . . , δn)→ e in E ∪B− such
that∀(i : γi ∈ K). γi ↑ δi is true and∀(i : γi ∈ V). δi ∈ V
is true. The complexity analysis remains unchanged.

We can now state the following result.

Theorem 4 If R is a left-linear right-ground rewrite sys-
tem, then the confluence ofR can be decided inO(N3(m2+
1)) time.

Proof. Note that the only difference in the complexity
analysis comes from the computation of the abstract con-
gruence closure for the rewrite closure forR, but this com-
plexity is clearly bounded by that of construction of an ab-
stract rewrite closure.

Example 3 Consider the rewrite systemR = {fa →
ffa, fx → fa}. If U and�U is as in Example 1, then
the following illustrates the four steps used for deciding if
R is confluent:
1. An abstract rewrite closure forR is:

E = {a→ c1, fc1 → c2}
F = {fx→ c2}
B = {c2 → fc2}

2. An abstract congruence closure forE ∪ F ∪B is:

ECC = {a→ c1, fx→ c2}

3. Constants inK = {c1, c2} that areECC-irreducible are
c1 andc2.

IRRCON (c1) = {c1}, IRRSIG(c1) = ∅
IRRCON (c2) = {c2}, IRRSIG(c2) = ∅

4. Since the three conditions are easily verified, we con-
clude that the rewrite systemR is confluent.

7. Related Work and Conclusion

We have shown that the problem of deciding confluence
of ground term rewrite systems is in polynomial time. The
algorithm obtained is quite simple and is based on the con-
cepts of abstract congruence closure and abstract rewrite
closure. We also showed that the same algorithm, with
minor generalizations, also applies to the class of shallow-
linear ground term rewrite systems.

Confluence was shown decidable in polynomial time
for ground rewrite systems over signatures containing at
most one unary function symbol and finitely many constants
in [9]. For arbitrary signatures, the polynomial time de-
cidability was independently demonstrated first in [4]. The
approach used in that paper is based on transforming the
input R using a curry transformation and a conservative
introduction of new constants. These two steps also ap-
pear, respectively, in the proof of Corollary 1 and as the
Extension rule in our paper. While the new definitions
added by theExtension rule are treated as directed equa-
tions (part ofE-component) in this paper, they are explic-
itly added bi-directionally (bothc→ t andt→ c are added)



in [4]. An explicit closure of the rewrite relation over a
term universe is computed next in [4]. We compute a clo-
sure underorderedchaining and superposition inferences
in our approach. Consequently, whereas rewrite proofs can
be madeincreasingin [4], our closure computation trans-
forms rewrite proofs to so-calledvalleyproofs. This differ-
ence is crucial, because it allows us to give a simple char-
acterization of confluence (Lemma 4) using abstract rewrite
and congruence closures, which can be proved by induction
schema defined using the ordering� (w.r.t. which the clo-
sures are constructed). On the contrary, the proof in [4] pro-
gresses by defining “stability” and “stabilizability” of top
function symbol in a term and showing that these properties
can be decided in polynomial time. Finally, [4] completes
the proof by presenting some necessary conditions on con-
fluence and assuming them, showing deep joinability of all
left-hand sides of rules inR with themselves. The stabil-
ity properties are related to the concept of “signatures” in
our work and can also be decided using an abstract rewrite
closure. The computation of deep joinability involves some
fixed point computation similar in idea to the one used in
proofs of Lemmas 5 and 6.

The first proofs of decidability of confluence for ground
systems were based on tree-automata techniques and there-
fore, it is not surprising that abstract rewrite closure, which
can be seen as a ground tree transducer, is central to our al-
gorithm. TheO(N3(m2+1)) time complexity computed in
Theorem 3, and consequently theO(‖R‖9) time complex-
ity of Corollary 1, is based on simple arguments and need
not be optimal even for the decision algorithm described in
this paper. A more careful analysis of a particular imple-
mentation that uses appropriate data-structures and term in-
dexing mechanisms can potentially improve the worst case
time complexity. In case of shallow-linear ground rewrite
systems, a curry transformation cannot be performed with-
out changing the rewrite relation, and hence in this case, our
procedure is in polynomial time only under the assumption
that the maximum aritym is a constant.

The notion of an abstract congruence closure has been
extended to handle signatures containing associative and
commutative (AC) symbols [1]. Similarly, it is possible to
extend the inference rules for computing rewrite closures to
handle certain kinds of AC symbols in the signature [12].
Thus, we conjecture that the techniques in this paper can be
used to obtain algorithms for deciding confluence of ground
rewrite systems over such richer signatures. Additionally,
our approach could also be used for other kinds non-ground
term rewrite systems.
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