
Automated Symbolic Reachability Analysis; with
Application to Delta-Notch Signaling Automata�

Ronojoy Ghosh1, Ashish Tiwari2, and Claire Tomlin1

1 Stanford University, Stanford, CA, USA
{ronojoy,tomlin}@stanford.edu

2 Computer Science Laboratory, SRI International, Menlo Park, CA, USA
tiwari@csl.sri.com

Abstract. This paper describes the implementation of predicate ab-
straction techniques to automatically compute symbolic backward reach-
able sets of high dimensional piecewise affine hybrid automata, used to
model Delta-Notch biological cell signaling networks. These automata
are analyzed by creating an abstraction of the hybrid model, which is a
finite state discrete transition system, and then performing the compu-
tation on the abstracted system. All the steps, from model generation
to the simplification of the reachable set, have been automated using a
variety of decision procedure and theorem-proving tools. The concluding
example computes the reach set for a four cell network with 8 contin-
uous and 256 discrete states. This demonstrates the feasibility of using
these tools to compute on high dimensional hybrid automata, to provide
deeper insight into realistic biological systems.

1 Introduction

Reachability analysis may be used to gain insight into the behavior of the physi-
cal system modeled by a hybrid automaton. In the context of hybrid automaton
models of biological networks, the backward reachable sets from the equilibria of
the automaton are of considerable interest, because they contain the initial con-
ditions from which a particular biologically significant steady state is attainable.
If the reachability analysis is performed on a model with symbolic parameters
and rate constants, the computed reachable sets will not depend on numerical
instantiations of those parameters. This is particularly important in biological
systems, where the exact values of switching thresholds and chemical reaction
rates might be unknown, but a range of possible values, usually expressed in
terms of other symbolic constants, can be inferred. This in turn may be used
to “reverse engineer” parts of a biological circuit model, by attaining through
analysis parameters which are difficult or impossible to obtain experimentally.

The goal of this paper is to present our work in automated symbolic backward
reachable set computations for high-dimensional (in both continuous and discrete
variables) hybrid automata with multiple equilibria. The motivating example
is the Delta-Notch cell signaling system described and analyzed in [10]. The
� This research is supported by the DARPA Bio:Info:Micro program, grant MDA972-

00-1-0032, and the DARPA BioSpice program under contract DE-AC03-765F00098.

O. Maler and A. Pnueli (Eds.): HSCC 2003, LNCS 2623, pp. 233–248, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.3 Für schnelle Web-Anzeige optimieren: Nein Piktogramme einbetten: Nein Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [2400 2400] dpi Papierformat: [595.276 841.889] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 2400 dpi Downsampling für Bilder über: 3600 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten: Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Farbe nicht ändern Methode: StandardGeräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Ja PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Ja ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: Ja DSC-Warnungen protokollieren: Nein Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja EPS-Info von DSC beibehalten: Ja OPI-Kommentare beibehalten: Nein Dokumentinfo von DSC beibehalten: JaANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Warning /ParseDSCComments true /DoThumbnails false /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize false /ParseDSCCommentsForDocInfo true /EmitDSCWarnings false /CalGrayProfile (Ø¯P) /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue true /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.3 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends true /GrayImageDownsampleType /Bicubic /PreserveEPSInfo true /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /LeaveColorUnchanged /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 300 /EndPage -1 /AutoPositionEPSFiles true /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 2400 /AutoFilterGrayImages true /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 300 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [2400 2400]>> setpagedevice

234 R. Ghosh, A. Tiwari, and C. Tomlin

hybrid automaton is suitably high-dimensional, with 2n continuous variables
and 4n modes, for an n cell network. The continuous dynamics are governed by
piecewise affine differential equations and mode switching occurs only through
the continuous state variables crossing switching hyperplanes. Both the single
(n = 1) and the two cell (n = 2) hybrid automata were analyzed in [10], to
obtain constraints on the range of the protein kinetic parameters and switching
thresholds for biologically feasible equilibria to exist. The two cell automaton was
also shown to have a Zeno state with a particular Zeno execution. These results
were validated through extensive simulations, but a formal backward reachable
set computation of even the two cell system was lacking, due to the difficulty of
computing and keeping track of the 4 dimensional reachable set across switching
boundaries.

Computing reachable sets for hybrid systems is in general difficult, due to the
difficulty of representing and propagating sets in high dimensional continuous
spaces. There has been a recent research focus on techniques which use ap-
proximations of various types to make the problem of computing reachable sets
tractable; these include the use of linear hybrid automata [12,20], polyhedral rep-
resentations [3,7], piecewise affine systems [4], ellipsoidal approximations [6], and
projections of convergent approximations [18,19]. Recently, qualitative simula-
tion models [14,15] have been proposed to abstract continuous phase portraits of
hybrid automata to simpler transition graphs, on which reachability analysis can
be performed. Predicate abstraction [1,11] and quantifier elimination [24] have
been proposed for computing discrete abstractions of hybrid automata. Pred-
icate abstraction provides a means for combining theorem proving and model
checking techniques by automatically mapping an infinite state system to a fi-
nite state system (called the abstract system), in which the states correspond to
truth assignments to a set of user-supplied predicates. Most existing tools suffer
from two disadvantages from our point of view: (a) the complexity of the compu-
tations on the hybrid automaton restricts its dimensionality, and (b) symbolic
computations are not possible. The last two computation methods mentioned
above circumvent these restrictions by performing the formal verification on a
discrete abstraction.

In this paper, we demonstrate the application of these predicate abstraction
methods to automated reachable set computation. We use quantifier elimination
based decision procedures, implemented using the Symbolic Analysis Laboratory
(SAL) [24], which is a framework for combining different tools for abstraction,
program analysis, theorem proving, and model checking of transition systems, to
abstract the hybrid automaton to a discrete finite-state automaton. The reach-
able set computations are then performed on the discrete abstraction. The entire
process, from generating the SAL model for an arbitrarily large cell network, to
obtaining the final reachable sets, is completely automated using MATLAB code
written by us, the SAL tool set, and QEPCAD [13] (Quantifier Elimination by
Partial Cylindrical Algebraic Decomposition), which is used to simplify the for-
mula defining the reachable set. However, some analysis necessary to generate the
parameter constraints for equilibrium existence was done manually. Techniques
to automate those analysis procedures is a current research topic. We apply this
automatic computation to the reachability analysis of the Delta-Notch four cell

Automated Symbolic Reachability Analysis 235

signaling system: an affine hybrid automaton with eight continuous variables
and 256 discrete states. The computation time for this is about eight hours on
a Pentium III 500MHz machine, and there are good prospects to go to higher
dimensions.

The reachable set computation follows the procedure (Fig. 1): (i) automated
generation of the SAL code specifying the hybrid automaton for an arbitrarily
large cell network, (ii) automated abstraction of the hybrid automaton into a dis-
crete finite state automaton (FSA), (iii) automated computation of the backward
reachable set using the reachability tool, and (iv) simplification of the reachable
set definition using QEPCAD. In this paper, we start by briefly describing the
Delta-Notch signaling pathway in cells, the hybrid automaton model of that
process (for more details, see [10]), and the relevant analytical results that are
used in the abstraction. We then describe the tool as outlined above, followed
by results for large hybrid automata for two and four cell networks. Each step in
the process is explained using the automaton for a single cell as an illustrative
example.

SAL Model
and

Specifications

Symbolic
Processing and

Automatic Generation
of SAL Model using

MATLAB

Discrete
Abstraction
of Hybrid

Automaton

SAL Model Checker
+

Reachability Tool

Equilibrium
Analysis

and
Constraint
Generation

SAL
Abstraction

Tool

Formal Definition
of

Hybrid Automaton

Reachable Set

Fig. 1. Computation process for reach set construction

2 Delta-Notch Protein Signaling

2.1 Biological Background

Delta and Notch are both transmembrane proteins that actively signal only
when cells are in direct contact, in a densely packed epidermal layer. Delta is

236 R. Ghosh, A. Tiwari, and C. Tomlin

a ligand that binds and activates its receptor Notch in neighboring cells. The
activation of Notch in a cell affects the production of Notch ligands (i.e. Delta)
both in itself and its neighbors, thus forming a feedback control loop. In the case
of lateral inhibition, high Notch levels suppress ligand production in the cell
and thus a cell producing more ligands forces its neighboring cells to produce
less. The Delta-Notch signaling mechanism has been found to cause pattern
formation in many different biological systems, such as the South African claw-
toed frog (Xenopus laevis) embryonic skin [16] studied here. An example of the
distinctive “salt-and-pepper” pattern formed due to lateral inhibition is in the
Xenopus epidermal layer where a regular set of ciliated cells form within a matrix
of smooth epidermal cells.

2.2 Hybrid Automaton Model

To model the regulation of intracellular Delta and Notch protein concentrations
through the feedback network, experimentally observed rules governing the bi-
ological phenomenon have to be implemented. First, cells have to be in direct
contact for Delta-Notch signaling to occur. This implies that a cell is directly af-
fected by, and directly affects in turn, only immediate neighbors. Second, Notch
production is turned on by high Delta levels in the immediate neighborhood of
the cell and Delta production is switched on by low Notch concentrations in
the same cell. Third, at steady state, a cell with high Delta levels must have low
Notch level and vice versa. Finally, both Delta and Notch protein concentrations
decay exponentially. In the model, the cells are assumed to be hexagonal close
packed, i. e. each cell has six neighbors in contact with it (Fig. 2(a)).

Hexagonal close-packed lattice

Cell 1
(x1, x2)

Cell 2
(x3, x4)

Cell 3
(x5, x6)

Cell 4
(x7, x8)

(a) (b)

Fig. 2. (a) Hexagonal close-packed layout scheme for cells in two dimensional arrays.
(b) Layout and variable associations of a four cell Delta-Notch signaling network

Each biological cell is modeled as a four state piecewise affine hybrid au-
tomaton. The four states capture the property that Notch and Delta protein
production can be individually switched on or off at any given time. It is as-
sumed that there is no command-actuation delay in the mode switching. The
formal definition of the hybrid automaton is given by:

Automated Symbolic Reachability Analysis 237

H1 = (Q1, X1, Σ1, V1, Init1, f1, Inv1, R1)

Q1 = {q1, q2, q3, q4}
X1 = (x1, x2)

T ∈ �2

Σ1 =

{
uD, uN : uD = −x2, uN =

6∑
i=1

x1,i

}

V1 = ∅
Init1 = Q1 ×

{
X1 ∈ �2 : x1, x2 > 0

}
f1(q, x) =

[−λDx1; −λN x2]T if q = q1

[RD − λDx1; −λN x2]T if q = q2

[−λDx1; RN − λN x2]T if q = q3

[RD − λDx1; RN − λN x2]T if q = q4

Inv1 = {q1, {uD < hD, uN < hN }} ∪ {q2, {uD ≥ hD, uN < hN }}
∪ {q3, {uD < hD, uN ≥ hN }} ∪ {q4, {uD ≥ hD, uN ≥ hN }}

R1 :

R1 (q1, {uD ≥ hD ∧ uN < hN }) ∈ q2 × �2

R1 (q1, {uD < hD ∧ uN ≥ hN }) ∈ q3 × �2

...
R1 (q4, {uD < hD ∧ uN ≥ hN }) ∈ q3 × �2

where, x1 and x2: Delta and Notch protein concentrations, respectively, in a cell;
x1,i: Delta protein concentration in ith neighboring cell; λD and λN : Delta and
Notch protein decay constants respectively; RD and RN : constant Delta and
Notch protein production rates, respectively; hD and hN : switching thresholds
for Delta and Notch protein production, respectively. The switching thresholds
hD and hN are unknown and possible ranges for them are derived in [10].

In the single cell, x1,i = 0, ∀i ∈ {1, . . . 6}. The inputs uD and uN are the
physical realization of the protein regulatory properties in the model outlined
before. The two cell hybrid automaton H2 is the composition of two single cell
automata, to form a model with four continuous states (x1, . . . , x4) and sixteen
discrete modes. Here, uN �= 0 for each of the two cells, and thus the Delta level of
each cell is communicated to its neighbor to control Notch production. Modeling
the full two dimensional layer of cells involves composing M×N single cell hybrid
automata, with the coupling through the input functions as described above.

2.3 Equilibrium Analysis

Both the single and two cell hybrid automata were analyzed in [10], to obtain
constraints on the ranges of the protein kinetic parameters and switching thresh-
olds for biologically feasible equilibria to exist:

hD, hN : − RN

λN

< hN ≤ 0 ∧ 0 < hN ≤ RD

λD

The two cell automaton was also shown to have a Zeno state with a particular
Zeno execution that is an invariant: x1 = x3 ∧ x2 = x4, where x3 and x4 are
the Delta and Notch protein concentrations, respectively, in the second cell. In
the discrete abstraction procedure, it is essential to include the parameter con-
straints and the Zeno execution as “polynomials of interest” (explained in the

238 R. Ghosh, A. Tiwari, and C. Tomlin

following section), to produce an abstraction with sufficient resolution. Hence,
the analysis is an indispensable part of any formal verification done on the dis-
crete abstraction in general.

3 SAL Model

The first step of the procedure is to generate the SAL language description of the
hybrid model and the necessary user-defined predicates (for example, constraints
derived from analysis). This task is non-trivial because the size of the model (and
the number of lines of code) increase exponentially with the number of cells, since
each one of the 4n distinct modes has to be encoded. Hence, we have automated
the generation of the SAL specification file using MATLAB, for an arbitrarily
large network. The equilibrium existence conditions and consequent parameter
constraints described in the previous section are included in the SAL model.

3.1 The SAL Modeling Language

Hybrid systems described in terms of interacting hybrid automata can be spec-
ified using the SAL modeling language [5,9]. Here we shall only describe those
features of the SAL modeling language that will be used in the specification of
the Delta-Notch signaling mechanism.

A SAL specification consists of module definitions. A special kind of module,
called basemodule, corresponds to a hybrid automaton. It consists of definitions
of the variables, the initial states, and the discrete and continuous transitions
of the hybrid automaton. The variables are classified as input, output, local, and
global. Variables are typed, discrete variables are usually of type BOOLEAN and
continuous variables are of type REAL. The initial states of the hybrid automaton
can be specified either directly, or by specifying a formula. In the latter case,
the set of initial states consists of all those valuations of variables that make the
formula true.

The discrete and continuous transitions are specified using a set of guarded
commands. A guarded command is written as:

guard −→ x′
1 = e1; x′

2 = e2; x′
3 = e3; . . .

where guard is a formula over the variables, xi are variables, and ei are ex-
pressions over the variables. Semantically, the above command means that if
the formula in the guard is true for some state (a state is a valuation of all
the variables), then the transition can be taken. Note that the new value of a
variable, say x1, is denoted by priming it, x′

1. In case of a discrete transition,
the variables xi are updated to the new values given by expressions ei. In a
continuous transition, the variables xi on the left-hand sides of the assignment
are special variables, whose names end with the suffix “dot”. They specify the
time-derivative of the corresponding continuous variable. For example, the au-
tomatically generated SAL module specifying the single cell Delta-Notch hybrid
automaton H1 is given below.

Automated Symbolic Reachability Analysis 239

one_cell : CONTEXT =
BEGIN
system[u, hD, hN, RD, RN, lD, lN : REAL] : MODULE =
BEGIN

GLOBAL x1, x2 : REAL
GLOBAL x1dot, x2dot : REAL
INVARIANT

x1 > 0 AND lD*x1 < RD AND x2 > 0 AND lN*x2 < RN AND
u < hN AND lN* hD > -RN AND hD < 0 AND hN > 0 AND
lD*hN < RD AND RN > 0 AND RD > 0 AND lN > 0 AND lD > 0

INITFORMULA
u < hN AND x2 < -hD

TRANSITION
[

-x2 < hD AND u < hN -->
x1dot’ = -(-lD*x1);
x2dot’ = -(-lN*x2)

[]
-x2 < hD AND u >= hN -->

x1dot’ = -(-lD*x1);
x2dot’ = -(RN-lN*x2)

[]
-x2 >= hD AND u < hN -->

x1dot’ = -(RD-lD*x1);
x2dot’ = -(-lN*x2)

[]
-x2 >= hD AND u >= hN -->

x1dot’ = -(RD-lD*x1);
x2dot’ = -(RN-lN*x2)

]
END;

END

Note that the parameter constraints are explicitly included as invariant poly-
nomials, and the initial state, defined using the INITFORMULA declaration, is q2,
which has an equilibrium that implies high Delta level and low Notch level and
is biologically consistent. Here, the backward reachable set from the equilibrium
in q2 is desired, hence the dynamics in each mode are reversed, by negating
the right-hand-sides of the governing equations. In the SAL model, λ has been
replaced by l for brevity, λN is written as lN for example. Also note that the
input u = uN for the system has been fixed to uN < hN for this example.

4 Discrete Abstraction

The second step of the reachable set computation procedure is the automatic
generation of the discrete abstraction of the hybrid automaton. An abstract
model is usually obtained from a given hybrid model by partitioning the state-
space of the original model into a finite set and mapping the dynamics of the
original model onto this finite set. In the case of a model described using n real-
variables (representing, say, the concentrations of n different protein complexes),
the state-space is the n-dimensional real space �n. We partition this space into
a finite number of zones using a finite set P of polynomials over the n variables.
Each zone corresponds to a subset of �n that is sign-invariant for all polynomials
in the set P . Increasing the number of polynomials in the set P results in more
zones, and consequently, a finer abstraction. This basic idea, although in a much

240 R. Ghosh, A. Tiwari, and C. Tomlin

simplified form, is also at the core of qualitative reasoning techniques developed
in the AI community (see, for example [21]).

The process of construction of the abstract system requires logical reasoning
in the theory of reals. The first-order theory of real closed fields is known to be
decidable [23] and the first practical algorithm, based on cylindrical algebraic de-
composition, was given in [8], which has gone through several improvements [13,
17]. We use the first-order theory of reals to represent sets of continuous states
and use reasoning over this theory for creating the abstract transition system.

4.1 Abstraction Process

The abstraction technique is completely automatic and is described in [24]. The
abstraction algorithm works in two phases: In the first phase, the algorithm
computes a set of polynomials (over the continuous variables), which is used to
partition the continuous state-space. This is achieved by starting with a finite
set of polynomials which appear in the vector field of the continuous dynamics,
in the conditions of discrete transitions, initialization expressions, and property
to be proved. This set is saturated under the derivative operator, that is, the
time derivative of a polynomial in this set is also added to this set. Note that
computation of the derivative of a polynomial can be symbolically performed
using the derivatives of individual variables. This saturation process may not
terminate, but for our purposes can be stopped at any time. The termination
condition is specified by giving the bound on the order of the derivatives that is
computed.

In the second phase, the discrete and continuous transitions are abstracted.
The abstract state-space is given as a cross-product of the discrete-state space
and the regions of the original continuous state-space where the polynomials
computed in the saturation phase are sign-invariant. This requires the use of
decision procedures for the real-closed fields, intermingled with theorem-proving
strategies.

For scalability of the abstraction technique, it is necessary that the formu-
las that arise in proof obligations while constructing an abstraction and when
checking for feasibility of abstract states, do not grow in size. We have achieved
this by partitioning the set of variables into classes such that variables that in-
teract with each other (occur in the same polynomial) are put into the same
class. Furthermore, when proving a proof obligation, atomic formulas that are
not “relevant” to the succedent (that is, atomic formulas that do not contain any
variables that occur in the polynomials in the succedent) are removed from the
formula. This optimization simplifies the formulas to be proved. Furthermore, it
also reduces the number of proof obligations that arise in the construction of the
feasible abstract state space. An unique feature of the abstraction algorithm (and
its implementation) is that it allows to abstract parameterized systems, without
instantiating the parameters. Following our one cell Delta-Notch example, the
abstraction procedure maps six abstract variables, g0, g1, . . . , g5, to polynomials
in the original hybrid system:

Automated Symbolic Reachability Analysis 241

g0 --> lN*x2 - RN g2 --> u - hN g4 --> lD*x1 - RD
g1 --> lN*x2 g3 --> x1 g5 --> x2 + hD

The polynomials are either related to the continuous evolution of the model, for
example g0, g1, g3, g4, or are the switching planes defining mode transitions, for
example g2 and g5. The transitions in the abstract model arise from the discrete
mode change transitions of the original model, or from the continuous dynamics.
For example, the continuous evolution in mode q1 is abstracted to the following
SAL transition:

g2 = neg AND g5 = pos
-->

g5’ IN IF g5 = pos
THEN IF g1 = pos OR g1 = zero THEN {pos} ELSE {pos, zero} ENDIF

ELSIF g5 = neg
THEN IF g1 = neg OR g1 = zero

THEN {neg}
ELSE {neg, zero}
ENDIF

ELSE IF g1 = pos
THEN {pos}

ELSIF g1 = neg THEN {neg} ELSE {zero}
ENDIF

ENDIF;
g4’ = g4; g3’ = g3; g2’ = g2;
g1’ IN IF g1 = pos

THEN IF FALSE THEN {pos} ELSE {pos, zero} ENDIF
ELSIF g1 = neg

THEN IF FALSE THEN {neg} ELSE {neg, zero} ENDIF
ELSE IF FALSE

THEN {zero}
ELSIF FALSE

THEN {pos}
ELSIF FALSE THEN {neg} ELSE {pos, zero, neg}

ENDIF
ENDIF;

g0’ = g0

The invariant −x2 < hD ∧ u < hN has been abstracted to (g2 = neg AND
g5 = pos). The binary “IN” operator denotes that the (new) value of the left-
hand side variable is non-deterministically chosen from the set of values specified
on the right-hand side (in contrast, the “=” operator sets the value of the left-
hand side variable to a deterministic value). The new value of the variable is
determined by the sign of its derivative. For example, the new value of g5 depends
on g1, which is the derivative of g5 in mode q1.

5 Reachability Computation

The next step is the automatic computation of the backward reachable set using
the SAL model-checker coupled with the reachability tool, written by us. The
result is in the form of a vector that gives the reachable set of states. This
is the input to another MATLAB script which reads the vector, and uses the
polynomial invariants defining each set in that vector to construct the reachable
set as a union of those invariants. This is then passed to QEPCAD which returns
a compact, human-understandable form of the reachable set.

242 R. Ghosh, A. Tiwari, and C. Tomlin

The reachability computation takes advantage of the fact that the SAL
model- checker is an explicit-state model checker, i. e. it traces all possible
executions of the FSA explicitly by firing all valid transitions from all reach-
able states, and checks each state against a linear temporal logic (LTL) for-
mula. By giving the model checker a trivial formula to check, for example
G(TRUE), we can ensure that the model-checker will search the entire reach-
able state space without coming up with a counter-example. The reachability
tool is a LISP program which runs concurrently with the model-checker and
stores each valid state that the model-checker visits during its state space ex-
ploration. The model checker is initialized from the hybrid automaton mode
(which may be equivalent to several discrete states of the abstract FSA) con-
taining the equilibrium whose backward reachable set we want to compute. Ini-
tializing the model-checker with the equilibrium-containing mode is valid for
our example, because simple eigenvalue analysis of the equations show that the
dynamics in that mode are exponentially stable, therefore the entire mode is
backward reachable from the equilibrium point. After the model-checker ter-
minates, it returns a vector of backward reachable sets. In our example, for the
single cell automaton H1 after simplification, the backward reachable set is given
by: x1 > 0 ∧ x2 > 0 ∧ λdx1 < RD ∧ λNx2 < RN ∧ uN < hN .This means that the
entire state space of interest is reachable from the equilibrium provided the input
condition is satisfied. For larger systems, the simplification of the reachable set
vector is non-trivial because we have to compute conjunctions of a large number
of inequalities defining the invariants of states. This is done using QEPCAD,
which can return a reasonably compact equivalent formula.

6 Results

6.1 Two Cell System

The two cell hybrid automaton H2 is constructed by composing two single
cell hybrid automata. It has four continuous state variables x1, . . . , x4 and six-
teen discrete modes q1, . . . , q16. x1 and x2 represent the Delta and Notch pro-
tein concentration in the first cell, and x3 and x4 represent the Delta and
Notch protein concentration in the second cell. From previous analysis [10],
it was determined that only two biologically feasible equilibria exist for this
system: (i) x∗

1 = 0, x∗
2 = RN

λN
, x∗

3 = RD

λD
, x∗

4 = 0, which means the Delta pro-
tein level in the second cell is high and that in the first cell is low, and the
Notch protein level is high in the first cell and low in the second, and (ii)
x∗

1 = RD

λD
, x∗

2 = 0, x∗
3 = 0, x∗

4 = RN

λN
, which is the symmetric result. We are

interested in finding the set of initial conditions which converge to either one
or the other equilibrium. Therefore the backward reachable set computation is
performed for both the equilibria. The time required for the model construction
and abstraction is around 25 minutes and another 40 minutes for the reachabil-
ity computation using the model checker, on a Pentium III 500MHz computer
running Linux. The computed sets are given below:

Automated Symbolic Reachability Analysis 243

Eq 1: (0,RN/lN,RD/lD,0) Eq 2: (RD/lD,0,0,RN/lN)

x3 - x1 >= 0 /\ x4 - x2 <= 0 /\ [x3 - x1 <= 0 /\ x4 - x2 >= 0 /\ [
[x3 - x1 > 0 /\ hN - x3 > 0] \/ [x3 - x1 < 0 /\ hN - x1 > 0] \/
[x3 - x1 > 0 /\ hN - x1 < 0] \/ [x3 - x1 < 0 /\ hN - x3 < 0] \/
[x4 - x2 < 0 /\ hN - x3 > 0] \/ [x4 - x2 > 0 /\ hN - x1 > 0] \/
[x4 - x2 < 0 /\ hN - x1 < 0] \/ [x4 - x2 > 0 /\ hN - x3 < 0] \/
[x3 - x1 > 0 /\ hD + x4 > 0] \/ [x3 - x1 < 0 /\ hD + x2 > 0] \/
[x3 - x1 > 0 /\ hD + x2 < 0] \/ [x3 - x1 < 0 /\ hD + x4 < 0] \/
[x4 - x2 < 0 /\ hD + x4 > 0] \/ [x4 - x2 > 0 /\ hD + x2 > 0] \/
[x4 - x2 < 0 /\ hD + x2 < 0] \/ [x4 - x2 > 0 /\ hD + x4 < 0] \/
[hN - x3 <= 0 /\ hN - x1 > 0 /\ hD + x2 > 0]] [hN - x3 > 0 /\ hN - x1 <= 0 /\

hD + x4 > 0]]

The reachable set for equilibrium 1 implies that all initial conditions that sat-
isfy x3 > x1 ∧ x4 < x2 converge to that equilibrium and the reachable set for
equilibrium 2 implies that all initial conditions that satisfy x3 < x1 ∧ x4 > x2
converge to that equilibrium. The four dimensional reachable sets can be better
visualized by looking at their projections in lower dimensional space, examples
of which are shown in Fig. 3.

In Fig. 3(a), both reachable sets are projected onto a three dimensional space
with x3−x1, x4−x2 and x3 as the axes. In this projection, the reachable sets are
disjoint cubes with the respective equilibria at the corners. Note that the edge
x3 = x1 ∧ x4 = x2 separates the two reach sets. Neither of the two equilibria are
reachable from this edge: this separatrix defines the Zeno trajectory previously
identified [10]. The two dimensional projection onto the x1, x3 plane shown in
Fig. 3(b) makes the role of the separatrix clearer. It divides the plane into two
half-planes, each of which is reachable from exactly one equilibrium point. These
results are significant because, first, they involve symbolic computations over rel-
atively high dimensional hybrid automata, and, second, they predict conditions
that are biologically significant but not obvious from either the model or the
biological system.

6.2 Four Cell System

Currently, the largest network we have performed the reach set computation
for, is a four cell network. The hybrid automaton for a four cell network is con-
structed by composing four single cell automata as shown in Fig. 2(b). The sum
of the Delta protein levels of neighboring cells is used to control Notch protein
production in a cell. For example, cell 1 reads the Delta protein levels from cells 2
and 3, x3 and x5 respectively, and uses the sum x3+x5 to regulate its Notch pro-
tein concentration, x2. The set of parameter constraints from the two cell hybrid
automaton is used for abstraction. The four cell automaton has eight continuous
state variables (two proteins for each of the four cells), and 256 discrete states.
There are three biologically feasible equilibria for this network: (i) cells 1 and 4
have high Delta levels and low Notch levels, and cells 2 and 3 have high Notch
levels and low Delta levels, (ii) cell 2 has high Delta levels and low Notch levels
at steady state, and all the other cells have low Delta levels and high Notch
levels, and (iii) cell 3 has high Delta concentration and low Notch concentration
at steady state and the other three cells have low Delta levels and high Notch

244 R. Ghosh, A. Tiwari, and C. Tomlin

(a)

(b)

Fig. 3. Projections of reach set for two cell hybrid automaton

Automated Symbolic Reachability Analysis 245

levels. It is important to identify the backward reachable sets for each of these
three equilibria and we have investigated the reach set computation for the first
equilibrium mentioned above. The model generation and reach set computation
time required for that is 8 hours, on a Pentium III 500MHz computer running
Linux. The resultant reach set generated by the SAL model checker is rather
large, it comprises the union of 1576 states of the abstracted discrete automaton
defined in terms of the abstraction polynomials. Computation of a simplified for-
mula equivalent to the union of those 1576 states is non-trivial. QEPCAD has
memory and dimensionality limitations which precludes the simplification com-
putation of all 1576 states at once. To circumvent these limitations, we analyzed
the polynomials defining the abstracted states and reduced the dimensionality
of the problem by appropriate projections, as explained next. The state space
of the hybrid automaton is abstracted by mapping it to the following set of
polynomials:

g0 --> -x2-hD g3 --> -x8-hD g6 --> x5+x3-hN g9 --> x5+x3-RD/lD
g1 --> -x4-hD g4 --> x7+x3+x1-hN g7 --> x7+x5+x1-RD/lD g10 --> x7+x5+x1-2*RD/lD
g2 --> -x6-hD g5 --> x7+x5+x1-hN g8 --> x7+x3+x1-RD/lD g11 --> x7+x3+x1-2*RD/lD
g12 --> x7+x3+x1-3*RD/lD

Each state of the abstracted FSA is defined by assigning a sign
to the above polynomials and computing their conjunction. For ex-
ample, (g0 = 0 ∧ g1 = 0 ∧ g2 = 0 ∧ g3 > 0 ∧ g4 = 0 ∧ g5 = 0 ∧ g6
> 0 ∧ g7 < 0 ∧ g8 < 0 ∧ g9 > 0 ∧ g10 < 0 ∧ g11 < 0 ∧ g12 < 0) is a
mode of the abstracted FSA. The polynomials involve twelve symbolic variables,
eight variables x1, . . . , x8 denoting the protein concentrations in the cells and four
parameters associated with the dynamics. Note that the variables x2, x4, x6, x8
only appear in conjunction with the parameter hD and nowhere else. Hence,
we can map those five into the following four variables: p1 = -x2-hD, p2 =
-x4-hD, p3 = - x6-hD, p4 = -x8-hD. This reduces the dimensionality by one.
Also, note that x7 and x1 always occur together as the sum x7+x1, hence we can
map it into a single variable p5 = x7 + x1 enabling us to reduce the dimension-
ality by one more. Similarly, the ratio RD/lD can be mapped to a single variable
p6 = RD/lD, which reduces the dimensionality by another order. Therefore, in-
stead of twelve symbolic variables to simplify over, we now have only nine. This
is a substantial savings as the complexity of the problem grows exponentially
with the dimensionality.

The simplified reach set thus computed turns out to be the union of 1192
states, which is still too large to interpret as a whole. Instead of trying to find
meaning in a large non-convex set, we then partition the reach set using the
definitions of the hybrid states from the four cell hybrid automaton, and compute
the intersections of the invariants defining each of the 256 hybrid states, with
the simplified reach set. This enables us to determine the hybrid states that are
completely or partially backward reachable from the equilibrium. The natural
structure of the state space is thus used to divide the reach set into smaller
parts that are easier to interpret. It is observed that out of the 256 hybrid
states, only 90 states are backward reachable from the equilibrium, completely
or partially. The hybrid states are defined in terms of the signs of the switching

246 R. Ghosh, A. Tiwari, and C. Tomlin

functions governing Delta and Notch production, which are: p1, p2, p3, p4,
x3+x5-hN, p5+x3-hN and p5+x5-hN. For example, the mode in which neither
Delta nor Notch is produced in any of the four cells is defined as:

p1 < 0 /\ p2 < 0 /\ p3 < 0 /\ p4 < 0 /\ x3+x5-hN < 0 /\ p5+x3-hN < 0 /\ p5+x5-hN < 0

To simplify the representation of the states, we define the following expressions:

e1 = p1 < 0 /\ p2 < 0 /\ p3 < 0 /\ p4 < 0
e2 = p1 < 0 /\ p2 < 0 /\ p3 < 0 /\ p4 >= 0
e3 = p1 < 0 /\ p2 < 0 /\ p3 >= 0 /\ p4 < 0
e4 = p1 < 0 /\ p2 < 0 /\ p3 >= 0 /\ p4 >= 0
e5 = p1 < 0 /\ p2 >= 0 /\ p3 < 0 /\ p4 < 0
e6 = p1 < 0 /\ p2 >= 0 /\ p3 < 0 /\ p4 >= 0
e7 = p1 < 0 /\ p2 >= 0 /\ p3 >= 0 /\ p4 < 0
e8 = p1 < 0 /\ p2 >= 0 /\ p3 >= 0 /\ p4 >= 0
e9 = p1 >= 0 /\ p2 < 0 /\ p3 < 0 /\ p4 < 0
e10 = p1 >= 0 /\ p2 < 0 /\ p3 < 0 /\ p4 >= 0
e11 = p1 >= 0 /\ p2 < 0 /\ p3 >= 0 /\ p4 < 0
e12 = p1 >= 0 /\ p2 < 0 /\ p3 >= 0 /\ p4 >= 0
e13 = p1 >= 0 /\ p2 >= 0 /\ p3 < 0 /\ p4 < 0
e14 = p1 >= 0 /\ p2 >= 0 /\ p3 < 0 /\ p4 >= 0
e15 = p1 >= 0 /\ p2 >= 0 /\ p3 >= 0 /\ p4 < 0
e16 = p1 >= 0 /\ p2 >= 0 /\ p3 >= 0 /\ p4 >= 0
f1 = x3+x5-hN < 0 /\ p5+x3-hN < 0 /\ p5+x5-hN < 0
f2 = x3+x5-hN < 0 /\ p5+x3-hN < 0 /\ p5+x5-hN >= 0
f3 = x3+x5-hN < 0 /\ p5+x3-hN >= 0 /\ p5+x5-hN < 0
f4 = x3+x5-hN < 0 /\ p5+x3-hN >= 0 /\ p5+x5-hN >= 0
f5 = x3+x5-hN >= 0 /\ p5+x3-hN < 0 /\ p5+x5-hN < 0
f6 = x3+x5-hN >= 0 /\ p5+x3-hN < 0 /\ p5+x5-hN >= 0
f7 = x3+x5-hN >= 0 /\ p5+x3-hN >= 0 /\ p5+x5-hN < 0
f8 = x3+x5-hN >= 0 /\ p5+x3-hN >= 0 /\ p5+x5-hN >= 0

Using the above expressions, the reachable hybrid states can be listed:

Completely reachable Partially reachable
e1 /\ [f1 \/ f5] e1 /\ [f2 \/ f6 \/ f7 \/ f8]
e2 /\ [f1 \/ f5] e2 /\ [f6 \/ f7 \/ f8]
e3 /\ f1 e3 /\ [f5 \/ f6 \/ f8]
e4 /\ f1 e4 /\ [f5 \/ f6 \/ f7]
e5 /\ f1 e5 /\ [f2 \/ f6 \/ f8]
e6 /\ f1 e6 /\ [f2 \/ f5 \/ f6 \/ f7]
e7 /\ f1 e7 /\ [f2 \/ f6 \/ f8]
e8 /\ f1 e8 /\ [f2 \/ f5 \/ f6 \/ f7 \/ f8]
e9 /\ f1 e9 /\ [f3 \/ f5 \/ f6 \/ f7]
e10 /\ [f1 \/ f4] e10 /\ [f3 \/ f5 \/ f6 \/ f7 \/ f8]
e11 /\ f1 e11 /\ [f3 \/ f5 \/ f6 \/ f7]
e12 /\ f1 e12 /\ [f3 \/ f5 \/ f6 \/ f7 \/ f8]
e13 /\ f1 e13 /\ [f2 \/ f3 \/ f4 \/ f6]
e14 /\ f1 e14 /\ [f2 \/ f3 \/ f4 \/ f5 \/ f6 \/ f7 \/ f8]

e15 /\ [f1 \/ f2 \/ f3 \/ f4 \/ f5 \/ f6 \/ f7 \/ f8]
e16 /\ [f1 \/ f2 \/ f3 \/ f4 \/ f5 \/ f6 \/ f7 \/ f8]

We are currently in the process of analyzing the reach set results for biologically
significant information, but a few interesting properties of this equilibrium can
be mentioned:

– Among the hybrid states that are completely reachable, fourteen states sat-
isfy the constraint f1, i.e. x7 + x3 + x1 − hN < 0 ∧ x7 + x5 + x1 − hN <
0 ∧ x5 + x3 − hN < 0. This implies that for all Notch protein levels except
−hD ≥ x2 ∧−hD ≥ x4 ∧−hD ≥ x6 , if the Delta levels satisfy the constraint
f1, then the equilibrium will be attained.

Automated Symbolic Reachability Analysis 247

– It is observed that all hybrid states with −hD < x2 ∧ x5 + x3 < hN ∧ x7 +
x3 + x1 ≥ hN are completely unreachable. This implies that regardless of
the Notch protein levels of cells 2, 3 and 4 (Fig. 2(b)), if the Notch protein
concentration of cell 1 and the Delta protein levels of all four cells satisfy
the above constraints, then the equilibrium will be unreachable.

7 Conclusion

We have described, in this paper, the automatic computation of backward reach-
able sets for high dimensional piecewise affine hybrid automata. The reachability
procedure combines previously developed code in SRI’s SAL with automation
steps written by us. We have achieved results for a hybrid automaton with 8
continuous dimensions and 256 discrete modes. The concrete example that we
have used, that of a Delta-Notch signaling network, is one of many physical sys-
tems that can be modeled using this class of hybrid automata. The ability to do
symbolic computations makes our hybrid automaton-based modeling and anal-
ysis framework ideal for a wide range of cell biological regulatory and signaling
processes. One of our current research projects focuses on applying the reacha-
bility tools that we have developed to analyze planar cell polarity signaling in
Drosophila (fruit fly) pupal wing epithelium [2].

References

1. R. Alur, T. Dang, and F. Ivancic. Reachability analysis of hybrid systems via
predicate abstraction. In C. J. Tomlin and M. Greenstreet, editors, Hybrid Systems:
Computation and Control, LNCS 2289, pages 35–48. Springer Verlag, 2002.

2. K. Amonlirdviman, R. Ghosh, J. Axelrod and C. Tomlin. A hybrid systems ap-
proach to modeling and analyzing planar cell polarity. In International Conference
on Systems Biology, Stockholm, 2002.

3. E. Asarin, T. Dang, and O. Maler. d/dt: A verification tool for hybrid systems.
In Proc. of the IEEE Conf. on Decision and Control, pages 2893–2898, Orlando,
2001.

4. A. Bemporad, F. D. Torrisi, and M. Morari. Optimization-based verification and
stability characterization of piecewise affine and hybrid systems. In B. Krogh and
N. Lynch, editors, Hybrid Systems: Computation and Control, LNCS 1790, pages
45–59. Springer Verlag, 2000.

5. S. Bensalem, V. Ganesh, Y. Lakhnech, C. Muñoz, S. Owre, H. Rueß, J. Rushby,
V. Rusu, H. Säıdi, N. Shankar, E. Singerman, and A. Tiwari. An overview of
SAL. In C. M. Holloway, editor, LFM 2000: Fifth NASA Langley Formal Methods
Workshop, pages 187–196, Hampton, VA, June 2000. NASA Langley Research
Center.

6. O. Botchkarev and S. Tripakis. Verification of hybrid systems with linear differen-
tial inclusions using ellipsoidal approximations. In B. Krogh and N. Lynch, editors,
Hybrid Systems: Computation and Control, LNCS 1790, pages 73–88. Springer Ver-
lag, 2000.

7. A. Chutinan and B. H. Krogh. Verification of infinite-state dynamic systems using
approximate quotient transition systems. IEEE Trans. on Automatic Control,
46(9):1401–1410, 2001.

248 R. Ghosh, A. Tiwari, and C. Tomlin

8. G. E. Collins. Quantifier elimination for the elementary theory of real closed fields
by cylindrical algebraic decomposition. In Proc. Second GI Conf. Automata Theory
and Formal Languages, LNCS 33, pages 134–183. Springer Verlag, 1975.

9. Computer Science Laboratory, SRI International, Menlo Park , California. SAL:
Symbolic Analysis Laboratory. http://www.csl.sri.com/projects/sal/.

10. R. Ghosh and C. J. Tomlin. Lateral inhibition through delta-notch signaling:
a piecewise affine hybrid model. In M. D. D. Benedetto and A. Sangiovanni-
Vincentelli, editors, Hybrid Systems: Computation and Control, LNCS 2034, pages
232–246. Springer Verlag, 2001.

11. S. Graf and H. Säıdi. Construction of abstract state graphs with PVS. In O. Grum-
berg, editor, Proc. 9th International Conference on Computer Aided Verification
(CAV’97), volume 1254, pages 72–83. Springer Verlag, 1997.

12. T. A. Henzinger, P. H. Ho, and H. Wong-Toi. Hytech: A model checker for hybrid
systems. Software Tools for Technology Transfer, 1:110–122, 1997.

13. H. Hong. An improvement of the projection operator in cylindrical algebraic de-
composition. In Proc. ISAAC 90, pages 261–264, 1990.

14. H. de Jong. Modeling and simulation of genetic regulatory systems: A literature
review. J. Computational Biology, 9(1):69–105, 2002.

15. B. Kuipers and S. Ramamoorthy. Qualitative modeling and heterogeneous control
of global systems behavior. In C. J. Tomlin and M. Greenstreet, editors, Hybrid
Systems: Computation and Control, LNCS 2289, pages 294–307. Springer Verlag,
2002.

16. G. Marnellos, G. A. Deblandre, E. Mjolsness, and C. Kintner. Delta-notch lateral
inhibitory patterning in the emergence of ciliated cells in Xenopus: experimental
observations and a gene network model. In Pacific Symposium on Biocomputing,
pages 326–337, 2000.

17. S. McCallum. An improved projection operator for cylindrical algebraic decompo-
sition of three dimensional space. J. Symbolic Computation, 5:141–161, 1988.

18. I. Mitchell. Application of level set methods to control and reachability problems in
continuous and hybrid systems. PhD thesis, Stanford University, August 2002.

19. I. Mitchell and C. J. Tomlin. Overapproximating reachable sets by Hamilton-Jacobi
projections. J. Symbolic Computation, 2003.

20. J. Preußig and H. Wong-Toi. A procedure for reachability analysis of rectangular
automata. In Proc. of the American Control Conference, pages 1674–1678, Chicago,
2000.

21. B. Shults and B. J. Kuipers. Proving properties of continuous systems: qualitative
simulation and temporal logic. AI Journal, 92:91–129, 1997.

22. O. Sokolsky and H. S. Hong. Qualitative modeling of hybrid systems. In Proc. of
the Montreal Workshop, 2001. Available from
http://www.cis.upenn.edu/˜rtg/rtg papers.htm.

23. A. Tarski. A Decision Method for Elementary Algebra and Geometry. University
of California Press, second edition, 1948.

24. A. Tiwari and G. Khanna. Series of abstractions for hybrid automata. In C. J.
Tomlin and M. Greenstreet, editors, Hybrid Systems: Computation and Control,
LNCS 2289, pages 465–478. Springer Verlag, 2002.

	Introduction
	Delta-Notch Protein Signaling
	Biological Background
	Hybrid Automaton Model
	Equilibrium Analysis

	SAL Model
	The SAL Modeling Language

	Discrete Abstraction
	Abstraction Process

	Reachability Computation
	Results
	Two Cell System
	Four Cell System

	Conclusion

