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Abstract. We present a technique based on the use of the quantifier
elimination decision procedure for real closed fields and simple theorem
proving to construct a series of successively finer qualitative abstractions
of hybrid automata. The resulting abstractions are always discrete tran-
sition systems which can then be used by any traditional analysis tool.
The constructed abstractions are conservative and can be used to es-
tablish safety properties of the original system. Our technique works on
linear and non-linear polynomial hybrid systems, that is, the guards on
discrete transitions and the continuous flows in all modes can be specified
using arbitrary polynomial expressions over the continuous variables. We
have a prototype tool in the SAL environment [13] which is built over
the theorem prover PVS [19]. The technique promises to scale well to
large and complex hybrid systems.

1 Introduction

Hybrid systems describe a wide class of systems that exhibit discrete and con-
tinuous behaviors, such as a digital system embedded in an analog environment.
Since hybrid systems operate in safety-critical domains, for example, inside auto-
mobiles, aircrafts, and chemical plants, analysis techniques are needed to support
the design process of embedded software while maintaining safety guarantees.

The development of tools and analysis techniques for hybrid systems is faced
with two challenges. It has been shown that checking reachability for very simple
class of hybrid systems is undecidable [11]. Several decidable classes have been
identified, see [3] for a survey, but all of these classes are too weak to represent
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hybrid system models that arise in practical applications. In fact, the models
of physical environment in real world scenarios are usually too large and com-
plicated even for analysis tools built on semi-decision procedures and available
technologies.

Abstraction is a technique to reduce the complexity of a system design, while
preserving some of its relevant behavior, so that the simplified system is more
accessible to analysis tools and is still sufficient to establish certain safety proper-
ties. Two powerful abstraction techniques, called predicate abstraction and data
abstraction respectively, have been used quite successfully in analyzing discrete
transition systems. In this paper, we present a very simple, yet quite effective,
technique based on data abstraction, to construct a series of successively finer
abstractions of a given hybrid system.

Hybrid automata [1, 17] are mathematical models for representing hybrid
systems. In contrast to discrete transition systems, hybrid automata can make
both discrete and continuous transitions and hence, its semantics are given in
terms of the states, which are uncountably many, reached over a continuous
real time interval. However, the theory of hybrid automata can be given in
terms of infinite-state transition systems [9, 11] that contain uncountably many
states, but are interpreted over discrete time steps. In this paper, we map the
uncountable state space into a finite state space by an abstraction function. More
specifically, the n-dimensional real space Rn is partitioned into zones which are
sign-invariant for all polynomials in some finite set. Increasing the number of
polynomials in this set results in finer abstractions. This basic idea, although in
a much simplified form, is also at the core of qualitative reasoning techniques
developed in the Artificial Intelligence community [14,20,21].

Our work extends conventional qualitative techniques in at least two ways.
We keep track of the evolution of arbitrary polynomials (over the state vari-
ables), and not just the state variables, while constructing an abstraction. Sec-
ond, whereas qualitative reasoning usually uses sign of only the first derivative,
we deduce based on the signs of first n-th derivatives. The use of these two
nontrivial extensions makes the technique substantially more powerful. Simi-
lar extensions, but without any theorem proving support, have been used for
behavior prediction after a fault diagnosis in a dynamic physical system [16].

One other useful feature of our approach is that it can be used to construct
a series of finer abstractions. This gives an iterative methodology to prove a
safety property. Starting with a crude abstraction, we check whether the property
of interest holds for this abstract system. If not, we create a finer abstraction
and check the property again. We can repeat this until the property is either
established or no further refinements of the system can be constructed. Since the
resulting abstractions are discrete transition systems, techniques such as model
checking can be used. Furthermore, unlike a lot of other works on analysis of
hybrid systems [5, 15], we do not use any numerical methods and techniques.

The process of construction of the abstract system requires logical reasoning
in the theory of reals. The first-order theory of real closed fields is known to be
decidable [23] and the first practical algorithm, based on cylindrical algebraic
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decomposition, was given in [6]. We use the first-order theory of reals to represent
sets of continuous states and use reasoning over this theory for creating abstract
transition systems.

Preliminaries

The signature of the first-order theory of reals consists of function symbols
{+,−, ·}, constants R, and predicate symbols {=, >,≥, <,≤}. In this theory,
the set of terms over a set X of variables corresponds to the set of polynomials
R[X]. The set ATM (X), defined as {p ∼ 0 : p ∈ R[X]and ∼∈ {=, <,≤, >,≥}},
is the set of all atomic formulas. The set WFF (X) of first-order formulas (over
X) is defined as the smallest set containing ATM (X) and closed under the
boolean operations (conjunction ∧, disjunction ∨, implication ⇒, and negation
¬) and quantification (existential ∃ and universal ∀). The first-order theory of
reals, also denoted by R, is defined as the set of all first-order formulas over the
above signature (and a countable set of variables) that are true over the real
numbers. We use the notation R |= φ to denote the fact that the (first-order)
formula φ is true in the theory of reals. The first-order theory of the real closed
fields is a complete theory, that is every sentence in WFF (X) is either true or
its negation is true in this theory, and is known to be decidable [6, 23].

We denote formulas in WFF (X) by φ, ψ, possibly with subscripts and use
p to denote polynomials in the set R[X]. We say a polynomial p occurs in a
formula φ if there is an atomic formula p ∼ 0 in φ. The rest of the notation
follows the standard practice in hybrid systems literature.

2 Continuous Dynamical Systems

For simplicity, in this section we consider hybrid systems with no discrete compo-
nents, that is, hybrid systems with exactly one mode of operation. A continuous
dynamical system CS is a tuple (X, Init , Inv , f) where X is a finite set of vari-
ables interpreted over the reals R, X = R

X is the set of all valuations of the
variables X, Init ⊆ X is the set of initial states, Inv ⊆ X is the invariant set
of states, and f : X 7→ TX is a vector field that specifies the continuous dy-
namics. Here TX denotes the tangent space of X. We assume that f satisfies
the standard assumptions for existence and uniqueness of solutions to ordinary
differential equations. Note that the continuous dynamical systems we consider
here are autonomous, that is, they have no inputs.

The semantics, [[CS]], of a continuous dynamical system CS = (X, Init , Inv , f)
over an interval I = [τa, τz] ⊆ R is a collection of mappings σ : I 7→ X satisfying

(a) initial condition: σ(τa) ∈ Init ,
(b) continuous evolution: for all τ ∈ (τa, τz), σ̇(τ) = f(σ(τ)), and
(c) invariant: for all τ ∈ [τa, τz], σ(τ) ∈ Inv .

In case the interval I is left unspecified, it is assumed to be the interval [0,∞).



4

We assume that the flow derivative, f , is specified using polynomial expres-
sions over the state variables X, that is f ∈ (R[X])|X|, where R[X] denotes
the set of polynomials over the indeterminates X and coefficients in R, and |X|
denotes the cardinality of X. These polynomials can be nonlinear in general.

Example 1. The actuator module in a simple electronic throttle control system
is driven by a pulse-width modulated signal and can be described as a hybrid
system with two modes: when the input signal is high, the system is in the “on”
mode and is described by

V̇ = 2000
9 (24− 2V − I) İ = 1000

15 (120− 22I)

and when the input is low, the system is in “off” mode and is described by

V̇ = −2000
3 I İ = 2000

15 (5V − 16I).

In each mode, therefore, the actuator behaves as a continuous dynamical system
with two continuous variables V and I.

3 Discrete Transition Systems

A discrete state transition system DS is a tuple (Q, Init , t) where Q is a finite
set of variables interpreted over countable domains, Q denotes the (countable)
set of all valuations of the variables Q over the respective domains, Init ⊆ Q
is a set of initial states, and t ⊆ Q ×Q is a set of transitions. The semantics,
[[DS]], of a discrete state transition system DS = (Q, Init , t) is the collection of
all mappings θ : N 7→ Q satisfying

(a) initial condition: θ(0) ∈ Init , and
(b) discrete evolution: for all i ∈ N, (θ(i), θ(i+ 1)) ∈ t.

In order to define a notion of abstraction precisely, we need to establish a
correspondence between discrete evolutions θ : N 7→ Q and continuous evolutions
σ : [0,∞) 7→ Q. This is done using discrete sampling.

Definition 1. A discrete evolution θ : N 7→ Q is a sufficiently complete dis-
cretization of a continuous evolution σ : [0,∞) 7→ Q if there exists a strictly
increasing sequence 〈τ0, τ1, τ2, . . .〉 of reals in the interval [0,∞) such that
(i) τ0 = 0,
(ii) the function σ does not change on the domain (τi, τi+1), that is, σ(τ) = σ(τ ′)
for all τ, τ ′ ∈ (τ, τi+1), and
(iii) for all i, θ(2i) = σ(τi) and θ(2i+ 1) = σ(τ), where τi < τ < τi+1.

Intuitively, a sufficiently complete discretization captures all the “different”
(abstract) states in the given continuous evolution.

Definition 2. Let CS = (X, InitX , Inv , f) be a continuous dynamical system
and DS = (Q, InitQ , t) be a discrete transition system. We say DS is an ab-
straction for CS if there exists a mapping abs : X 7→ Q such that
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(a) abs(InitX ) ⊆ InitQ,1 and
(b) for every σ ∈ [[CS]], if σ′ is a sufficiently complete discretization of abs(σ),

then σ′ ∈ [[DS]].

This definition of abstraction corresponds to the usual sense of abstraction,
but applied to the infinite state transition system associated with a continuous
(hybrid) system. We consider the problem of constructing discrete transition sys-
tem abstractions for continuous dynamical systems in the sense of Definition 2.
The definition and the procedure for constructing an abstraction naturally ex-
tends to hybrid systems, see Section 5.

4 Abstracting Continuous Dynamical Systems

Data abstraction refers to the idea of using a partition of the domain of interpre-
tation as the new domain of interpretation for the state variables or expressions
over the state variables. The focus in this paper is on performing data abstrac-
tion on continuous and hybrid systems. We use abstract variables that represent
polynomials over the original continuous variables X and interpret them over a
three valued abstract domain {neg , pos, zero}.

Given a continuous dynamical system CS = (X, InitX , Inv , f), we construct
the abstract discrete state transition system DS = (Q, InitQ , t) in two steps.
The first phase creates a finite set P ⊆ R[X] of polynomials over the continuous
variables X which are used as the discrete variables Q. In the second phase, the
initial states InitQ and the transition relation t are computed.

Phase I: Obtaining a set of polynomials

Fixing the set P of polynomials for abstraction involves starting with a small
set P0 of polynomials of interest and adding to this set the time derivatives of
polynomials in P0. The initial set P0 could contain, for example, the polynomials
that appear in the statement of the property of interest that we want to establish
for the given continuous system, or the polynomials that occur in the guards
of mode change transitions for exiting this mode, etc. The phase I saturation
process involves application of the following inference rule: if p ∈ P , then add ṗ,
the derivative (with respect to time) of p, to the set P unless ṗ is a constant or
a constant factor multiple of some existing polynomial in P .

Since we assume that f ∈ (R[X])|X|, it follows that ṗ ∈ R[X] is a polyno-
mial. However, note that for general flow derivatives f , specified using arbitrary
polynomial expressions, the saturation process might not terminate. But there
are special cases where this process is guaranteed to terminate.

1 We shall use abs to also denote liftings of the function abs to sets and functions.
Thus, abs(InitX ) = {abs(x) : x ∈ InitX }. Similarly, if σ : [0,∞) 7→ X, then
(abs(σ))(τ) = abs(σ(τ)).
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Nilpotent Systems. Consider the class of linear time invariant systems speci-
fied using a nilpotent matrix A. If we also use X to denote the column vector of
state variables X, then the flow rate f = AX and hence, Ẋ = AX. A polynomial
p =

∑
i aixi can be written, in matrix notation, as aTX, where aT denotes the

transpose of a. Thus, ṗ = aT Ẋ = aTAX and p̈ = aTA2X. Hence, if An = 0,
then the n-th derivative of the polynomial p is aTAnx = 0. Thus, the saturation
process is guaranteed to terminate for such systems.

Systems such that An = rAm. If the matrix A used to specify the flow of the
continuous dynamical system CS is such that An = rAm for some constant r ∈ R
and n,m ∈ N, then again the saturation process can be shown to terminate.
In particular, if p = aTX is an arbitrary polynomial, then dnp

dτn = aTAnX =
aT rAmX = r d

mp
dτm . Since the n-th derivative of p is a constant multiple of the

m-th derivative of p, it does not get added to the set P of polynomials in the
saturation process.

We remark here that the termination of the saturation process is determined
by both the initial set P0 of polynomials and the flow derivative f .

General Case. Our abstraction technique works for general (possibly non-
linear) time invariant systems whose flow is specified using polynomials. The
termination of the saturation phase is not necessary for creating an abstraction.
We can stop at any point and pass on the current set P to the second phase. A
larger set P yields a finer abstraction as it results in a larger state space in the
final abstract system.

Example 2. Consider the “off” mode of the actuator in Example 1. If we start
with the set P0 = {V, I} of polynomials, the phase I saturation procedure first
adds the polynomial İ = 2000/15(5V − 16I) and then the derivative of this
polynomial Ï = 20002/15(−16V/3 + 77I/5). Since the derivative V̇ is a constant
multiple of the polynomial I ∈ P , it is not added. Note that we need not add the
exact derivatives, but only a polynomial upto some constant factor. Although
we can continue the process of adding derivatives, we stop the phase I here with
the final set P = {V, I, 5V − 16I,−80V + 231I}.

Phase II: Constructing the Abstract Transitions

Let CS = (X, InitX , Inv , f) be a continuous system and P ⊆ R[X] be a finite set
of polynomials over the set X of variables produced by the first phase. The state
variables Q in the corresponding abstract discrete system DS = (Q, InitQ , t)
contains exactly one new variable for each polynomial p ∈ P . Thus, Q = {qp :
p ∈ P}. These new variables are interpreted over the domain {pos,neg , zero}
and consequently the set Q of all discrete states is the set {pos,neg , zero}Q of
all valuations of the variables Q over this domain. We shall represent any such
valuation by the corresponding conjunction of atomic formulas. For example, the
valuation 〈qp1 7→ pos, qp2 7→ neg , qp3 7→ zero〉 will be thought of as the formula
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p1 > 0 ∧ p2 < 0 ∧ p3 = 0. We shall use such conjunctions and valuations
interchangeably. The set of all conjunctions representing such valuations will
also be denoted by Q. Note that these conjunctions are in the set WFF (X) of
formulas over free variables X.

If ψ ∈ Q is a state in the abstract system DS, say represented as ∧i∈J1pi >
0 ∧ ∧i∈J2pi < 0 ∧ ∧i∈J3pi = 0, then the concretization function, γ, maps
abstract states to sets of concrete states and is defined by2,

γ(ψ) = {x ∈ X : R |= pi(x) > 0 ∀i ∈ J1 and R |= pi(x) < 0 ∀i ∈ J2 and
R |= pi(x) = 0∀i ∈ J3}

Conversely, if x ∈ X is a concrete state of the system CS, then the abstraction
function, abs, maps a concrete state to an abstract state and is defined by,

abs(x) =
∧
i∈J1

pi > 0 ∧
∧
i∈J2

pi = 0 ∧
∧
i∈J3

pi < 0,

where J1 ∪ J2 ∪ J3 is a partition of the set {1, 2, . . . , |P |} such that i ∈ J1 iff
R |= pi(x) > 0, i ∈ J2 iff R |= pi(x) = 0, and i ∈ J3 iff R |= pi(x) < 0.

The Initial States. Assume that the initial set of states InitX for the contin-
uous system is specified using a first-order formula φX over X. The initial set of
states InitQ consists of all valuations ψ of the abstract variables such that the
formulas ψ and φX are simultaneously satisfiable. Specifically,

InitQ =
∨
{ψ ∈ Q : R |= ∃X : ψ ∧ φX}.

Lemma 1. Let CS = (X, InitX , Inv , f) be a continuous system with the initial
states InitX specified by the first-order formula φX . If DS, InitQ, and abs are
as defined as above, then, abs(InitX ) ⊆ InitQ.3

The Transition Relation. We add an abstract transition (ψ1, ψ2) ∈ t if all of
the following conditions hold (for all polynomials p ∈ P ):
(a) if p < 0 is a conjunct in ψ1, then (a1) if R |= ψ1 ⇒ ṗ < 0, then p < 0 is a
conjunct in ψ2; (a2) if R |= ψ1 ⇒ ṗ = 0, then p < 0 is a conjunct in ψ2; (a3)
if R |= ψ1 ⇒ ṗ > 0, then either p < 0 or p = 0 is a conjunct in ψ2; and (a4) if
the valuation of ṗ cannot be deduced from ψ1, then either p < 0 or p = 0 is a
conjunct in ψ2;
(b) if p = 0 is a conjunct in ψ1, then (b1) if R |= ψ1 ⇒ ṗ < 0, then p < 0 is a
conjunct in ψ2; (b2) if R |= ψ1 ⇒ ṗ = 0, then p = 0 is a conjunct in ψ2; (b3) if
2 Here, the notation R |= p(x) > 0 means that the polynomial p evaluates to a positive

number on the point x ∈ R|X|.
3 We use a formula and the set of valuations it represents interchangeably as the

context disambiguates the intended meaning.
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R |= ψ1 ⇒ ṗ > 0, then p > 0 is a conjunct in ψ2; and (b4) if the valuation of ṗ
cannot be deduced from ψ1, then either p > 0, p = 0, or p < 0 is a conjunct in
ψ2;
(c) if p > 0 is a conjunct in ψ1, then (c1) if R |= ψ1 ⇒ ṗ < 0, then either p > 0
or p = 0 is a conjunct in ψ2; (c2) if R |= ψ1 ⇒ ṗ = 0, then p > 0 is a conjunct
in ψ2; (c3) if R |= ψ1 ⇒ ṗ > 0, then p > 0 is a conjunct in ψ2; and (c4) if
the valuation of ṗ cannot be deduced from ψ1, then either p > 0 or p = 0 is a
conjunct in ψ2.

This completes the phase of adding transitions to the abstract system. Note
that the sign of ṗ can be directly read off from ψ1 if ṗ was added to P in phase I. If
not, then we add non-deterministic transitions from ψ1 assuming all possibilities
for the sign of ṗ. In the final step, we refine this abstract system to eliminate
unreachable states and transitions.

Refining the Abstraction. We note that certain abstract states (and transi-
tion to/from those states) can be deleted because either they are infeasible or
are explicitly disallowed by the given invariant set Inv of the concrete system.
In particular, if the invariant set Inv is specified using a first-order formula φInv ,
then we can delete all abstract states ψ such that R 6|= ∃X : ψ(X)∧φInv (X). We
can also remove all transitions to/from these eliminated abstract states. Note
that this process implicitly removes infeasible abstract states, that is, states
ψ(X) such that R 6|= ∃X : ψ(X).

This completes the construction of the abstract system DS = (Q, InitQ , t)
for the continuous dynamical system CS = (X, InitX , Inv , f).

Theorem 1. Let CS = (X, InitX , Inv , f) be a continuous system and DS =
(Q, InitQ , t), be the discrete abstraction as defined above. Then, DS is an ab-
straction (Definition 2) for CS.

Note that even though the abstract transition system is a finite-state system,
we need not explicitly represent the states and transitions. We can obtain the ab-
stract system implicitly with the states and transitions specified using predicate
formulas.

Example 3. Following up on Example 2, we can construct the abstract transition
system on the set P = {V, I, 5V −16I,−80V +231I} of polynomials. Assume that
the initial abstract state4 is I > 0 ∧ V > 0 ∧ 5V −16I < 0 ∧ −80V +231I > 0.
Out of the 34 = 81 abstract states, only 17 are feasible and the infeasible states
can be identified using a theorem prover. For example, the state I = 0 ∧ V >
0 ∧ 5V − 16I < 0 ∧ −80V + 231I > 0 is infeasible and a decision procedure
for reals can be used to deduce that this formula is unsatisfiable.

The outgoing transitions from the initial state I > 0 ∧ V > 0 ∧ 5V −16I <
0 ∧ −80V + 231I > 0 are obtained as follows: (a) since I > 0 and İ < 0 (as
5V − 16I < 0), in the successor state either I > 0 or I = 0, (b) since V > 0
4 The initial abstract state is obtained from the stable states in the abstract transition

system for the “on” mode of the actuator.
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and V̇ < 0 (as −I < 0), in the successor state either V > 0 or V = 0, (c)
since 5V − 16I < 0 and 5V̇ − 16İ > 0 (as −80V + 231I > 0), in the successor
state either 5V − 16I < 0 or 5V − 16I = 0, and (d) since −80V + 231I > 0
and −80V̇ + 231İ is unknown, in the successor state either −80V + 231I > 0 or
−80V + 231I = 0. Out of the 16 potential successors, only 4 are feasible:

q1 : I > 0 ∧ V > 0 ∧ 5V − 16I < 0 ∧ −80V + 231I > 0
q2 : I > 0 ∧ V = 0 ∧ 5V − 16I < 0 ∧ −80V + 231I > 0
q3 : I > 0 ∧ V > 0 ∧ 5V − 16I < 0 ∧ −80V + 231I = 0
q4 : I = 0 ∧ V = 0 ∧ 5V − 16I = 0 ∧ −80V + 231I = 0.

Continuing this way, we can construct the complete abstract system containing
10 reachable abstract states. We also note that among these states, only the
state q4 is stable.

5 Hybrid Automata

The technique for constructing finite state abstractions of continuous systems
extends naturally to hybrid systems. We skip the definitions and details here and
refer to the full version of the paper. To summarize these results, the abstract
system corresponding to the hybrid system HS = (Q,X, Init , Inv , t, f) and a
finite set P of polynomials (over X) is a discrete state transition system DS =
(QA, InitA, tA), where QA = Q ∪ (QP = {qp : p ∈ P}) is the set of discrete
variables, InitA ⊆ QA is the initial states, and tA ⊆ QA × QA is the set
of transitions. The new discrete variables QP are interpreted over the domain
{pos,neg , zero} as before. Thus, the set of states in the abstract system QA is
Q× {pos,neg , zero}QP .

Let qa = (q, φ) ∈ QA be a state in the abstract system, where q ∈ Q is a
discrete state of the hybrid automaton HS and φ is a valuation of the variables
in QP over {pos,neg , zero}. We think of φ as a formula in WFF (X) as before.
The transitions in the abstract system DS from the state qa are obtained as a
union of two kinds of transitions:

1. Abstractions of the discrete transitions: If (q,Cond , q′) ∈ t is a discrete tran-
sition of the hybrid automata HS, where q, q′ ∈ Q are discrete states and
Cond ⊂ X is a set of continuous states (or the guard) represented by, say, the
predicate formula ψ over the variables X, then there is an abstract transition
((q, φ), (q′, φ)) ∈ ta if R |= ∃X : (φ(X) ∧ ψ(X)).

2. Abstractions of the continuous transitions: The rule for constructing new
abstract transitions from the continuous flows is the same as before. We
note that the first component of the state is left unchanged, that is, we add
a new abstract transition ((q, φ), (q, ψ)) in ta if ψ can be obtained from φ
using the rules given before in Section 4 (applied to the flow corresponding
to the discrete state q).
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Note that we can handle cases where the set Q of discrete states in HS is
infinite as long as the number of distinct “modes” (each of which can be specified
as a formula over Q) are finite.

Theorem 2. Let HS = (Q,X, Init , Inv , t, f) be a hybrid automata and P ⊆
R[X] be a finite set of polynomials over the set X of real variables. If DS =
(QA = Q ∪ QP , InitA, tA) is the discrete transition system constructed by the
above method, then DS is an abstraction for HS.

We illustrate the abstraction technique on a simple hybrid system example.

Example 4. Consider a thermostat that controls the heating of a room. Assume
that the thermostat turns the heater on when the temperature x is between 68
and 70 and it turns the heater off when the temperature is between 80 and 82.
Suppose the continuous dynamics in the on and off modes is specified respectively
by the equations

ẋ = −x+ 100 and ẋ = −x.

If we assume that the heater is initially off and the room temperature is
between 70 and 80, the hybrid automaton is given by HS = (Q,X, Init , Inv , t, f),
where Q = {q1} is the set of discrete variables, Q = {on, off } is the set of discrete
states (thus, q1 ∈ {on, off }), X = {x1} is the set of continuous variables, X = R

is the set of continuous states, Init = {(off , x) : 70 < x < 80} is the initial
condition, Inv = {(on, x) : x < 82} ∪ {(off , x) : x > 68} is the invariant
set, t = {(on, x, off ) : x ≥ 80} ∪ {(off , x, on) : x ≤ 70} is the set of discrete
transitions, and f(on) = −x + 100 and f(off ) = −x specifies the continuous
flow rates.

Now, the set of polynomials that appear in the guards are {x− 70, x− 80},
and polynomials in the invariant specification are {x−68, x−82}. The derivative
of each of these four polynomials is ẋ. In the mode when the heater is on, this
evaluates to −x+ 100 and in the mode when the heater is off, this is −x. Hence,
we have two more polynomials, {x, x − 100}, in the set P . Note that further
saturation of the set P of these six polynomials under time derivative yields no
new polynomials.

Using the saturated set P of six polynomials, we can construct an abstraction
for the thermostat hybrid model and we show the final result Figure 1. In the
figure, transitions arising from the continuous and discrete evolutions of H are
drawn in different colors. Furthermore, the representation of abstract states has
been simplified. For example, the expression 70 < x < 80 denotes the conjunction
70 < x ∧ x < 80 ∧ 68 < x ∧ x < 82 ∧ −x+ 100 > 0 ∧ x > 0. This conjunction is
logically equivalent to 70 < x ∧ x < 80.

6 Implementation and Related Work

The SAL tool set provides interfaces that can be used to construct discrete
abstractions of hybrid systems as described in this paper [13]. The quantifier
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70 < x < 80

q = off

68 < x < 70

q = on

q = off

70 < x < 80

     x = 70

q = on

q = on

    x = 80

80 < x < 82

q = off

68 < x < 70

q = on

q = onq = off

     x = 70

80 < x < 82      x = 80

q = off

Fig. 1. Abstract transition system for the thermostat hybrid automata

elimination decision procedure for the real closed fields is implicitly used to de-
cide the implications over the real numbers. The tool QEPCAD [12], which is
built over the symbolic algebra library SACLIB [4], is integrated to the theo-
rem prover PVS [19] for this purpose. We are working on adding more explicit
interfaces into SAL to directly construct such abstractions for hybrid systems.

The discrete abstractions we construct do not store information about the
duration of a continuous run. However, our technique extends, quite easily, to
time variant systems by simply explicitly considering time as another continuous
variable. Note that we can get some timing information in the abstractions if we
include polynomials containing this variable for time in the set P .

Qualitative reasoning has been used by researchers in the AI community for
modeling and analyzing physical systems in the face of incomplete knowledge of
the system dynamics [20]. The idea is to interpret a continuous variable, say x,
over an abstract domain of the form {(−∞, c0), c0, (c0, c1), c1, (c1, c2), c2, . . . , cn,
(cn,∞)}, where c0, c1, . . . , cn ∈ R are constants. Model construction involves
keeping track of the sign of the derivative of x. In [20], the authors give a method
for proving temporal properties about systems specified (incompletely) using
qualitative differential equations. In [14] and [21], the authors assume a (more)
completely specified input model (using differential equations, for example) and
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construct an abstraction either incrementally [14] or directly [21]. The latter
approach has been implemented in CHARON [2]. Our paper substantially extends
the idea of qualitative reasoning by allowing for arbitrary polynomials, and not
just state variables, for defining the qualitative state space. Additionally, we
also use the signs of higher order derivatives in the procedure. As a result,
the abstractions we obtain have more information and are more useful from an
analysis point of view.

There has been a lot of work on constructing abstractions for hybrid sys-
tems. These works can be categorized based on the semantics of the hybrid
system considered, the class of formulas preserved, the class of hybrid systems
considered, the class of abstract systems generated, and whether the abstrac-
tions are conservative or accurate. Accurate abstractions, or bisimulations, lead
to decidability results [3]. In [18], the interest is in abstracting certain restricted
classes of linear hybrid systems into another simpler class of hybrid systems
called timed automata. The paper [10] abstracts a nonlinear hybrid by a linear
hybrid automata.

One can naturally associate an infinite state transition system, with un-
countably many states, with a continuous dynamical system or a hybrid sys-
tem. However, different abstractions preserve different behaviors of this infinite
transition system. In [11], certain discrete transitions of the hybrid system are
marked observables, and the abstraction preserves the observable behavior. In
other cases [8], the discrete states in a run of the system are observed and the
abstraction preserves this sequence of discrete states. In [5], the constructed ab-
straction captures all the discrete transition made by the system. In our work,
the overall behavior of the hybrid system is abstracted with respect to a finite
set of polynomials and the original discrete states. In particular, the behavior in-
side a continuous evolution is captured too. However, our method for computing
the abstract transitions is more approximate (and consequently much simpler
computationally) than some of these other methods as we only use information
contained in the signs of the n-th derivatives (for fixed n) of some expressions.
It should, however, be noted that as in [5], our abstractions do not retain any
timing information apart from the temporal ordering of abstract states. How-
ever, timing information can be introduced either by treating t as another state
variable with ṫ = 1, or by incorporating quantitative timing information in the
process of constructing an abstraction as in [22].

In the future we plan to further mechanize our technique and investigate
its use for doing test vector generation for hybrid systems that would cover
all regions of the state space, where a region is defined as the subspace which
is sign-invariant for a set of polynomials. We also plan to explore further the
integration with methods that employ additional quantitative information to
create an abstraction.
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