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Abstract. Given a binary relation IE ∪ IR on the set of ground terms
over some signature, we define an abstract rewrite closure for IE ∪ IR.
An abstract rewrite closure can be interpreted as a specialized ground
tree transducer (pair of bottom-up tree automata) and can be used to
efficiently decide the reachability relation →∗IE∪IE−∪IR. It is constructed
using a completion like procedure. Correctness is established using proof
ordering techniques. The procedure is extended, in a modular way, to deal
with signatures containing cancellative associative commutative function
symbols.

1 Introduction

Completion techniques for term rewriting systems, which are typically used for
reasoning about congruence relations, have been extended in recent years to
deal with non-symmetric relations. The general theory was outlined in [11] and
sound and refutationally complete inference systems were obtained for dealing
with partial congruence and partial equivalence relations [4]. Usually one ob-
tains suitably restricted (via ordering restrictions) chaining calculi. The gain in
efficiency with an ordered system over the unordered variants of chaining are
comparable to the improvements achieved by superposition over unrestricted
paramodulation.

This paper presents a completion based approach to decide the rewrite re-
lation induced by a set of directed (i.e., non-symmetric) and undirected (i.e.,
symmetric) ground equations. The basic technique involves combining standard
completion (for undirected equations) with non-symmetric completion (for di-
rected equations). Standard completion is reflected in a superposition inference
rule that deduces critical pairs between undirected equations. Non-symmetric
completion yields a chaining inference rule to deduce critical pairs between di-
rected equations. Finally, the interaction between the two kinds of equations is
captured using a paramodulation inference rule. We first consider the problem of
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constructing a “convergent system”, called a rewrite closure, for a set of ground
(directed and undirected) equations. Subsequently, we extend the method to al-
low for cancellative associative commutative function symbols in the signature. If
all input equations are undirected, then the problem reduces to the construction
of congruence closure and hence, an abstract rewrite closure is a generalization
of an abstract congruence closure [6].

The reachability or rewrite relation induced by a ground term rewriting sys-
tem was shown to be decidable in [9] and [13] using, respectively, tree automata
techniques and explicit transitive closure computation. An abstract rewrite clo-
sure can be interpreted as a specialized “ground tree transducer” (GTT). In this
paper, we give a set of abstract completion-like inference rules for construction of
rewrite closures. These rules yield efficient algorithms under suitable strategies.
Moreover, our method is extendible to richer signatures.

Correctness of the inference system is established using proof ordering tech-
niques. Each proof is assigned a measure and all inference rules transform a proof
with a larger measure into a proof with a smaller measure. The desired form of
proof, for example a rewrite proof or a valley proof, is assigned a minimal mea-
sure. Correctness arguments based on proof orderings also show compatibility
of the inference systems with certain kinds of simplifications.

Apart from our interest in extending rewriting techniques to non-symmetric
relations, this work is also motivated by our interest in developing abstract
transformation rules for constraint solving. Typical constraints consist of equa-
tional constraints, which are solved by a unification procedure, and ordering
constraints, where the ordering is usually some kind of a path ordering. Almost
all such orderings are rewrite relations that also satisfy certain additional prop-
erties, and hence an efficient procedure for deciding rewrite relations is a crucial
first step [13]. Note that the cancellative axiom for AC symbols is satisfied by
any AC compatible total simplification ordering.

Preliminaries

Let Σ be a set, called a signature, with an associated arity function α : Σ →2IN

and let V be a disjoint (denumerable) set. We define T (Σ,V) as the smallest
set containing V and such that f(t1, . . . , tn) ∈ T (Σ,V) whenever f ∈ Σ,n ∈
α(f) and t1, . . . , tn ∈ T (Σ,V). The elements of the sets Σ, V and T (Σ,V)
are respectively called function symbols, variables and terms (over Σ and V).
Elements c in Σ for which α(c) = {0} are called constants. By T (Σ) we denote
the set T (Σ, ∅) of all variable-free, or ground terms. The symbols s, t, u, . . . are
used to denote terms; f, g, . . ., function symbols; and x, y, z, . . ., variables.

An (undirected) equation is an unordered pair of terms, written s ≈ t. A
directed equation or rule is an ordered pair of terms, written s→ t. If E is a set
of rules, then we define E− = {s → t : t → s ∈ E} and E± = E ∪ E−. A set E
of rules is called a rewrite system and the rewrite relation →E induced by E is
defined by: u→E v if, and only if, u = u[lσ], v = u[rσ] is obtained by replacing
lσ by rσ in u, l→ r is in E , and σ is some substitution. If→ is a binary relation,
then ← denotes its inverse, ↔ its symmetric closure, →+ its transitive closure



and →∗ its reflexive-transitive closure. A set of rules E is terminating if there
exists no infinite reduction sequence s0 →E s1 →E s2 · · · of terms.

We will mostly be interested in ground rewrite systems, denoted by non-
calligraphic symbols IE, IR. In Section 2, the arity α(f) of a symbol f ∈ Σ is
assumed to a singleton and we focus on (the transitive closure of) the rewrite
relation →∗IE±∪IR induced by the ground rewrite system IE ∪ IR over such a
signature Σ. In Section 3, we shall assume that ΣAC ⊂ Σ is a set of AC symbols.
Such symbols are varyadic, with arity α(f) = {2, 3, 4, . . .} for f ∈ ΣAC . If
f ∈ ΣAC , then the extension of a rule f(s1, s2) → t, call it ρ, is defined as
f(f(s1, s2), x) → f(t, x) and is denoted by ρe. Given a rewrite system R, by
Re we denote the set R plus extensions of rules in R. By AC\R we denote the
rewrite system consisting of all rules u → v such that u ↔∗AC u′σ and v = v′σ,
for some rule u′ → v′ in R and some substitution σ.

A proof of s → t (in E) is a finite sequence s = s0 →E s1, s1 →E
s2, · · · , sk−1 →E sk = t (k ≥ 0), which is usually written in abbreviated form as
s = s0 →E s1 →E · · · →E sk = t (k ≥ 0).

2 Abstract Rewrite Closure

We closely follow the idea of an abstract congruence closure [6] in defining the
notion of an abstract rewrite closure. More specifically, we flatten out terms via
introduction of new constants and corresponding definitions.

Definition 1. Let Σ be a signature and K be a set of constants disjoint from Σ.
A D-rule (with respect to Σ and K) is a rewrite rule of the form f(c1, . . . , ck) →
c where f ∈ Σ is a k-ary function symbol and c1, . . . , ck, c are constants in set
K. A rewrite rule of the form c → f(c1, . . . , ck) will be called a reverse D-rule.

A C-rule (with respect to K) is a rule c → d, where c and d are constants
in K.

A set of D-rules and C-rules (with respect to Σ and K) is a specifi-
cation of a bottom-up tree automaton transitions [8]. The set K represents
“states” in the tree automaton. Thus, D-rules and C-rules represent regu-
lar and ε-transitions respectively. A set of ground equations and rules, say
II0 = IE0 ∪ IR0, where IE0 = {f(g(a, b), g(a, b)) ≈ a} and IR0 = {a → b},
can be represented as II1 = {f(c3, c3) ≈ c1, c1 → c2} by introducing the set
E1 = {a→ c1, b→ c2, g(c1, c2)→ c3} of D-rules.

A constant c in K is said to represent a term t in T (Σ) via the rewrite system
E if t↔∗E c. For example, the constant c3 represents the term g(a, b) via E1.

Definition 2 (Abstract rewrite closure). Let Σ be a signature and K be a
set of constants disjoint from Σ. A ground rewrite system E ∪ F ∪B is said to
be an (abstract) rewrite closure (with respect to Σ and K) if

(i) E and F are both sets of D-rules and C-rules, B is a set of reverse D-
rules and C-rules such that each constant c ∈ K represents some term t ∈ T (Σ)
via E, and



(ii) the rewrite systems E∪F and E∪B− are terminating; and for all terms
s, t ∈ T (Σ), if s →∗E±∪F∪B t then s →∗E∪F ◦ ←∗E∪B− t.
Moreover, if II = IE ∪ IR is a set of ground equations and rules over T (Σ) such
that

(iii) for all terms s and t in T (Σ), s→∗IE±∪IR t if and only if s→∗E±∪F∪B t,
then E∪F ∪B will be called an (abstract) rewrite closure for (the rewrite relation
induced by) II.

From the set E∪F∪B, one can obtain a pair of (bottom-up) tree automata [8]:
the set E ∪ F defines the transitions of the first automaton and the set E ∪B−
defines the transitions of the second automaton (over the same set K of “states”).
Such a pair defines a binary relation→∗E∪F ◦ ←∗E∪B− on the set of ground terms
and is called a “ground tree transducer” in the tree automata literature [8].

Using a combination of standard completion and non-symmetric completion,
which we present next, we can obtain a rewrite closure E2 ∪ F2 ∪ B2 for the
set II0 = IE0 ∪ IR0, where E2 = {a → c1, b → c2, g(c1, c2) → c3, f(c3, c3) →
c1}, F2 = {c1 → c2}, and B2 = {c3 → g(c2, c2)}. A rewrite closure for IE ∪ IR
gives a decision procedure for (deciding) the rewrite relation →∗IE±∪IR.

Construction of Rewrite Closure

We next present an inference system to construct a rewrite closure for a finite set
II of ground equations and rules over the signature Σ. Our description is fairly
abstract, in terms of transition rules that operate on tuples (II, E,R), where
II = IE ∪ IR is a set of ground equations and rules (over Σ), and E and R1

are sets of (reverse) D-rules and C-rules. Tuples represent possible states in the
process of constructing a rewrite closure. The initial state is (II0, ∅, ∅), where II0
is the input set of ground equations and rules (over T (Σ)).

The transition rules can be derived from those for standard completion and
non-symmetric completion as described in [3] and [11], with some differences so
that a system is constructed over an extended signature. We assume that the new
constants are chosen from an infinite set U disjoint from Σ, which is endowed
with an ordering2 �U .

Equations and rules are flattened using extension and simplification.

Extension:
(II[s], E,R)

(II[c], E ∪ {s→ c}, R)

if s→ c is a D-rule and c ∈ U is a new constant3.

Simplification1:
(II[s], E ∪ {s→ c}, R)

(II[c], E ∪ {s→ c}, R)
1 The set R will later be partitioned into the set F of forward rules and the set B of

backward rules.
2 By an ordering we mean any irreflexive and transitive relation on terms.
3 The notation II[s] denotes that s occurs as a subterm in some equation or rule in II

and II[c] denotes the new set obtained by replacing that occurrence of s in II by c.



Once an equation or rule in II is of the form of a D-rule, reverse D-rule, or
a C-rule, it can be oriented.

Orientation:
(II ∪ {s ≈ c}, E,R)

(II, E ∪ {s→ c}, R)

(II ∪ {u→ v}, E,R)

(II, E,R ∪ {u→ v})

if s→ c is either a D-rule or a C-rule with s �U c and u→ v is either a C-rule,
D-rule, or a reverse D-rule.

Trivial equations and rules are deleted.

Deletion:
(II ∪ {s ≈ s}, E,R)

(II, E,R)

(II ∪ {s→ s}, E,R)

(II, E,R)

(II, E,R ∪ {s→ s})
(II, E,R)

Deduction in standard completion, as well as in non-symmetric completion,
is based on computation of critical pairs. There are three kinds of critical pair
computations—(i) between two rules in E, which are handled by superposition;
(ii) between a rule in E and a rule in R, which are handled by paramodulation;
and (iii) between two rules in R, which are handled by chaining.

Superposition:
(II, E ∪ {t→ c, s[t]→ d}, R)

(II, E ∪ {t→ c, s[c]→ d}, R)

(II, E ∪ {t→ c, t→ d}, R)

(II, E ∪ {t→ c, d→ c}, R)

if s[t] 6= t in the first case and d �U c in the second case.
The set R can be partitioned into the set F = {s → t ∈ R : s →

t is a D-rule or a C-rule with s �U t} of forward rules and the set B = {s →
t ∈ R : t→ s is a D-rule or a C-rule with t �U s} of backward rules.

Definition 3. Let E and R = F ∪ B be sets of (reverse) D-rules and C-rules.
The set CP(E,R) of critical pairs between rules in E and R is defined as:

CP(E,R) = {f(. . . , d, . . .)→ c : f(. . . , d′, . . .)→ c ∈ E and d→ d′ ∈ B}
∪ {c→ f(. . . , d, . . .) : f(. . . , d′, . . .)→ c ∈ E and d′ → d ∈ F}.

The set CP(R) of critical pairs between rules in R is defined as:

CP(R) = {t[d]→ c : d→ s ∈ B and t[s]→ c ∈ F}
∪ {c→ t[d] : c→ t[s] ∈ B and s→ d ∈ F}.

Note that if the sets E and R contain only D-rules, reverse D-rules, and C-rules,
then so do the sets CP(E,R) and CP(R).

Chaining and Paramodulation:
(II, E,R)

(II, E,R ∪ {s→ t})

if s→ t ∈ CP(R) ∪ CP(E,R).
A crucial component of deductive inference systems is simplification. In the

ground case, several deduction steps reduce to simplification. In particular, the
rules in E can be used to simplify terms in R.



Simplification2:
(II, E ∪ {s→ c}, R[s])

(II, E ∪ {s→ c}, R[c])

Composition:
(II, E ∪ {c→ d, s→ c}, R)

(II, E ∪ {c→ d, s→ d}, R)

Example 1. Consider the set II0 = {f(g(a, b), g(a, b)) ≈ a, a → b} of equations
and rules. An abstract rewrite closure for II0 can be derived from (II0, E0, R0) =
(II0, ∅, ∅) as follows (assuming U = {c0, c1, c2, . . .} with ci �U cj for i < j):

i Input IIi Equations Ei Rules Ri Transition Rule
0 II0 ∅ ∅
1 {fgabgab ≈ a} {a→ c1, b→ c2} {c1 → c2} Ext2 ◦Ori
2 {fc3c3 ≈ a} E1 ∪ {gc1c2 → c3} R1 Sim4 ◦Ext ◦ Sim
3 ∅ E2 ∪ {fc3c3 → c1} R1 Sim ◦Ori
4 ∅ E3 R1 ∪ {c3 → gc2c2} Par

Since no further rules are added, the rewrite system E4 ∪ F4 ∪ B4, where F4 =
{c1 → c2} and B4 = {c3 → gc2c2}, is an abstract rewrite closure for II0.

Correctness

We use the symbol ` to denote the one-step transition relation on states induced
by the above transition rules. A derivation is a sequence of states (II0, E0, R0) `
(II1, E1, R1) ` · · ·. A derivation is said to be fair if any transition rule which
is continuously enabled is eventually applied. The set E∞ of persisting rules is
defined as ∪i ∩j>i Ej ; and similarly, R∞ = ∪i ∩j>i Rj .

We shall prove that any fair derivation will only generate finitely many per-
sisting rewrite rules in the second and third components.

Theorem 1. Let II0 be a finite set of ground equations and rules. The set E∞∪
R∞ of persisting rules in any fair derivation starting from the state (II0, ∅, ∅) is
finite.

Proof. Each inference step either reduces, or leaves unchanged, the number of Σ-
symbols in the II-component. The inference rule which introduces new constants,
extension, always reduces this number. Therefore, it follows that the number of
new constants introduced in any derivation is finite. Let this number be n.

If the maximum arity of any function symbol in Σ is c, then the number of
distinct D-rules is bounded by |Σ|nc+1 and the number of distinct C-rules is n2.
Consequently, the sets E∞ and R∞ are finite.

Theorem 2 (Soundness). If (IE0 ∪ IR0, E0, R0) ` (IE1 ∪ IR1, E1, R1), then,
the rewrite relation induced by IE±1 ∪ IR1 ∪ E±1 ∪R1 is identical to the rewrite
relation induced by IE±0 ∪ IR0 ∪ E±0 ∪R0 over the set T (Σ∪K0) of terms, where
K0 ⊂ U is the set of new constants introduced until state (II0, E0, R0).



Proof Ordering The correctness of the procedure will be established using
proof simplification techniques, as described by Bachmair [1] and Bachmair and
Dershowitz [2], but specialized to our case of standard and non-symmetric ground
completion. Let � be any reduction ordering4 which contains �U and also ori-
ents D-rules from left to right. For instance, a recursive path ordering with an
appropriate precedence on function symbols is such an ordering.

Let s = C[u]→ C[v] = t be a proof step using the equation or rule u ≈ v ∈
IE± ∪ IR ∪ E± ∪R. The complexity of this proof step is defined by

({s, t},⊥,⊥,⊥) if u ≈ v ∈ IE± ({s, t},⊥,⊥,⊥) if u→ v ∈ IR
({s}, u,⊥, t) if u→ v ∈ E ({s}, u,>, t) if u→ v ∈ R, u � v
({t}, v,⊥, s) if u→ v ∈ E− ({t}, v,>, s) if u→ v ∈ R, v � u

where ⊥ and > are new symbols assumed to be minimum and maximum respec-
tively. Tuples are compared lexicographically using the multiset extension of the
ordering � on terms in the first component, and the ordering � in the second
and fourth component. The complexity of a proof is the multiset of complexities
of its proof steps. The multiset extension of the ordering on tuples yields a proof
ordering, denoted by �P . The ordering �P is well-founded as it is a lexicographic
combination of well-founded orderings.

Lemma 1. Suppose (II0, E0, R0) ` (II1, E1, R1). If π is a ground proof, s0 →
s1 → · · · → sk, in IE±0 ∪ IR0 ∪E±0 ∪R0, then there is a proof π′, s0 = s′0 → s′1 →
· · · → s′l = sk, in IE±1 ∪ IR1 ∪ E±1 ∪R1, such that π �P π′.

Proof. We need to check that each equation or rule in (IE0 − IE1)± ∪ (IR0 −
IR1)± ∪ (E0 − E1) ∪ (R0 − R1) has a simpler proof in IE±1 ∪ IR1 ∪ E±1 ∪ R1 for
each transition rule application. The details can be found in [16].

For instance, consider the case of simplification2 inference rule where s[u]→
t ∈ R0 is simplified to s[v] → t ∈ R1 by the rule u → v ∈ E0. The old proof
s[u] →R0 t is replaced by the new proof s[u] →E1 s[v] →R1 t. If s[u] � t, then
the new proof is smaller because the rewrite step s[u] →R0 t is more complex
than (a) the proof step s[u]→ s[v] in either the second component, if s[u] 6= u,
or the third component; and (b) the proof step s[v] → t in the first component
as s[u] � s[v] and s[u] � t. Next suppose that t � s[u]. In this case, the old
rewrite step s[u] →R0 t is more complex than (a) the proof step s[u] → s[v] in
the first component as t � s[u]; and (b) the proof step s[v] → t in the fourth
component as s[u] � s[v].

Theorem 3 (Completeness). Let II0 be a finite set of equations and rules.
If (II∞, E∞, F∞ ∪ B∞) is the persisting state of a fair derivation starting from
(II0, ∅, ∅), then, the rewrite system E∞ ∪F∞ ∪B∞ is an abstract rewrite closure
for II0.

Proof. (Sketch) Fairness implies that all superposition, paramodulation, and
chaining inferences between rules in E∞ and R∞ are contained in the set
4 A reduction ordering is an ordering that is well-founded and closed under contexts.



(∪iEi) ∪ (∪iRi). Fairness also implies that II∞ is empty. Since the proof
ordering is well-founded, it follows from Lemma 1 that for every proof in
IE±i ∪ IRi ∪ E

±
i ∪ Ri, there exists a minimal proof in E±∞ ∪ R∞. We argue by

contradiction that peaks, which are proof patterns of the form s → u → t with
u � s and u � t, can not occur in the minimal proof. This implies that for all
terms s, t ∈ T (Σ), if s→∗

F∞∪B∞∪E±∞
t then s →∗E∞∪F∞ ◦ ←

∗
E∞∪B−∞

t. More-
over, the rewrite systems E∞ ∪ F∞ and E∞ ∪ B−∞ are terminating as they are
contained in �. Finally, property (i) and (ii) of Definition 2 follow from correct-
ness of congruence closure [6] and Lemma 1. This establishes that E∞∪F∞∪B∞
is a rewrite closure for IE0 ∪ IR0.

Related Work and Other Remarks

Note that the relation →∗E∪F ◦ ←∗E∪B− is decidable as the rewrite systems
E ∪ F and E ∪B− are terminating [11]. Although the search for a proof of
the above form involves guessing the correct rewrite rules to apply, we can still
decide in polynomial time if s →∗E∪F ◦ ←∗E∪B− t, as (i) the non-deterministic
choices can be eliminated by maintaining subsets of K, that is, doing subset
determinization along the computation, and (ii) the common context C[ ] of
terms s and t such that s →∗E∪F C[c1, . . . , ck] ←∗E∪B− t can be determined by
starting with the largest common context of s and t and moving (only polynomial
number of times) to a smaller context if necessary. Furthermore, using the result
that establishes a quadratic bound on the length of a derivation for construction
of congruence closure [6], we can show that we can reach a state consisting of
all persisting rules using derivations of length O(n2 + nc+1), where n is the size
of the input and c is the maximum arity5 of any symbol in Σ. Reachability for
ground rewrite systems was shown to be decidable in polynomial time in [13].

The construction of abstract rewrite closure is similar to performing “iterative
(or transitive) closure” on a ground tree transducer (representing the one-step
rewriting relation). However, there are the following differences: (a) whereas a
GTT is specified as a pair of bottom-up tree automata, an abstract rewrite closure
has an additional component, E, which keeps track of the term representation6

and the undirected equations, like s ≈ t, in the input. Thus, the undirected
equations are treated using congruence closure and not as two distinct rules,
s→ t and t→ s (as would be done in the GTT approach); (b) our deduction rules
are local and have ordering constraints. The computation of an iterative closure
for GTT is done using exhaustive closure under the following rule (described in
our framework as): “deduce c→ d if f(c1, . . . , ck)→ c ∈ E∪B−, f(c′1, . . . , c

′
k)→

d ∈ E ∪ F , and for each i, ci and c′i represent some common term in T (Σ)”7.
In [13], all possible transitivity inferences are explicitly done; (c) our procedure is
5 Without loss of generality, the maximum arity c can be treated as a constant.
6 The D-rules in E (introduced by Extension) are interpreted as representing the term

DAG [6].
7 A stronger requirement (assuming each constant represents some term in T (Σ)) is
ci ↔∗C c′i, where C represents all the C-rules in E ∪ F ∪ B. This inference rule



based on standard completion techniques and redundant inferences are avoided;
(d) the correctness argument is in terms of proof orderings; and (e) our procedure
can be extended to AC symbols, whereas tree automata techniques have not
been extended to such richer signatures. We explain the last three points further
below.

Correctness arguments based on proof orderings allow for clear identification
of redundant inferences and compatible simplifications. To illustrate this point,
consider an inference rule (II, E,R∪{s→ t, t→ s}) ` (II, E∪{s→ t}, R), where
s � t. This inference rule8 is clearly sound. The completeness of the inference
system that includes this rule easily follows by observing that the deleted rules,
s→ t and t→ s in the R-component, have simpler proofs using the new rule in
the E-component. The new proofs are simpler in the third component.

3 Ground Cancellative AC Theories

We next enrich the signature with additional AC symbols ΣAC . Apart from
the associative and commutative axioms, the symbols f ∈ ΣAC are assumed to
satisfy the cancellative axioms (or inverse monotonicity axioms),

f(x1, x2, . . . , xm) ≈ f(x1, y2, . . . , ym) iff f(x2, . . . , xm) ≈ f(y2, . . . , ym),
f(x1, x2, . . . , xm)→ f(x1, y2, . . . , ym) iff f(x2, . . . , xm)→ f(y2, . . . , ym),

and the identity axiom f(x, ef ) ≈ x, where ef is the identity element for f .
In the presence of AC-symbols, apart from D-rules and C-rules, we addi-

tionally require A-rules of the form f(c1, c2, . . . , cm) → f(d1, d2, . . . , dk), where
m, k ∈ α(f). Unlike D-rules and C-rules, A-rules do not correspond to any
standard notion of a transition in bottom-up tree automata. The definition of a
rewrite closure can be extended by allowing for A-rules and replacing standard
rewriting by rewriting modulo AC [16].

We first consider the simple case of cancellative abelian monoid. Let signature
Σ = ΣAC = {·} and let K = {e, c1, c2, · · · , cm} be a finite number of constants
where e is an identity element for ·. We denote an application of · by juxtaposition
and use exponentiation notation and write, for example, c21 for the term c1 · c1.
Moreover, we denote by [s, t] the term that is the greatest common divisor of s
and t. Thus, [c21c2c3, c1c

2
2c4] = c1c2.

Let R0 = {s1 → t1, s2 → t2, . . . , sn → tn} be a set of directed rules over the
signature Σ ∪K, where each rule si → ti is (when fully flattened and reduced
using the identity axiom) either a D-rule, a reverse D-rule, a C-rule, or an A-rule.
We first show how to “complete” this set. We associate a measure with every
rule. The measure will be a vector from the set Nn, where N = {0, 1, 2, . . .} is
the set of natural numbers. For the initial set R0 of rules, we assign measures

is similar in spirit to the inference rule used in Nelson-Oppen congruence closure
algorithm [6].

8 Having the rule s→ t in E is advantageous as rules in E can be used for simplification
(see the Simplification2 and Composition inference rules).



as follows: the rule si → ti is assigned the measure εi = 〈0, . . . , 0, 1, 0, . . . , 0〉,
where 1 is in exactly the i-th component.

We maintain the invariant that [li, ri] = e for all rules li → ri ∈ R and hence,
we assume that [si, ti] = e for every i = 1, 2, . . . , n. Let � be the lexicographic
ordering, or the total degree lexicographic ordering [7].

ACC-Chaining:
(II, E,R ∪ {s→ t, u→ v})

(II, E,R ∪ {s→ t, u→ v, su
[s,v][t,u] →

tv
[s,v][t,u]})

if [t, u] 6= e and either (a) t � s and u � v; or (b) s � t, u � v, and s→ t is not a
C-rule; or (c) t � s, v � u, and u→ v is not a C-rule. The new rule is assigned
the measure α+ β, where α is the measure associated with the rule s→ t and
β is the measure associated with the rule u→ v.

In order to ensure termination, we need to identify and delete redundant
rules. The measure vector helps in doing this.

ACC-Collapse:
(II, E,R ∪ {s→ t, u′ → v′})
(II, E,R ∪ {s→ t, u→ v})

if u′ ↔∗AC su, v′ ↔∗AC tv, and α < β, where α and β are the measures associated
with the rules s → t and u′ → v′ respectively. The rule u → v is assigned the
measure β −α.

Along with the Deletion3 rule, this forms a set of transformations that can
be used to complete a given finite set of (reverse) D-, C-, and AC-rules over a
signature Σ = ΣAC containing exactly one cancellative AC function symbol.

Example 2. Consider the set R0 = {c21 → c2, c
2
2 → c1} of directed rules. We can

complete this set as follows (we show only the third component of the state here
as the other components remain unchanged):

i Rules Ri Meas Inference i Rules Ri Meas Inference
0 R0 3 R2 ∪ {c32 → e} [1, 2] ACC−Ch
1 R0 ∪ {c1c2 → e} [1, 1] ACC−Ch 4 R3 ∪ {c21c22 → e} [2, 2] ACC−Ch
2 R1 ∪ {c31 → e} [2, 1] ACC−Ch 5 R3 ACC−Col

Any rule subsequently deduced by chaining can be simplified by collapse and
no additional rules are added to the set R3. Thus, the system R3 is the desired
completion.

We say s→[]
R t if, and only if, there exists a term u such that s · u→R t · u.

The reflexive-transitive closure of the relation →[]
R and is denoted by →[∗]

R .

Theorem 4 (Soundness). Suppose s ≈ t ∈ Ri, where (∅, ∅, Ri) is a state in
any derivation starting from state (∅, ∅, R0). Then, s→[∗]

R0∪AC t.

Theorem 5 (Completeness). Let R0 be a finite set of (reverse) D-, C-, and
AC-rules over Σ ∪ K. The set R∞ of persisting rules in any fair derivation
starting from the state (∅, ∅, R0) is finite. Furthermore, if s →[∗]

R0∪AC t, then
there is a proof of the form s→∗AC\F e ◦ ↔

∗
AC ◦ ←∗AC\B−e t.



We combine the inference rules for the individual cancellative AC symbols
and the inference rules for uninterpreted ground terms to get a procedure for
constructing a rewrite closure for a set of equations and rules over a signature
containing cancellative AC function symbols [16]. There are a few technical
difficulties here however. First, in the case of a monoid, the length of the measure
vector assigned to a rule was determined by the number of rules in the initial
R-component, R0. In the general case, these rules are created by orientation
and moved from the II-component to the R-component. Secondly, in the case of
a monoid, all the C-rules in the R-component had exactly one measure vector
associated with them. In case of a signature with |ΣAC | AC symbols, each C-
rule will have a measure vector associated with it for each f ∈ ΣAC . Third, we
need an AC-compatible ordering that orients the D-rules in the right way. For
this purpose, we use the ordering � defined in [15]. When comparing two terms
from a monoid, it reduces to the total degree lexicographic ordering. Finally, we
additionally need ACC-superposition and ACC-paramodulation rules, for details
and correctness see [16].

Other Remarks The equational theory induced by a set of ground equations
over a signature containing (non-cancellative) AC-symbols can be conservatively
represented by D-rules, C-rules, and A-rules [5]. But, if we are interested in the
rewrite relation, then the problem becomes much harder, as classical petrinet
reachability is equivalent to the decidability of the rewrite relation induced by a
set of ground rules over an abelian semigroup. A derivation using the inference
rules presented here does not converge in the case of abelian semigroups. For
instance, consider the petrinet with two states c1 and c2 and two transitions
c41c2 → c1c

2
2 and c41c2 → c31c

2
2. ACC-Chaining inferences (assuming a total degree

lexicographic ordering with c1 � c2) yield infinitely many persisting rules c51c2 →
c1c

3
2, c

6
1c2 → c1c

4
2, . . . , c

n
1 c2 → c1c

n−2
2 . The reachability problem for petri nets

was shown to be decidable in [14, 12].
The problem of deciding reachability in the case of a cancellative monoid is

related to solving a system of linear diophantine equations by “duality”. Consider
the system {4x1 − x2 − 2x3 = 0, 3x1 − 4x2 + 5x3 = 0}. This system can be
transformed into the three rewrite rules c41c

3
2 → e, e → c1c

4
2, and c52 → c21. The

original system has a non-trivial solution if and only if e →+ e. The converse
translation can be similarly done. This connection is not surprising since one
motivation for considering the cancellative axiom for AC-symbols comes from
AC-unification, where linear diophantine equations arise naturally.

4 Conclusion

We have presented a set of inference rules, derived from standard completion
and non-symmetric completion, to construct a rewrite closure for a set of ground
equations and rules over a signature that can possibly contain cancellative AC
symbols. The procedure works over an extended signature, incorporates essential
simplifications, and is terminating.



There are several directions in which we envisage future work. The inference
rules can be extended by including rules for unification and for special kinds
of rewrite relations, like the various path orderings. This would give abstract
transformation rules for constraint solving. Another possible extension is to (ob-
tain decision procedures for) ordered fields. In this context, the non-symmetric
relation will be interpreted as the ordering relation > on the field elements. This
work can also be extended along the lines of tree automata techniques and could
be used to obtain efficient decision procedures for several properties of ground
rewrite systems, for example confluence.
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helpful comments.

References

[1] L. Bachmair. Canonical Equational Proofs. Birkhäuser, Boston, 1991.
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