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Abstract. We show that termination of a class of linear loop programs
is decidable. Linear loop programs are discrete-time linear systems with
a loop condition governing termination, that is, a while loop with lin-
ear assignments. We relate the termination of such a simple loop, on all
initial values, to the eigenvectors corresponding to only the positive real
eigenvalues of the matrix defining the loop assignments. This character-
ization of termination is reminiscent of the famous stability theorems in
control theory that characterize stability in terms of eigenvalues.

1 Introduction

Dynamical systems have been studied by both computer scientists and control
theorists, but both the models and the properties studied have been different.
However there is one class of models, called “discrete-time linear systems” in
the control world, where there is a considerable overlap. In computer science,
these are unconditional while loops with linear assignments to a set of integer
or rational variables; for example,

while (true) { x := x− y; y := y }.
The two communities are interested in different questions: stability and control-
lability issues in control theory against reachability, invariants, and termination
issues in computer science. In recent years, computer scientists have begun to ap-
ply the rich mathematical knowledge that has been developed in systems theory
for analyzing such systems for safety properties, see for instance [17, 12, 11].

One of the most basic results in the theory of linear systems, both discrete-
time and continuous-time, is the characterization of the stability of linear sys-
tems in terms of the eigenvalues of the corresponding matrix. In this paper, we
are interested in termination of simple while loop programs, such as the one de-
scribed above, but with nontrivial loop guards. We present results that relate the
termination of such linear programs to eigenvalues of the corresponding matrix,
analogous to the stability characterization in control theory. Our characterization
also yields decidability of the termination problem for such programs. Although
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linear programs are similar to discrete-time linear systems, the termination char-
acterization of linear programs is more complex than, though reminiscent of, the
stability characterization for both continuous- and discrete-time linear systems.

Linear loop programs, as studied in this paper, are specialized piecewise affine
systems, which themselves are special kinds of nonlinear systems. While several
properties, such as reachability, stability, and controllability, are decidable for
linear systems [10, 16], they soon become undecidable even when a “little” non-
linearity is introduced [16]. In particular, this is also true for piecewise affine
systems [3, 4], see also Section 6. In this context, it is interesting to note that
termination is decidable for linear loop programs.

Techniques to prove termination of programs have attracted renewed atten-
tion lately [7, 5, 6, 13]. The popular approach to prove termination is through the
synthesis of a ranking function, a mapping from the state space to a well-founded
domain, whose value monotonically decreases as the system moves forward. This
line of research has focused mostly on generating linear ranking functions – some
effective heuristics have been proposed [5, 6] and recently a complete method
was presented in [13] for a model motivated by [14]. This paper investigates
termination at a more basic theoretical level. The main result establishes the
decidability of the termination problem for programs of the form (in matrix no-
tation)

while (Bx > b) { x := Ax + c }
where Bx > b represents a conjunction of linear inequalities over the state vari-
ables x and x := Ax+c represents the linear assignments to each of the variables.
The variables are interpreted over the reals < and hence the state space is <n.
This class of programs is simpler than the ones considered in [5, 6, 13]. Although
a program may not be presented in this form, termination questions can often
be reduced to this basic form after suitable simplifications and transformations.

We approach the termination issue of the above program as follows. We first
consider the homogeneous version,

while (Bx > 0) { x := Ax },
and note that the condition Bx > 0 defines a region smaller than a half space
of <n. Now if a state x = c is mapped by A (in one or more iterations) to
something on the other side of the half space, then the program will terminate
on this state (since the loop condition will become false). In particular, this
means that the program always terminates on states specified by eigenvectors c
corresponding to negative real eigenvalue and complex eigenvalues. The former
ones are mapped by A to their negative image, while the latter ones are rotated
gradually until they reach the other half space (where Bx > 0 is false). Thus,
our first result is that, for purposes of termination, the eigenspace corresponding
to only the positive real eigenvalues of A is relevant (Section 2 and Section 3).

In the case when all eigenvalues are positive, the eigenvectors corresponding
to larger eigenvalues dominate the behavior of the program, that is, after suffi-
ciently many iterations, the values of the state variables will be governed almost
solely by the influence of the largest eigenvalue. Based on this, we can guess a
witness to nontermination and test if the guess is correct by checking satisfiabil-



ity of a set of constraints (Section 4). Finally, we show that the nonhomogeneous
case can be reduced to the homogeneous case (Section 5).

1.1 Notation

We use standard mathematical notation for representing vectors and matrices.
We follow the convention that upper case letters I, J, . . ., denote integer constants
and lower case letters i, j, . . . denote indices ranging over integers. In particular,
a (N × 1) column matrix is called a vector, and it is denoted by c,d whenever
the components of the vector are known constants; and by x,y whenever the
components of the vector are all variables. A (N × N)-matrix with constant
entries aij at the (i, j)-position is denoted by A = (aij). A diagonal matrix
A = (aij) = diag(λ1, . . . , λN ) has aii = λi and aij = 0 otherwise. The transpose
of a matrix A = (aij) is a matrix B = (bij) such that bij = aji, and it is
denoted by AT . Note that the transpose of a column vector c is a row vector
cT . Using juxtaposition for matrix multiplication, we note that cT d denotes the
inner product,

∑
i cidi, of the vectors c and d.

We will also denote matrices by specifying the submatrices inside it. So, for
instance, diag(J1, . . . , JK) would denote a matrix which has matrices J1, . . . , JK

on its “diagonal” and 0 elsewhere. If A is a (N × N)-matrix and c is a vector
such that Ac = λc, then c is called an eigenvector of A corresponding to the
eigenvalue λ. The effect of repeated linear assignments (x := Ax) becomes much
more explicit when we do a change of variables and let the new variables y be
the eigenvectors of A. In particular, we get transformed assignments of the form
y := λy. If there are N linearly independent eigenvectors, then A is said to
be diagonalizable and the assignments on the new variables will be of the form
y := diag(λ1, . . . , λN )y. But this is not possible always. However, instead of
a diagonal matrix, we can always get an almost diagonal, the so-called Jordan
form, matrix [9].

2 The Homogeneous Case

The presentation in this paper is incremental— going from syntactically simple
to more complex programs. In this section, we consider linear programs of the
following form:

P1: while (cT x > 0) { x := Ax }.
The variables in x are interpreted over the set < of reals. The assignment x :=
Ax is interpreted as being done simultaneously and not in any sequential order. A
list of sequential assignments can be modified and presented in the form x := Ax,
see Example 1. We say that the Program P1 terminates if it terminates on all
initial values in < for the variables in x.

Theorem 1. If the linear loop program P1, defined by an (N×N)-matrix A and
a nonzero N × 1-vector c, is nonterminating then there exists a real eigenvector
v of A, corresponding to positive eigenvalue, such that cT v ≥ 0.



Proof. (Sketch) Suppose the linear loop program is nonterminating. Define the
set NT of all points on which the program does not terminate.

NT = {x ∈ <N : cT x > 0, cT Ax > 0, cT A2x > 0, . . . , cT Aix > 0, . . .}.

By assumption, NT 6= ∅. The set NT is also A-invariant, that is, if v ∈ NT ,
then Av ∈ NT . Note that NT is an affine subspace of <N , that is, it is closed
under addition and scalar multiplication by positive reals. Hence, it is convex1.
Define T = <N −NT to be the set of all points where the program terminates.
Define the boundary, ∂NT , of NT and T as the set of all v such that (for all ε)
there exists a point in the ε-neighborhood of v that belongs to T and another
that belongs to NT .

Let NT ′ be the completion of NT , that is, NT ′ = NT ∪ ∂NT . Since NT is
A-invariant, it means that A maps NT into NT . By continuity we have that A
also maps NT ′ into NT ′. Now, NT ′ is convex, and if we identify points x and
y, written as x ∼ y, that are nonzero scalar multiples of each other (x = λy),
then the resulting set (NT ′/ ∼) is closed and bounded (as a subset of <n−1). By
Brouwer’s fixed point theorem [15], it follows that there is an eigenvector v (with
positive eigenvalue) of A in NT ′. For all points u ∈ NT , we know cT u > 0. By
continuity, for all points u ∈ NT ′, we have cT u ≥ 0.

If, in fact, it is the case that cT v > 0, then v is a witness to nontermina-
tion of the loop. Thus, Theorem 1 can be used to get the following conditional
characterization of nontermination.

Corollary 1. If there is no real eigenvector v of A such that cT v = 0, then
the linear loop program defined by A and c is nonterminating iff there exists an
eigenvector v on which the loop is nonterminating.

Example 1. The effect of two sequential assignments x := x − y; y := x + 2y is
captured by the simultaneous assignment(

x
y

)
=

(
1 −1
1 1

) (
x
y

)
The matrix A has no real eigenvalues. Let c 6= 0 be any (nonzero) vector. The
condition of Corollary 1 is trivially satisfied. And since there is no real eigenvalue,
we immediately conclude that the linear loop program specified by A and (any
nonzero vector) c is terminating.

Example 2. Let θ be a fixed number. Consider the following program: while
(z−y > 0) { x := Ax }, where A = [cos θ,− sin θ, 0; sin θ, cos θ, 0; 0, 0, 1]. Thus,
A simply rotates the 3-D space by an angle θ about the z-axis. The set of points
where this program is nonterminating is NT = {(x, y, z) : z > x sinφ + y cos φ :
φ = nθ, n = 0, 1, 2, . . .}. For θ that is not a factor of π, ∂NT = {(x, y, z) : z2 =
x2 + y2} (eliminate φ from above). Note that there is the eigenvector (0, 0, 1) in
NT corresponding to positive eigenvalue 1. As another example of the boundary,
note that if θ = π/4, then ∂NT contains 8 hyperplanes, each one is mapped by
A to the next adjacent one.
1 A set NT is convex if αu + (1− α)v ∈ NT whenever u, v ∈ NT and 0 ≤ α ≤ 1.



2.1 Generalizing the Loop Condition

The loop condition can be generalized to allow for a conjunction of multiple
linear inequalities. We continue to assume that all linear inequalities and linear
assignments consist only of homogeneous expressions. Let B be a (M×N)-matrix
(with rational entries) and A be a (N ×N)-matrix. We consider programs of the
following form:

P2: while (Bx > 0) { x := Ax } .
Theorem 1 and Corollary 1 immediately generalize to programs of the form P2.

Theorem 2. If Program P2, specified by matrices A and B, is nonterminating,
then there is a real eigenvector v of A, corresponding to a positive real eigenvalue,
such that Bv ≥ 0.

Corollary 2. Assume that for every real eigenvector v of A, corresponding to a
positive eigenvalue, whenever Bv ≥ 0, then it is actually the case that Bv > 0.
Then, the Program P2, defined by A and B, is nonterminating iff there exists
an eigenvector v on which the loop is nonterminating.

Example 3. Consider the program:
while (x− y > 0) { x := −x + y; y := y }.

The matrix A = [−1, 1; 0, 1] has two eigenvalues, 1 and −1. The eigenvector
corresponding to the eigenvalue 1 is [1; 2] and we note that 1− 2 6> 0. Hence, it
follows from Corollary 2 that the above loop is terminating.

2.2 Two Variable Case

Theorem 1 and Theorem 2 show that nonterminating linear loops almost always
have a witness that is an eigenvector of the matrix A. The only problematic
case is when the eigenvector is on the boundary, ∂NT , so that it is not clear if
indeed there are points where the program is nonterminating. However, in the
2-dimensional case, that is, when there are only two variables, the region NT will
be a sector and it can be specified by its two boundary rays. Thus, if NT 6= ∅,
then there exists an A-invariant sector, given by aT x B 0 ∧ bT x B 0 ∧ x 6= 0
where B ∈ {>,≥}, on which the loop condition always evaluates to true. This
can be expressed as a quantified formula over the theory of (linear) arithmetic
interpreted over the reals, which is a decidable theory.

Theorem 3. A two variable linear loop program,
while (Bx > 0) { x := Ax },

is non-terminating iff the following sentence in true in the theory of reals

∃a, b.[∃x.φ(a, b,x) ∧ ∀x.(φ(a, b,x) ⇒ (Bx > 0 ∧ φ(a, b, Ax)))]

where φ(a, b,x) denotes aT x B 0 ∧ bT x B 0 ∧ x 6= 0 and B ∈ {>,≥}.

This theorem gives a decision procedure for termination of two variable loops
since the formula in Theorem 3 can be tested for satisfiability. Theorem 3 can-
not be generalized to higher dimensions since there may not be finitely many
hyperplane boundaries, as Example 2 illustrates.



3 Reducing the Homogeneous Case

Corollary 2 falls short of yielding decidability of termination of homogeneous
linear programs. But it hints that the real eigenvalues and the corresponding
eigenvectors are relevant for termination characteristics of such programs. In
this section, we will formally show that the nonpositive eigenvalues (and the
corresponding eigenspace) can be ignored and the termination problem can be
reduced to only the eigenspace corresponding to positive real eigenvalues of the
matrix A.

We first note that the Program P2 from Section 2.1 can be transformed by
an invertible (bijective) transformation, preserving its termination properties.

Proposition 1. Let P be an invertible linear transformation. The program
P2: while (Bx > 0) { x := Ax }

is terminating iff the program
P3: while (BPy > 0) { y := P−1APy }

is terminating.

Proof. If Program P2 does not terminate on input x := c, then Program P3 will
not terminate on input y := P−1c. Conversely, if Program P3 does not terminate
on input y := d, then Program P2 will not terminate on input x := Pd.

Thus, Proposition 1 is just about doing a “change of variables”. It is a well
known result in linear algebra [9, 1] that using a suitable change of variables, a
real matrix A can be transformed into the form, diag(J1, J2, . . . , JK), called the
real Jordan form, where each Ji is either of the two forms:

λi 1 0 . . . 0
0 λi 1 . . . 0

0 0
. . . 1

0 0 0 . . . λi




Di I 0 . . . 0
0 Di I . . . 0

0 0
. . . I

0 0 0 . . . Di


where λi ∈ < is a real whereas Di is a (2×2)-matrix of the form

(
αi −βi

βi αi

)
. For

uniformity, the second Jordan block will denote both the forms. When it denotes
the first form, then Di and I are both (1× 1)-matrices and we will say Di ∈ <
and treat it as a real. We define |Di| = |λi| in the first case and |Di| =

√
α2

i + β2
i

in the second case.
Let P be the real (N × N)-matrix such that P−1AP = diag(J1, . . . , JK).

Thus, Program P2, specified by matrices A and B,
P2: while (Bx > 0) { x := Ax },

can be transformed into the new Program P3,
P3: while (BPy > 0) { y := diag(J1, . . . , JK)y }.

Proposition 1 means that we can focus on termination of Program P3. Partition
the variables in y into y1,y2, . . . ,yK and rewrite the Program P3 as

P3: while (B1y1+ · · ·+BKyK > 0) { y1 := J1y1; . . . ;yK := JKyK },
where Bi’s are obtained by partitioning the matrix BP . Let S = {1, 2, . . . ,K} be
the set of indices. Define the set S+ = {i ∈ S : Di ∈ <, Di > 0}. The following



technical lemma shows that we can ignore the state space corresponding to
negative and complex eigenvalues, while still preserving the termination behavior
of the Program P3.

Lemma 1. The Program P3, as defined above, is terminating iff the program
P4: while (

∑
j∈S+

Bjyj > 0) { yj := Jjyj ; for j ∈ S+ }
is terminating.

Proof. (Sketch) If the Program P4 does not terminate on input yj := cj , where
j ∈ S+, then the Program P3 does not terminate on input yj := cj for j ∈ S+

and yj := 0 for j 6∈ S+.
For the converse, assume that Program P3 does not terminate on input yj :=

cj , j ∈ S. Consider the m-th loop condition,
∑

j∈S Bjmyj > 0, where Bjm de-
notes the m-th row of Bj . Assume that yj has Nj components, yj0,yj1, . . . ,yjNj−1,
where each yjk is either a 2× 1 or a 1× 1 matrix (depending on whether Dj is
2× 2 or 1× 1.) The value of yj , at the i-th iteration, is given by

yj(i) =



Di
j iDi−1

j

(
i
2

)
Di−2

j . . .

(
i

Nj − 1

)
D

i−(Nj−1)
j

0 Di
j iDi−1

j . . .

(
i

Nj − 2

)
D

i−(Nj−2)
j

...
...

. . .
...

...
0 0 . . . Di

j iDi−1
j

0 0 . . . 0 Di
j


cj (1)

Define fm(i) to be the value of the expression of the m-th condition at i-
th iteration, that is, fm(i) =

∑
j∈S Bjmyj(i). Let J be an index such that

NJ = max{Nj : |Dj | = max{|Di| : i ∈ S}}. We claim, without further proof,

that for large i, the term
(

i
NJ − 1

)
DJ

i−NJ′+1yJ′ NJ′ −1(0) will dominate the

value of fm(i). If J 6∈ S+, then the sign of this dominating term, and consequently
the sign of fm(i), will fluctuate (between positive and negative) as i increases.
By assumption, this does not happen. Hence, J ∈ S+ and hence, for a large
enough i, say i ≥ Im, we have

∑
j∈S+

Bjmyj(i) > 0. For each condition m, we
get an index Im. Set I to be the maximum of all Im’s. For i ≥ I, it is the case
that

∑
j∈S+

Bjmyj(i) > 0 for all m.
Define new initial conditions for Program P3 and Program P4 as follows:

yi(0) := yi(I) for all i ∈ S+ and yi(0) := 0 for all i 6∈ S+. Program P3 does
not terminate on this new initial conditions. Hence, Program P4 also does not
terminate on it. This completes the proof.

Example 4. We borrow the following example from [13],
Q1: while (x > 0 ∧ y > 0) { x := −2x + 10y; y := y }.

The matrix A has two eigenvalues −2 and 1, and it is clearly diagonalizable. In
fact, consider the transformation matrix P ,

A =
(
−2 10
0 1

)
P =

(
1 10
0 3

)
P−1AP =

(
−2 0
0 1

)
BP = P



Transforming Program Q1 by P , we get
Q2: while (x1 + 10x2 > 0 ∧ 3x2 > 0) { x1 := −2x1; x2 := x2 }.

Lemma 1 says that the termination of Program Q1 and Program Q2 can be
decided by just considering the termination characteristics of:

Q3: while (10x2 > 0 ∧ 3x2 > 0) { x2 := x2 }.
In fact, the point x1 = 0, x2 = 1 makes Program Q3 nonterminating, and corre-
spondingly, the point x = 10, y = 3 makes Program Q1 nonterminating.

4 All Positive Eigenvalues

Lemma 1 reduces the termination of Program P2 of Section 2.1 to testing ter-
mination of Program P4, which is given as:

P4: while (B1y1 + · · ·+ Bryr > 0) { y1 := J1y1; . . . ;yr := Jryr }
where each of the Jordan blocks Ji corresponds to a positive real eigenvalue λi.

The value of variables in yj , after the i-th iteration, are given by Equation 1,
where Dj = λj is a positive real now. As before, assume that the k-th loop
condition is written as B1ky1 + B2ky2 + · · · + Brkyr > 0. We can express the
requirement that the k-th loop condition be true after the i-th iteration as

B1ky1(i) + B2ky2(i) + · · ·+ Brkyr(i) > 0.

Expand this using Equation 1 and let Cklj denote the result of collecting all
coefficients of the term

(
i

j − 1

)
λ

i−(j−1)
l . Now, the k-th loop condition after i-th

iteration can be written as

λi
1Ck11y(0) + iλi−1

1 Ck12y(0) + · · ·+
(

i
n1 − 1

)
λ

i−(n1−1)
1 Ck1n1y(0) +

· · ·+

λi
rCkr1y(0) + iλi−1

r Ckr2y(0) + · · ·+
(

i
nr − 1

)
λi−(nr−1)

r Ckrnr
y(0) > 0,

which we will denote by Condk(y(i)). If two eigenvalues λl and λm are the same,
then we assume that the corresponding coefficients (of

(
i
j

)
λi−j

l and
(

i
j

)
λi−j

m )
have been merged in the above expression, so that without loss of generality, we
can assume that each λl is distinct and such that 0 < λ1 < λ2 < · · · < λr.

Define the set Ind = {11, 12, . . . , 1n1, 21, 22, . . . , 2n2, . . . , r1, r2, . . . , rnr} and
an ordering � on this set so that elements on the right are greater-than elements
on the left in the above set. The idea here is that nonzero terms in Condk that
have larger indices grow faster asymptotically (as i increases).

We decide the termination of Program P4 using the following three step
nondeterministic algorithm:
(1) For each of the m loop conditions, we guess an element from the set Ind .
Formally, we guess a mapping index : {1, 2, . . . ,m} 7→ Ind . Intuitively if y(0) is
a witness to nontermination, then index (k) is chosen so that Ck,index(k)y(0) > 0
(and this is the dominant summand) and Ck,indy(0) = 0 for all ind � index (k).



(2) Build a set of linear equality and inequality constraints as follows: from the
k-th loop condition, generate the following constraints,

Ck,indz = 0, if ind � index (k)
Ck,indz > 0, if ind = index (k)

Condk(z(i)) > 0, if 0 ≤ i ≤ Π2(index (k))

where Π1 and Π2 denote the projection onto the first and second components
respectively. Note that the unknowns are just z (the initial values for y).
(3) Return “nonterminating” if the new set of linear inequalities and linear equa-
tions is satisfiable (in <n), return “terminating” otherwise.

We state the correctness of the algorithm, without proof, in Lemma 2 and
follow it up by a summary of the complete decision procedure in the proof of
Theorem 4.

Lemma 2. The nondeterministic procedure returns “nonterminating” iff the
Program P4

P4: while (B1y1 + · · ·+ Bryr > 0) { y1 := J1y1; . . . ;yr := Jryr }
is nonterminating.

Theorem 4. The termination of a homogeneous linear program of the form
P2: while (Bx > 0) { x := Ax }

is decidable.

Proof. We decide termination of the Program P2 as follows: If A has no positive
real eigenvalues, then return “terminating” (Corollary 2). If every real eigenvec-
tor v corresponding to a positive real eigenvalue of A satisfies Bv < 0, then
return “terminating” (Theorem 2). If there is a real eigenvector v corresponding
to a positive real eigenvalue of A such that Bv > 0, then return “nonterminat-
ing” (Corollary 2). If none of the above cases is true, then clearly A has positive
real eigenvalues. Compute the Jordan blocks and the generalized eigenvectors
only corresponding to the positive real eigenvalues of A. Generate a transforma-
tion P by extending the computed set of generalized eigenvectors with any set
of vectors in space orthogonal to that of the generated eigenvectors. Transform
Program P2 by P as in Proposition 1. It is an easy exercise2 to note that we can
apply Lemma 1 and reduce the termination problem to that for Program P4 of
Lemma 1. Finally, we decide termination of Program P4 using the nondetermin-
istic procedure of Section 4 (Lemma 2).

Example 5. Consider the program
Q4: while (x > 0 ∧ y > 0) { x := x - y; y := y }

This contains only two variables, and hence we can use Theorem 3, but for
purposes of illustration, we apply Theorem 4 here. The matrix A = [1,−1; 0, 1]
has a positive real eigenvalue 1. The vector given by x = 1, y = 0 is an eigen-
vector corresponding to this eigenvalue. Hence, we cannot apply Theorem 2 or
2 We cannot apply Lemma 1 directly since we did not compute the real Jordan form

of the “full” matrix A, but only of a part of it. But we do not need to compute the
full real Jordan form to get Program P4.



Corollary 2. The real Jordan form of A is A′ = [1, 1; 0, 1] and the corresponding
transformation matrix is P = [−1, 0; 0, 1]. The new program is:

Q5: while (−x > 0 ∧ y > 0) { x := x + y; y := y }
The general solutions are given by

x(i) = 1ix(0) + iy(0) = x(0) + iy(0)
y(i) = 1iy(0) = y(0)

The condition Cond1 corresponding to the loop condition −x > 0 is −x(0) −
iy(0) > 0 and similarly Cond2 is y(0) > 0. There is no choice for index (2), but
there is a choice for index (1): it can be either 11 or 12.

In the first case, we generate the following constraints from the first loop
condition: {−y = 0,−x > 0,−x− 0y > 0}. From the second loop condition, we
only generate the constraint y > 0. Together, we detect an inconsistency.

In the second case, we generate the following constraints from the first loop
condition: {−y > 0,−x − 0y > 0,−x − 1y > 0}. Again, from the second loop
condition, we generate the constraint y > 0, which is inconsistent with the above
constraints. Hence, we conclude that the Program Q4 is terminating.

5 Nonhomogeneous Programs

Now we consider linear programs of the following form:
P5: while (Bx > b) { x := Ax + c }

We can homogenize this program and add an additional constraint on the ho-
mogenizing variable to get the following

P6: while (Bx− bz > 0 ∧ z > 0) { x := Ax + cz; z := z }
where z is a new variable. The homogeneous program reduces to the original
program if we substitute 1 for z.

Proposition 2. The nonhomogeneous Program P5 does not terminate iff the
homogeneous Program P6 does not terminate.

Proof. If Program P5 does not terminate, say on input xi = di, i = 1, 2, . . . , n,
then Program P6 does not terminate on input z = 1, xi = di, i = 1, 2, . . . , n.

For the converse, assume that Program P6 does not terminate on input x0 =
d0, xi = di, i = 1, 2, . . . , n. If d0 > 0, then we can scale this input to get a new
state x0 = 1, xi = di/d0, i = 1, 2, . . . , n. The behavior of Program P6 will be the
same on the scaled input, and hence Program P5 would not terminate on this
input either.

Thus we can reduce the decidability of termination of nonhomogeneous pro-
grams to that of homogeneous programs. Together with Theorem 4, we get the
following result.

Theorem 5. The termination of a nonhomogeneous linear program of the form
P5: while (Bx > b) { x := Ax + c }

is decidable.



Remarks on Computability and Complexity. The three step nondeter-
ministic algorithm described in Section 4 is clearly in class NP . However, the
nondeterminism can be eliminated by a careful enumeration of choices. The idea
is that we always start with the guess index (k) = rnr for each loop condition
k and if the resulting formula is unsatisfiable, then we readjust the guess and
gradually set index (k) to smaller elements in the set Ind . We do not formalize
this detail in this paper because it is not central to the decidability result.

The reduction described in Section 3 requires computation of a real eigen-
vector. Computing with real numbers is not easy, but if the input matrices are
over the rationals, then all the real numbers that arise in the computation are
algebraic. Computing with algebraic numbers is theoretically possible, but it
can be expensive (since the theory of real-closed fields has a double exponential
lower bound). But this should not be a serious problem for two reasons. First,
for most problems arising in practice, we expect the eigenvalues to be rational,
and computation with rationals can be done very efficiently. Second, even if the
eigenvalues are irrational, the dimension of the problem is unlikely to be so high
that computing with algebraic numbers will become a bottleneck. However, these
issues have to be experimented with and that is left as future work.

We believe that the Jordan form computation step in the decision procedure
outlined in this paper can be eliminated in most cases in practice. This can be
achieved by perturbing the system by a little (for example, replacing conditions
c > 0 by c > ε for some small constant ε) and studying the termination property
of the perturned system. We conjecture that Corollary 2 can be strengthened for
the case when the homogenization variable violates the condition. This would
allow us to avoid the Jordan decomposition step in many cases.

The decision procedure for termination of linear loop programs can be adapted
to the case when the variables are interpreted over the integers and rationals. If
there are “a lot” of witnesses to nontermination, then there will be a rational
witness too, since the rationals are dense in reals. If not, then we can detect this
case using a specialized wrapper. This leads us to conjecture the following.

Conjecture 1. The termination of Program P5, as defined in Theorem 5, when
all variables are interpreted over the set of integers, is decidable.

6 The General Case

We consider the termination of a set of nondeterministic linear conditional as-
signments, written in a guarded command language [8] as,

P7 :

[ B1x > b1 −→ x := A1x + c1

[] B2x > b2 −→ x := A2x + c2

. . .
[] Bkx > bk −→ x := Akx + ck ]

which we will write in shorthand as
P7: []k

i=1(Bix > bi −→ x := Aix + ci)



Counter machines can be naturally encoded as Program P7. We introduce one
variable xi for each counter and one variable x for the finite control (program
counter). Encodings of conditional branches, counter increments, and counter
decrements are straightforward. The problem of deciding if a counter machine
halts on all inputs is undecidable, see [3], where this problem is called the mor-
tality problem. Therefore, the problem of deciding if a program of the above
form halts on all integer inputs is also undecidable. Note however that for the
restricted forms of assignments (x := x± 1) generated by the translation, termi-
nation over reals is equivalent to termination over integers. Thus, we conclude
that the termination problem for Program P7 is undecidable.

Theorem 5 can be used to get an incomplete test for nontermination for Pro-
gram P7—If Program P7 is terminating, then for each i, the program while
(Bix > bi) { x := Aix + ci } is terminating. The converse is also true un-
der additional commutation properties [2] amongst the k binary relations, say
R1, . . . , Rk, induced by the k guarded commands. In particular, one immediate
consequence of a result in [2] is the following.

Proposition 3. Let Program P7 and relations R1, . . . , Rk be as defined above.
Let R = R1∪· · ·∪Rk. Assume that whenever i < j, it is the case that Rj ◦Ri ⊆
Ri ◦R∗. Then, the Program P7 terminates if and only if each Ri do.

Note that the condition above is dependent on the order R1, . . . , Rk, which
we are free to choose. Testing for the quasi-commutation property [2] Rj ◦Ri ⊆
Ri ◦R∗ is possible if we restrict the search to Rj ◦Ri ⊆ Ri ◦Rl, for some finite
l. In the special case when the i-th guarded command cannot be enabled after
execution of the j-th guarded command (that is, Rj ◦ Ri = ∅), then the above
inclusion is trivially true.

In the case when the quasi-commutation property cannot be established,
the test for nontermination can be made “more complete” by including new
guarded transitions obtained by composing two or more of the original guarded
commands. It is easy to see that the composition results in a linear guarded
command. These new guarded commands can be tested for nontermination using
Theorem 5 again.

7 Future Work and Conclusion

We have presented decidability results for termination of simple loop programs.
The loops are considered terminating if they terminate on all initial real val-
ues of the variables. The decision procedure is based on the observation that
only the eigenvectors (and the generalized eigenspace) corresponding to posi-
tive real eigenvalues of the assignment matrix are relevant for termination. The
generalization to multiple linear nondeterministic guarded commands makes the
problem undecidable. Under certain restrictive commutation conditions, termi-
nation of multiple linear guarded commands can be reduced to termination of
each individual simple linear loops.



We believe that results and tools from systems theory, such as Lyapunov
functions and control Lyapunov functions, can yield powerful tools for analyz-
ing software, especially for termination analysis and invariant generation. This
avenue should be explored further in the future.
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