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Abstract. This paper presents the foundations for using automated de-
duction technology in static program analysis. The central principle is
the use of logical lattices – a class of lattices defined on logical formulas in
a logical theory – in an abstract interpretation framework. Abstract in-
terpretation over logical lattices, called logical interpretation, raises new
challenges for theorem proving. We present an overview of some of the
existing results in the field of logical interpretation and outline some
requirements for building expressive and scalable logical interpreters.

1 Introduction

Theorem proving has been one of the core enabling technologies in the field of
program verification. The traditional use of theorem proving in program anal-
ysis is based on the concept of deductive verification, where the program is
sufficiently annotated with assertions and verification conditions are generated
that, if proved, will establish that the annotated assertions are indeed invariants
of the program. The generated verification conditions are discharged using a the-
orem prover [6]. This traditional approach of integrating theorem proving with
program analysis requires theorem provers in the form of satisfiability checkers
for various theories and combination of theories.

While deductive verification attempts to verify given annotated invariants,
abstract interpretation seeks to generate invariants for programs. Static analysis
and abstract interpretation techniques have seen recent success in the field of
software verification. For example, the Slam project and the Astree tool demon-
strated effectiveness of static analysis techniques in verifying large pieces of de-
vice driver and aerospace code. However, static analysis techniques can verify
only simple properties. Most of the current tools based on these techniques target
a specific class of programs and prove only specific kinds of properties of these
programs. The working hypothesis of this paper is that theorem proving tech-
nology can push static analysis techniques to handle larger classes of properties
for larger classes of systems.
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The process of going from checking annotated invariants (deductive verifica-
tion) to generating the invariants (abstract interpretation) is akin to going from
type checking to type inference. While traditional theorem provers, which are
essentially satisfiability solvers, can naturally help in invariant checking, how can
they be extended to help in this new task of invariant generation?

Shankar [24] proposed the general paradigm of using theorem proving tech-
nology in the form of “little engines of proof”. The idea was to use components of
monolithic theorem provers, such as decision procedures, unification and match-
ing algorithms, and rewriting, as embedded components in an application. This
idea gained remarkable traction and lead to the development of several little
engines, mostly in the form of satisfiability modulo theory, or SMT, solvers. Con-
tinued research and development has resulted in dramatic improvements in the
performance of these little engines of proof.

Satisfiability checking procedures, while useful in the context of deductive
verification, are insufficient for building abstract interpreters. This paper con-
siders the approach of embedding theorem proving technology, in the form of
little engines, as an embedded component in modern software verification tools
based on abstract interpretation. This integration uses theorem proving technol-
ogy in a new role and raises several interesting new questions.

How do we formally understand this new approach of integrating theorem
proving and program analysis? What little engines are required for this purpose
and how can they be built? What is the interface that is required to smoothly
embed a little engine inside a static analysis tool based on abstract interpreta-
tion?

This paper answers these questions by laying the foundations of logical inter-
pretation – the process of performing abstract interpretation on logical lattices. A
logical lattice is a lattice whose domain consists of formulas and whose ordering
relation is (a refinement of) the logical implication relation ⇒T in some logical
theory T. We present an overview of the existing results in the area of logical
interpretation and outline directions for future work.

We start by defining the assertion checking problem in Section 2. We intro-
duce logical lattices in Section 3. In Section 4 we use logical interpretation to
solve the assertion checking problem in an intraprocedural setting for various
program models. Results for interprocedural analysis are presented in Section 5.
In Section 6, we consider the problem of assertion generation using a (forward)
logical abstract interpreter. Finally, we briefly discuss richer program models
that include heaps in Section 6.2, and the interface of a logical lattice that en-
ables modular construction of quantified logical abstract domains for reasoning
about these richer program models in Section 6.3.

2 Problem Definition

We first present the program model and its semantics in Section 2.1, followed
by a quick introduction to abstract interpretation in Section 2.2. Section 2.3 will
formally define the assertion checking problem.
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Non−deterministic
Conditional Node

Join Node

Edge Label Name of Edge

(a) x := e Assignment
(b) x :=? Non-det. Assgn.
(c) skip Skip
(d) Assume(e1 6= e2) Assume
(e) Call(P ) Procedure Call

Fig. 1. Conditional and join nodes in flowcharts and various types of edge labels.

2.1 Program Model

A program is a directed graph whose edges are labeled by one of the five labels
in Figure 1. Each connected component of such a graph, called a procedure, is
assumed to have a marked entry node with no incoming edges and a marked
exit node with no outgoing edges. Each procedure is labeled with a name (of the
procedure). Without loss of generality, we assume that, for each node, either its
indegree or its outdegree is at most one.

The program model is parameterized by a theory T. We assume, henceforth,
that T is some theory over a signature Σ. Let Terms(Σ ∪X) denote the set of
terms constructed using signature Σ and variables X. Examples of T that will
be used particularly in this paper are the theory of linear arithmetic, the theory
of uninterpreted symbols, the combination of these theories, and the theory of
commutative functions.

Let X be a finite set of program variables. The edges of a program are labeled
by either (a) an assignment (x := e), or (b) a non-deterministic assignment
(x :=?), or (c) a skip, or (d) an assume (Assume(e1 6= e2)), or (e) a procedure
call (Call(P )). Here x ∈ X, e, e1, e2 ∈ Terms(Σ ∪ X), and P is a name for a
procedure in the program.

A non-deterministic assignment x :=? denotes that the variable x can be
assigned any value. Such non-deterministic assignments are used as a safe ab-
straction of statements (in the original source program) that can not be precisely
expressed in the simplified program model.

A join node is a node with two (or more) incoming edges. A non-deterministic
conditional node is a node with two (or more) outgoing edges. This denotes that
the control can flow to either branch irrespective of the program state before the
conditional. Such nodes can be used as a safe abstraction of guarded conditionals
that cannot be expressed precisely in the simplified program model. We assume,
without loss of generality, that all (incoming or outgoing) edges incident on a
join or non-deterministic conditional node are labeled with skip.

Assume edges, Assume(e1 6= e2), can be used to partially capture conditionals.
Note that a program conditional of the form e1 = e2 can be reduced to a non-
deterministic conditional and assume statements Assume(e1 = e2) (on the true
side of the conditional) and Assume(e1 6= e2) on the false side of the conditional.
The presence of disequality assume edges allows us to capture the false branch
precisely in this case. Assume labels of the form Assume(e1 = e2) are disallowed
in the simplified model.
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Our definition of a program is quite restrictive. The extension to richer pro-
gram models is briefly discussed in Section 6.2. Nevertheless, this simplied pro-
gram model is also useful for program analysis. It is used by abstracting a given
original program using only the edge labels shown in Figure 1 and then using the
results described in this paper on the abstracted program. A second motivation
for studying the simplified program model is to study the theoretical aspects
of static program analysis and characterize the “precision” of static program
analysis that is achievable using abstract interpretation techniques.

Semantics of Programs The semantics of programs in the above program model
is given in the standard way. Let States denote the set of all possible mappings
from X to Terms(Σ). In other words, States is the set of ground substitu-
tions. Let (Pow(States),⊆) be the complete lattice1 defined over the domain
Pow(States), which is the collection of all subsets of States, by the usual set
operators. Let Pow(States) 7→ Pow(States) denote the collection of all functions
from Pow(States) to Pow(States). The preorder in the lattice (Pow(States),⊆)
induces a (lattice) preorder on the domain Pow(States) 7→ Pow(States).

The semantics of each node in the program, say π, is given as a function [[π]]
in Pow(States) 7→ Pow(States). Intuitively, [[π]](ψ) is the set of program states
reached at program point π starting from some program state in ψ at the entry
point of the procedure containing π. Formally, if π is the set of all program
points in a program, then the vector of functions ([[π]])π∈π is obtained as the
least fixpoint of a set of fixpoint equations obtained from the program (using
the semantics of the edge labels); that is, ([[π]])π∈π = F (([[π]])π∈π), where F
is the monotone function representing the strongest post-condition transformer.
Note that for a join node π with parents π1 and π2, [[π]] is the join (union) of
[[π1]] and [[π2]]. See [4] for further details.

2.2 Abstract Interpretation

Abstract interpretation [4] is a generic framework for describing several static
program analyses. The idea is to evaluate the program semantics over more ab-
stract or simpler lattices, rather than the lattices over which the semantics is
defined. Thus, abstract interpretation is parameterized by the choice of the ab-
stract lattice. Its effectiveness is dependent on the expressiveness of the abstract
lattice and the computational complexity of computing fixpoints in that lattice.

Let (A,v) be a complete lattice. Such a lattice will be called an abstract
lattice if there is a Galois connection between (A,v) and (Pow(States),⊆) de-
fined by the monotone abstraction function α : Pow(States) 7→ A and the
monotone concretization function γ : A 7→ Pow(States). Abstract interpreta-
tion involves solving the fixpoint equations defining the semantics of the pro-
gram, but over such an abstract lattice (A,v) (and the induced extension on

1 A lattice (A,v) is identified by its domain A and its preorder v. The meet (uA) and
join (tA) are defined as the greatest lower bound and least upper bound respectively.
The top and bottom elements are denoted by >A and ⊥A.

4



A 7→ A), rather than on the concrete lattice Pow(States). Formally, ([[π]]A)π∈π =
FA(([[π]]A)π∈π), where FA is the strongest (post-condition) transformer on the
abstract domain such that F ⊆ γ ◦ FA ◦ α. Note that, since the lattice (A,v)
is assumed to be complete, fixpoints exist (without requiring any widening to
achieve convergence), and [[π]]A are well-defined.

Given an abstract domain (A,v), the interprocedural abstract interpretation
problem seeks to compute [[π]]A for each program point π. If we consider a
program model where there are no edges labeled by Call(P ), then we obtain
the simpler problem of intraprocedural analysis. In the case of intraprocedural
analysis, we can work on the lattice (A,v) directly by just focusing on computing
[[π]]A(>A).

We remark here that the requirement that (A,v) be a complete lattice can
be relaxed. Abstract interpretation based analysis can be performed on semi-
lattices A that are not closed under (arbitrary) join. In such a case, the join is
over-approximated by some element of the lattice A. However, if we insist that
there is a unique least fixpoint solution of the semantic equations in A, then we
need to assume that A is a complete lattice.

2.3 The Assertion Checking Problem

We now define the assertion checking problem for programs.

Definition 1 (Assertion Checking Problem). Let T be a theory and P be
a program using the expression language of T. Given an assertion e1 = e2 at
a program point π in P , the assertion checking problem seeks to determine if
e1σ =T e2σ for every substitution σ in [[π]](>).

In general, an assertion φ can be any set of states, φ ∈ Pow(States), and then
the assertion checking problem seeks to determine if [[π]](>) ⊆ φ. If the assertion
checking problem has a positive solution, we say the assertion holds at the given
program point.

The term e1σ is just the evaluation of e1 along some path in the program.
Thus, assertion checking problem essentially seeks to determine if e1 and e2 are
equal at the end of every path to program point π.

Example 1. Consider the program P containing two sequential assignments:
{π0;x := f(z);π1; y := f(z);π2}, where X = {x, y, z} are program variables
and the signature Σ = {f, a} contains an uninterpreted function symbol f and
constant a. We are interested in checking the assertion x = y at program point
π2. Now, [[π2]](>) is the set containing all ground instances of the substitution
σ := {x 7→ fz, y 7→ fz}. Clearly, xσ = yσ in the theory of uninterpreted sym-
bols, and hence, x = y holds at π2.

Since computing [[ ]] is often intractable, the assertion checking problem is
often solved using abstract interpretation over some abstract domain. However,
this can lead to incompleteness.
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Example 2. Following up on Example 1, let Φ denote the set of all finite conjunc-
tions of all variable equalities. The relation ⇒EQ, where EQ is the pure theory of
equality, induces a natural ordering on Φ. This ordering defines a lattice structure
(Φ,⇒EQ). Note that [[π2]]Φ = [[π1]]Φ = true. This is because no variable equality
holds at point π1. Even though x = y holds at π2, the lattice Φ is not expressive
enough to prove it. However, if Φ contains all (conjunctions of) equalities on
Σ ∪X, then [[π2]]Φ will be x = y ∧ y = f(z).

An abstract lattice (A,v), with corresponding concretization function γ, is
sufficiently expressive for assertion checking if for every element φ ∈ A such that
the assertion γ(φ) holds at point π in a program P , it is the case that [[π]]A v φ.

The following result, which is central to many results in this paper, relates
unification [2] and program analysis for the simplified program model. The no-
tation Unif(E), where E is some conjunction of equalities, denotes the formula
that is a disjunction of all unifiers in some complete set of unifiers for E.

Lemma 1 ([10]). Let T be a convex finitary theory and P be a program built
using edge labels (a)–(e) from Figure 1 and using the expression language of T.
Let π be a program point in P and let φi be some conjunction of equalities. Then,∨
i

φi holds at π iff
∨
i

UnifT(φi) holds at π.

We will study the assertion checking problem for different choices of the
program model. Our approach will be based on using an appropriate choice of
the abstract lattice A and using abstract interpretation over A.

3 Logical Interpretation

We now introduce a class of abstract lattices called logical lattices. Abstract
interpretation over logical lattices will be used as an approach to solve the asser-
tion checking problem (Sections 4 and 5) and the invariant generation problem
(Section 6). The definition below is a generalization of the definition in [9].

Let T be a theory over signature Σ and Φ be a class of formulas over Σ ∪X.
We shall assume that ⊥ and >, representing false and true respectively, are
present in Φ. For example, Φ could be the set of conjunctions of atomic formulas
over Σ ∪X.

Definition 2 (Logical Lattice). A (semi-, complete) lattice (A,v) is a logical
(semi-, complete) lattice over some theory T if the domain A is Φ and the partial
order v is contained in the implication relationship ⇒T in theory T, i.e., if
E vA E′ then E ⇒T E

′.

We first note that a complete logical lattice is an abstract lattice. This fact is
demonstrated by the concretization function, γ(E) := {s ∈ States | s |= E}, and
the abstraction mapping, α(σ) := u{E | ∀s ∈ σ.s |= E} (since A is assumed to
be a complete lattice, this is well-defined). Note that the concretization function,
γ, is monotone, since E v E′ implies E ⇒T E′ (by definition), which in turn
implies γ(E) ⊆ γ(E′).
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In this paper, we will mainly use logical lattices in which v is equal to ⇒T.
The first part of this paper will focus on intraprocedural analysis, whereas the
second part will consider interprocedural analysis.

4 Intraprocedural Logical Interpretation

In this section we use logical interpretation to solve intraprocedural assertion
checking problem. We shall consider different assertion checking problems pa-
rameterized by (a) the theory T which interprets the expressions e that occur
in the assignment and assume statements in the program model and (b) the
language of the assertions.

4.1 The Theory of Uninterpreted Symbols

Let Σ be a finite set of uninterpreted function symbols and constants. Let TUFS
be the theory of uninterpreted function symbols. Let X be a set of program
variables. We are given a program with edge labels (a)–(c) from Figure 1, where
the expression e is any term in Terms(Σ ∪ X). We are interested in checking
assertions of the form x = e at some program point π. Informally, the problem
is to determine if the assertion x = e evaluates to true on each program path.

We use a logical lattice defined by the theory TUFS to solve this asser-
tion checking problem. The class Φ of formulas we consider is the set of finite
substitutions, that is, Φ contains formulas of the form,

∧
i xi = ti, such that

ti ∈ Terms(Σ ∪X |≺xi) where ≺ is some total order on the program variables
xi’s. We first observe that we can define a lattice over this choice of Φ.

Proposition 1 ([13]). The set Φ under the ⇒UFS forms a lattice. If X is finite,
then this is a complete lattice.

The following theorem states that the assertion checking problem is decidable
in polynomial time.

Theorem 1 ([7, 10]). Let P denote the class of programs built using edge la-
bels (a)–(c) and using the expression language Terms(Σ ∪ X), where X is a
finite set of program variables. Let Φ be as defined above. The assertion checking
problem for programs in class P and assertions in Φ is solvable in PTIME .

Gulwani and Necula [7] presented a polynomial-time forward abstract inter-
preter over the lattice (Φ,⇒UFS) to prove Theorem 1. A naive forward interpreter
was shown to blow-up the size of generated facts, and hence, Gulwani and Nec-
ula had to prune large facts that were not relevant to the assertion. This process
of making the forward interpreter goal-directed was crucial in proving the above
PTIME result. Prior to that, there were other either incomplete, or exponential,
procedures to solve the above assertion checking problem [1, 23]. All these pro-
cedures were based on forward abstract interpretation. It should be noted that
to prove completeness of forward interpreter for the assertion checking problem,
one needs to show that the above abstract domain is sufficiently expressive.
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Gulwani and Tiwari [10] provided a new proof of a result that is more general
than Theorem 1. In contrast to earlier procedures, the result in [10] is based on
backward propagation. Backward propagation is naturally goal-directed. Unfor-
tunately, backward propagation through assignment edges may create equations
that are not of the form x = e anymore. This is illustrated below.

Example 3. Let P be {π0;x := a; y := f(a);π1;while(∗){π2;x := f(x); y :=
f(y); };π}. Suppose we wish to check the assertion y = f(x) at point π. We
perform a backward propagation in the logical lattice (Φ,⇒UFS) defined above.
To prove y = f(x) at π, we need to prove fy = ffx ∧ ffy = fffx ∧ · · · at π1.
This conjunction is not finite and is not in Φ.

Both these problems are solved by Lemma 1, which notes that e1 = e2 can
be replaced by Unif(e1 = e2) during the backward propagation without any loss
of soundness (or completeness) [8, 10]. This converts arbitrary e1 = e2 into the
form of equalities in Φ. Moreover, it also helps to show that the conjunction will
be finite and fixpoint is reached in n steps. The soundness of Lemma 1 provides
an alternate proof of the fact that the lattice (Φ, UFS) is sufficiently expressive
for the assertion checking problem described above.

Example 4. By applying Unif to the assertion fy = ffx, we get y = fx as
the assertion at π1. Thus, in Example 3, backward propagation enhanced with
unification gives the assertion y = fx at π1 and π2, and true at π0 - thus proving
that y = fx holds at π.

The backward procedure is now seen to terminate in PTIME since the most-
general unifier of a set of equations contains atmost n equations and a substitu-
tion can be strengthened at most n times.

If we enrich the programming model to include assume edges, Assume(e1 =
e2), then the problem of assertion checking can be easily shown to be undecid-
able [16]. This is partly the reason why we do not consider guarded conditionals
in our program model. Coincidentally, Lemma 1 fails to hold in the presence of
such assume edges.

Example 5. Consider the program {Assume(fx = fy);π} with just one assume
edge. It is evident that fx = fy holds at π, but it is clear that x = y, which is
Unif(fx = fy), does not hold at π.

4.2 The Theory of Linear Arithmetic

Let Σ be the signature of linear arithmetic (without inequality predicates). Let
X be the program variables. Let TLAE denote the theory of linear arithmetic
equalities. Let Φ be the class of formulas containing all finite conjunction of
linear equations of the form,

∑
x∈X cxx = c, where cx, c are integer constants.

We are given a program with edge labels (a)–(c) from Figure 1, where the
expression e is any term in Terms(Σ∪X). We are also given an assertion from the
set Φ at some program point π. The following theorem states that this assertion
checking problem is decidable in polynomial time.
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Theorem 2 ([10]). Let P denote the class of programs built using edge la-
bels (a)–(c) and using the expression language Terms(Σ ∪ X), where X is a
finite set of program variables. Let Φ be as defined above. The assertion checking
problem for programs in class P and assertions in Φ is solvable in PTIME .

The approach to solving this problem is based on using logical interpretation
on the lattice (Φ,⇒LAE). Karr [14] presented a forward abstract interpreter over
this logical lattice. To prove Theorem 2 using a forward interpreter requires that
we also show that this abstract domain is sufficiently expressive.

A simple backward propagation algorithm gives a simple proof of Theorem 2.
It is easy to see that Φ is closed under backward propagation through assign-
ment edges. This shows that the above logical lattice is sufficiently expressive.
Termination of backward propagation follows from the observation that there
can be at most n linearly independent (linear) equations. We note here that we
do not need to explicitly use unification since it is inbuilt in the theory LAE.

We remark here that the assertion checking problem becomes undecidable if
we include assume edges, Assume(e1 = e2), in the program model [17].

Theorem 1 and Theorem 2 give the complexity of the decision version of the
problem of abstract interpretation over logical lattices defined by the theories
UFS and LAE.

4.3 Unitary Theory

Theorem 1 and Theorem 2 are special cases of a more-general theorem for unitary
theories. Let T be a unitary theory defined over a signature Σ. Let X be the
program variables. The class Φ of formulas consists of conjunctions representing
substitutions.

Theorem 3 ([10]). Let T be a unitary theory. Assume that for any sequence of
equations e1 = e′1, e2 = e′2, . . ., the sequence of most-general unifiers Unif(e1 =
e′1), Unif(e1 = e′1 ∧ e2 = e′2), . . . contains at most n distinct unifiers where n
is the number of variables in the given equations. Suppose that TUnif(n) is the
time complexity for computing the most-general T-unifier of equations given in
a shared representation. 2 Then the assertion checking problem for programs of
size n that are specified using edge labels (a)-(c) and whose expressions are from
theory T, can be solved in time O(n4TUnif(n2)).

The proof of this theorem can be obtained by generalizing the proofs of
Theorem 1 and Theorem 2. Specifically, we perform backward propagation on the
logical lattice (Φ,⇒T). Using unification (Lemma 1), the generated intermediate
assertions are always strengthened to elements of Φ. This shows that we are
essentially doing an (backward) abstract interpretation over the logical lattice
(Φ,⇒T). The assumption in the statement of Theorem 3 guarantees that fixpoint
is reached in n iterations. Thus, Theorem 3 characterizes the complexity of
(the decision version of) the abstract interpretation problem over certain logical
lattices induced by unitary theories.
2 We assume that the T-unification procedure returns true when presented with an

equation that is valid (true) in T.
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4.4 Checking disequality assertions is intractable

It is natural to wonder about the complexity of checking a disequality assertion
in a program containing restricted kinds of edges. Unfortunately, it is easy to
see that this problem is undecidable even for the simple case of programs using
only uninterpreted symbols.

Theorem 4. Checking disequality assertions is undecidable for programs with
edge labels (a)-(c) and whose expression language is restricted to unary uninter-
preted function symbols and one constant.

Proof. Given an instance {(ui, vi) : i = 1, . . . , n} of PCP, consider the program:
1 u := ε; v := ε;
2 switch (*)
3 case 1: u := u1(u); v := v1(v);
4 case 2: u := u2(u); v := v2(v);

5
...

6 case n: u := un(u); v := vn(v);
7 if (*) then { goto line number 2 } else { }

This program can be implemented using only edge labels (a)-(c). It non-
deterministically generates (encodings of) all possible pairs (u, v) of strings such
that u = ui1 . . . uik

and v = vi1 . . . vik
. The disequality u 6= v holds at the end of

the program iff the original PCP does not have a solution.

4.5 Checking disjunctive assertions

We briefly consider the problem of checking if disjunctive assertions of the form
e1 = e2 ∨ e3 = e4 ∨ · · · hold at program points. The following simple program
shows that this problem is coNP-hard even for programs over a very simple
expression language containing just two distinct (uninterpreted) constants.
IsUnSatisfiable(ψ)
% Suppose ψ has n variables x1, . . . , xn and m clauses # 1, . . . ,m
% Suppose xi occurs in positive form in clauses # Ai[0], . . . , Ai[ci]
% and in negative form in clauses # Bi[0], . . . , Bi[di].
for i = 1 to m do

ei := 0; % ei represents whether clause i has been satisfied.
for i = 1 to n do

if (*) then % set xi to true
for j = 0 to ci do eAi[j] := 1;

else % set xi to false
for j = 0 to di do eBi[j] := 1;

Assertion(e1 = 0 ∨ e2 = 0 ∨ · · · ∨ em = 0);
We note that the above program can be easily written as a program using

edge labels (a)-(c) by simply unrolling the loop and converting it into a loop-free
program. It is easy to see that in the above program, the disjunctive assertion
at the end of the program holds iff the given 3-CNF formula is unsatisfiable.
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Theorem 5. The problem of checking disjunctive equality assertions in pro-
grams with edge labels (a)-(c) and over an expression language containing (at
least) two constants is coNP-hard.

4.6 The combined theory of UFS+LAE

We now consider the problem of assertion checking (equality assertions) in pro-
grams whose expression language comes from the union of UFS and LAE theories.
This problem can be shown to be coNP-hard [8] by creating a program – very
similar to the program in Section 4.5 – whose expression language is that of
UFS+LAE and in which an equality assertion is valid iff a given 3-CNF formu-
las is unsatisfiable. A crucial component of the coNP-hardness proof is the fact
that an equality assertion in UFS+LAE can encode a disjunctive assertion. Specif-
ically, note that x = a∨ x = b can be encoded as the (non-disjunctive) assertion
F (a) + F (b) = F (x) + F (a + b − x). This idea can be generalized to encode
x = a1∨x = a2∨x = a3∨· · ·. Note that, by Lemma 1, Fa+Fb = Fx+F (a+b−x)
holds at a program point π iff Unif(Fa+Fb = Fx+F (a+ b−x)) holds at π. In
the theory UFS+ LAE, Unif(Fa+Fb = Fx+F (a+ b− x)) is just x = a∨ x = b.
By recursively using this same idea, we can find an equation whose complete
set of unifiers is a disjunction of the form x = a1 ∨ x = a2 ∨ · · · ∨ x = an. This
observation, combined with Theorem 5, proves the following result.
Theorem 6 ([8]). Let P denote the class of programs built using edge labels (a)–
(c) and using the expression language Terms(Σ ∪X), where Σ is the signature
of UFS+LAE and X is a finite set of program variables. The problem of checking
equality assertions for programs in class P is coNP-hard.

4.7 Bitary Theories

The proof of coNP-hardness of assertion checking on programs whose expres-
sion language comes from UFS+LAE can be generalized to a class of non-unitary
theories that can encode the disjunction x = a ∨ x = b as (the complete set of)
unifiers of some equality.

Specifically, we define a theory T to be bitary if there exists an equality e = e′

in theory T such that y 7→ z1 and y 7→ z2 form a complete set of unifiers for
e = e′, where y, z1 and z2 are some variables. In other words, Unif(e = e′) is
y = z1 ∨ y = z2. In addition, we also require that for new variables y′ and z′1, it
is the case that Unif(e = e[y′/y, z′1/z1]) and Unif(e′ = e′[y′/y, z′1/z1]) are both
y = y′ ∧ z1 = z′1. It is easy to see that UFS+LAE is a bitary theory. The proof of
Theorem 6 can be generalized for any bitary theory.

Theorem 7 ([10]). Let T be a bitary theory over signature Σ. Let P denote the
class of programs built using edge labels (a)–(c) and using the expression language
Terms(Σ ∪ X), where X is a finite set of program variables. The problem of
checking an equality assertion for programs in class P is coNP-hard.

Some examples of bitary theories are the theories of a commutative func-
tion, combination of linear arithmetic and a unary uninterpreted function, and
combination of two associative-commutative functions [10].
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4.8 Revisiting the combined theory of UFS+LAE

We revisit the problem of checking equality assertions for programs built using
expressions from UFS+ LAE. The fact that there is no single most-general unifier
of an equation in UFS+LAE suggests that the logical lattice defined over the
domain of substitutions by ⇒UFS+LAE is not sufficiently expressible for assertion
checking (of x = e assertions) in programs over UFS + LAE. One option would
be to consider a more general lattice whose domain elements are conjunctions of
arbitrary equations (e1 = e2). Unfortunately, the ordering relation ⇒UFS+LAE
does not induce a lattice structure over this domain. This fact is already true
for UFS [13] and is illustrated in two examples below.

Example 6. If Φ is the set of finite conjunctions of ground equations, then there
is no least upper bound element φ ∈ Φ such that

x = y ⇒UFS φ

fx = x ∧ fy = y ∧ gx = gy ⇒UFS φ

The proof of this claim can be found in [13].

Example 7. If Φ is the set of finite conjunctions of ground equations on the
signature of UFS + LAE, then there is no least upper bound element φ ∈ Φ such
that

x = a ∧ y = b⇒UFS+LAE φ

x = b ∧ y = a⇒UFS+LAE φ

The reason for the nonexistence of a least upper bound φ ∈ Φ is that any such
φ would have to imply the infinite set of facts C[x] + C[y] = C[a] + C[b], where
C[ ] is an arbitrary context.

As observed before, this is not a serious obstacle for assertion checking in
programs defined using only uninterpreted symbols – as the logical lattice defined
over the domain of substitutions, rather than conjunctions of arbitrary equations,
is still sufficiently expressive with respect to assertion checking. However, in
the case of programs containing symbols from UFS and LAE, this forces us to
search for a logical lattice defined over a domain that is more general than
just substitutions, and less general than conjunctions of arbitrary equations. A
natural choice is the disjunction of substitutions.

Let Φ be the set of formulas that are disjunctions of substitutions. Let
⇒UFS+LAE be an ordering relation on Φ. It is easy to see that ⇒UFS+LAE in-
duces a lattice structure on Φ. We can show that the assertion checking problem
is decidable on this logical lattice, even for program models that include edge
label (d) from Figure 1.

Theorem 8 ([8]). Let P denote the class of programs built using edge labels (a)–
(d) and using the expression language Terms(Σ ∪ X), where Σ is a signature
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containing uninterpreted symbols and linear arithmetic symbols, and X is a fi-
nite set of program variables. Let Φ be the set of disjunctions of substitutions.
The assertion checking problem for programs in class P and assertions in Φ is
decidable.

Proof. (Sketch) The procedure works by backward propagating formulas in Φ
through the flowchart nodes. Due to Lemma 1, we can use unification to strengthen
the formulas at each point. Since the UFS+LAE theory is finitary (every equation
has a finite complete set of unifiers), it follows that each intermediate assertion
obtained in the backward propagation can be converted to a formula in Φ. The
remaining part is showing termination (of fixpoint across loops). Note that when
a formula φ1 ∨ · · ·φk in Φ is strengthened by conjuncting with another formula
in Φ, then, in the result φ′, for each i ∈ {1, . . . , k}, it is either the case that (1) φi

appears as a disjunct in φ′, or (2) φi gets strengthened in multiple different ways
and these strictly stronger forms appear as disjunct in φ′. Note that the strictly
stronger forms necessarily instantiate some more of the finitely many program
variables. If it is case (1) for all i, then this indicates that we have reached a fix-
point. If not, then we can see that we are smaller in some appropriately defined
multiset extension of the well-founded ordering > on natural numbers.

4.9 Convex and Finitary Theories

The proof of Theorem 8 depends on two critical ingredients: (1) Unification can
be used to replace an arbitrary equation by a formula in Φ without compromising
soundness; and (2) Unification always returns a finite complete set of unifiers.
Property (1) and (2) can be shown to hold for any convex finitary theory. The
combined theory of UFS and LAE is just one example of a convex and finitary
theory.

Theorem 9 ([10]). Let T be a convex finitary theory over signature Σ. Let
P denote the class of programs built using edge labels (a)–(d) and using the
expression language Terms(Σ∪X), where X is a finite set of program variables.
Let Φ be the set of disjunctions of substitutions. The assertion checking problem
for programs in class P and assertions in Φ is decidable.

The (rich) theory obtained by combining (some or all) of the theories of
linear arithmetic, uninterpreted functions, commutative functions, associative-
commutative functions is finitary and convex. Hence, Theorem 9 shows that the
assertion checking problem is decidable for programs that contain symbols from
this large class of theories.

5 Interprocedural Logical Interpretation

In this section, we study the assertion checking problem for program models
that additionally contain procedure call edges. Interprocedural analysis is con-
siderably more difficult than intraprocedural analysis [21]. A modular way to do
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interprocedural analysis is by means of computing procedure summaries [25]. A
summary of procedure P is an abstraction [[P ]]A of its meaning [[P ]] (which is a
mapping from the subsets of input states to subsets of output subsets) in some
abstract domain A.

5.1 The Theory of Linear Arithmetic

We first consider the logical lattice defined by the theory of linear arithmetic
(LAE). The abstract domain Φ is the set of conjunctions of linear arithmetic
equalities of the form

∑n
i=1 cixi = c, where ci, c are integer constants and xi’s

are program variables. The ordering relation is⇒LAE. A summary of a procedure
in this abstract lattice would be a mapping from Φ to Φ.

Since the set Φ has an infinite number of elements, we can not hope to enu-
merate Φ and compute this abstract mapping. Consider the generic equation∑n

i=1 αixi = α0, where αi’s are variables. The important property of the equa-
tion

∑n
i=1 αixi = α0 is that every element in Φ can be obtained by appropriately

instantiating the αi’s by integer constants. Thus, a symbolic representation of
the abstract summary can be obtained by backward propagating such a generic
equation.

Backward propagation of a generic assertion,
∑n

i=1 αixi = α0, will result in
(a conjunction of) equation of the general form,

n∑
i=1

n∑
j=1

cijαixj +
n∑

i=1

diαi = α0.

This can be seen as a linear equation over n2 + n + 1 variables: n2 variables
representing the unknown product terms αixj and n+ 1 variables representing
the unknown terms αi. Since there can be at most n2+n+1 linearly independent
equations of the above form, the backward propagation computation would reach
fixpoints in polynomial number of steps. This observation is the main ingredient
in the proof of the following result.

Theorem 10 ([18, 11]). Let LAE be the theory of linear arithmetic and Σ be its
signature. Let P denote the class of programs built using edge labels (a)–(c),(e)
and using the expression language Terms(Σ ∪ X), where X is a finite set of
program variables. Let Φ be the set of conjunctions of linear equations over X.
The assertion checking problem for programs in class P and assertions in Φ is
solvable in polynomial time, assuming that the arithmetic operations can be done
in O(1) time.

5.2 The Theory of Unary Uninterpreted Symbols

Consider the logical lattice defined by the theory of unary uninterpreted symbols
(UUFS). The abstract domain Φ we used before is the set of substitutions, that is,
conjunctions of equations of the form xi = ti, where ti is a term (not containing
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xi). The ordering relation is ⇒UUFS. A summary of a procedure in this abstract
lattice would be a mapping from Φ to Φ.

Again, the set Φ has an infinite number of elements, and hence we can not
hope to enumerate Φ and compute this abstract mapping. Since we assume only
unary symbols in the signature, the term ti above can be seen as a string α (of
unary symbols) applied to a program variable xj or a designated constant ε. In
other words, ti can be seen as αxj or αε.

Consider the n(n − 1) generic equations xi = αijxj , for i 6= j ∈ {1, . . . , n},
along with the n generic equations xi = βiε, for i ∈ {1, . . . , n}, where αij ’s and
βi’s are string variables. The important property of these total n2 equations is
that every equation in Φ can be obtained by appropriately instantiating one of
the αij ’s or βi’s by an appropriate string. Thus, a symbolic representation of the
abstract summary can be obtained by backward propagating each of these n2

generic equations.
Backward propagation of a single generic assertion, xi = αijxj , will result in

(a conjunction of) equations of the general form,

Cxk = αijDxl,

where C,D are concrete strings over Σ and xk, xl are either some program vari-
ables or ε. A technical lemma is now required to show that any conjunction of
such equations can be simplified to contain at most a quadratic (in n) number of
equations. The simplification procedure is only required to preserve the unifiers
(and not preserve logical equivalence). A side-effect of the proof of the techni-
cal lemma shows that fixpoints are reached in quadratic number of iterations.
Putting all these observations together, we get a proof of the following result.

Theorem 11 ([11]). Let UUFS be the theory of unary uninterpreted symbols and
Σ be its signature. Let P denote the class of programs built using edge labels (a)–
(c),(e) and using the expression language Terms(Σ ∪ X), where X is a finite
set of program variables. Let Φ be the set of substitutions over X. The assertion
checking problem for programs in class P and assertions in Φ is solvable in
polynomial time, assuming that string operations can be done in O(1) time.

All string operations that arise in the proof of Theorem 11 can indeed be
shown to be computable in polynomial using Plandowski’s result on singleton
context-free grammars [20, 11].

5.3 Unitary Theories

Given the identical approach employed in the proofs of Theorem 10 and Theo-
rem 11, it is naturally evident that these results can be generalized to a class of
unitary theories that satisfy certain specific conditions. The theory of unary un-
interpreted symbols and that of linear arithmetic can then be seen as members of
this class. This generalization has been developed in [11]. This generalization is
based on defining the concept of a generic equation using context variables. In the
general case, the backward propagation approach requires solving (performing
unification on) equations containing context variables.
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Unification type of theory Edge Complexity of Examples Refs.
of program expressions Labels assertion checking

Strict Unitary (a)–(c) PTIME LAE, UFS [7, 16, 17]

Bitary (a)–(c) coNP-hard LAE+UFS, C [8]

Finitary,Convex (a)–(d) Decidable LAE+UFS+C+AC [16, 8]

Unitary (a)-(c),(e) Decidable LAE,UUFS [11]

Fig. 2. Summary of results. If the program model consists of edges with labels given
in Col 2 and the theory underlying the program expressions belongs to the class given
in Col 1, then its assertion checking problem has time complexity given in Col 3. Row
1,4 require some additional technical assumptions. Col 4 contains examples of theories
for which the corresponding result holds, where C denotes commutative functions, and
AC denotes associative-commutative functions.

6 Forward Abstract Interpretation over Logical Lattices

In the previous sections, we have discussed approaches based on backward prop-
agation on abstract logical lattices. In the case of intraprocedural analysis (Sec-
tion 4), we were able to perform complete backward propagation on rich logical
lattices, but we always required the specification of a goal assertion. In the case
of interprocedural analysis (Section 5), we did not need a goal assertion explic-
itly (since the backward propagation could be done on generic assertions), but
we were able to obtain complete procedures for only very simple logical lattices.
While these theoretical results are useful in understanding the limits and issues
in abstract interpretation over logical lattices, they are of limited help in practice.
This is because, in practice, often there is no specification of goal assertions and
often the programs use expressions over richer theories. Hence, it is important
to consider the problem of generating invariants by performing forward abstract
interpretation over logical lattices.

We restrict our discussion to an intraprocedural setting in this section. It
is evident that building an efficient forward logical abstract interpretation on
programs with edge labels (a)-(c) over a logical lattice (A,v) requires:

R1. Given two elements E1 and E2 in A, the join E1 t E2 should be efficiently
computable,

R2. Given E ∈ A, and a program variable x, the best over-approximation not
containing x, that is, u{E′ | E v E′, E′ does not contain x}, is efficiently
computable,

R3. Given E ∈ A, and a ground equation x = e where x does not occur in E,
E u {x = e} is efficiently computable,

R4. Given E,E′ ∈ A, the relation E v E′ is efficiently decidable.

Requirements R1 and R2 ensure that assertions can be propagated forward,
respectively, at join points and across non-deterministic assignments. Require-
ments R2 and R3 together guarantee that assertions can be propagated for-
ward across assignments. Requirement R4 helps in detecting when a fixpoint is
reached.
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Finding expressive logical lattices for which the Requirements R1–R4 can
be satisfied is one of the challenges in building expressive and scalable abstract
interpreters. Since, by Definition 2, v is generally (some refinement of) the impli-
cation relation ⇒T in a logical theory T, Requirement R4 is often easily fulfilled
using existing decision procedures for various theories. Requirement R3 is also
easy to satisfy for many logical lattices since the domain of a logical lattice is
frequently closed under conjunction. Requirement R2 asks for a quantifier elim-
ination procedures, but the result is expected to lie in a restricted subclass A of
logical formulas. The problems mentioned in Requirements R1 and R2 are not so
well-studied in the theorem proving community. We mention some of the known
results here. Karr [14] presented a join algorithm for the linear arithmetic logical
lattice. Mine [15] discussed the logical lattice on the octagon abstract domain.
Join algorithms for nonlinear polynomial abstract domain were studied by [22],
and those for initial term algebra by [7, 23, 13]. We note here that computing join
is often more difficult than deciding v (satisfiability decision procedure) since
E v E′ reduces to checking equivalence of E u E′ and E.

The intuitive choice for the domain of a logical lattice is the conjunction of
atomic formulas in the theory. The natural choice for the ordering relation v is
the logical implication relation ⇒T in the theory. Unfortunately, as we saw in
Example 6 and Example 7, these common choices, when put together, need not
yield a lattice. This problem can often be solved by restricting the domain or
the ordering relation.

6.1 Combining Logical Interpreters

One attractive feature of logical lattices is that there is a natural notion of
combination of logical lattices that corresponds directly to the notion of com-
bination of logical theories. This notion is called the logical product of logical
lattices [9]. The logical product is more expressive than the direct product or
reduced product [5, 3] of lattices.

A natural question related to logical product of logical lattices is the follow-
ing: Given abstract interpreters for the individual logical lattices (in the form
of, say, witnesses for the satisfiability of the four Requirements R1–R4, can we
obtain an abstract interpreter for the logical product?

A positive answer for this question, under certain assumptions on the logical
theories underlying the logical lattices, was provided in [9]. This combination
result (and the assumptions on the logical theories) are inspired by the Nelson-
Oppen combination method for decision procedures [19]. Specifically, we require
the individual logical theories to be disjoint, convex, and stably-infinite.

6.2 Richer Logical Lattices

We briefly discuss extensions to the program model to make it more realis-
tic. In the program model discussed above, conditionals were abstracted as
non-deterministic choices. In reality, conditionals are important when reason-
ing about programs. This is, however, easily fixed as forward propagation based
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logical interpreters can use the meet operation to handle conditionals. As pointed
out above, adding conditionals makes the assertion checking problem undecid-
able in many cases. Hence, abstract interpretation approaches necessarily lose
either completeness or termination on this rich program model.

A second crucial feature absent in the program model of Section 2.1 is the
heap and assignments that manipulate the heap. Modeling the heap and ana-
lyzing the properties of data-structures in the heap is important for verifying
real programs. In programs that manipulate the heap, the lvalue lval of an as-
signment, lval := e, need not always be a variable. In such a case, one of the
first hurdles to overcome is the issue of aliasing. For example, using C notation,
an assignment to x→p can change the value of y→p, if x and y contain the
same value. As a result, propagating assertions through assignment edges be-
comes highly nontrivial in presence of aliasing. A second hurdle when analyzing
heap manipulating programs is that all interesting invariants of such programs
are about unbounded data-structures in heaps. For example, an invariant could
state that all elements of an array or list are initialized. Simpler abstract do-
mains like the ones discussed in previous sections are not expressive to represent
such invariants.

These two issues can both be resolved using a very carefully designed logical
lattice that can express quantified formulas. Quantified formulas can be used
to represent aliasing information. Furthermore, it can also be used to represent
invariants of unbounded data-structures. Logical interpretation, but over these
richer abstract domains, is a promising approach for designing analysis tools for
verification of real and complex code.

While designing useful logical abstract domains, one has to make sure that,
in an effort to improve expressiveness, the computational aspects outlined as
Requirements R1– R4 are not compromised. The reader is referred to [12] for
an abstract domain that includes quantified formulas, but that is parameterized
by a base abstract domain. A logical interpreter over the rich domain is built
using a logical interpreter over the simpler base domain. A good choice of base
domain gives an expressive and efficient quantified abstract domain [12].

6.3 Interface for a Logical Lattice: The Boolean Interface

In the effort to built new logical interpreters by using existing logical interpreters,
we realized that we need a richer interface from an existing logical interpreter.
Apart from the ability to (a) compute meet (which is an over-approximation
of conjunction) and join (which is an over-approximation of disjunction) on
the logical lattice and (b) check for the ordering relation (which is often just
a satisfiability checking procedure), we also need functions that (c) compute
good over-approximations of join and meet (especially in lattices that are not
complete), and (d) good under-approximations of meet (conjunction) and join
(disjunction). Additionally, we require the ability to (e) compute good over- and
under-approximations of the operation of projecting out a variable (quantifier
elimination on a class of formulas that form the domain of the logical lattice).
These operations are often required to be done under some context, that is,
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under the assumption that certain formulas are known to be true. The exact
utility of these interface functions in designing new logical interpreters is beyond
the scope of this paper.

7 Conclusion

This paper presents logical interpretation - a static analysis approach to check-
ing and generating rich invariants based on using logical lattices. Logical inter-
pretations provide a new paradigm for embedding theorem proving techniques
in program analysis tools. The various satisfiability modulo theory solvers pro-
vide just one of the essential interface functions, and many others are required
to build logical interpreters. These other little engines of proof are procedures
that perform unification, context unification, matching, and compute over- and
under-approximations of conjunction, disjunction, and quantifier elimination on
a class of formulas in some theory. The design of effective logical interpreters
tries to achieve a balance between expressiveness and computational efficiency.
Well-designed logical abstract domains have the potential of making significant
impact on automatically verifying the partial correctness of significant parts of
domain-specific software components.
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