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Abstract. We show that termination is decidable for rewrite systems
that contain shallow and right-linear rules, collapsing rules, and right-
ground rules. This class of rewrite systems is expressive enough to include
interesting rules. Our proof uses the fact that this class of rewrite systems
is known to be regularity-preserving and hence the reachability and join-
ability problems are decidable. Decidability of termination is obtained
by analyzing the nonterminating derivations.

1 Introduction

Term rewriting systems are Turing-complete models of computation that specify
rules for replacing certain patterns in terms by equivalent, in some cases sim-
pler, other terms. Simpler models of computation result by imposing additional
constraints on the form of terms in a rewrite system. For instance, if variables
are not allowed, we get ground term rewrite system, which have been extensively
studied, mainly via mapping them to tree automata [2]. More complex models of
computation arise by allowing restricted variable occurrences in the term rewrite
system (or the tree automata transitions).

Termination is one of the central properties of rewrite systems. Termination
guarantees that any expression cannot be infinitely rewritten, and hence, the
existence of a normal form for it. As we go from simple to more general classes
of rewrite systems, the complexity of deciding termination increases until it be-
comes undecidable. For example, while termination is decidable in polynomial
time for ground term rewriting systems [13, 16], it is undecidable for general
rewrite systems and string rewrite systems [13]. It is, therefore, fruitful to iden-
tify the decidability barrier and study decidability issues for some intermediate
classes, especially if these classes are expressive enough to capture interesting
rules.
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the National Science Foundation under grants ITR-CCR-0326540 and CCR-0311348.
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There are several negative, and few positive, results on decidability of ter-
mination for classes of rewrite system. Termination is undecidable for even one
(non-linear) rule [4]. Termination is usually established using well-founded or-
derings [6]. It is undecidable whether a single term rewriting rule can be proved
terminating using a simplification ordering [15] or a monotonic ordering total
on ground terms [7]. On the other hand, several powerful techniques and im-
plementations exist that can automatically prove termination of many rewriting
systems [8, 3, 12, 1]. These systems are based on combinations of techniques such
as the use of well-founded term orderings, transformations, semantic interpre-
tations, and dependency-pairs. The success of these tools suggests the natural
question: is there an interesting and large class of rewrite systems for which
termination is indeed decidable?

In this context, we consider term rewriting systems that contain shallow
right-linear rules, collapsing rules, and right-ground rules. In a shallow right-
linear rule | — r, every variable occurs at most once in r, and all variables
in I,7 occur at depth 0 or 1. Some examples of shallow right-linear rules are
0Az =0, zAz =z, 1Az >z, IVx > 1, 2V -z, 0Az >z, Ay > yAx
and zVy — yVz. A rule of the form | — 2, where z is a variable, is called
collapsing. For example, =(—z) — z is a collapsing rule. A rule I — r, where r is
a ground term, is a right-ground rule. For example, z A (-z) — 0, zV (-z) — 1
are right-ground rules.

Our proof of decidability of termination relies on the decidability of reacha-
bility and joinability. Takai, Kaji, and Seki [17] showed that right-linear finite-
path-overlapping systems effectively preserve recognizability. The class of rewrite
systems defined by shallow right-linear, collapsing, and right-ground rules, is
right-linear and finite-path-overlapping, and hence it follows that the reachabil-
ity and joinability problems for this class is decidable. We point out here that
reachability is known to be undecidable for linear TRS’s, and also for shallow

TRS’s [14].

In this paper, we prove the decidability of termination for TRS’s that contain
shallow right-linear, collapsing, or right-ground rules. We use the decidability of
reachability and joinability for this class as a black box. For termination, we
give a checkable characterization based on some reachability conditions and the
termination of a restricted rewrite system related with the original one.

In Section 2 we introduce some basic notions and notations. In Section 3 we
present termination-preserving transformations that replace the shallow right-
linear rules by flat right-linear rules and that replace the right-ground rules by
right-constant rules. This section is quite easy and similar to parts of other
previous works, but not identical, and allows us to simplify the arguments in the
rest of the paper. In Section 4 we characterize the termination property for flat
right-linear systems that contain additional collapsing and right-constant rules,
and prove its decidability.
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2 Preliminaries

We use standard notation from the term rewriting literature. A signature X
is a (finite) set of function symbols, which is partitioned as U;X; such that
f € X, if the arity of f is n. Symbols in Xy, called constants, are denoted by
a, b, c,d, with possible subscripts. The elements of a set V of variable symbols
are denoted by z,y with possible subscripts. The set T(X,V) of terms over ¥
and V, position p in a term, subterm t|, of term ¢ at position p, and the term
t[s], obtained by replacing t|, by s are defined in the standard way. For example,
if t is f(a,g(b, h(c)),d), then t]a.2.1 = ¢, and t[d]2.2 = f(a,g(b,d),d). We write
p1 > p2 (or, pa < p1) if p2 is a proper prefix of p1. By Vuars(t) we denote the set
of all variables occurring in ¢. The height of a term s is 0 if s is a variable or a
constant, and 1 + maz;height(s;) if s = f(s1,...,5m). Usually we will denote a
term f(t1,...,t,) by the simplified form ft;...t,, and t[s], by t[s] when p is
clear by the context or not important.

A substitution o is sometimes presented explicitly as {@1 — t1,..., 2, —
t,}. We assume standard definitions for a rewrite rule | — r, a rewrite system
R, the one step rewrite relation at position p induced by R — g p, and the one
step rewrite relation induced by R (at any position) —g. If p = A, then the
rewrite step — g, is said to be applied at the topmost position (at the root) and
is denoted by s —7 1; it is denoted by s =% ¢ otherwise.

The notations <+, =1, and —*, are standard. R is terminating if no infinite
derivation sy —p s; — --- exists. A term ¢ is reachable from s by R (or, R-
reachable) if s =% ¢. A term s is R-irreducible (or, in R-normal form) if there
is no term ¢ such that s =g t. We denote by s —' ¢ the fact that an irreducible
term # is reachable from s by the — relation. If s is a term and S is a set of terms,
then we define Reach(s) = {t : s =% t} and Reach(S) = [),cg Reach(s). A set
S of two or more terms is R-joinable if Reach(S) # 0. A (rewrite) derivation or
proof (from s) is a sequence of rewrite steps (starting from s), that is, a sequence
S—RS1 RS2 R ...

A term t is called ground if ¢ contains no variables. It is called shallow if all
variable positions in ¢ are at depth 0 or 1. It is called linear if every variable
occurs at most once in t. A rule ] — r € R is called right-ground if r is ground,
and collapsing if r is a variable. It is called shallow right-linear if the term r is
linear, and both [, r are shallow, and flat if both [, r are height 0 or 1 terms.

3 Termination-Preserving Transformations

Let R be such that for every rule l — r € R, either r is ground, or r is a variable,
or [ — r is shallow and right-linear. Henceforth, we also assume that in every
rule [ — r we have Vars(r) C Vars(l) (this is usual for rewrite rules, and without
this property the corresponding rewrite system is trivially non-terminating).
By replacing non-constant ground terms by new constants, as described for-
mally by the following two transformation rules, we can transform the rewrite
system R into a rewrite system R’ such that for every rule l — r € R’, either r

is a constant, or r is a variable, or I — r is flat and right-linear.



4 G. Godoy, A. Tiwari

[ — r[s] l[s] = r if s 1s non-constant and

I —rlcyc—s lle] = rs—c ground; ¢ a new constant

We show in Lemma 3 that application of these two transformation rules is
terminating, and hence we can exhaustively apply them. As an optimization we
can replace multiple instances of s on LHS (equivalently, RHS) by the same
constant ¢, but we use the unoptimized version here to keep proofs simple. We
prove below that applying these two transformation rules preserves termination.
We remark here that this transformation is very similar (though not identical)
to the one that preserves confluence, see [11].

Lemma 1. Let R’ be obtained from R using one of the two transformation rules
described above. For every derivation t, — g ty2 — g ts3 —g -+, there exists a
derivation tq —)E, ty —)E, t3 —)E,

Proof. Suppose t; = 0p tiy1, Where I — r € R. If I — r is also present in R,
then clearly t; — g t;41. If not, then suppose r|, = s and [ — r € R is replaced
by | — rlc]y and ¢ — s in R'. In this case, t; = p(c)op tit1[Clp.q —ess,idp.q
tiy1(slp.q = ti+1. In the other case, suppose l|; = s and | — r € R is replaced by
l[c]g = r and s — ¢ in R'. Now we have t; —;_cidp.q tilclp.q —ic]orop tit1-
This completes the proof. O

Lemma 2. Let R’ be obtained from R using one of the two transformation rules
described above. Let ¢ be the new constant that names some non-constant ground
term s. For every infinite derivation t1 —gr ty —p -+ over T(X U {c},V),
there exists an infinite derivation t10 =% taoc =% -+ over T(X,V), where o is
{c+ s} and is applied as a substitution interpreting ¢ as a variable.

Proof. Suppose R' = (R — {l[s] — r})U {l[c] = r,s — c}. Consider the
step t; =y pp tiy1, where ! — ' € R'. There are three cases. (1) If
I — r' € R, then since the constant ¢ is new and not present in R, it fol-
lows that t;0 =y pop tiy10.(2) If I’ = I[c] and ' = r, then we can use
the rewrite rule {[s] — r from R to get t;0 —]5r p0p tit10.(3) IF I = s
and 7 = ¢, then t;0 = t;y10 and there is no corresponding step in the R-
derivation. Since {s — ¢} is terminating, case (1) and (2) happen infinitely
often, and hence the derivation t10 —7, to0 —7 -+ is an infinite derivation.
Finally, we complete the proof by saying that the argument for the case when
R =(R—{l - r[s]})U{l = r[e],c — s} can be done similarly. O

Let R F R’ denote that R’ is obtained from R using an application of the
either of the two transformation rules.

Lemma 3. Fvery derivation Ry - Ry F Rs & -+ is necessarily finite. If Ry is
such that for everyl — r € R, either r is ground, or r is a variable, orl — r is
shallow and r is linear, then the final rewrite system R obtained as Ry - R is
such that for everyl — r € R, either r is a constant, or r is a variable, orl — r
is flat and r is linear.
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Proof. Let measure(R) be the multiset consisting of the depths of [ and r for
every l - r € R. If R+ R/, then measure(R) >™ measure(R'), where >™ is the
multiset extension of the regular greater-than > ordering on the naturals. Hence
the relation F is well-founded. If By H' R, and R violates the second claim, then
one of the two transformation rules will be applicable on R, thus contradicting
that R is the normal form of R w.r.t I-. O

The following theorem is now an easy consequence of Lemma 1, Lemma 2,
and Lemma 3.

Theorem 1. If R is any collection of right-ground rules, right-variable rules,
and shallow and right-linear rules, then R can be transformed into R’ such that
R’ is a collection of right-constant rules, right-variable rules, and flat and right-
linear rules. Furthermore, R is terminating if and only if R’ is terminating.

Additionally, with a transformation identical to the one presented in [11], we
can encode function symbols with nonzero arity using just one function symbol,
say f, with sufficiently large arity m. Hence, we can assume that ¥ = Yo U {f},
where f is of arity m. This encoding preserves termination and is done just to
simplify the proofs.

4 Termination

As a consequence of Theorem 1, we can without loss of generality assume that
all rules in R are right-constant, right-variable, or flat and right-linear; and that
XY contains only one non-constant function symbol f of arity m.

Termination is decidable for right-ground term rewriting systems [5] and also
for the more general class that also has right-variable rules [9]. An important
idea used in [9] for handling nonlinear left-hand side terms is that of treating sets
of constants (generalized to terms in this paper) as first-class objects (terms).
Intuitively, a set S C T(X,V) of terms represents any (all) terms that are R-
reachable from every term s € S. For example, under this interpretation, the
rewrite rule fex — fax can rewrite 5153 to fa(S1US2), if there is some term
R-reachable from every term in S7 U S5. This is the basis for Definition 1.

A second observation we make in this paper is that the termination of R
can be decomposed into termination of right-constant or right-variable rules and
the termination of flat and right-linear rules. In particular, this means that the
rules | — r where depth(l) = depth(r) = 1, called permutation rules, play an
important role in characterizing the termination of the rewrite system R.

Definition 1. [UJoin,UPerm] Let R be a flat right-linear TRS over X. Define
an infinite set K = {S : 0 £ S C T(X,V) is R-joinable} of new constants
(every set in K represents a constant) called set-constants. The rewrite systems
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UJoin(R), Perm(R), and UPerm(R) (over X U K ) are defined as follows:

UJoin(R) ={S = {c¢}: S € K, c € Xy, ¢ € Reach(S), and S # {c}}
Perm(R) = {l > r € R: depth(l) = depth(r) = 1}
UPerm(R) = {fS1...Sm = fTh ... T : 3fs1...5m = fti...tm € Perm(R),

S, € K,T, € K forallpe{l,...,m} AND
S, = {sp} whenever s, € Xy AND
T, = {tp} whenevert, € Xy AND
Ve € Vars(fs1...sm), U,,=, Si is R-joinable, and if some t; is z,
then Ty is | J,,—, Si}

Note that the set K is infinite. The rewrite system UPerm(R) is ground
(though constants of the form {2z} € K may appear in it). The sets UPerm(R)
and UJoin(R) are theoretical constructions possibly containing infinitely many
rules. The termination characterization of Lemma 6 applies the rewrite system
UPerm(R)U UJoin(R) only on terms fS;...S,, where each S; C Xy. Hence, the
relevant rules of UPerm(R)U UJoin(R) are those that only contain set-constants
S s.t. S g E().

Ezample 1. If R = {frzxz — fzcicz, ¢ — c1}, then the set UJoin(R) re-
stricted to set-constants over Xy is {{e2} — {e1}, {e1,¢2} — {e1}}. The set
UPerm(R) restricted similarly contains the 27 rules: {f515255 — fS{c1}{e2}:
0 #£ 81,55,55 C {c1,¢2},5 = S1US3 U S3}. The full set UPerm(R) contains
several other rules, for example, rules of the form fSSS — fSejcy, where S is
any subset of terms that are R-joinable.

The notion of set-constants and the new definition of rewriting (using Unions)
induced by R, and captured by UPerm(R), allows us to
(a) project certain infinite R-derivations onto infinite (UPerm(R)UUJoin(R))-
derivations over ground terms (Lemma 4 and Example 2); and
(b) lift infinite (UPerm(R) U UJoin(R))-derivations starting from a flat ground
term to an infinite R-derivation (Lemma 5 and Example 3).
The consequence of these two lemmas is that termination of R restricted to
derivations with only permutation steps at root positions is equivalent to ter-
mination with (UPerm(R) U UJoin(R))-derivations starting from flat ground
terms.

4.1 Projecting Rewrite Derivations

Consider an infinite derivation fee(gb) — g fe(gb)b — g --- using some rewrite
system R containing the permutation rule frzy — fryb. We will first project
this derivation onto the (UPerm(R) U UlJoin(R))-derivation f{c}{c}{gb} —

f{c}{gb}{b} — ---, and thereafter remove the non-constant subterm gb from
it by carefully analyzing the role of gb in the subsequent derivation.
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Lemma 4. Let s1 = fs11...51m —Rr S2 — -+ be an infinite R-derivation that
contains infinitely many top steps, where all of them are with rules in Perm(R).
Then there is an infinite (UPerm(R) U UlJoin(R))-derivation starting from a
term of the form fS1...S,, where every S; is included in Yo and is R-joinable.

Proof. We project the derivation s; — s2--- onto an infinite (UPerm(R) U
UJoin(R))-derivation t; —* t5---.

First, if sq is of the form fs11...81,,, then let t; be f{s11}...{s1m}. We
inductively define ¢,41 as follows. If s; — s,41 is a non-root rewrite step, then
tiy1 = t;. If s;, > s;41 is a root rewrite step using a permutation rule [ — 7,
then, we define ¢;11|, as {sj41],} if 7|, is a constant (and hence equal to s;41[p),
and as Ull,,z:rl,, ti|p if 7|, is a variable.

By construction, all ¢;’s are flat terms where the depth 1 constants are sets
S that contain either constants of the original signature or the initial subterms
S11y+++ sS1my i.e., lf tilp = S, then S g {311, e ,Slm} U 20.

We prove by induction on i that every s;|, is reachable from all terms in t;|,,
that is, s;|, € Reach(t;|,) for all p. This is trivially true for sy and #;. If s;4¢
is obtained from s; using a non-root rewrite step, then it follows that #; = #;41
(by definition), s;|, € Reach(t;|,) (by induction hypothesis), and s;|, — siy1]p,
which together implies that s;11], € Reach(tj;1],). If siyq1 is obtained from s;
with a root rewrite step using a permutation rule / — r, then, (i) for positions p
s.t. r|, € X the result directly follows since for such p we have t; 1|, is {siy1[p},
and (ii) for positions p s.t. r[, € V we have t; 1|, = U”pl =r|, ti |p» (by definition),
each s;|,» € Reach(t;],) (by induction hypothesis), and s;11|, coincides with all
si|pr such that I|,» = r|,, which together implies that s;y1|, € Reach(tiy1|p).

Now we show that if s; — s;41 with a permutation rule I — r, then
t; —>"§JJOM(R)—>UpSrm(R) tiy1, where the last step is done with the UPerm(R)
rule fSi...5,, — tiy1 constructed from | — r by setting S; = {{|;} if {|;
is a constant, and S; = t;|; is l|; is a variable. The term #; may differ from
fS1...5n at positions p such that I|, is a constant. For each such position p,
Sp coincides with {s;|,}, and by the previous fact, this s;|; is reachable from all
terms in #;|p, and hence, a UJoin(R) rule t;|, — S, exists. Hence we conclude
that t; _>’;JJoin(R) fS51...5n —> UPerm(R) tiy1-

Since the derivation s1 — ... contains infinite root rewrite steps with per-
mutation rules, the derivation 1 — ... is also infinite. By right-linearity of R
and the definition of UPerm(R) and UJoin(R), the number of occurrences of the
non-constant terms {s11,...,s1m} in the set-constants S cannot increase in the
infinite derivation ¢; — .... If some non-constant sq;’s are persisting, then the
sets in which they occur can only become larger. Choose ¢ large enough so that
the sets containing non-constant terms do not change any more in the derivation
t; — tiy1 — -+-. We can map this infinite derivation into a new one over flat
terms, in which all sets contain only constants, by eliminating the non-constant
s1; occurrences. Before doing it, we pick a fixed constant ¢ € Xjy. Now, if S
contains some non-constant si; and also some constants, then we just remove
such s1; from the set S. If S contains no constants, but only terms such as sy;,
then we replace S by {c}. With these replacements, it is easily verified that the
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derivation ¢; — ¢;41 — --- is transformed into a new infinite rewriting deriva-
tion t; — t;,; — --- with all terms flat and all set-constants only containing
constants from Xy. This completes the proof. O

Fxzample 2. Let ¥ = {f, g,a,b,c}, where arity(f) = 3, arity(g) = 1, and arity
of all other symbols is 0. Consider the rewrite system:

R ={fzzy — faxyb, fryd — fcxa, a — gb, b = d, gb — c}.

Note that a normalizes to ¢ and b normalizes to d. Consider the following infinite
R-derivation obtained by successively normalizing the depth 1 subterms (denoted
by superscript #,nr) and applying the appropriate permutation rule from R
(denoted by superscript rq, 2 for the two rules respectively).

feegh =" feee =™ fech =™ feed - fedb
—=*"" fedd =72 feca =" fece =T - - -

We project this derivation in two steps. In the first step, we ignore the nr-steps
and use the derived UPerm(R) rule to perform the r-steps. Note that we need
to use the UJoin(R) rule {b} — {d} below. We get the following derivation:

HeHeHgbl =™ feHgb b} =™ fle,gb}{b}{d} —="" f{c,gb}{b}{d}
=" fleHe,gbla} =" fe,gbHa}{b} -7 fla,c,gb}{b}{b}
=" fla,c,gbH{oH{d} =™ fl{cHa,c,gbH{a} =™ f{a,c,gb}{a}{b}
=" f{aa ¢, gb}{b}{b} ="

In the second step, we notice that the set-constants in the derivation starting
from f{a,c,gb}{b}{b} do not change, and hence, we forget the nonconstants in
the sets and get the following (UPerm(R) U UJoin(R))-derivation starting from

fla,c}{b}{b}.

fa, HbHOY =" fla, c}{bHd} == fleHa,cHa) =" f{a, cHa}{b)
= Ha,cH{bHB} -

This is the required nonterminating derivation.

4.2 Lifting Rewrite Derivations

We next prove the converse of Lemma 4 under the assumption that UJoin(R) is
terminating. First we need the notions of a position being related to and going
to other positions in a permutation rule. For example, in the rule feazy — fzybd,
position 1 is related to position 2 in the left-hand side term and positions 1 and
2 both go to position 1 on the right-hand side term. The goes-to relation is well-
defined since rules are right-linear. We naturally generalize this to UPerm(R)-
rules below.

Definition 2. Let fSi...S5n — fIi...Tm be a rule in UPerm(R), and let
fs1...8m = fti...tm be the rule of R from which it is constructed. (Since a
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rule in UPerm(R) can be constructed from different rules in R, we are assuming
an implicit arbitrary selection).

We say that i1, ... ,ix are positions related to i in fS1...5, — fT1... T, if
s; is a variable and s;; = ... = s;, = s;. We say that position i goes to position
Jin fS1...8n = fTi... Ty, if s; is a variable and t; = s;. We say that i is an
original constant position in fS1...5, — fT1...Ty, if s; is a constant.

Lemma 5. Suppose UJoin(R) is terminating. Let s; — s3 — - -+ be an infinite
(UPerm(R) U UJoin(R))-derivation, where s1 = fS1...Sy and every S; C Xy

is a set of R-joinable constants. Then, R is nonterminating.

Proof. We associate a sequence of positions 71, i2,... with every depth 1 position
iin sq as follows: i1 = i and for every j > 1, (a) i;41 = ¢; if the rewrite rule used
in s; — sj41 is from UJoin(R), (b) i; goes to i;41 if the rewrite rule s; — s;41
is in UPerm(R), and (c) i;41 is undefined (and the sequence terminates) if the
position ¢; does not go to any position in the rule s; — s;41 € UPerm(R). Note
that this sequence is uniquely defined for every i since R is right-linear. Thus,
the sequence associated with i can be either finite or infinite. It is easy to prove
inductively that, if 7; ... is the sequence associated with i = 7y in sy, then, for all
ix in this sequence, the set sg|;, is R-joinable and Reach(s1|;,) D Reach(sgli,) #
@ (on terms over the original signature). We can similarly associate a sequence of
positions with any depth 1 position i in any term s; (by considering the infinite
derivation s; — s;41 — -+ -).
We now define the use of a depth 1 position i in s;.

use(s1,4) = {c} if 71 ...4x is the sequence associated with i, sgl|;, = {c},
and 7 is an original constant position in sy — sk41
= UjeJ sg|; if 41 ... 14 is the sequence associated with 4, and J is the
set of all positions related to ix in the rule sy — sg41.
= UjZl sj|i; if the sequence i; ... associated with 7 is infinite

From the definition of use, it is easy to see that use(sy, i) is R-joinable and
Reach(use(sy,i)) C Reach(sgl;,) for all k. An important property of the use
function is that if 74, i3, ... , 7k, . .. is the sequence associated with position i = 7,
in s1, then use(sg, i) = use(sy,? = 1) for all such k.

We wish to map terms s; over the extended signature to terms ¢; over the
original signature, and hence we need to find a concrete representation term for
each sgl|;,. Therefore, define Choice({c}) = c if ¢ € Xy, and Choice(S) =t if
S # {c} for any ¢ € Xy and t is any (selected) term in Reach(S).We map every
term s; of the original infinite derivation into a new term

s; = f(Choice(use(s;, 1)),..., Choice(use(s;, m)))

over the original signature. Our intention is to show that we have an infinite
derivation s§ —7% sh =% s ..., proving then that R is nonterminating.

If a rewrite step s; — si41 is done with a rule of UJoin(R), then s} = s},
by the definition of use, and hence si —7, s}, trivially. For finishing the proof



10 G. Godoy, A. Tiwari

it will be enough to show that if a rewrite step s; — s;41 is done with a rule of
UPerm, then s —} siy1 (note that there are infinitely many steps of this kind
in the derivation s1 — sa — ... since by assumption UJoin(R) is terminating).
The rule used in this step is precisely s; — s;41 since UPerm is ground. Let
I — r be the rule in R from which it is constructed. For every variable position
j in I, let j1,...,Jjx be the positions related to j in the rule [ — r. By the
definition of use, the sets use(s;, j1), ..., use(s;, jy) are identical, and hence, the
terms Choice(use(s;, j1)), ... , Choice(use(s;, ji)) are identical. Moreover, if the
variable appears in r at position p, then all j; ... ji go to p in the rewrite rule, and
hence Choice(use(si+1,p)) is also the same term. Therefore, rewriting s} with
I — r produces a term, say s, that coincides with s}, ; in all the depth 1 positions
that are variable positions in r. For the rest of positions, s’ contains constants
that coincide with the corresponding singleton sets at the same positions in
si+1. That is, for any other position p, s’|, = ¢ for some ¢ € Y. In this case,
Sit1lp = {c}. But, it is the case that ¢ —% Choice(use(si+1,p)), and hence,
s’ —% sj,q, Which proves that s; —F s}, ;. O

Ezample 3. Consider the rewrite system R and the following infinite (UPerm(R)U
UJoin(R))-derivation from Example 2:

fa, e H{oH{b} =" fla,c}{o{d} =™ fcHa, cH{a} =™ fla,c}H{a}{b}
=" fla, cH{b}{b} =" -

The sequence associated with term f{a,c}{b}{b}, call it sy, and position 1 is
the infinite sequence 1,1,2,1,1,1,2,1,1,...; whereas the sequence associated
with s; and position 2 is the finite sequence 2,2 and the sequence associated
with s; and position 3 is the finite sequence 3, 3. Therefore, use(s1,1) = {a,c},
use(s1,2) = {b}, and use(s1,3) = {d}. We can set the Choice function so that
Choice({a,c}) = ¢, Choice({b}) = b, and Choice({d}) = d. Lifting the terms

using the Choice(use(_,_)) function, we get the following infinite R-derivation:

febd =7 feca =" fece =T feeb =T febb
=" febd —T2

*,nr

Note that we have to apply — steps (here a —* ¢ steps since we chose ¢
as Choice({a,c})) to go from an intermediate term (for example, feca) to the
lifting of the next term (fecc).

4.3 Deciding Termination

The following lemma characterizes termination of a rewrite system R that con-
tains only right-constant, right-variable, or flat and right-linear rules.

Lemma 6. R is terminating iff the following three conditions are satisfied:

1. There is no insertion rule x — r € R.

2. The rewrite system UPerm(R)U UJoin(R) terminates starting from any flat
term of the form fS1...8, where every S; contains only R-joinable constants
from X.
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3. It is not the case that ¢ —% C|[c] for any constant ¢ and context C[].

Proof. =:Suppose R is terminating. If either of conditions (1) or (3) are violated,
then the rewrite system R is clearly nonterminating. Now suppose conditions (1)
and (3) are satisfied but condition (2) is violated and there is an infinite rewriting
derivation s1 — sa — s3 — - -+ with UPerm U UJoin(R) starting from a term of
the form s1 = fS1...5m, where every S; is joinable and S; C X. Condition (3)
implies that UJoin(R) is terminating. This fact together with Lemma 5 implies
that R is nonterminating, a contradiction.

<: We prove by contradiction. Suppose the three conditions are satisfied but
R is nonterminating. We compare nonterminating derivations by the size of their
initial terms. For the case of two derivations starting from constants, we compare
them by comparing the constants with the following ordering: d is smaller than
¢ if ¢ =} C[d] for some context C[] (by condition (3) this is a well founded
ordering). We consider a minimal nonterminating derivation:

S =81 —> 83 —>8S3 >

Consider the top rewrite steps in this derivation. If any of these top steps are
collapsing, then they can be commuted with the next rewrite step and moved to
the right. Repeatedly doing this would result in an infinite derivation without top
collapsing steps and with the same initial term. We can, therefore, assume that
there are no top collapsing steps in the above derivation. Moreover, there are no
applications of rewrite rules of the form | — ¢ at the top, since otherwise, from
that point on we obtain a smaller derivation (either by the size or the constant
ordering). This observation, along with condition (1), means that we can assume
that all top steps in the above infinite derivation have to be applications of the
permutation rules f... — f..., with the exception that the first top step can
be the application of a rule of the forme¢ — f....

There are two cases:

(a) there are finitely many top rewrite steps, or
(b) there are infinitely many top rewrite steps.

Case (a): Suppose there are no top rewrite steps applied after reaching term
s;. Clearly, there is an infinite derivation starting from some subterm s;|, of s;
where p € {1,...,m}. Since all root rewrites are done using left-constant or
permutation rules, it follows that the term s;|, is reachable from some subterm
s1]pr with p' € {1,...,m}, or it is reachable from some constant ¢ such that
s1 =% Cle]. In the former case, there is an infinite derivation starting from a
strictly smaller term sq|,/. In the latter case, there is a smaller infinite derivation
starting from ¢ (either in the size or the constant ordering).

Case (b): In this case we assume that s; is not a constant. Otherwise, we
consider the same derivation but starting from ss. Lemma 4 shows that there
is an infinite (UPerm(R) U UJoin(R))-derivation starting from a ground term
fS1...5n, where S; C ¥y are R-joinable. This contradicts Condition (2). O

Ezample 4. The rewrite system R = {fazxz — faxcice,ca — ¢1} is nonterminat-
ing because the rewrite system {f{c1}{c1}{c2} = flc1,ca{ciH{e2}, {1, 2} —
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{c1}}, which is contained in the union of UJoin(R) and UPerm(R), does not
terminate starting from f{c1}{c1}{c2}-

Finally, we show that the three conditions characterizing termination of R
can be decided using the decidability of R-reachability and R-joinability and the
decidability of termination of ground TRSs. This result subsumes our previous
termination decidability result [9].

Theorem 2. The termination property for TRS’s containing only shallow right-
linear rules, arbitrary collapse rules, and right-ground rules is decidable.

Proof. Using Theorem 1, any such TRS can be transformed to a TRS R that
contains only flat right-linear rules, arbitrary collapse rules, and right-constant
rules, while preserving termination. Hence, decidability reduces to checking the
three conditions of Lemma 6.

Condition (1) is trivially checkable. For the decidability of condition (3),
we consider any constant ¢ and distinguish two cases: checking if ¢ -} ¢ and
checking if ¢ =% C|[c] for some non-empty context C[]. For the first case, note
that, since Vars(r) C Vars(l) is satisfied, the number of different terms reachable
from ¢ in one rewrite step is finite; and hence, we can check if ¢ is reachable
from every one of them by the decidability of R-reachability. For the second
case, note that, since R is regularity-preserving, the set of terms reachable from
¢ is recognizable. We can now check condition (3) by checking emptiness of
the intersection of this set with the set of terms in which ¢ occurs at non-root
position, which is recognizable, too.

For the decidability of condition (2), note that the rewrite systems UJoin(R)
and UPerm(R) restricted to set-constants S s.t. S C Xy can be constructed,
due to the fact that R-reachability and R-joinability are decidable, and that the
number of different S s.t. S C Xy is finite. Now, this case reduces to checking
termination of a ground TRS, which is decidable. O

5 Conclusion

In this paper, we showed that termination is decidable for rewrite systems that
contain right-ground, collapsing, or shallow right-linear rewrite rules. The proof
is especially elegant since it is modular over the decidability results for reacha-
bility and joinability [17]. We also prove some properties about rewriting using
shallow right-linear TRSs, which are used to prove the main results of this paper.
Using these intuitions, we have shown elsewhere [10] that confluence is decidable
for shallow and right-linear rewrite systems.

Tt will be interesting to explore the possibility of extending the class of rewrite
systems without compromising decidability of termination. Another direction for
future work would be investigating the termination of rewriting modulo certain
axioms such as associativity and commutativity.
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