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Abstract— In this paper, motivated by models drawn from
biology, we introduce the notion of box invariant dynamical
systems. We argue that box invariance, that is, the existence of
a “box”-shaped positively invariant region, is a characteristic of
many biologically-inspired dynamical models. Box invariance is
also useful for the verification of stability and safety properties
of such systems. This paper presents effective characterization
of this notion for some classes of systems, computational
results on checking box invariance, the study of the dynamical
properties it subsumes, and a comparison with related concepts
in the literature. The concept is illustrated using models derived
from different case studies in biology.

I. I NTRODUCTION

A positively invariantset is a subset of the state space
of a dynamical system with the property that, if the system
state is in this set at some time, then it will continue to
be in this set in the future [1]. A positively invariant set
is extremely useful from the perspective of formal analysis
and verification. It can be used to verifysafetyproperties of
a system, that is, properties that specify that a system can
never be in a prespecified subset of “unsafe” or “bad” states,
as well as stability specifications [2]. This motivates the need
for an effective constructive approach to compute positively
invariant sets for dynamical systems.

Positively invariant sets can be obtained by noticing that
the level surfaces of a Lyapunov function form boundaries
of positively invariant sets. This approach has been a source
of several results about positively invariant sets. However,
this is quite restrictive in general, since systems that are not
stable (and hence that do not have Lyapunov functions) can
also have useful invariant sets.

In this paper, we focus on positively invariant sets that
are in the form of a box, that is, a region specified by
giving bounds for each state variable. The investigation
of several models, especially from the domain of Systems
Biology, has revealed that they frequently admit box-shaped
positively invariant sets. This seems natural in retrospect
since state variables often correspond to physical quantities
that are naturally bounded. We show in this paper that it is
computationally feasible to construct box invariant sets for
a large class of dynamical systems and hence it is an ideal
concept for building analysis and verification tools.

In this manuscript we introduce and define the notion of
box invariance. We start with the simplest instances of linear
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and affine dynamical systems and move to more general
nonlinear systems. We present computational complexity
results on computing box invariant sets. The proofs of the
claims, all originally derived, can be found in [3]. Box
invariance of linear systems is strongly related to the theory
of Metzler matrices and we use this connection to study the
dynamical properties and perform robustness analysis of box
invariant systems. We present several examples from Systems
Biology to demonstrate the significance of the concept of box
invariance and also present a comparison with other strongly
related concepts in the systems and control theory literature.

II. THE CONCEPT OF BOX I NVARIANCE

In this work, we shall consider general, autonomous and
uncontrolled dynamical systems of the forṁx = f(x),x ∈
Rn. We assume the basic continuity and Lipschitz prop-
erties for the existence of a unique solution of the vector
field, given any possible initial condition. A rectangular box
around a pointx0 can be specified using two diagonally
opposite pointsxlb and xub, where xlb < x0 < xub

(interpreted component-wise). Such a box has2n surfaces
Sj,k(1 ≤ j ≤ n, k ∈ {l, u}), whereSj,k = {y : xlb,i ≤ yi ≤
xub,i for i 6= j, yj = xlb,j if k = l, yj = xub,j if k = u}.

Definition 1: A dynamical systeṁx = f(x) is said to be
box invariantaround an equilibrium pointx0 if there exists
a finite rectangular box aroundx0, specified byxlb andxub,
such that for any pointy on any surfaceSj,k(1 ≤ j ≤ n, k ∈
{l, u}) of this rectangular box, it is the case thatf(y)j ≤ 0
if k = u andf(y)j ≥ 0 if k = l. The system will be said to
be strictly box invariantif the last inequalities hold strictly.

Remark1: An equivalent definition of box invariant sys-
tems can be given as systems that have a box as a positively
invariant set. The equivalence of these two definitions follows
from a basic result concerning positive invariance that states
that a closed and convex setB is positively invariant for a
systemẋ = f(x) iff for all points x on the boundary ofB,
f(x) is in the tangent cone ofB at x, see [1].

Remark2: The concept of box invariance requires the
existence of apositively invariant setfor a dynamical system
with a special polyhedral shape. In the case of linear systems,
this invariant set is also adomain of attractionand its exis-
tence will imply stability (towards the enclosd equilibrium):
hence, a notion ofbox stability(see Theorem 5).

Note that the existence of a box is unaffected by the
reordering of state variables and the rotations by multiples of



π/2; it also displays invariance under independent stretches
of the coordinates. Nevertheless, it is not invariant under
general linear transformations.

Definition 2: A systemẋ = f(x) is said to besymmet-
rical box invariantaround the equilibriumx0 if there exists
a point u > x0 (interpreted component-wise) such that the
systemẋ = f(x) is box invariant with respect to the box
defined byu and (2x0 − u).

A. Vector Norms

The boundary of a box can be seen as a level surface of
a vector norm. Let‖x‖∞ = max{|xi|, i = 1, . . . , n} denote
the infinity norm. LetD be an×n positive diagonal matrix.
The level set of‖Dx‖∞ is a hyper-rectangle inRn that is
symmetric around the origin.

Symmetrical box invariance has been studied in the lit-
erature by exploring when‖Dx‖∞ is a Lyapunov function
for a dynamical system. In fact, the notion ofcomponent-
wise (exponential) asymptotic stabilityof a linear system is
exactly characterized by‖Dx‖∞ being a strong Lyapunov
function [4].

More generally, for a linear systeṁx = Ax, a vector norm
‖Wx‖, whereW is of rankn, will be a Lyapunov function
if µ(Q) < 0, whereWA = QW [5]. This condition is also
sufficient for quadratic and infinity norms [6]. Hereµ(Q) is
a matrix measure defined bylim∆→0+

‖I+∆Q‖−1
∆ .

In this paper, we focus on box invariance. Though this is
closely tied to the notion of asymptotic stability for linear
systems, these two concepts are incomparable in general.
The emphasis here is on the computational results about box
invariance for linear and nonlinear systems and a study of
robustness.

III. CHARACTERIZATION OF BOX I NVARIANCE .

We investigate the notion of box invariance for several
classes of systems, propose efficient computational ways to
find such boxes, and study their robustness properties.

A. Linear Systems.

Given a linear system and a box around its equilibrium
point, the problem of checking if the system is box invariant
with respect to the given box can be solved by checking the
condition only at the2n vertices of the box (instead of on
all points of all the faces of the box).

Proposition1: A linear systemẋ = Ax,x ∈ Rn is box
invariant if there exist two pointsu ∈ R+n and l ∈ R−n

such that for each pointc, with ci ∈ {ui, li},∀i, we have
Ac ∼ 0, where∼i is ≤ if ci = ui and∼i is ≥ if ci = li.

Remark3: Proposition 1, which is a simple consequence
of linearity, shows that box invariance of linear systems can
be checked by testing satisfiability ofn2n linear inequality
constraints (over2n unknowns given byl andu). Theorem 1
and Theorem 2 will allow us to simplify this to testingn
linear inequalities overn variables.

The notion of box invariance and symmetrical box invari-
ance are equivalent for linear systems:

Theorem1: A linear systemẋ = Ax, whereA ∈ Rn×n,
is box invariant iff it is symmetrical box invariant.

As a result of Theorem 1, we can now use results obtained
using infinity vector norms as Lyapunov functions [5], [4].
The following result can be easily obtained using a direct
proof based on simplifying then2n inequality constraints.

Theorem2: An n-dimensional linear systeṁx = Ax is
symmetrical box invariant iff there exists a positive vector
c ∈ R+n such thatAmc ≤ 0, wheream

ii = aii(< 0) and
am

ij = |aij | for i 6= j. This is equivalent to checking if the
linear system defined byAm is symmetrical box invariant.

Putting together Theorem 1 and 2, we conclude that in
order to check whether a linear systeṁx = Ax is box
invariant, we only need to test if there exists a positive
vector c such thatAmc ≤ 0. This can be solved using
linear programming inpolynomial time. However, we can
do much better. SinceAm has negative diagonal terms
and non-negative off-diagonal terms, it is immediate that
Fourier-Motzkin procedure can be used to solve then linear
inequality constraintsAmc ≤ 0 for positivec in O(n3) time.

In fact, we can exactly characterize when the Fourier-
Motzkin procedure would succeed in finding a solution using
the notion of principal minors. A principal minor of a matrix
A is the determinant of the submatrix ofA formed by
removing certain rows and the same columns fromA, [7].
In particular, the diagonal elements ofA are its principal
minors and the determinant ofA is also a principal minor.
A matrix A is said to be aP-matrix if all of its principal
minors are positive.

Theorem3: Let A be an × n matrix such thataii ≤ 0
andaij ≥ 0 for all i 6= j. Then, the following statements are
equivalent:

1) The linear systeṁx = Ax is strictly symmetrical box
invariant.

2) −A is a P-matrix.
3) For everyi = 1, 2, . . . , n, the determinant of the top

left i× i submatrix of−A is positive.
Remark4: Theorem 3 shows that box invariance of linear

systems can also be tested by checking if the modified matrix
−Am is aP -matrix. It is known that the problem of deciding
if a given matrix is aP -matrix is co-NP-hard (see [8], [9]).
But in our case, due to the special form ofAm, we can
determine if−Am is a P -matrix using a simpleO(n3)
Fourier-Motzkin elimination procedure.

In the language of infinite vector norms, the existence
of a positive vectorc such thatAmc ≤ 0 is equivalent to
µ(D−1AmD) ≤ 0, whereD is the positive diagonal matrix
diag(c). This connection was known [5], [4], but we now
have the following new complexity result.

Theorem4: Let A ∈ Qn×n be any matrix and letAm

denote any rational matrix such thatam
ii < 0 and am

ij ≥ 0
for i 6= j (e.g., the one obtained fromA). The following
problems can be solved inO(n3) time:

• Is the linear systeṁx = Ax (strictly) box invariant?
• Are the constraintsAmz ≤ 0, z > 0 satisfiable?
• Does there exist a positive diagonal matrixD s.t.

µ(D−1AmD) ≤ 0 (in the infinity norm)?
• Is −Am a P -matrix?
Remark5: Theorem 4 is stated for rational matrices since



irrational real numbers are computationally difficult to rep-
resent and manipulate.

We can not only decide box invariance, but also find box
invariant sets by generating solutions for the above linear
constraint satisfaction problem. Indeed, with a linear system,
ẋ = Ax, we can associate acone in the positive2nth

-ant
described by the set

C = {x ∈ R+n : Amx ≤ 0}.

Any choice of a single vertex inC, or a couple of different
points inC and its origin-symmetric, determine respectively a
symmetric and a non-symmetric box for the system described
by A (see Fig. 1).

Fig. 1. A three-dimensional conic regionC describing all possible choices
for the positive vertex of an invariant box.

For linear systems, box invariance is a stronger concept
than stability, see also [5], [4], [6].

Theorem5: If a linear dynamical system is box invariant,
then it is stable.

B. Nonlinear Systems.

Dynamical models in biology are often in the form of
polynomial systems,̇x = p(x), where p(x) is a vector
of polynomials overx. The condition for box invariance
of polynomial systems can be written as a formula in the
first-order theory of reals

∃l, u.∀x.
∧

1≤j≤n ((x ∈ Sj,l ⇒ pj(x) ≥ 0) ∧
(x ∈ Sj,u ⇒ pj(x) ≤ 0)), (1)

where, as mentioned earlier,Sj,k are the2n faces of the box
defined byl andu. Since this theory is decidable [10], [11],
the following result follows.

Theorem6: Box invariance of polynomial systems is
decidable.

While this is a useful theoretical result, it is not very
practical due to the high complexity of the decision proce-
dure for real-closed fields. A subclass of polynomial systems,
called multi-affine systems [12], arise naturally in modeling
biochemical reaction networks [12], [13]. In these systems,
the polynomials are restricted so that each variable has

degree at most one in each monomial. Multi-affine systems
have several nice properties that have been exploited for
building efficient analysis tools. We generalize the definition
of multi-affine systems and call a systeṁx = p(x) multi-
affine if each variablexj has degree at most one in each
monomial inpi for all j 6= i. In fact, the universal quantifiers
in Formula (1) can be eliminated and Formula (1) can
be simplified for multi-affine systems to a conjunction of
(existentially quantified)n2n constraints using the following
analogue of Proposition 1.

Proposition2: A multi-affine systemẋ = p(x),x ∈ Rn

is box invariant iff there exist two pointsl, u ∈ Rn such that
for each pointc, with ci ∈ {ui, li},∀i, we havep(c) ∼ 0,
where∼i is ≤ if ci = ui and∼i is ≥ if ci = li.

Proposition 2 still requires checking satisfiability of an
exponential number of (nonlinear) constraints. The following
result shows that we can not hope to obtain polynomial
time algorithms for checking box invariance of multi-affine
systems for the case when the box is given.

Theorem7: The problem of determining if a multi-affine
system is box invariant with respect to a given box is co-
NP-hard.

Proof: (Sketch) Given a clauseφ, say b1 ∨ b̄2 ∨ b̄3,
let poly(φ) denote the polynomial(1 − x1)x2x3. Given a
formula φ consisting of the clausesφi, let poly(φ) denote
the polynomialΣipoly(φi). Supposeφ is an instance of3-
SAT with n boolean variables. Consider the following multi-
affine system (note that this system is multi-affine even in
the sense of [12]),

ẋi = −xi, (i = 1, . . . , n); ẋn+1 = xn+1(1− poly(φ)),

and the box given by0 ≤ x ≤ 1. It can be shown that this
box is positively invariant for the multi-affine system iffφ
is unsatisfiable.

However, for a very useful subclass of multi-affine sys-
tems, we can reduce the number of constraints (fromn2n)
to 2n. We use the notion of monotonicity—functionf :
Rn 7→ R is monotonic with respect to a variablexj

if f(. . . , xj , . . .) ≤ f(. . . , x′j , . . .) (or f(. . . , xj , . . .) ≥
f(. . . , x′j , . . .)) wheneverxj < x′j .

Proposition3: Let ẋ = p(x) be a multi-affine system
such that each multi-affine polynomialpi(x) is monotonic
with respect to every variablexj for j 6= i. Then, then2n

constraints of Proposition 2 are equivalent to some subset of
2n constraints.

We illustrate the ideas and the utility of Proposition 3 in
the following example.

Example1: Consider the following Phytoplankton
Growth Model (see [14] and references therein):

ẋ1 = 1− x1 − x1x2
4 , ẋ2 = (2x3 − 1)x2, ẋ3 = x1

4 − 2x2
3,

where x1 denotes the substrate,x2 the phytoplankton
biomass, andx3 the intracellular nutrient per biomass. This
system is not multi-affine in the sense of [12], but it is
multi-affine in our weaker sense. Moreover, it satisfies the
monotonicity condition, and hence by Proposition 3, its
box invariance is equivalent to the existence ofl,u s.t.



the following 6 constraints (that subsume the3 · 23 = 24
constraints) are satisfied:

1− u1 − u1l2
4 ≤ 0, u2(2u3 − 1) ≤ 0, u1

4 − 2u2
3 ≤ 0,

1− l1 − l1u2
4 ≥ 0, l2(2l3 − 1) ≥ 0, l1

4 − 2l23 ≥ 0.

One possible solution for these constraints is given byl =
(0, 0, 0) andu = (2, 1, 1/2) indicating that the box formed
by these two points as diagonally opposite vertices is a
positive invariant set. �

The results on checking box invariance of multi-affine
systems also generalize to a special class of hybrid systems
wherein the system is described by a partition of the state
space into finitely many subspaces and the system has multi-
affine dynamics in each subspace partition. In other words,
these are hybrid systems with finitely many discrete modes
such that the state invariants of the modes partitionRn (thus
the state uniquely determines the mode) and all reset maps
(for all discrete transitions) are identity. These systems occur
frequently as models of genetic regulatory pathways. More
formal extensions of the study to hybrid and switched models
has been discussed in [15]. The following example provides
an illustrative example.

Example2: The dynamics of tetracycline antibiotic in a
bacteria which develops resistance to this drug (by turning on
genesTetAandTetR) can be described by the following hy-
brid system, wherex1, x2, x3, x4 are the cytoplasmic concen-
trations of TetR protein, the TetR-Tc complex, Tetracycline,
and TetA protein, andu0 is the extracellular concentration
of Tetracycline [16]:

ẋ1 = f − x3x1
3 + 5x2

40000 ẋ2 = 15u0
1000 −

35x3x4
10

ẋ3 = x3x1
3 − 16x2

40000 ẋ4 = f − 11x4
40000

and f = 1/2000 if TetR > 2/100000 and f = 1/40
otherwise (f is the transcription rate of genes, which are
inhibited by TetR). In the mode when the genes are “on”
(i.e., f = 1/2000), if u0 is fixed to 200, then we can
compute a positive invariant box3/2 ≤ x4 ≤ 2, 2/5 ≤
x33/5, 3/1000 ≤ x1 ≤ 8/1000, 1 ≤ x2 ≤ 4 essentially by
focusing on the mode when the genes are “on” and using
Proposition 3. �

C. Metzler Matrices.

Matrices with the shape of those in Theorem 3 (or,
equivalently, ofAm in Theorem 2) are known under the
appellative ofMetzlermatrices1. Metzler matrices are in fact,
by definition,matrices with non-negative off-diagonal terms.
In particular, the knownpositive matricesform a subset of
them. Stochastic matrices(or rates matrices, which can be
obtained from probability transition matrices) are another
instance of Metzler matrices, with an additional constraint
on the row sum; similarly fordoubly stochastic matrices.

The properties of Metzler matrices can be reconducted to
those of positive matrices, or at least to those of non-negative
matrices; in fact, for everyAm ∈ Rn×n that is Metzler, there
exists a positive numberc such thatAm+cI is non-negative.
For instance, pickc ≥ maxi∈{1,...,n} |aii|.

1Metzler matrices are also known asessentially non-negativematrices.

Perron and Frobenius (see refs. [17], [18]) were the first
to study positive matrices; many results can be extended
to the Metzler case provided a structural property, that of
irreducibility, holds2. This property is also used in the theory
of Markov Chains, and assumes that there’s a connectivity
chain between each pair of elements of the matrix, i.e. a
sequence of links that brings from the first term of the couple
to the second one, along the underlying connection graph
that is associated with the matrix. In practical instances, this
assumption is not restrictive, as its lack of validity would
imply a certain level of decoupling between parts of the
dynamical system; this would then advocate a separate study
of these different parts in the first place, therefore solving the
issue at its root. Example 4 will show this explicitly. Similar,
slightly slacker results, can in any case be derived for the
general case.

The following holds, (cf. [19]):
Proposition4: SupposeAm ∈ Rn×n is Metzler; then it

has an eigenvalueτ which verifies the following statements:

1) τ is real;
2) τ > Re(λ), whereλ is any other eigenvalue ofAm

different fromτ ;
3) τ has single algebraic and geometric multiplicity;
4) τ is associated with a unique (up to multiplicative con-

stant) positive (right) eigenvector (equivalently, consid-
ering the transpose ofAm, also with a positive left
eigenvector);

5) τ ≤ 0 iff ∃c > 0, such thatAmc ≤ 0; τ < 0 iff there
is at least one strict inequality inAmc ≤ 0;

6) τ < 0 iff all the principal minors of−Am are positive;
7) τ < 0 iff −(Am)−1 > 0.
Such a specialτ is generally known as thePerron-

Frobenius eigenvalueof the matrix. We can prove the fol-
lowing theorem:

Theorem8: SupposeAm is Metzler and has negative
diagonal terms; then all the points of the previous fact hold
but 5), which needs to be modified as:

5) τ ≤ 0 iff ∃c > 0, such thatAmc ≤ 0; τ < 0 iff
∃c > 0, such thatAmc < 0.

The following are two interesting results which will be
useful in the sequel:

Theorem9: If A and B are two Metzler matrices and
aij,i 6=j ≤ bij,i 6=j , while aii = bii,∀i ∈ {1, . . . , n}; then
τA ≤ τB , where τA, τB are the two Perron-Frobenius
eigenvalues of, respectively,A andB.

Theorem10: Given a Metzler matrixAm, with Perron-
Frobenius eigenvalueτ , the following holds:

min
i

n∑
j=1

am
ij ≤ τ ≤ max

i

n∑
j=1

am
ij , i ∈ {1, . . . , n}. (2)

If the equality holds, then it happens so in both directions.
Remark6: A similar result holds calculating along the

columns of the matrixAm.

2For the sake of completeness, it has to be reported that another stronger
assumption, that ofprimitivity, is also introduced to strengthen the results
obtained for the irreducibility case.



The previous results are interesting because they allow us
to reinterpret the conditions we found beforehand (Thm. 2)
within a new perspective. In particular, this sheds some light
on Theorem 3, and proves it. If our original state matrix
Am is already Metzler, then we can infer some dynamical
properties of the linear system associated to it. For instance,

Corollary 1: Strict box invariance for a linear systeṁx =
Amx, with Am Metzler, implies asymptotic stability. The
converse is not true.
The following result, anticipated in the introduction, is
interesting from a robustness study perspective.

Corollary 2: Given a Metzler matrixAm, its box in-
variance is not affected by pre- or post-multiplications by
positive diagonal matrices.
Although the connection with the theory of Metzler matrices
appears quite promising, the reader should notice that in
general it is not possible to directly translate results obtained
for a Metzler matrix Am to its ancestorA, which may
not be Metzler. In fact, the system associated with matrix
Am is not always an upper bound for the original system
associated withA; in particular, this setback happens for
some combinations of the signs of the elements of the matrix,
and, correspondingly, in some of the quadrants of the state
space. Of course, if we pose restrictions on the signs of the
variables (which may derive from the particular instances
we may be considering), we may be allowed to exploit these
bounds. The results outlined for the Metzler correspondent of
a system matrix can be instead fully exploited for robustness
analysis, as in the next section.

D. Robust Properties of Box Invariance – Linear Systems

The issue ofrobustnessarises in biological models when
some parameters of the system are not known exactly and
thus may be thought to vary within specified bounds. These
parameters may represent rates of reactions that are often
unknown or subject to noise.

The theory of Metzler matrices allows us to exploit some
results on the spectral properties of this class of matrices
to study robustness of box invariance of linear systems.
Consider Theorems 9 and 10. As discussed above, the
positive Perron eigenvectorxτ defines (one vertex of) the
actual box; this knowledge can be exploited for obtaining
stricter bounds for the Perron eigenvalueτ .

Corollary 3: Given a Metzler matrixAm, with Perron-
Frobenius eigenvalueτ and a positive vectorx, the following
holds:

min
i

1
xi

n∑
j=1

xja
m
ij ≤ τ ≤ max

i

1
xi

n∑
j=1

xja
m
ij , i ∈ {1, . . . , n}.

Remark7: The substitution ofxτ in place ofx turns the
inequality into equality, in both directions. Thus, due to the
continuous dependence of the eigenvalues of a matrix on its
elements, the use ofx = xτ for bounding the value ofτ of
a matrixAm will definitely yield better results than the use
of x = 1, as in Thm. 10.

If the Perron-Frobenius eigenvector is unknown, we can
obtain improved bounds for the Perron-Frobenius eigenvalue
independently of the computation of any vector. We skip the

details, but refer the reader to the results for positive matrices
in [20] for simple adaptation to the Metzler case.

We start with two cases in our study of robustness. The
first deals with uncertainty on the diagonal terms, while the
second with uncertainty on the off diagonal terms. It is clear
that, for a matrix with Metzler form, the effect of these two
sets towards box invariance is dichotomic: while the first
contributes to it, the second can be disruptive.

1) Diagonal Perturbations:For the first instance, let us
refer to a matrix of the formAm

ε , wheream
ε,ij = am

ij , i 6=
j, while am

ε,ii = am
ii (1 + ε); in other words,Am

ε = Am +
εdiag(am

ii ). If ε > 0, then the perturbed system remains box
invariant. If ε < 0, then the Perron-Frobenius eigenvalueτε

of Am
ε may still be negative for someε. The eigenvalues

of Am
ε are known to be a convex function of the entries of

the diagonal matrixεdiag(am
ii ). In particular, from Corollary

3 and by the convexity of the max function, it follows that
τε ≤ τ + ε maxi am

ii . Hence, a lower bound to the minimum
allowed (negative) perturbation that maintains box invariance
is given by the inequalityε > − τ

maxi am
ii

.
2) Off-diagonal Perturbations:In the second case, more

complex in general than the first, we can again exploit the
upper bounds described in either Thm. 10 or Cor. 3 to make
sure the box invariance condition is retained if some of the
off diagonal terms vary. Introducing a new perturbed matrix
Am

ε , wheream
ε,ij = am

ij (1 + εij),∀i, j 6= i and am
ε,ii = am

ii ,
we are interested in finding how much we can perturb the
off diagonal elements of the matrixAm, while preserving
box invariance. For directioni, introducing the vectorεi =
[εij ]j=1,...,n and a vectorvi = [δij ]j=1,...,n, whereδij is the
Kronecker delta, we state the problem as follows:

max
εi≥0

‖εi‖2
2

s.t.
n∑

j=1

Am
εi |(i,j) < 0, viT

εi = 0.

We arbitrarily chose a particular norm, due to its intuitive
meaning. Moreover, we focus on positive perturbations for
the off-diagonal terms, because only those can actually
affect box invariance. The reader should notice that, while
negative perturbations do not affect box invariance, they
may interfere with the Metzler structure of the matrix (in
particular, its irreducibility). The first constraint above comes
from Thm 10. In general, as discussed, it can be substituted
by (Xτ )−1Am

εiXτ |(i,j) ≤ 0,∀i = 1, . . . , n, where Xτ is
a diagonal matrix formed with the elements of the Perron
(right) eigenvectorxτ of Am. The second constraint forces
the diagonal terms ofAm to stay unperturbed, and bound the
solution of the problem. The optimization problem can be
restated introducing two Lagrange multipliers (respectively
λ > 0 and ν), one for each constraint. Let us denote the
ith row of Am

εi as Am
i (1 + εi). Calculations show that the

solution has the form,εi = 1
2 (λAmT

+ γvi), where

λ =
1∑n

j=1,j 6=i am
ij

+
am

ii∑n
j=1,j 6=i(a

m
ij )2

;

ν = − am
ii∑n

j=1,j 6=i am
ij

− (am
ii )2∑n

j=1,j 6=i(a
m
ij )2

= −λam
ii .



This can be rewritten as follows:

εi
i = 0;

εi
j =

1
2

(
am

ij∑n
j=1,j 6=i am

ij

+
am

ii am
ij∑n

j=1,j 6=i(a
m
ij )2

)
.

3) General case:At the cost of not obtaining closed form
solutions, we can tackle the problem more generally. Let
Am be a Metzler matrix that describes a box invariant linear
system. Consider the perturbed matrixAm

ε = Am + E =
Am +

∑n
i,j=1 εij [∆(i,j)], where∆(i,j) is an n × n matrix

that has a1 in position (i, j), and 0 elsewhere, andεij ≥
0,∀i, j ∈ 1, . . . , n. It is clear that adding positive terms to a
Metzler Matrix may disrupt its box invariance; it then makes
sense, in order to understand what is the worst (in some
sense) perturbation that does not affect the box invariance
property, to set up the following problem:

max
E

f(E)

s.t. (Am
ε 1 < 0) ∨ (1T Am

ε < 0), E ≥ 0.

Here f(E) is a measure of the “perturbation level”; for
instance, we may choosef(E) =

∑n
i,j=1 ei,j =

∑n
i,j=1 εij ,

or f(E) = ‖E‖p, p ≥ 1. The first constraint codifies the
condition of Thm. 10. For the 2-norm (p = 2), interpreting
E as a function of its elementsεij , introducing an epigraph
and resorting to the Schur complement, we can reformulate
the problem as the following LMI:

max
εij≥0,s≥0

s

s.t.
[
−sI −E(ε)
E(ε) sI

]
� 0,

min
{
Am

ε 1,1T Am
ε

}
< 0,

where the last inequality ought to be interpreted componen-
twise.

E. Sensitivity Properties

Given the Perron eigenvalueτ of the matrix Am and
both left and right Perron eigenvectorsxτ and yτ , we can
calculate the sensitivity ofτ with respect to the elements of
Am

ε = Am + εD. HereD is a fixed matrix of disturbances
that are parameterized byε. It can be stated that (cf. [7])

dτ

dε

∣∣∣
ε=0

=
yτT

Dxτ

yτT xτ
and that

dτ

d(am
ε )ij

=
yτ

i xτ
j

yτT xτ
.

F. Affine Systems.

Consider the affine system,ẋ = Ax + b. We can relate
the box invariance of such a system to the condition that the
equilibrium point lies in the positive quadrant,x0 > 0. The
idea is to exploit the corresponding Metzler matrixAm to
deduce possible box properties of the system aroundx0. The
assumption ofx0 being in the positive quadrant is justified
both from a technical standpoint and from our applications.

Theorem11: If the affine systeṁx = Ax+b has Metzler
matrix andb > 0, then its equilibrium pointx0 > 0 iff the
system is box invariant.

Remark8: The assumptions of the previous theorem can
be relaxed to having a non-negativeb ≥ 0, b 6= 0.

Theorem12: If the affine systeṁx = Ax+b has Metzler
matrix and its equilibrium pointx0 > 0, then the positivity
of its drift term b > 0 implies that the system is box
invariant. The converse is not true.

The following result is an attempt to get condition for box
invariance for an affine system looking at a properly modified
correspondent, as we did in the linear case:

Theorem13: Assumeb 6= 0. Given an affine dynamical
systemẋ = Ax + b, consider the correspondent modified
systemẋ = Amx + bP , where we substituted the Metzler
correspondent ofA and, additionally, we introducedbP ,
composed of the absolute values of the components ofb.
The original system is box-invariant iff the modified system
has a positive equilibrium.

G. Robust Properties of Box Invariance – Affine Systems

The results on box invariance for affine systems, in par-
ticular Thm. 13, show that this property is again intrinsically
dependent on the Metzler correspondent of the system ma-
trix. If we consider a perturbed version of the dynamical
systemẋ = Ax + b, say ẋ = Aεx + bε, its box invariance
will be checked on the modified systeṁx = Am

ε x+bP
ε . As

long asAm
ε will remain box invariant the perturbed system

will be as well, regardless of the values of vectorbP
ε .

H. Extensions to a class of NonLinear Systems

In this section we use ideas from the robustness study
above to efficiently check box invariance (using only a
sufficient, but not necessary, characterization) of a subclass of
multi-affine systems in which the degree of each polynomial
is at most two. This assumption is natural on models of
biochemical reactions in which every reaction can have at
most two reactants. We shall tackle the study of these systems
leveraging on two different perspectives.

a) NonLinear Systems as perturbations of Linear Sys-
tems: Consider a general non linear, multi-affine model
ẋ = f(x),x ∈ Rn; the structure of the vector field allows
to express the model as

ẋ = Ax + g(x) = Ax + B(x)x = Γ(x)x.

whereA is a constantn×n matrix, whileB(x) is made up
of terms that are now linear in the variables, and in particular
can be chosen3 to have the formb(x)ii = 0, b(x)ij =
βxi + γxk; i 6= k 6= j ∈ {1, 2, . . . , n};β, γ ∈ R. The nullity
of the values on the diagonal simply states that a dimerization
cannot yield the very same element. Notice that in the off-
diagonal positions we could in principle also accomodate
second order homogeneous terms (b(x)ij = βxi+γxk+δxj ,
which would incidentally disrupt the multi-affine structure as
defined in [12]).
Let us now assume that system corresponding to the linear
part (ẋ = Ax) is box-invariant, that is there exists a

3The nonlinear part, which is made up of polinomials of second order,
that is products of two different monomials, can be ordered into possibly
different B(x) matrices. Notice that we avoid introducing indexes on the
multiplicative constantsβ, γ.



nontrivial (conical) setC in Rn that defines all the possible
locations of the symmetric vertices of the invariant hyper-
rectangle. Let us introduce a matrixΓm(x) =̇ Am +Bm(x),
where bm(x)ij = |b(x)ij |. It is then possible to refer
back to section III-D.2 and think ofΓm(x) = Am

ε , where
bm(x)ij = εij/am

ij . In other words, the non-linear part can
be conceived as an additional term that may possibly disrupt
the box invariance of the linear system. Clearly this is a
pessimistic take, which comes from the positivity assumption
on the termsbm(x)ij . By the application of the results in
paragraph III-D.2, a set of upper bounds for the values of the
allowed “perturbations” is given. Furthermore, these bounds
define some hyperplanes which, when intersected, reduce the
feasible region for the vertices of the box:bm(x)ij = |βxi +
γxk| ≤ |β||xi| + |γ||xk| ≤ εij/am

ij , where εij is here the
maximum allowed perturbation, solution of the optimization
problem. Notice that these inequalities on halfspaces are all
satisfiable on the positive quadrant, and when intersected
with the coneC define a new set of possible vertices for
the invariant hyper-rectangle.
Finally, notice that the above procedure can be also extended
to include the presence of a constant drift term, analogously
to Sec. III-F.

b) Overvaluing Dynamical Systems:A second method
to compute invariant regions, closely related to the first in
its outcomes, is based on the definition of anovervaluing
system[21], [22], which depends on the choice of a particular
(vector) norm [5]. Consider the multi-affine model already
introduced:ẋ = Ax + g(x) = Ax + B(x)x = Γ(x)x,x ∈
Rn. As shown in Section II-A, in our study, we are interested
in a real valued, infinity vector normp(x) = ‖x‖∞ or
possibly in a scaled version thereof,pW (x) = ‖Wx‖∞,
where W is a diagonal, positiven × n matrix. The right-
derivative of p(x) [5], D+p(x), can be upper-bounded,
within a given limited regionS ⊂ Rn, by a valuem ∈ R as
follows: D+p(x) ≤ mp(x). Results in [21] allow to claim
that, whenever the inequalityD+p(x) ≤ mp(x) holds inS

with m < 0, then the region defined as

B =̇ {x ∈ Rn : p(x) ≤ c, c ∈ R+} ⊆ S

is positively invariant for the original nonlinear system. As
a side result, the original non linear system will be asymp-
totically stable, as expected. The right-derivativeD+p(x)
can be upper-bounded by a set of inequalities: given the
matricesA andB(x) as in the preceding paragraph, notice
that D+p(x) ≤ maxi=1,...,n{aii +

∑
j 6=k 6=i |aij |+ |β||xi|+

|γ||xk|}p(x). This condition is in fact similar to the one
used for the robustness study in section III-D.2 and exploited
above; here no prior assumption on the existence of an
invariant box is raised. Similarly, accounting for the rescaling
factors, for the case ofpW (x). The above regionB ⊆ S is
an n-dimensional hypercube with side2c. The vector norm
pW (x) would instead single out a symmetric hyper rectangle
with a vertex lying on the vector[w11, . . . , wnn]T .
The approach can be similarly extended to the case of a
nonlinear vector field with constant drift [21].

I. Box Invariance and Related Concepts in the Literature.

We have seen that the concept of box invariance can be
looked at from the perspective of (vector) norms inducing
non-smooth Lyapunov functions. A more direct relationship
is obtained by intersecting proper ellipsoidal functions that
have been adequately stretched to the limit, as developed
in [3]. We have also already stressed that the concept of
box invariance is strongly related to that ofcomponentwise
stability [23], [24] and diagonally-invariant stability[25],
although here the computational aspects are highlighted,
and robustness is originally analyzed. Finally, we mention
the connections of the approach here presented with the
concepts ofpractical stability, ultimate boundednessand
Lagrange stability. Please refer to [3] for further discussions
and pointers to the literature.

IV. APPLICATION I NSTANCES IN BIOLOGY

Example3: A Model for Blood Glucose Concentration.
The following model is taken from [26]. It is a model of a

physiologic compartment, specifically the human brain, and
focuses on the dynamics of the blood glucose concentration.
In general, this compartment is part of a network of different
parts, which model the concentration in other organs of the
body, and which follow some conservation laws that account
for the exchange of matter between different compartments.
The mass balance equations are the following:

VBĊBo = QB(CBi − CBo) + PA(CI − CBo)− rRBC

VIĊI = PA(CBo − CI)− rT ,

whereVB describes the capillary volume,VI the interstitial
fluid volume, QB the volumetric blood flow rate,PA the
permeability-area product,CBi the arterial blood solute
concentration,CBo the capillary blood solute concentration,
CI the interstitial fluid solute concentration,rRBC the rate
of red blood cell uptake of solute, andrT models the
tissue cellular removal of solute through cell membrane. The
quantityPA can be expressed as the ratioVI/T , whereT is
the transcapillary diffusion time. For this last value, which
may in general vary, we choose the valueT = 10 [min].

VB 0.04 [l] VI 0.45 [l]
QB 0.7 [l/min] CBi 0.15 [kg/l]
rT 2× 10−6 [kg/min] rRBC 10−5 [kg/min]

By applications of the conditions described above, the
system is box invariant. Figure 2 plots a trajectory and some
boxes for this system. �

Example4: The global trafficking model for EGFR
and HER2. The following model is taken from [27]. It
is affine in its variables, the six dimensional vectorx =
(Rs, Cs,Hs, Ri, Ci,Hi), and presents a positive constant
drift. The parameterL assumes three possible values, thus
we shall just consider its possible different realizations
separately. In this particular study, we refer to the instance
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Fig. 2. Blood Glucose Concentration: simulation of a trajectory, and
computation of some boxes.

where the quantity ofEGF is L = 10−12 [ng/ml].

˙dRs = SR − kfLRs + kerCs − kerRs + kxrfxrRi

˙dCs = kfLRs − krCs − kecCs + kxcfxcCi

˙dHs = SH − kehHs + kxhfxhHi

˙dRi = kerRs − kxrRi

˙dCi = kecCs − kxcCi

˙dHi = kehHs − kxhHi

The system matrix verifies the structural conditions on the
signs of its elements, as of Thm. 3; given their values,
the application of the results above shows the existence
of a box. Furthermore, noticing that the system matrix is
explicitly Metzler and that the constant drift is positive, we
may apply Thm. 11 and conclude that the system is box
invariant. A calculation of its eigenvalues shows that they are,
as expected, all negative (in particular, the Perron-Frobenius
one). Nevertheless, the computation of the Perron-Frobenius
eigenvector yields a non positive solution, thus going against
the equivalent condition 4) in Prop. 4. Why does that happen?
The reason is that the system matrix is notirreducible.
In fact, the third and the sixth coordinates are decoupled
from all the others; thus, the underlying graph associated
with the matrix is not strongly connected. Fortunately, as
discussed in Sec. III-A, we can carry on single studies of
these two separate components of the system. Introducing
x1 = (Rs, Cs, Ri, Ci) ∈ R4 and x2 = (Hs,Hi) ∈ R2, we
can set up the following reduced models:

ẋ1 =

0B@−kfL− ker kr kxrfxr 0
kfL −kr 0 kxcfxc

ker 0 −kxr 0
0 kec 0 −kxc

1CA x1 +

0B@SR

0
0
0

1CA ;

ẋ2 =

„
−keh kxhfxh

keh −kxh

«
x2 +

„
SH

0

«
.

The two new reduced-size system matrices are irreducible,
Metzler, and verify all the equivalent conditions for box
invariance of Prop. 4. This example should advise the reader
about the applicability of the conditions derived for Metzler
matrices. The instances where they do not completely hold
suggest ways to structurally simplify the analysis of the
problem. �
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