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Abstract—In this paper, motivated by models drawn from and affine dynamical systems and move to more general
biology, we introduce the notion of box invariant dynamical nonlinear systems. We present computational complexity

systems. We argue that box invariance, that is, the existence of o lts on computing box invariant sets. The proofs of the
a “box"-shaped positively invariant region, is a characteristic of lai Il originally derived be f din I3l B
many biologically-inspired dynamical models. Box invariance is  ©'&@iMs, ail originally aerived, can be tound in [3]. Box
also useful for the verification of stability and safety properties ~invariance of linear systems is strongly related to the theory

of such systems. This paper presents effective characterization of Metzler matrices and we use this connection to study the

of this notion for some classes of systems, computational dynamical properties and perform robustness analysis of box
results on checking box invariance, the study of the dynamical iy ariant systems. We present several examples from Systems
properties it subsumes, and a comparison with related concepts Biol tod trate the sianifi fth tof b

in the literature. The concept is illustrated using models derived ~2'0'08Y t0 demonstrate the significance of the concept or box
from different case studies in biology. invariance and also present a comparison with other strongly

related concepts in the systems and control theory literature.

I. INTRODUCTION

A positively invariantset is a subset of the state space
of a dynamical system with the property that, if the system |n this work, we shall consider general, autonomous and
state is in this set at some time, then it will continue taincontrolled dynamical systems of the fotim= f(x),x €
be in this set in the future [1]. A positively invariant setR”. We assume the basic continuity and Lipschitz prop-
is extremely useful from the perspective of formal analysigrties for the existence of a unique solution of the vector
and verification. It can be used to verifafetyproperties of field, given any possible initial condition. A rectangular box
a system, that is, properties that specify that a system caround a pointz, can be specified using two diagonally
never be in a prespecified subset of “unsafe” or “bad” stategpposite pointszy;, and x,,, where x;, < xp < Tu
as well as stability specifications [2]. This motivates the neeginterpreted component-wise). Such a box Rassurfaces
for an effective constructive approach to compute positivelgi*(1 < j < n k € {I,u}), whereS?*k = {y : 2y, < y; <
invariant sets for dynamical systems. Typi TOri# oy, =ap,; if k=10Ly; =xu,; if k=u}.

Positively invariant sets can be obtained by noticing that Definition 1: A dynamical systeri: = f(x) is said to be
the level surfaces of a Lyapunov function form boundariegox invariantaround an equilibrium point, if there exists
of positively invariant sets. This approach has been a sourgsfinite rectangular box aroune,, specified byz;, andx.,,
of several results about positively invariant sets. Howevegych that for any poing on any surface&’*(1 < j <n,k e
this is quite restrictive in general, since systems that are nof v }) of this rectangular box, it is the case théy); < 0
stable (and hence that do not have Lyapunov functions) cani = v and f(y); > 0 if k& = . The system will be said to
also have useful invariant sets. be strictly box invariantif the last inequalities hold strictly.

In this paper, we focus on positively invariant sets that Remark1: An equivalent definition of box invariant sys-
are in the form of a box, that is, a region specified b¥ems can be given as systems that have a box as a positively
giving bounds for each state variable. The investigatiofhariant set. The equivalence of these two definitions follows
of several models, especially from the domain of Systemgom a basic result concerning positive invariance that states
Biology, has revealed that they frequently admit box-shapefiat a closed and convex sBtis positively invariant for a
positively invariant sets. This seems natural in retrospegystems = f(x) iff for all points = on the boundary of3,
since state variables often correspond to physical quantitig$s) s in the tangent cone oB at x, see [1].
that are naturally bounded. We show in this paper that it IS Remark2: The concept of box invariance requires the
computationally feasible to construct box invariant sets fogyistence of ositively invariant sefor a dynamical system
a large class of dynamical systems and hence it is an id&gith a special polyhedral shape. In the case of linear systems,
concept for building analysis and verification tools. this invariant set is also domain of attractionand its exis-

In this manuscript we introduce and define the notion ofence will imply stability (towards the enclosd equilibrium):
box invariance. We start with the simplest instances of lineafence, a notion obox stability(see Theorem 5).
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7/2; it also displays invariance under independent stretchéss a result of Theorem 1, we can now use results obtained
of the coordinates. Nevertheless, it is not invariant undersing infinity vector norms as Lyapunov functions [5], [4].
general linear transformations. The following result can be easily obtained using a direct
Definition 2: A systemz = f(x) is said to besymmet- proof based on simplifying the2” inequality constraints.
rical box invariantaround the equilibriunmx, if there exists Theorem?2: An n-dimensional linear systent = Ax is
a pointu > x, (interpreted component-wise) such that thesymmetrical box invariant iff there exists a positive vector
system& = f(x) is box invariant with respect to the box ¢ € R*" such thatA™c < 0, whereal} = a;;(< 0) and
defined byu and (2z¢ — u). aji = la;;| for i # j. This is equivalent to checking if the
linear system defined byl™ is symmetrical box invariant.
Putting together Theorem 1 and 2, we conclude that in
The boundary of a box can be seen as a level surface gfyer to check whether a linear systein = Az is box

a vector norm. Lef|a||o = max{|z[,i =1,...,n} denote jnyariant, we only need to test if there exists a positive
the infinity norm. LetD be an x n positive diagonal matrix. yector ¢ such thatA™e < 0. This can be solved using
The level set of| Dz || is a hyper-rectangle iR" that is  |inear programming inpolynomial time. However, we can
symmetric around the origin. o do much better. Sinced™ has negative diagonal terms
Symmetrical box invariance has been studied in the ity non-negative off-diagonal terms, it is immediate that
erature by exploring whef)Dz ||~ is a Lyapunov function g rier-Motzkin procedure can be used to solvesiHimear
for a dynamical system. In fact, the notion @dmponent- jhequality constraintsi™c < 0 for positivec in O(n?) time.
wise (exponentlali) asymptotic Stab'lmj a linear system is In fact, we can exactly characterize when the Fourier-
exactly characterized byDz ||~ being a strong Lyapunov. \oekin procedure would succeed in finding a solution using

function [4]. _ _ the notion of principal minors. A principal minor of a matrix
More generally, for a linear systein= Az, a veCtor norm - 4 ig the determinant of the submatrix of formed by

[Wz|, whereW is of rankn, will be a Lyapunov function e qying certain rows and the same columns freim[7].
if 4(Q) <0, whereW A = QW [S]. This condition is also |, particular, the diagonal elements df are its principal

sufficient for quadratic and infinity norms [6]. Herg@) is minors and the determinant of is also a principal minor.

. . . II+AQ[-1 . | X O . L
a matrix measure defined Bma .o+ *—7"—. A matrix A is said to be aP-matrix if all of its principal

In this paper, we focus on box invariance. Though this isyinors are positive.
closely tied to the notion of asymptotic stability for linear Theorem3: Let A be an x n matrix such that., < 0
. 4 1 =

systems, these two concepts are incomparable in genegly,. .~ ¢ for all i  j. Then, the following statements are
The emphasis here is on the computational results about bQéuive]\I&t'

invariance for linear and nonlinear systems and a study of

A. Vector Norms

1) The linear systeni = Ax is strictly symmetrical box

robustness. . .
invariant.
[1l. CHARACTERIZATION OF BOX INVARIANCE . 2) —Alis aP-.matrlx .
) ) ) ) ) 3) For everyi = 1,2,...,n, the determinant of the top
We investigate the notion of box invariance for several left i x i submatrix of— A is positive.

classes of systems, propose efficient computational ways ORemark 4: Theorem 3 shows that box invariance of linear

find such boxes, and study their robustness properties. g tams can also be tested by checking if the modified matrix
A. Linear Systems. —A™ is a P-matrix. It is known that the problem of deciding
Given a linear system and a box around its equilibriunga given matrix is aP-matrix is co-NP-hard (see [8], [9]).

point, the problem of checking if the system is box invarian
with respect to the given box can be solved by checking t
condition only at the2™ vertices of the box (instead of on
all points of all the faces of the box).

Proposition1: A linear systemi = Ax,x € R" is box
invariant if there exist two pointss € R*" andl € R™"
such that for each point, with ¢; € {u,,l;},Vi, we have
Ac ~ 0,where~;is < if ¢; =u; and~; is > if ¢; = ;. .

Remark3: Proposition 1, which is a simple consequence 1heorem4: Let A € Q"*" be any matrix and let1™
of linearity, shows that box invariance of linear systems cafienote any rational matrix such thaft < 0 and aj > 0
be checked by testing satisfiability 2" linear inequality °f ¢ # J (€.9., the one _obtaglne_d from). The following
constraints (ove2n unknowns given by andu). Theorem 1 Problems can be solved i@(n”) time:

ut in our case, due to the special form daf*, we can
etermine if —A™ is a P-matrix using a simpleO(n?)
ourier-Motzkin elimination procedure.

In the language of infinite vector norms, the existence
of a positive vectore such thatA™e < 0 is equivalent to
u(D~LA™D) < 0, whereD is the positive diagonal matrix
diag(c). This connection was known [5], [4], but we now
have the following new complexity result.

and Theorem 2 will allow us to simplify this to testing « Is the linear systent = Ax (strictly) box invariant?
linear inequalities oven variables. « Are the constraintsi™z < 0, z > 0 satisfiable?
The notion of box invariance and symmetrical box invari- « Does there exist a positive diagonal matrix s.t.
ance are equivalent for linear systems: u(D~tA™D) < 0 (in the infinity norm)?
Theorem1: A linear systemz = Ax, whereA € R"*", e IS —A™ a P-matrix?

is box invariant iff it is symmetrical box invariant. Remark5: Theorem 4 is stated for rational matrices since



irrational real numbers are computationally difficult to rep-degree at most one in each monomial. Multi-affine systems
resent and manipulate. have several nice properties that have been exploited for
We can not only decide box invariance, but also find bokuilding efficient analysis tools. We generalize the definition
invariant sets by generating solutions for the above lineaf multi-affine systems and call a systetn= p(x) multi-
constraint satisfaction problem. Indeed, with a linear systeraffine if each variablex; has degree at most one in each
x = Ax, we can associate eonein the positive2”m—ant monomial inp; for all j # 4. In fact, the universal quantifiers
described by the set in Formula (1) can be eliminated and Formula (1) can
n am be simplified for multi-affine systems to a conjunction of
C={zeR" : A"z <0} (existentially quantified;2" constraints using the following

Any choice of a single vertex iR, or a couple of different analogue of Proposition 1.

points in€ and its origin-symmetric, determine respectively a Proposition2: A multi-affine systeme = p(z),z € R"

symmetric and a non-symmetric box for the system describdgl box invariant iff there exist two points u € R™ such that

by A (see Fig. 1). for each pointe, with ¢; € {u;,l;}, Vi, we havep(e) ~ 0,
wheren~; is < if ¢; = u; and~; is > if ¢; = [;.

Proposition 2 still requires checking satisfiability of an
exponential number of (nonlinear) constraints. The following
result shows that we can not hope to obtain polynomial
time algorithms for checking box invariance of multi-affine

, systems for the case when the box is given.
3 )/ Theorem?7: The problem of determining if a multi-affine
\ ! mL system is box invariant with respect to a given box is co-
' @(3,) NP-hard.
n - Proof: (Sketch) Given a clause, say b; V bs V bs,
g’.) .-~ let poly(¢) denote the polynomia(l — z1)zex3. Given a
J Ami formula ¢ consisting of the clauses;, let poly(¢) denote
(1,-) the polynomialX;poly(¢;). Supposep is an instance oB-
SAT with n boolean variables. Consider the following multi-
affine system (note that this system is multi-affine even in
rl;nﬁe1 sense of [12]),

Fig. 1. A three-dimensional cohic regighdescribing all possible choices @; = —x;, (i = 1,...,n); Zpi1 = Tng1(1 — poly()),
for the positive vertex of a fant box.

and the box given by < x < 1. It can be shown that this
For linear syste"ﬁ?s, box invariance is a stronger concepbx is positively invariant for the multi-affine system iff

than stability, see also [5], [4], [6]. is unsatisfiable. [ ]
Theorem5: If a linear dynamical system is box invariant, However, for a very useful subclass of multi-affine sys-
then it is stable. tems, we can reduce the number of constraints (frd)

to 2n. We use the notion of monotonicity—functiofi :
R™ +— R is monotonic with respect to a variable;
Dynamical models in biology are often in the form ofif f(... z;,...) < f(...,a,...) (or f(...,2j,...) >
polynomial systemsi = p(x), where p(x) is a vector f(..,2%,...)) wheneverr; < x’.
of polynomials overz. The condition for box invariance  Proposition3: Let & = p(z) be a multi-affine system
of polynomial systems can be written as a formula in theuch that each multi-affine polynomigl,() is monotonic
first-order theory of reals with respect to every variable; for j # i. Then, then2”
9, v, /\1gjgn (z c S]fl > py(z) > 0) A gznsérr]asl?r'[asiril‘sEroposmon 2 are equivalent to some subset of
(xe S =p;(x) <0), (1) We illustrate the ideas and the utility of Proposition 3 in

where, as mentioned earlie®?-* are the2n faces of the box the foIIowing.exampIe. )
defined byl andu. Since this theory is decidable [10], [11], _ EXxamplel: Consider the following ~Phytoplankton
the following result follows. Growth Model (see [14] and references therein):

Theorem6: Box invariance of polynomial systems isg-g1 — 1y — B by = (25— Dag, 5= Z— 222,
decidable.

While this is a useful theoretical result, it is not verywhere x; denotes the substrate;; the phytoplankton
practical due to the high complexity of the decision procebiomass, and:s the intracellular nutrient per biomass. This
dure for real-closed fields. A subclass of polynomial systemsystem is not multi-affine in the sense of [12], but it is
called multi-affine systems [12], arise naturally in modelingnulti-affine in our weaker sense. Moreover, it satisfies the
biochemical reaction networks [12], [13]. In these systemsnonotonicity condition, and hence by Proposition 3, its
the polynomials are restricted so that each variable h&#®x invariance is equivalent to the existence loft s.t.

B. Nonlinear Systems.



the following 6 constraints (that subsume ti3e 23 = 24 Perron and Frobenius (see refs. [17], [18]) were the first
constraints) are satisfied: to study positive matrices; many results can be extended
1y — ulTb <0, up(2u3—1)<0, W 22 <0, _to tcr;e _l\él_(la_tzlehr i:dasz‘se_r[r)]rovided a s_tru?tural p(;o_pe;]ty, :]hat of
|~ b >0 al—1)>0, b_22>0. irreducibility, holds’. This property is also use' in the theory
4 4 of Markov Chains, and assumes that there’s a connectivity
One possible solution for these constraints is giverl by chain between each pair of elements of the matrix, i.e. a
(0,0,0) andw = (2,1,1/2) indicating that the box formed sequence of links that brings from the first term of the couple
by these two points as diagonally opposite vertices is @ the second one, along the underlying connection graph
positive invariant set. B that is associated with the matrix. In practical instances, this
The results on checking box invariance of multi-affineassumption is not restrictive, as its lack of validity would
systems also generalize to a special class of hybrid systeingply a certain level of decoupling between parts of the
wherein the system is described by a partition of the stattynamical system; this would then advocate a separate study
space into finitely many subspaces and the system has mutif-these different parts in the first place, therefore solving the
affine dynamics in each subspace partition. In other wordissue at its root. Example 4 will show this explicitly. Similar,
these are hybrid systems with finitely many discrete modesightly slacker results, can in any case be derived for the
such that the state invariants of the modes parti®énthus general case.
the state uniquely determines the mode) and all reset mapsThe following holds, (cf. [19]):
(for all discrete transitions) are identity. These systems occur Proposition4: SupposeA™ € R™*" is Metzler; then it
frequently as models of genetic regulatory pathways. Morieas an eigenvalue which verifies the following statements:
formal extensions of the study to hybrid and switched models 1) 7 is real:
hag been (jlscussed in [15]. The following example provides 2) 7 > Re()\), where \ is any other eigenvalue o™
an illustrative example. different from 7
Example2: The dynamics of tetracycline antibiotic in a 3) ; nhas single algebraic and geometric multiplicity;
bacteria which develops resstange to this drug (by tyrnmg ON 4) 7 is associated with a unique (up to multiplicative con-
genesTetAandTetR can be described by the following hy- stant) positive (right) eigenvector (equivalently, consid-

brid system, where, x», x3, x4 are the cytoplasmic concen- ering the transpose afi™, also with a positive left
trations of TetR protein, the TetR-Tc complex, Tetracycline, eigenvector);

and TetA protein, andy is the extracellular concentration 5) 7 < 0iff 3¢ > 0, such thatd™c < 0; = < 0 iff there
of Tetracycline [16]: is at least one strict inequality iA”c < 0;

L _ a3w 5z . —  15ug _ 3baszx 6) 7 < 0 iff all the principal minors of— A™ are positive;
S ]; o 5 1gn, 000 2= 000 oG 7; 7 <0 iff (A””’[))—l >p0 P

y 3%1 2 . _ _ T4 _ i

3 3 20000 Ta = 20000

Such a speciak- is generally known as thderron-

and f = 1/2000 if TetR > 2/100000 and f = 1/40  Fropenius eigenvaluef the matrix. We can prove the fol-
otherwise { is the transcription rate of genes, which arqowing theorem:

inhibited by TetR). In the mode when the genes are “on” Theorems: SupposeA™ is Metzler and has negative

(ie., f = 1/2000), if uo is fixed to 200, then we can giagonal terms: then all the points of the previous fact hold
compute a positive invariant box/2 < x4 < 2,2/5 < ¢ 5), which needs to be modified as:

233/5,3/1000 < 7 < 8/1000,1 < zo < 4 essentially by ) m ] .
focusing on the mode when the genes are “on” and usingS) T < 01iff 3c > 0, such thatA™c < 0; 7 < 0 iff
Je > 0, such thatA™ec < 0.

Proposition 3. ) : _ ) )
The following are two interesting results which will be

C. Metzler Matrices. useful in the sequel:
Matrices with the shape of those in Theorem 3 (or, 1heoremo: If A and B are two Metzler matrlc.:es and
equivalently, of A™ in Theorem 2) are known under the %iji#i < bijizj, While ai; = b;;,Vi € {1,...,n}; then

appellative oMetzlermatriced. Metzler matrices are in fact, 74 < 7B, Where 74,75 are the two Perron-Frobenius
by definition,matrices with non-negative off-diagonal terms &igenvalues of, respectiveld and B. .

In particular, the knowrpositive matriceorm a subset of _ Theorem10: Given a Metzler matrixA™, with Perron-
them. Stochastic matricegor rates matrices, which can be Frobenius eigenvalue, the following holds:

obtained from probability transition matrices) are another n n
instance of Metzler matrices, with an additional constraint mjnZagg? <7< maxZa?;, 1e{l,....,n}. (2
on the row sum; similarly fodoubly stochastic matrices ) )

The properties of Metzler matrices can be reconducted
those of positive matrices, or at least to those of non-negati
matrices; in fact, for evenA™ € R™*™ that is Metzler, there
exists a positive numbersuch thatd” +cI is non-negative.
For instance, pick: > max;c(1,... n} |@isl-

\}/%the equality holds, then it happens so in both directions.
Remark6: A similar result holds calculating along the
columns of the matrix4™.

2For the sake of completeness, it has to be reported that another stronger
assumption, that oprimitivity, is also introduced to strengthen the results
IMetzler matrices are also known assentially non-negativenatrices. obtained for the irreducibility case.



The previous results are interesting because they allow dstails, but refer the reader to the results for positive matrices
to reinterpret the conditions we found beforehand (Thm. 2h [20] for simple adaptation to the Metzler case.
within a new perspective. In particular, this sheds some light We start with two cases in our study of robustness. The
on Theorem 3, and proves it. If our original state matriXirst deals with uncertainty on the diagonal terms, while the
A™ is already Metzler, then we can infer some dynamicatecond with uncertainty on the off diagonal terms. It is clear
properties of the linear system associated to it. For instandbat, for a matrix with Metzler form, the effect of these two
Corollary 1: Strict box invariance for a linear systein=  sets towards box invariance is dichotomic: while the first
A™x, with A™ Metzler, implies asymptotic stability. The contributes to it, the second can be disruptive.

converse is not true. 1) Diagonal Perturbations:For the first instance, let us
The following result, anticipated in the introduction, isrefer to a matrix of the formA®, wherea?”;; = a},i #
interesting from a robustness study perspective. J» while a;; = aj}(1 + €); in other words,A7* = A™ +

Corollary 2: Given a Metzler matrixA™, its box in- ediag(aj}). If € > 0, then the perturbed system remains box
variance is not affected by pre- or post-multiplications bynvarlant If e < 0, then the Perron-Frobenius eigenvatue
positive diagonal matrices. of A7 may still be negative for some. The eigenvalues
Although the connection with the theory of Metzler matricef A" are known to be a convex function of the entries of
appears quite promising, the reader should notice that the dlagonal matrixdiag(a??). In particular, from Corollary
general it is not possible to directly translate results obtaine?l and by the convexity of the max function, it follows that
for a Metzler matrix A™ to its ancestor4, which may 7. <7+ emax;a];. Hence, a lower bound to the minimum
not be Metzler. In fact, the system associated with matriallowed (negatlve) perturbation that maintains box invariance
A™ is not always an upper bound for the original systenfs given by the inequality > ~ e a7
associated with4; in particular, this setback happens for 2) Off-diagonal Perturbationsin the second case, more
some combinations of the signs of the elements of the matrigpmplex in general than the first, we can again exploit the
and, correspondingly, in some of the quadrants of the statgper bounds described in either Thm. 10 or Cor. 3 to make
space. Of course, if we pose restrictions on the signs of tiseire the box invariance condition is retained if some of the
variables (which may derive from the particular instancesff diagonal terms vary. Introducing a new perturbed matrix
we may be considering), we may be allowed to exploit thesd.", wherea",; = a7} (1 + €;5),Vi,j # i andal; = af},
bounds. The results outlined for the Metzler correspondent wfe are interested in finding how much we can perturb the
a system matrix can be instead fully exploited for robustnesf diagonal elements of the matrid™, while preserving
analysis, as in the next section. box invariance. For directiot, introducing the vectoe’ =

[€ij]j=1,...» and a vectow® = [§;;],=1, .. », Whered,; is the
€ — Linear Systemsy ronacker delta, we state the problem as follows:
The issue ofrobustnessarises in biological models when

D. Robust Properties of Box Invarianc

i
some parameters of the system are not known exactly and i €'l
thus may be thought to vary within specified bounds. These .
parameters may represent rates of reactions that are often s.t. ZA;” (i) <0, v € =0.

unknown or subject to noise.

The theory of Metzler matrices allows us to exploit somene arbitrarily chose a particular norm, due to its intuitive
results on the spectral properties of this class of matricefeaning. Moreover, we focus on positive perturbations for
to study robustness of box invariance of linear systemshe off-diagonal terms, because only those can actually
Consider Theorems 9 and 10. As discussed above, thffect box invariance. The reader should notice that, while
positive Perron eigenvectar™ defines (one vertex of) the negative perturbations do not affect box invariance, they
actual box; this knowledge can be exploited for obtainingnay interfere with the Metzler structure of the matrix (in
stricter bounds for the Perron eigenvalte particular, its irreducibility). The first constraint above comes

Corollary 3: Given a Metzler matrixA™, with Perron-  from Thm 10. In general, as discussed, it can be substituted

Frobenius eigenvalueand a positive vectae, the following  py (XT)TAmXT|; ) < 0,Vi = 1,...,n, where X” is
holds: a diagonal matrix formed with the elements of the Perron
1 13 (right) eigenvectote”™ of A™. The second constraint forces
min - Z zja;; <1 < max - Z zjaij,i € {1,...,n}.  the diagonal terms o™ to stay unperturbed, and bound the

K3 1 =1

solution of the problem. The optimization problem can be
restated introducing two Lagrange multipliers (respectively
> 0 andv), one for each constraint. Let us denote the
row of A™ as A7*(1 + €*). Calculations show that the
solution has the forme! = %(AA’”T + yv*), where

Remark7 The substitution ofvT in place ofx turns the
inequality into equality, in both directions. Thus, due to th
continuous dependence of the eigenvalues of a matrix on itg,
elements, the use af = ™ for bounding the value of of
a matrix A™ will definitely yield better results than the use

of ¢ =1, as in Thm. 10. 1 ajgy
SIS AT S )
If the Perron-Frobenius eigenvector is unknown, we can g=1,370 g J=1,j#i\"i5
obtain improved bounds for the Perron-Frobenius eigenvalue b= ai; _ (a})? — ™

independently of the computation of any vector. We skip the N Z;‘:l#i aj? Z?:L#i(a%‘)? B w



This can be rewritten as follows: Remark8: The assumptions of the previous theorem can
be relaxed to having a non-negatite> 0,b # 0.

i _ )
@« =0 Theorem12: If the affine systenxz = Ax+b has Metzler
i o~ L ajy N aj; agy matrix and its equilibrium point, > 0, then the positivity
T 2\ Xl jmal Yy (a)? of its drift term b > 0 implies that the system is box

_ . invariant. The converse is not true.
3) General caseAt the cost of not obtaining closed form 14 fo110wing result is an attempt to get condition for box

solutions, we can tackle the problem more generally. L§h 4 iance for an affine system looking at a properly modified
A™ be a Metzler matrix that describes a box invariant "”eaﬁorrespondent as we did in the linear case:

system. Consider the perturbed matd{* = A™ + E =

" : i Theorem13: Assumeb # 0. Given an affine dynamical
A™ 4300 €A ), where A 5y is ann x n matrix

1 (. o systemx = Ax + b, consider the correspondent modified
that has al in position (i, j), and0 elsewhere, and; > gy gtemgz — Amg + b, where we substituted the Metzler
0,Vi,j €1,...,n. Itis clear that adding positive terms to acorrespondent of4 and, additionally, we introduced’,

Metzler Matrix may disrupt its box invariance; it then makescomposed of the absolute values of the components. of

sense, in order to understand what is the worst (in SOMg,q original system is box-invariant iff the modified system
sense) perturbation that does not affect the box invariangg,o 5 positive equilibrium.

property, to set up the following problem:

G. Robust Properties of Box Invariance — Affine Systems
max  f(E) o : :
E The results on box invariance for affine systems, in par-

s.t. (AmM1<0)v (1TA™ <0), E>0. ticular Thm. 13, show that this property is again intrinsically
ere (5) i  messure of the peruiaton v for SPERCEN o1 e Metzer conespondentof e st
instance, we may chooS§(E) = 3°7',_ eij = >0,y €ijs systemi = Az + b sa}?o‘c = Az +b,, its box inva)r/iance
— > . 1 I ifi ' - ’ — : € €1
or f(B) = ||Ellp,p > 1. The first constraint codifies the will be checked on the modified systein= A"z + b”. As

condition of Thm. 10. For the 2-normp (= 2), interpreting lona asA™ will remain box invariant the perturbed svstem
E as a function of its elements;, introducing an epigraph 9 c W : X Invarl pertu y
Yé‘” be as well, regardless of the values of vectdr.

and resorting to the Schur complement, we can reformula

the problem as the following LMI: H. Extensions to a class of NonLinear Systems
max s In this section we use ideas from the robustness study
€ij 20,520 above to efficiently check box invariance (using only a
ot { —sI —E(e) ] -0 sufficient, but not necessary, characterization) of a subclass of
E(e) sI - multi-affine systems in which the degree of each polynomial
min {A7"1,17 A"} <0, is at most two. This assumption is natural on models of

) ) . biochemical reactions in which every reaction can have at
where the last inequality ought to be interpreted componefost two reactants. We shall tackle the study of these systems
twise. leveraging on two different perspectives.

E. Sensitivity Properties a) NonLinear Systems as perturbations of Linear Sys-
tems: Consider a general non linear, multi-affine model
x = f(x),xz € R™; the structure of the vector field allows
to express the model as

Given the Perron eigenvalue of the matrix A™ and
both left and right Perron eigenvectars andy™, we can
calculate the sensitivity of with respect to the elements of
AT = A™ + eD. Here D is a fixed matrix of disturbances = Ax + g(x) = Az + B(z)x = I'(x)x.

that are parameterized hy It can be stated that (cf. [7
P oy (et 17D where A is a constant x n matrix, while B(x) is made up

dr B y" Dz” d that dr  yizj of terms that are now linear in the variables, and in particular
dele=o  y™ a7 and ftha dam™);,;  yaT can be choséhto have the formb(z); = 0,b(z);; =
Br; +vyap;i £k # 5 €{1,2,...,n}; 8,7 € R. The nullity
of the values on the diagonal simply states that a dimerization
cannot yield the very same element. Notice that in the off-
Consider the affine systeri, = Az + b. We can relate diagonal positions we could in principle also accomodate
the box invariance of such a system to the condition that treecond order homogeneous teriise(;; = Sx;+vyxy+0z;,
equilibrium point lies in the positive quadranty > 0. The  which would incidentally disrupt the multi-affine structure as
idea is to exploit the corresponding Metzler matdX® to  defined in [12]).
deduce possible box properties of the system araund’he  Let us now assume that system corresponding to the linear
assumption ofry being in the positive quadrant is justifiedpart @& = Ax) is box-invariant, that is there exists a
both from a technical standpoint and from our applications.
Theorem11: If the affine systemk = Ax+b has Metzler 3TI_'le nonlinear part, which is made up of polinomials of second order,
. . - . . that is products of two different monomials, can be ordered into possibly
matrix andb > 0, then its equilibrium pointey > 0 iff the

) ) ; different B(x) matrices. Notice that we avoid introducing indexes on the
system is box invariant. multiplicative constants3, .

F. Affine Systems.



nontrivial (conical) se€ in R™ that defines all the possible I. Box Invariance and Related Concepts in the Literature.

locations of the symmetric vertices of the invariant hyper- h hat th f ; i
rectangle. Let us introduce a matlix” (z) = A™ + B™ (x). We have seen that the concept of box invariance can be

where b™(z);; = |b(z);|. It is then possible to refer looked at from the perspective of (vector) norms inducing
back to secticJ)n I-D.2 a%d think of™(z) = A™, where non-smooth Lyapunov functions. A more direct relationship

b™(x);; = €;;/a™. In other words, the non_-linear part canis obtained by intersecting proper ellipsoidal functions that
1) — Sy 0" ’

be conceived as an additional term that may possibly disrupfve Peen adequately stretched to the limit, as developed
[3]. We have also already stressed that the concept of

the box invariance of the linear system. Clearly this is | : ) s
pessimistic take, which comes from the positivity assumptiof0X invariance is strongly related to that @émponentwise

on the termsy™(z);;. By the application of the results in stability [23], [24] and dlagon_ally-lnvanant stab|llty[25_],
paragraph 11I-D.2, a set of upper bounds for the values of tHdthough here the computational aspects are highlighted,
allowed “perturbations” is given. Furthermore, these boun d robustness is originally analyzed. Finally, we mention

define some hyperplanes which, when intersected, reduce & connections ,Of the a_PproaC,h here presented with the
feasible region for the vertices of the bdk® (x);; = |31, + concepts ofpractical stability, ultimate boundednesand

okl < 18llei| + [Yllee] < eij/al, wheree,; is here the Lagrange stabilityPIgase refer to [3] for further discussions
maximum allowed perturbation, solution of the optimizatiorfi"d POINters to the literature.

problem. Notice that these inequalities on halfspaces are all
satisfiable on the positive quadrant, and when intersected
with the coneC define a new set of possible vertices for

th_e nvariant hyper-rectangle. dExampIe 3: A Model for Blood Glucose Concentration.
Finally, notice that the above procedure can be also extende ; . i
The following model is taken from [26]. It is a model of a

to include the presence of a constant drift term, analogous%ysiologic compartment, specifically the human brain, and

to Sec. lll-F. ) ) focuses on the dynamics of the blood glucose concentration.
b) Overvaluing Dynamical System# second method |, general, this compartment is part of a network of different

to compute invariant regions, closely related to the first in, 4o \which model the concentration in other organs of the

its outcomes, is based on the definition of avervaluing 1,4y ang which follow some conservation laws that account

systeni21], [22], which depends on the choice of a particulag,; the exchange of matter between different compartments.

(vector) norm [5]. Consider the multi-affine model alreadyrpa mass balance equations are the following:

introduced:x = Ax + g(x) = Ax + B(x)xz ='(x)z,x €

IV. APPLICATION INSTANCES IN BlOLOGY

R™. As shown in Section II-A, in our study, we are interested;, ~_— _ Q5(Chi — Cy) + PA(Cy — Cpy) — rrpe
in a real valued, infinity vector normp(z) = ||z||~ or 7 A ! 7 ¢
possibly in a scaled version theregf (z) = |[Wz|~, ViCr = PA(Cpo - Cy) —rr,

where W is a diagonal, positive: x n matrix. The right- . ) . .
derivative of p(z) [5], D p(z), can be upper-bounded, where Vg describes the capillary volumé} the interstitial

within a given limited regior8 C R, by a valuem € R as fluid volulr'ne, Q@ the volumetric blood fI_ow ratePA the
follows: D*p(2) < mp(x). Results in [21] allow to claim permeability-area productCp; the arterial blood solute

that, whenever the inequalit9*p(z) < mp(z) holds in$ concentration(C'g, the capillary blood solute concentration,
with m < 0, then the region defined gs Cr the interstitial fluid solute concentrationggc the rate

of red blood cell uptake of solute, andr models the
tissue cellular removal of solute through cell membrane. The
B={zeR":p(x)<cceR }CS$ quantity PA can be expressed as the rakip/T’, whereT is

the transcapillary diffusion time. For this last value, which
is positively invariant for the original nonlinear system. Asmay in general vary, we choose the vallie= 10 [min].
a side result, the original non linear system will be asymp-
totically stable, as expected. The right-derivatiize p(x)
can be upper-bounded by a set of inequalities: given the Qp
matricesA and B(x) as in the preceding paragraph, notice |"T

+ . .. .. .
that D¥p(@) < maxi=,...n{@i + 2 s laig| + Bllzi] + By applications of the conditions described above, the

|7||“&’“]|c}pi‘ﬁ)' Tglstcond't'fré 'S 1N fat(;t Slllrlmlil)arz to éhe Oln?( system is box invariant. Figure 2 plots a trajectory and some
used for the robustness study in section Ill-D.2 and exploitegh), .« o this system. -

above; here no prior assumption on the existence of an

invariant box is raised. Similarly, accounting for the rescaling Example4: The global trafficking model for EGFR
factors, for the case gf"" (x). The above regioB C § is and HER2. The following model is taken from [27]. It
an n-dimensional hypercube with side. The vector norm is affine in its variables, the six dimensional vecter=

p" () would instead single out a symmetric hyper rectangléR,, Cs, H,, R;, C;, H;), and presents a positive constant
with a vertex lying on the vectdw: 1, . .., wn,]”. drift. The parametel. assumes three possible values, thus
The approach can be similarly extended to the case ofvee shall just consider its possible different realizations
nonlinear vector field with constant drift [21]. separately. In this particular study, we refer to the instance

Vs 0.04 ] Vi 0.45
0.7 [/min] Chi 0.15 [Kg/
2 x 1075 [kg/min] | 7rpc | 1072 [kg/min]




0.155

015 /, 0147 03l [1]
0.145 ,/ 012 0.25 — [2]
0.14 . 0.2 [3]
< 0.08F 4.
0.13 008 01f / [4]
S 0.02 : 7 [5]
0.12 . 0 L 0 _J .
time time xl [6]
Fig. 2. Blood Glucose Concentration: simulation of a trajectory, and
computation of some boxes. [7]
[8]
where the quantity oEGF is L = 102 [ng/ml]. (9]
dRs = SR - kaRs + kercs - kerRs + kLTfTTRz [10]
dCs = kaRs — k. Cs — ke Cs + kT(’f’I‘('C’L [11]
st = SH - kehHs + krhf'th7
dRz = kerRs - kerz
dC’L = kecCs - k:z:ccz 2]
de = kehHs - kthz [13]

The system matrix verifies the structural conditions on the

signs of its elements, as of Thm. 3; given their value.i a
the application of the results above shows the existen ¥
of a box. Furthermore, noticing that the system matrix is

explicitly Metzler and that the constant drift is positive, weyis)
may apply Thm. 11 and conclude that the system is box

invariant. A calculation of its eigenvalues shows that they are,

as expected, all negative (in particular, the Perron-Frobenili$]
one). Nevertheless, the computation of the Perron-Frobenius
eigenvector yields a non positive solution, thus going against
the equivalent condition 4) in Prop. 4. Why does that happe d
The reason is that the system matrix is noeducible 8]
In fact, the third and the sixth coordinates are decouple[<]:1

from all the others; thus, the underlying graph associatgg
with the matrix is not strongly connected. Fortunately, ago]
discussed in Sec. IlI-A, we can carry on single studies gg1]
these two separate components of the system. Introducing
x1 = (Rs,Cs, R;,C;) € R* andzy = (Hy, H;) € R?, we

can set up the following reduced models: (22]
*ka - ker k‘r k'zrsz 0 SR [23]
. L —KRr xcJxe
e S A e R A
0 kee 0 ke 0 [24]
L _keh kzhfzh SH
e (keh —kzh)w”(o)' [25]

The two new reduced-size system matrices are irreducibl[%s]
Metzler, and verify all the equivalent conditions for box
invariance of Prop. 4. This example should advise the reader
about the applicability of the conditions derived for Metzled27]
matrices. The instances where they do not completely hold
suggest ways to structurally simplify the analysis of the
problem. [ ]
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