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Abstract

This paper establishes an interesting connection between assertion
checking in programs and unification in the theory underlying the
program expressions. Using this connection, we describe how uni-
fication algorithms from theorem proving can be used to perform
backward analysis over programs for assertion checking. Interest- ’ z:=0; y:=0; ‘ ’ flag = w; ‘
ingly enough, this connection also helps prove hardness results for
assertion checking for classes of program abstractions. In particu-
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lar, we show - :

(a) Assertion checking is RWE for programs with nondeterminis- ’ a:=1; b:=1;2:= flag + flag ; ‘

tic conditionals that use expressions from a strict unitary theory. N

(b) Assertion checking is coNP-hard for programs with nondeter-

ministic conditionals that use expressions from a bitary theory. Assert (a = b);

(c) Assertion checking is decidable for programs with disequality

- 7 False = :
guards that use expressions from a convex finitary theory. Assert (z = 2w);

(d) Summary computation for interprocedural analysis can be True
performed using backward analysis, enabled with unification, on

generic assertions. This helps generalize result (a) to interproce- a=axcb=bxc
dural analysis. z:=z+(axc);

These results generalize several recently published results using yi=y+(cxa)+(axc);

a uniform framework. They also provide several new results, and a0 = R
k X ; flag:= flag-1; z:= z- 2,

partially solve the long standing open problem of interprocedural — ).

global value numbering. In essence, they provide new techniques Assert (y = 2z);

for backward analysis of programs based on novel integration of ]

theorem proving technology in program analysis.

Figure 1. An example program with assertions.
1. Introduction

We use the ternequality assertionor simplyassertion to refer to

an equality between two program expressions. d3gertion check- Modeling multiplication operator as an uninterpreted function
ing problem is to decide whether a given assertion always holds at is not sufficient to prove the validity of the assertipr= 2z, which
a given program point. In general, assertion checking is an unde- requires reasoning about the commutative nature of the multiplica-
cidable problem. Hence, assertion checking is typically performed tion operator. Hence, if we abstract the multiplication operator as
over some sound abstraction of the program. In this paper, we givea commutative function, we can prove validity of the second as-
algorithms as well as hardness results for the assertion checkingsertion (as well as the first assertion). However, this requires us to
over classes of useful program abstractions. work with program expressions that involve combination of linear
Consider, for example, the program shownFRigure 1 All arithmetic and a commutative operator. In Seciopwe show that
assertions shown in the program are valid. Observe that to provein general, assertion checking on programs with such program ex-
the validity of the assertions = b andy = 2z, we need to  pressions is coNP-hard. However, the good news is that this prob-
reason about the multiplication operator. Since full reasoning about |em is still decidable, as we show in SectiénAlso observe that
the multiplication operator is in general undecidable, we can use the validity of the assertiop = 2z requires the knowledge of the
some sound abstraction of the multiplication operator. One option loop guardfiag # w inside the loop. Our algorithm in Sectidh

is to model the multiplication operator as a binary uninterpreted can also reason about disequality guards and can hence prove the
functiont. Such a model is sufficient to prove the validity of the validity of such assertions.

assertiona = b. In Section4, we show how to use unification The assertion = 2w involves discovering the loop invariant
algorithm for uninterpreted functions to obtain a polynomial time > = 2 x flag and reasoning about the equality gugiey = w.
algorithm for verifying the validity of such assertions. Reasoning about such linear arithmetic expressions in presence of

equality guards has been shown to be undecidable in geriétal [
*The authors thank Akash Lal and Zhendong Su for providing helpful This assertion thus points out the limitation of the techniques de-

comments on an earlier version of this paper. scribed in this paper, namely that they cannot reason precisely
L An uninterpreted functiorf of arity . satisfies only one axiom: #; = ¢/ about the equality guards. However, we do present a heuristic in
forl <i < mn,thenf(er,...,en) = f(€},...,€p). Section8 that can also reason about simple examples such as this
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Program| Unification type of theory| Assertion checkingl Examples Generalizes Finitary Convex
nodes of program expressions complexity (Decidable)
a—d Strict Unitary PTIME LA, UF [9, 14, 19

a—d Bitary coNP-hard LA+UF, C [10

a—e Finitary-Convex Decidable LA+UF+C+AC | [14, 10]

a—d,f Strict Unitary PTIME LA, Unary [16]

Figure 2. Summary of results in this paper. Program nodes refer to those in Rglira program contains nodes from Column 1 and the

theory underlying the program expressions belongs to the class given in Column 2, then its assertion checking problem has time complexity
given in Column 3. Rows 1 and 4 additionally require some additional minor technical assumptions. Column 4 contains examples of theories
for which the corresponding result holds:- LA: Linear Arithmetic, UF: Uninterpreted Functions, C: Commutative Functions, AC: Associative-
Commutative Functions, Unary: Unary Uninterpreted Functions. The sys#bdehotes combination of theories. The last column gives those
references whose results are generalized by our result. The diagram on the right shows the containment relationship between the different
theory classes.

one. We formalize the notion of reasoning about disequality guards ~ The above results uniformly generalize several known re-
as opposed to reasoning about equality guards by making all con-sults P, 10, 12, 15, 16, 14], and also provide several new results.
ditionals non-deterministic, and introducingsume nodes, as de- All prior results on the complexity of assertion checking have been
scribed in Sectio.1 for specific abstractions. For example, in an earlier papérye
The main observation at the core of the technical results (de- showed that intraprocedural assertion checking in the combination
scribed in SectioR) is the connection between assertion checking of linear arithmetic and uninterpreted functions was coNP-hard, but
for programs whose expressions are from some th&cmpd uni- decidable, using a unification based approach. This paper substan-
fication in the theoryl. An assertion holds at a program point ifit  tially, and nontrivially, generalizes the results af]. The results
evaluates to true in every run of the program. Every run of a pro- in this paper go much beyond one or two specific program ab-
gram returns a valuation of the program variables. This valuation stractions and apply to intra- and inter-procedural analysis of wide
can be seen as a substitution. If every such substitution makes an aselasses of program abstractions. They can be used to quickly clas-
sertiontrue, then each substitution would also validate some max- sify the hardness of these analyses for new abstractions.
imally generalT-unifier of the assertion. Using this basic principle, The results in this paper establish closer connections between
we show that unification algorithms can be used to strengthen as-program analysis and theorem proving. The traditional way of us-
sertions during assertion checking using backward analysis. Quiteing theorem proving in program analysis has been via decision pro-
interestingly, the same basic principle also helps us show hardnesscedures. In this usage scenario, decision procedures are used to dis-
results in some cases. charge verification conditions generated from programs annotated
In particular, the main contributions of this paper are the follow- with loop invariants. In this paper, theorem proving technology is
ing general results that relate tbemplexityof assertion checking more tightly integrated in program analysis to make it more precise
in programs with theunification typeof the theory of program ex-  and efficient, even in the absence of loop-invariant annotations.
pressions. These results are also summarized in Fiyure The results in this paper should also be viewed in the context of
developing new algorithmic techniques for performing intra- and
e We describe a generic IME algorithm for assertion checking  inter-procedurabackwardanalysis of programs. This paper shows
in programs when the program expressions are from a strict that standard unification algorithms can be used during intraproce-
unitary theory (Sectior). We also describe some conditions ~dural backward analyses of programs. This same backward propa-
under which this algorithm can be extended to perform a precise gation procedure, enabled with unification, can also be used in the
interprocedural analysis in BME (Section7). We show that interprocedural setting. The only difference is that we need back-
these conditions are met for the theory of linear arithmetic and ward propagation and unification to work on generic assertions.
unary uninterpreted functions. The latter result partially solves This uniformity is appealing from the viewpoint of understanding
the open problem of interprocedural global value numbering. the difficulty of interprocedural analysis. (Unification on equations
arising from generic assertions is often much harder than standard
unification.) It also enables, in the specific abstraction of unary un-
interpreted symbols, a new polynomial time procedure for inter-
procedural analysis, which is an important step towards the more
general open problem of interprocedural global value numbering
problem (when all program operators are treated as uninterpreted).
We describe a generic algorithm for assertion checking in pro- Finally, although this paper focuses solely on backward analysis,
grams when the program expressions are from a finitary convex we believe that our observations enable new ways of combining
theory, thereby proving decidability. We prove that the (rich) both forward and backward analyses using theorem proving tech-
theory of combination of linear arithmetic with functions that nology to improve the overall efficiency and precisigh [
are uninterpreted, commutative, or associative-commutative
(AC) is finitary and convex (Sectiof)). The significance of 2. Preliminaries
such functions lie in the fact that they can be used to model
important properties of otherwise hard to reason about pro-
gram operators. For example, commutative functions can be We assume that each procedure in a program is abstracted using
used to model floating-point operators (which do not obey as- the flowchart nodes shown iRigure 3 In the assignment node,
sociativity), while AC functions can be used to model bit-wise x refers to a program variable while denotes some expression
operators. in the underlying abstraction. We refer to the language of such

We introduce the notion of a bitary theory, and prove that
several interesting theories are bitary. We prove that assertion
checking in programs whose program expressions are from a
bitary theory is coNP-hard (Secti@j). For example, the theory

of commutative functions is bitary.

2.1 Program Model
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Figure 3. Flowchart nodes in our abstracted program model.

expressions asxpression language of the prograRollowing are

the procedure call node simply denotes the name of the procedure

examples of the expression languages for some abstractions that wéo be called.

refer to in this paper:

e Linear arithmetic:

ex=y | ¢ | estes | cxe

Herey denotes some variable whitedenotes some arithmetic
constant.

¢ Uninterpreted functions:
ex=y | flen,...,en)
Here f denotes some uninterpreted function of arity
e Combination of linear arithmetic and uninterpreted functions:

ex=y | ¢ | esxter | exe | fler,...,en)
e Commutative Functions
ex=y | flee2)

Here f denotes a commutative function.

A non-deterministic assignmemnt:=?7 denotes that the variable

2.2 Unification Terminology

A substitutions is a mapping that maps variables to expressions
such that for every variable, the expressiow (x) contains vari-
ables only from the sefty | o(y) = y}. A substitution mapping

can be (homomorphically) lifted to expressions such that for every
expressiore, we defines(e) to be the expression obtained from

e by replacing every variable by its mappingo(x). Often, we
denote the application of a substitutierto an expression using
postfix notation ago. We sometimes treat a substitution mapping
o as the following formula, which is a conjunction of non-trivial
equalities between variables and their mappings:

N =20
x

A substitutiono is a unifier for an equalitye; ez (in theory
T) if er0 = e2o (in theoryT). A substitutiono is a unifier for
a set of equalitied if o is a unifier for each equality . A
substitutiornr; is more-generathan a substitution if there exists
a substitutiors such thatros = (zoy)o for all variablesr. 2 A set

x can be assigned any value. Such non-deterministic assignments of unifiers forE is completevhen for any unifier for E, there
are used as a safe abstraction of statements (in the original sourcexists a unifielr’ € C that is more-general than. The reader is

program) that our abstraction cannot handle precisely.
A join node has two incoming edges. Note that a join node with

referred to ] for an introduction to unification theory.
We use the notatiotnif(E), whereE is some conjunction of

more than two incoming edges can be reduced to multiple join equalitiesE, to denote the formula that is a disjunction of all uni-

nodes each with two incoming edges.
Non-deterministic conditionals, represented shydenote that

the control can flow to either branch irrespective of the program

fiers in some complete set of unifiers Bt (If £ is unsatisfiable,
thenE does not have any unifier adidif (E) is simply false.)

state before the conditional. They are used as a safe abstractioEXAMPLE 1. Consider the equality’(z) + f(y) = f(a) + f(b)

of guarded conditionals, which our abstraction cannot handle pre- over theory of combination of linear arithmetic and unary uninter-
cisely. We abstract away the guards in conditionals because oth-preted functionf. The substitutiofz — a, y +— b} is a unifier for
erwise the problem of assertion checking can be easily shown toit. A complete set of unifiers, however, contains two unifiers, viz.
be undecidable even when the program expressions involves opera{® + a,y +— b} and{z — b,y ~ a}. Hence,

tors from simple theories like linear arithmeticy or uninterpreted
functions [L4] (in which case our result in Sectighwould not be
possible, and the result in Sectiérwould become trivial). This
is a very common restriction for a program model while proving
preciseness of a program analysis for that model.

However, (for our result in Sectiod) we do allow for assume
statements of the formssume(e; # e2), which we also refer to
asdisequality guardsNote that a program conditional of the form
e1 = ez can be reduced to a non-deterministic conditional and
assume statementssume(e; = ez) (on the true side of the con-
ditional) andAssume(e; # e2) on the false side of the conditional.

Unif(f(z) + f(y) = fa) + f(b))
(z=any=bV(z=bAy=a)

Theories can be classified based on the cardinality of complete
set of unifiers for its equalities as follows.

Unitary Theory A theoryT is said to beunitary if for all equal-
itese = ¢’ in theoryT, there exists a complete set of unifiers of
cardinality at mostl, that is, there is a unique most-general uni-
fier. We define a unitary theory to tstrict if for any sequence of
equationg; = e}, e2 = €5, .. ., the sequence of most-general uni-

5.

Hence, the presence of disequality guards in our program modelfiers Unif(e; = €}),Unif(e; = e} A es = €b),... contains at

allows for partial reasoning of program conditionals.

In Section7, we show how our techniques can be used to reason

mostn distinct unifiers wheren is the number of variables in the

about procedure calls. For simplicity, we assume that the inputs and2 The more-general relation is reflexive, i.e., a substitution is more-general

outputs of a procedure are passed as global variabBsHence,

than itself. All equalities are interpreted modulo thed@ty
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given equations The theory of linear arithmetic and the theory of
uninterpreted functions are both strict unitary.

Bitary Theory We define a theor to bebitary if there exists an
equalitye = ¢’ in theoryT such thaty — z; andy +— z form

a complete set of unifiers fer = ¢’, wherey, z; andz, are some
variables. In other worddjnif(e = €')isy = 21 Vy = 2.

In addition, we require a technical side condition that for new
variablesy’ andz1, it is the case thanif(e = e[y’ /y, 21/21])
andUnif(e’ = €'[y’/y, 21/21]) are bothy =y’ A 21 = 2.

The theories of a commutative function, combination of linear
arithmetic and a unary uninterpreted function, combination of two
associative-commutative functions are all bitary (as proved in Sec-
tion 5.2). Intuitively, bitary theories are theories that can encode
disjunction.

Finitary Theory A theoryT is said to bdfinitary if for all equal-
itiese = ¢’ in theoryT, there exists a complete set of unifiers of
finite cardinality. Note that every unitary theory is, by definition,
finitary. Hence, the theories of linear arithmetic and uninterpreted
functions are both finitary. The theory of combination of linear
arithmetic and uninterpreted functions is also finitary (as proved
in [10Q]). In this paper, we show that the more general theory of
combination of linear arithmetic, uninterpreted functions, commu-
tative functions, and associative-commutative functions is also fini-
tary (Sectior6.2).

A theory is said to beonvexf whenevere; = e} V ex = e is
valid in the theory, then either, = €} or e = ¢} is valid in the
theory. The above-mentioned finitary theories are also convex.

3. Connection between Unification and Assertion
Checking

We use this soundness and completeness preserving strengthen-
ing of assertions in Sectichas part of a generic RVME backward
analysis procedure for assertion checking in a certain class of pro-
grams. Surprisingly, we use this same result to also dtedness
of assertion checking for another class of programs in Seé&tion
This simplifies, and simultaneously generalizes, our previous result
on hardness of assertion checking for a specific thetiy [

We can generalize Lemmhto also work in the presence of
disequality guardsas stated below.

LEMMA 2. Letw be a program point in a program specified using
nodes (a)-(e) of Figur8 using the expression language of a convex
theory T. Let ¢; be some conjunction of equalities. Thé«M)z

holds at a program point iff \/ Unif(¢;) holds atr.

The proof is given in Appendi®?. In Section6, we argue that
the standard backward analysis procedure for assertion checking,
if enhanced by unification based assertion strengtheniigdds a
decision proceduréor a large class of programs.

This connection between unification and assertion checking is
used to develop a novel way to compptecedure summarie§Ve
use these summaries for assertion checking in presence of proce-
dure calls (i.e., node (f) iRigure 3. Developed further in Sectiof
the main observation is that summary computation involves per-
forming backward analysis, enabled with unification, in the pres-
ence of new variables that are required to represent generic asser-
tions at the end of a procedure.

4. PTime Decidability of Assertion Checking for
Strict Unitary Theories
In this section, we prove RME complexity (by describing a

Forward program analysis is based on computing over-approximatiopglynomial-time algorithm) for the problem of assertion checking

of the reachable states. In the process of forward program analy-

sis, over-approximating the states is alwagsind but not always

when the expression language of the program comes from a strict
unitary theory, and the flowchart representation of the program is

complete. Backward analysis, in contrast, computes the assertionabstracted using nodes (a)-(d) showrrigure 3

that must be true at intermediate and initial program points to

guarantee that a given assertion holds at a given program point.

This PTIME complexity result generalizes two earlier known
results for theories of linear arithmetic and uninterpreted func-

Under-approximations, that is, replacing an assertion by a strongertions (both of which are unitary theories). Gulwani and Necula

assertion, is alwaysoundin this case, but not always complete.
Unification procedure can be used to strengthen and simplify an

assertion. The formulanif(E) logically implies E, but it is, in

general, not equivalent tB. Since it is often “simpler” thailz, we

may wish to replaceé” by Unif(F) at intermediate points during

backward analysis. This processisund that is, ifunif (E) is an

invariant, then clearlyz will also be an invariant. (See Figudeor

an example.) But this process is raimpletein general, that is,

if we fail to prove thatUnif(FE) is an invariant, then we can not

conclude anything about. The crucial and surprising observation

presented in this section is that, many useful abstractionsve

do notlose completeness by this replacement. For instance, unifi-

gave a polynomial-time algorithm for discovering all assertions
of bounded size when the program model consists of nodes (a)-
(d) and the expression language consists of uninterpreted func-
tions, thereby proving RME complexity of assertion-checking for
such programsd). Miller-Olm, Rithing, and Seidl{4] have also
pointed out that assertion checking on program with nodes (a)-(d)
using the uninterpreted symbols’ abstraction (Herbrand equalities)
is in PTIME . Muller-Olm and Seidl 15] proved PTME complex-

ity for assertion checking of programs with nodes (a)-(d) and ex-
pression language of linear arithmetic by simplifying Karr's algo-
rithm [12].

cation preserves completeness and helps prove the assertion in thé-1  Algorithm

example of Figuré.

LEMMA 1. Letn be a program point in a program specified using
nodes (a)-(d) of Figur& using the expression language of theory
T. An equalitye = ¢’ holds at a program point iff Unifr(e = €’)
holds atr.

The proof of this lemma is fairly simple and is given in Appen-
dix ??. The key insight is thatuns of a program are just substitu-

tions and if every run validates an assertion, then every run should

also validate some maximally general unifier of that assertion.

3This is an ascending (unifier) chain condition.

Our algorithm for assertion checking is based on weakest precondi-
tion computation. It represents invariants (that need to be satisfied
for the assertion to be true) at each program point by a formula
that is eitherfalse, true, or a conjunction of equalities of the form
e=c¢e.

Suppose the goal is to check whether an assetiica e; is an
invariant at program point. The algorithm performs a backward
analysis of the program computing a formulaat each program
point such that) must hold at that program point for the assertion

4We remark here that the program nodes for which unification does not
preserve completeness, vigositive guardsare exactly responsible for
undecidabilityof assertion checking for many abstractions.
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1if (x) {z :=a; y :=b; }
2else { z :=b; = a; } pc Assertion atpc pc | Assertion
3 endif wi/o unification w/ unification T | true
4while (%) { 7T lz+y=a+b T=a+b—y 3 [ {z=any=0b}1
5 x = fx; oy = fy; 4 [z+y=a+bA (x=aAy=0b)V {x=bAy=a}
6 a := fa; b := fb; fr+ fy=fa+ fon--- (zx=bAy=na) =zr+y=a+b
7} T | non-termination true 7 | true
8 assert(x +y =a+b);

(a) Program (b) Backward Analysis (c) Forward Analysis

Figure 4. This figure illustrates the advantage of using unification in backward analysis. The assertion7oflpregram in Figure (a) is

true. Standard backward analysis based procedure, illustrated in Figure (b) Column 1, fails to prove the assertion because it fails to terminate
across the loop. Forward analysis in Figure (c) requoascomputation. Unless we unreasonably assume that the join operator returns the
infinite set of facts L1], A, fiz+ fly = fla+ f', it also fails. When using unification to strengthen assertions in backward analysis, as in
Figure (b) Column 2, the fixpoint terminates and we can prove the assertion.

e1 = ez to be true at program point. This formula is computed The correctness of the algorithm follows from the interesting con-
at each program point from the formulas at the successor programnection between program analysis and unification theory stated in
points in an iterative manner. The algorithm uses the transfer func- Lemmal. Specifically, Lemmd implies the correctness of pruning
tions described below to compute these formulas across the flow-and the fixpoint detection steps. It shows that the formula computed

chart nodes shown iRigure 3 The algorithm declares, = e» to by our algorithm before a flowchart node is the weakest precondi-
be an invariant atr iff the formula computed at the beginning of  tion of the formula after that node. The correctness of the algorithm
the program after fixed-point computationvislid. now follows from the fact that the algorithm starts with the correct

assertion atr and iteratively computes the correct weakest precon-

Initialization: The formula at all program points exceptis dition at each program point in a backward analysis.

initialized to true. The formula at program point is initialized

to bee; = ea. 4.1.2 Complexity

Termination of the fixed-point computation in polynomial time
relies on the unitary theory being strict. The following theorem
(whose proof is given in AppendiR®) states the complexity of the

Assignment Node: SeeFigure 3(a).
The formulay’ before an assignment nogde= ¢ is obtained from
the formulay) after the assignment node by substitutingy e in

¥ algorithm.
/ pr—

. .1/1 = Yle/al ) THEOREM 1. LetT be a strict unitary theory. Suppose that. (n)
Non-deterministic Assignment Node: SeeFigure 3(b). is the time complexity for computing the most-gen&ainifier of
The formulay)” before a non-deterministic assignment nade-? equations given in a shared representatioiihen the assertion
is obtained from the formulg after the non-deterministic assign-  checking problem for programs of size which are specified us-
ment noc_ie by substituting program variabldy some fres_,h vari- ing nodes (a)-(d) and the language Bf can be solved in time
able (which does not occur in the program and substitutipn O(n*Timsz (n?)).

¥ = yly/a]

The above complexity result is conservative because it is based on a
Join Node: SeeFigure 3(c). generic argument. It can be improved for specific theories, but that
The formulagy; andy2 on the two predecessors of a join node are is not the focus of this paper.

same as the formula after the join node.

Y1 = andis = 9
Non-deterministic Conditional Node: SeeFigure 3(d).
The formulay before a non-deterministic conditional node is ob-
tained by taking the conjunction of the formulas and, on the
two branches of the conditional, and then pruning away the redun-
dant equations using thif procedure.

4.2 Examples of Strict Unitary Theories

If the most-generall-unifiers do not contain angew variables
then clearly any chain of increasingly less general substitutions,
o1,0102,010203, .. ., Will have at mostn distinct elements since
each new distinct element will necessarily instantiate one uninstan-
tiated variable. This is the case for the theory of linear arithmetic
and uninterpreted symbols. The theory of Abelian Groups is uni-
1 = UPrune(¢1 A t2) tary, but the most-general unifiers contain new variables. However,
using a different argument it can be checked that this theory also

L .
We say an equatioa = ¢’ is redundantwith respect to a formula satisfies thetrictnessondition.

¢ if Unif(+)) is a unifier fore = ¢’. The functionUPrune(%))
sequentially checks if each equatier= ¢’ in v is redundant with . .
respect to) — {e = ¢’} and removes the redundant ones. Thus, 5. CONP-Hardness of Assertion Checking for

Unif () andUnif (UPrune(v))) are equivalent. Bitary Theories

Fixed-point Computation: In presence of loops in procedures, |n this section, we first show that the problem of assertion checking,
the algorithm goes around each loop until the formulas computed when the expression language of the program comes from a bitary
at each program point in two successive iterations of a loop have theory, is coNP-hard, even when the program is loop-free and
equivalent unifiersor if any formula becomes unsatisfiable. the flowchart representation of the program only involves nodes
411 Correctness (a)-(d). In the second part of this section, we show that several
We now prove that the above algorithm is correct, i.e., an asser-5\we assume that tHE-unification procedure returnsue when presented
tion e = ¢’ holds at program point iff the algorithm claims so. with an equation that is valid (true) .
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% Suppose formul@ hask variablesty, . . .,z andm clauses numberedto m.

% Let variabler; occur in positive form in clauses #;[0], . . ., A;[c;]; and in negative form in clausesB:[0], . . ., B:[d;].
IsUnSatisfiabler (%)) Checkr(au, ..., Qm, )
% gi = o represents clause 7 is unsatisfied % This procedure checks if (x =) V...V (T = am).
% gi = x1 represents clause ¢ is satisfied. % Let e=¢' be an equality in theory T s.t.
for i =1 to m do %Unif(e:e/) isy=xnVy==1.
gi = To; 6/1 = el[mm/y,cs/zl,CS/zQ];
for < =1 to k do €1 126[/?;7 1/2317 2/22};
if (%) then % set z; to true for j =1 to m—2 do
for 7 = 0 to ¢; do . ! ey s
.;Av[j] = 1‘11; €j+1 = e[e]/y: ejl/le € [aj+2/x]/22];
else % set x; to false 63‘+1 = e’[ej/y, €00, ej[a]-+2/x]/22];
for j = 0 to d; do Assert (e, —1 :efm—l);
9B;15] = T1;5

% Check if at least one of g¢g; is unsatisfied.
Checkr(gi,- .-, gm,T0);

Figure 5. A program that illustrates the coNP-hardness of assertion checking when the expression language is from a bitary theory.

interesting theories are bitary, thereby establishing that the problemLEMMA 3. The assert statement @heck(as, .. ., am, z) is true

m

of assertion checking when program expressions are from any of . T
L iff x = «; holds at the beginning dfheck(aa, ..., am, x).

those theories is cONP-hard. _ _ .Vl 9 g (a1 )

Gulwani and Tiwari 0] showed that the assertion checking )

problem is coNP-hard when the expression language involves com-The procedur€heck constructs an equation whose complete set

bination of linear arlthme_tlc and uninterpreted fur_lctlons_ and whe_n of unifiers is \/ = = a;. Lemma3 is then an easy consequence of

the program model consists of nodes (a)-(d). This section nontriv- i=1

ially generalizes the core idea of the proof &f] to give a simple Lemmal. )

characterization of programs for which assertion checking is coNP- ~ Hence, the following theorem holds.

hard. This is used to obtain hardness results for several new andTHEOREN|2 Assertion checking is coNP-hard for (even loop-free)
unrelated theories. programs specified using nodes (a)-(d) with expressions from the
language of a bitary theory.

i=

5.1 Reduction from 3-SAT

Let e = €’ be the equality in theonT that hasy +— z; and 5.2 Examples of Bitary Theories ) ) )
y — = as its complete set of unifiers. The key observation in We present a few examples of bitary theories, by presenting a
proving the coNP-hardness result is that a disjunctive assertion of Witness equatior = ¢’ for each theory. It is easily verified that

the formz = a; V = = a» can be encoded as the non-disjunctive ¥ — z1 andy — 2 form a complete set of unifiers fer= ¢’ in
assertiore; = €7, whereey = e[V, “%, ¥2/2,] ande) = each theory. Moreoveg, ande’ can also be verified to satisfy the
e[%y, V21, “2/2,]. The procedur€heckr (i, . . ., um, ) in technical side condition in each case.

Figure 5 generalizes this encoding for the disjunctive assertion _ 1he theory of acommutative functiorf can be shown to be

£ = a1 V...Vz = am Once such a disjunction can be Pitary using the following equality:

encoded, we can reduce the unsatisfiability problem to the problem T w,y), f(z1,22)) = F(f(y, 21), f(y, 22)) (1)
of assertion checking as follows. ' ’ o . 7 . .
Consider the program shown Figure 5 We will show that The theory ofcombination of linear arithmetic and a unary

the assert statement in the program is true iff the input boolean uninterpreted functiory is also bitary. The following equality is
formulas) is unsatisfiable. Note thar a given), the procedures a witness:

IsUnSatisfiable andCheck can be reduced to one procedure
whose flowchart representation consists of only the nodes shown FUEW) + ) + F(f(z) + f(z2))
in Figure 3 (These procedures use procedure calls and loops with = f(f) + f(z0)) + F(f(y) + f(22)) )

guarded conditionals only for expository purposes.) This can be Note that the equations(y) + f(z1 + 22 —y) = f(z1) + f(22)
done by unrolling the loops and inlining proced@tesckr inside  and f(f(y)) + f(f(z1) + f(22) — f(¥)) = F(f(z2) + F(f(22))
procedurdsUnSatisfiabler. The size of the resulting procedure 50 have the same set of unifiers, but they do not satisfy the

is polynomial in the size of the input boolean formula technical side condition. We can use the latter equation ase’

The procedur@sUnSatisfiable containsk non-deterministic  jn check function and prove coNP-hardness. However the generic
conditionals, which together choose a truth value assignment for hardness proof currently uses a stronger side condition which is
the k& boolean variables in the input boolean formylaand ac- only satisfied by Equatiof.
cordingly set its clauses to true() or false o). The boolean for- The theory oftombination of an AC functiopand a unary un-

mulay is unsatisfiable iff at least one of its clauses remains unsatis- interpreted functiory is also bitary. The following equality shows
fied in every truth value assignment to its variables, or equivalently, this.
m

Z.\:/1 gi = xo in all executions of the procedul@UnSatisfiable. 9(f(g(y,v)), flg(z1, 22)))
The procedur€heck(g, ..., gm, zo) performs the desired check = g(f(g(y,z1)), flg(y, z2))) 3)

as stated in the following lemma. L . .
9 The theory oftombination of two AC functionf andg is also

bitary as shown by the following equality, wherés some constant
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or a fresh variable distinct from, z1 andzz. 6.1.1 Correctness

a(f(g(y, 1), ©), flg(z1,22),¢)) The correctness of the algorithm is an easy consequence of Lémma
_ that shows that unification can be used to strengthen assertions
- g(f(g(y,21),c),f(g(y,zz),c)) (4)

without any loss in soundness or precision.
Note the similarity between the equalities used in all of the
above examples. They are obtained by encoding a commutative
function in different theories in different ways. We now prove that the above algorithm terminates in a finite num-
We conjecture that the hardness result also holds if we drop the ber of steps. It suffices to show that the weakest precondition com-
technical side condition in the definition of a bitary theory. The putation across a loop terminates in a finite number of iterations.
technical side condition only identifies a smaller class for which the This follows from the following lemma.
generic constructiorof Check function and thegeneric hardness

6.1.2 Termination

proofwork LEMMA 4. Let C be a chaimp1, 12, . .. of formulas that are dis-
junctions of substitutions. Let, = V ¥ for some integemn;
. - . . - —1
6. Decidability of_ Assertion Checking for Finitary and substitutions)?. Suppose
Convex Theories s
B o . o
In this section, we first describe a generic algorithm (thereby prov- (&) Yi+1 = g\:/1 j\:/1 Unif(¢; A7), for some substitutions;.

ing decidability) for assertion checking when the expression lan- (0) i % i1

guage of the program comes from a finitary theory that is con- g ZC. f’.+. )

vex, and the flowchart representation of the program consists of en,C'is finite.

nodes (a)—(e) shown iRigure 3 In the second part of this sec-  The proof of Lemmat is by establishing a well founded ordering

tion, we show that the (rich) theory of combination of linear arith- on /s, and is given in AppendiE.

metic, uninterpreted functions, commutative functions, associative- ~ Lemma4 implies termination of our assertion checking algo-

commutative functions is finitary and convex. This establishes the rithm. (Note that the weakest preconditions, 1)», . . . generated

decidability of assertion checking over this theory. by our algorithm at any given program point inside a loop in suc-
Our result here generalizes, using a uniform framework, the re- cessive iterations satisfy condition (a), and hetge; = ; for

sult of Muller-Olm, Rithing, and Seidl14] about decidability of all 5. Lemma4 implies that there existg such thaty; = ;11

checking validity of Herbrand equalities in presence of disequal- and hence); = v,1, at which point the fixed-point computation

ity guards. It also subsumes our earlier restili] [of decidability across that loop terminates.)

of assertion checking for programs whose nodes are restricted to - .

Nodes (a)—(d) and whose expression language involves combina-T HEOREM3. Let T be a convex finitary theory. Then, assertion

tion of linear arithmetic and uninterpreted functions. Our new gen- checking is decidable for programs specified using nodes (a)-(€)

eral decidability result is surprising since the abstract lattice (un- With €xpressions from the languagef

derlying the abstractions based on convex finitary theories) often g o Examples of Finitary Convex Theory

has infinite height, which implies that a standard abstract interpre-

tation [3] based algorithm cannot terminate in a finite number of [N this section, we prove that the (rich) theory of combination of
steps. linear arithmetic, uninterpreted functions, commutative functions,

associative-commutative functions is finitary and convex.
6.1 Algorithm Let Tra,Tur, Te,Tac denote respectively the theories of
linear arithmetic, uninterpreted functions, commutative functions,

The algorithm is based on weakest precondition computation and 5,4 5s5ciative-commutative functianer disjoint signatured_et
is similar to the one described in Sectidn It computes (in a _
Tau=TraUTyrUTcUTac.

backward analysis) a formuta at each program point such that We use the following well-known resule]to show thafT 4;; is
the formulayy must hold atr for the given assertion to be true.

The formulas) computed at each program point is either false or a finitary.

disjunction of conjunction of equalities of the foren= e such that ProposITIONL ([2]). Let Ty, ..., T, be non-trivial equational
each disjunct represents a valid substitutiotillet-Olm, Rithing, theories over disjoint signatures that are finitary fB-unification

and Seidl [L4] have used a similar representation. with linear constant restrictions. Théfy U - - - U Ty, is finitary for

The initialization and the transfer functions for assignment and €lementary unification.

join nodes are exactly same as the one for the algorithm described  For 5 theoryr, if unification with constants is finitary, then uni-
in Section4. We describe the transfer functions for the remaining fication with linear constant restriction, which is more restrictive,
nodes below. is also finitary. Unification with constants is unitary o » and
Tra, whereas it is finitary foffc andT 4. Therefore, it follows
from Propositionl thatT 4;; is finitary for elementary unification.
SinceTyr is included inT 4y, it follows that thatT 4, is finitary
for general unification as well. In fact, an algorithm to generate the
complete set of unifiers iff 4;; can be obtained using the generic
methodology for combining unification algorithmd [
P = V Unif (] A b)), wherey, = \/ Pt andyy = V Wl Since equational theories are convex, the thary is convex.

i j Using these observations and Theor8mwe can conclude that
assertion checking fdF 4;; is decidable.

Non-deterministic Conditional Node: SeeFigure 3(d).

The formulay before a non-deterministic conditional node is ob-
tained by taking the conjunction of the formulas and, on the
two branches of the conditional, and invokitui £ on each result-
ing disjunct.

iJ
Assume Node: SeeFigure 3(e).

The formulaz)’ before an assume node # e. is obtained from 7. Interprocedural Analysis

the formulay) after the assume node as follows. ) ] o )
In this section, we show how to efficiently extend our assertion

¥ =1 VUnif(er = e2) checking procedures to handle procedure calls. This is achieved by
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computing procedure summaries that give constraints (on the inputtime, but less precise, algorithms that are complete for basic blocks,
variables of the procedure) that must be satisfied for some genericbut are imprecise in the presence of joins and loops in a pro-
assertion (involving output variables of the procedure) to hold  gram [L, 20, 6]. A polynomial time intraprocedural algorithm was

at the end of the procedure. Representation of generic assertiongjiven by Gulwani and Necula&[ 9] and Muller-Olm, Rithing, and

depends on the theory. Seidl [14]. However, polynomial-time interprocedural global value
For example, the theory of linear arithmetic has one generic as- numbering algorithm has been elusive. There are some new results,
sertion that can be representedaas- ). ajo; = 0, wherea’s but only under severe restrictions that functions are side-effect free

represent unknown constants. The theory of unary uninterpretedand one side of the assertion is a constd®}.[Neither of these
functions has one generic assertion for each pair of variahles  assumptions is satisfied by the example in Fidure

ando, and can be represented @s = «o2, Wherea represents

an unknown sequence of unary uninterpreted functions, or equiva-7.1.2 Computing Procedure Summaries

lently, an unknown string. Procedure summaries are in the form of Terms constructed using unary function symbols can be repre-

constraints that involve input variables and the unknavi;) For sented as strings. For exampfég(z)) can be treated as the string
example, the summary of procedufein Figure 6reads as: The ¢4, We will denote string variables by and concrete strings by
generic assertionr = ay holds at the end of procedur iff the C, D, E, F with suitable annotations.

constraintz = ay A fgr = agfy A fr = afy holds at the Letz,...,z, be all the program variables (assumed global).

beginning of proceduré. The only solution of this constraintis  consider one of the.(n — 1) generic assertions, say = axs.

o — f,x — fy. (Herex andy are both input as well as out-  \we compute a summary for this generic assertion by backward

put variables of procedur®, and f andg are unary uninterpreted  propagation. This process generates a conjunction of equations of

functions). _ . the formCz; = aC’z; at any point in the procedure. Note that
The key idea that we use in computing such procedure sum- jf ye generateC'z; = aC’z; at the beginning of the procedure,

maries is to perform a backward analysis of procedures by doing then it simply means that there is some run (execution path) of

unification in presence of such unknows. These special vari-  the procedure in whickz, — Cx;, 22 — C'z;,...}. Since the
ables are formally calledontext variablesind the unification prob- number of paths is unbounded, these conjunctions can grow.

lem is referred to asontext unificatiorn the theorem proving com- The main observation enabling summary computation is that
munity, where it is an active area of researz][ these conjunctions can emplifiedto containat mostn(n—1)+1

In the next two sub-sections, we show how to use these ideasequations of the fornC'z; = o/C’z;—at most one equation for

to build PTIME inter-procedural analyses for the unary uninter-  every pairz;, z; of variables except one pair, for which we can have
preted abstraction, and the linear arithmetic abstraction. The for- nyo0-and one equation of the form= Ea’F. When we perform
mer partially solves the long-standing open problem of interproce- thjs simplification, we replace by Eo’F and the summary is of
dural global value numbering, while the latter is a new proof, in the form %, = Ea’Fz- holds at the end of the procedure if some

our uniform setting, for a recently published resulé|l We then constraints overy’ and the variables hold at the beginning of the
generalize these ideas to a class of strict unitary theories, therebyprgcedure.” See Figufor an example.

extending the results in Sectighto inter-procedural setting. The The observation that we need to keep only a small number of
hardness result for bitary theories (in Sectirtrivially holds in equationsCz; = aC’z; intuitively means that we keep only a

the inter-procedural setting. It remains an open challenge to seefey runs. However, these runs in teamplifiedformula may not

if the decidabi_lity result_ for finitary convex ;heories of Secti®n correspond to any real runs, but some equivalent hypothetical runs.
would generalize to an inter-procedural setting. The summary computation algorithm, illustrated in Figére
uses the following transfer functions to compute formulas at each
program point from those at successor program points in an itera-
In this section, we describe a RME algorithm for inter-procedural tive manner.

assertion checking when the program is specified using nodes (a)- .. .. .

(d) and (f), and the expression language of the program involves 'Nitialization: - The formula at all program points, except at pro-
unary uninterpreted functions. Unary uninterpreted functions can Cedure retum, is initialized toue. The formula at procedure return
be used to model fields of structures and objects in programs. ThePOINt is initialized to ber; = ax.. (We will later repeat this com-
case when the expression language of the program involves unin-Putation for every pair of variables.) Thus the initial summary of
terpreted functions of any arity is also referred to as interproce- 1€ Procedure is thaty = ax» holds at the end of the procedure
dural global value numbering. We mention a brief history of this If t7ue holds at the beginning.

long-standing open problem below. The results in this section, thus, Assignment Node: SeeFigure 3(a).

make progress towards solving this open problem. . The formulay’ before an assignment noge= e is obtained from
Our results in this section use two key ideas: (a) computation he formulas) after the assignment node by substitutingy e in

of procedure summaries using unification over unknown sequencesy, tha s, )’ = ¥le/z]. Note that this step preserves tieem

of uninterpreted functions, (b) efficient RE representation and ¢, — 4"z, of the equations.

manipulation of potentially exponentially large sequences using

7.1 Unary Uninterpreted Functions

singleton context-free grammars. Non-deterministic Assignment Node: SeeFigure 3(b).
If ¢ is the formula after the non-deterministic assignment node
7.1.1 History of Global Value Numbering x :=?, the formulay’ before a non-deterministic assignment node

Since checking equivalence of program expressions is an unde-IS ¥ if 2 does not occur in, and is false otherwise.

cidable problem in general, program operators are commonly "?‘b'Join Node: SeeFigure 3(c).

stracted as uninterpreted functions to detect expression equivarpe formulas); andi» on the two predecessors of a join node are
lences. This form of equwalen_ce is al_so c_a_liddrbrand equiva- same as the formula after the join node.

lence[20] and the process of discovering it is often referred to as

value numberingKildall [ 13] discovers these equivalences by per- Non-deterministic Conditional Node: SeeFigure 3(d).

forming an abstract interpretatioi][over the lattice of Herbrand = The formulay before a non-deterministic conditional node is ob-
equivalences in exponential time. There are several polynomial- tained by taking the conjunction of the formulas and> on the
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P
1 while (*) { = := fgz; y := gfy; }| [te | Procedure P Procedure Q
2 if () { Q(); } 0 | true true
3} T [z =ay, fgz=agfy z =By, fx =By
Q0L e (& 2=y, fga = agf) (& 2z =Py, B =Bf)
ovhite )t dmv s v} |\ Ty e =ay fer=agfy, fr=ofy | w= 0y [x =BTy, [gr = 0afy
5 i 0 {PO; } (& a = ay, fga = agf, fa=af) | (& x =Py, 8 =05] [98 = Bgf)
6} (& r=dfy,gd =dg fo' =d'f) | (ex=0fy B =0'f 90 =89)
main(){ (&2 =a'fy,0 =) (Sz=F1y0 =
7y :=a; x = fa; P(); z = fy > = fy
8 y assert(xz = fy); 3 [z=fy = fy
9
(a) Program (b) Summary Computation faP() andQ()

Figure 6. This figure illustrates summary computation for interprocedural analysis over the unary abstraction. In Table (b), the summary
consists of the constraints that must hold at the beginning of the procediare®) for x = ay (or x = By respectively) to be an invariant

at the end of the procedure.

two branches of the conditional. However, ngws not of the de-
sired form as it can have more thafin — 1) 4+ 1 equations of the
form Cz; = aC'z;. Therefore, we first calbimplify on it:

(,a = Ed'F) = Simplify(r A 1)2)

The procedureSimplify, described later, guarantees that (i) every
solution ofy, A1)s is given bya = Eo’F, whereo! is constrained
by v, and (ii)¢ has at mosti(n — 1) + 1 equations. Finally, we
replacex by Eo’ F globally in all formulas.

Procedure Call Node: See Figure(f).
The formula)’ before a procedure call node “Cél()” is obtained
from the formulasy after the procedure call node by using the
current summary of the procedure. If ¢ is unsatisfiable, or it
has a unique value far, then computing)’ is straight-forward. In
the general case, létz = aC’y be an equation iny and let the
summary ofP, for variablesz, y, be given by & = EGFy holds
at the end of the procedure/, , A;_; , Cuvitt = BCy,,;v holds
at the beginning.” 7 7

We show how to compute the weakest preconditiérof Cx =
aC'y. Itis clear thatCz = oC'y is true after the procedure call
node if

aC’ =CEBF A \ N Cuviu=BCluv
u,v 1=1,2

holds before the procedure call node. However, this is not of the
required form. The equationC’ = C EBF simplifies to an equa-
tion of the forma = CEBF’ or of the formaC” = CES. In the

first casey” is
A N Cuviv=BClum

w,v1=1,2
with « replaced byC E3F” globally. In the second case;’ is
N\ \ CECuwiu=aC"Ciw.
u,v1=1,2

Fixed-point Computation: In presence of loops and/or recur-
sively defined procedures, the algorithm iterates until the formulas

Lety = /\I’y Y=y, Where, for a fixed pait, y of variablesg),,
contains all equations of the for@z = aC’y in +). We show that
in Lemmab that,, can be simplified to a set containing at most
one equation of the for@'x = o’ C'y and finitely many equations
of the formEa’ = &/ E’, wherea = Fo/'.

LEMMA 5. The set),, = {C;z = aCjy : i =1,2,3,...,k} of
equations either has no solutions, or all of its solutions are given
by o = Fo', wherea' is constrained by a computable set of the
form{Dx = o'D'y, E;a’ = 'E},i =2,...,k}.

In the next step, the set of equatiofi&;a’ o' Eli
2,...,k} U{EFd' = Fda'E'} is simplified by repeated use of
Lemmasb.

LEMMA 6. The equation sep = {D1a = aDi, Doa = aDs}

is either unsatisfiable, or has a unique solution, or is equivalent to
a set of the form)’ = {Da’ = o’ D', a = o’ E}. Moreover, there

is a algorithm that computes these outcomes.

In this way, using the above two results, any formula=
/\Iy 2y can be simplified to a formula of the form’ = o =
Ed'F A\, ¥i, Whereyy, contains at most one equation of the
form Cz = o'C’y and at most one of the forlia’ = o' E’.
However,Cz = o'C'y A Eo' = o'E’ is easily seen to be
equivalent toCx = o&'C'y A ECz = o E'C’y which is
of the required form. Note that the formulaa’ = o' E’ does
not depend on the variablasy. Hence» needs to have at most
n(n — 1) 4+ 1 equations—one for each pair of variables and one to
encodeEa’ = o' E' in the required form.

Termination

If we add a new equatio@z = aC’y to 1) while computing fix-
point across a loop, and becomes unsatisfiable, then the fixpoint
iterations stop immediately. i is uniquely determined by the new
equation, then the iterations stop in one more step. If the new equa-
tion is redundant, then again the iterations stop. Finally, if the new
equation is not redundant andis still satisfiable, then either the
cardinality ofy increases (but it is bounded by + 1), or, its car-
dinality remains the same but the size|éf] (where Ea = oF’

and/or summaries computed at each program point have the sames the strongest such equation implied %) is at most half of its

solutions, or if any formula has no solutions. The example in Fig-
ureé6 illustrates this process.

Correctness

Lemmal shows that unification computation preserves invariance.
Hence, for correctness, we only need to show atplify pre-
serves all unifiers.

original size. (This can be observed from the proofs of Lentima
and Lemmab.) This shows that the fixpoint iterations terminate in
polynomial number of steps.

Interprocedural assertion checking

Assertion checking in the interprocedural case is performed in
a two phase process. In the first phase, we compute summaries
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for each procedure, as described above. The final summary of aMuller-Olm and Seidl]6] is based on the the observation thats

procedureP with n output variables ana» input variables will
consist of the following: for each ordered pair, x> of output
variables, we will have #1 = FaF'z2 if some constraint)
containing (at mostk(n — 1) + 1 equations holds at the beginning

of a procedure correspond to linear transformations and there can
be only quadratic many linearly-independent transformations.

7.3 General Result for Unitary Theories

of the procedure.” Thus, the summary for any procedure has at mostThe interprocedural analyses presented in Sectibfisand 7.2

n* equations.

are instances of a more general framework for unitary theories.

In the second phase, we perform assertion checking using back-In a unitary theory, assertions can always be reduced to the form

ward analysis starting from thgivenassertion, and using the pro-
cedure summaries computed above.

7.1.3 Efficient Representations

The Simplify procedure inherent in the proof of Lemnsaand
Lemmas is easily seen to take time polynomial in the size of the
equation set). However, using a naive (explicit) representation, the
size of1 can beexponentiain the size of the program, as in the
following example.

EXAMPLE 2. Consider then proceduresh, . .., P,_1 defined as

Pi(x:) { t .= Pi_1(x); i := Pi_1(t); return(yi); }
Po(zo) { yo := fxo; return(yo); }

The summary of procedut® is: y; = ax; iff « = f2i.

Here we appeal to shared representation of strings using
gleton context-free grammarfSCFG). Since the program itself
implicitly represents the string€’;’s (in the set of equations in
Lemmab) using this shared representation, we know that such a
shared representation is linear in the size of the program.

ExampLE 3. Following up on Exampl@, we note that the string
f2" can be represented by the SCFG with start symiypland
productions{A4;+1 — A;A; : i =1,...,n}U{4y — f}. In

particular, the summaries of the procedures can be represented as:

v, = ax; iff a = A;.
A classic result by Plandowski ] shows that equality of two

Niz; = e; (Lemmal). Hence a generic assertion can be written
asz1 = afzs,...,xn], Wherea is a context variable representing
the unknown term structure. In the general framework, procedure
summaries are computed by backward propagating these generic
assertions through nodes (a)-(d) and (f) of FigBr&his will gen-
erate conjunctiong of equations of the forma; = afes, ..., en],
wheree;’s are expressions in the theory.
We can obtain a PME interprocedural analysis for programs
using expressions from a strict unitary thedryf
(a) there is a PIME simplification procedure (technically, proce-
dure for unification in theori[ in the presence of at most one con-
text variable) that, giveny, returnsy’ that has the same solutions
asy and that has a polynomially bounded number of equations;
(b) there is a succinct representation for the expressigasand
the above procedure can efficiently work over this representation;
(c) any setiy can only be strengthened a polynomially-bounded
number of times.
These conditions guarantee, respectively, that summaries are small,
they can be efficiently computed, and fixpoint iterations terminate
quickly. These conditions are satisfied for unary symbols (Sec-
tion 7.1) and linear arithmetic (Section?2). It is still open if they
hold for arbitrary uninterpreted symbols (global value numbering).
This general framework is also applicable to two special cases
considered in the literature—procedures have only one return value
and no side effectsl[7, 18], and all assertions have one side con-
stant [L8]. In these cases, summary computation simplifies consid-
erably since the context variabte can be effectively eliminated.
This partly explains why the interprocedural extension in these

strings represented as SCFGs can be checked in polynomial time cases is (almost) “free1[7].
It is an easy exercise to see that prefix testing and largest common

prefix/suffix computation can also be performed in polynomial

8. Discussion

time. Hence, the computational procedure outlined above can be|, this section, we discuss the broader significance of the results
implemented in polynomial time using the SCFG representation of that we have presented in this paper.

strings. In conclusion, this shows that summaries can be computed

in PTIME on the abstraction of unary symbols. We remark here that
Plandowski’s result has been generalized to tredf guggesting

that it may be possible to generalize our result to the interprocedural

global value numbering problem.

7.2 Linear Arithmetic

Miller-Olm and Seidl 6] showed that procedure summaries can
be efficiently computed for the abstraction of linear arithmetic
(with only equalities). This result has a simple proof in our frame-
work. Since the theory of linear arithmetic is unitary, we just have to
compute summaries for the generic assertigo; + - - - + anopn +
o, Whereay, . . ., a, are regular arithmetic variables. Hence, the
conjunctiony of equations at any point in the procedure contains
linear equationsoverthe (n 4+ 1)? variablesa; and(«a;x;), where
i =0,1,...,nandx; are program variables (bounded by We
know that there can not be more tham -+ 1)? linearly indepen-
dent (non-redundant) equations. This shows¢hean have at most
(n+1)? equations, which means that summaries are small and fix-
point iterations terminate.

As a final step, note that the coefficient can be large (since

8.1 Handling Positive Guards

The results in this paper have uniformly assumed that there are no
assumenodes with positive equalities. In the presence of positive
assume nodes, we lose precision (completeness, but not soundness)
if we use unification to replace a weaker assertion by a stronger
assertion. This loss in completeness is not surprising since the
presence gbositive guardgan cause assertion checking to become
undecidabldor several abstractiond p, 14].

In practice, heuristics can be used to deal with positive guards.
For instance, the preconditiari before a program nodesume (x=y)
can be obtained from the formula after the assume node as fol-
lows: ¢’ = V [z /y] V ¥[y/z]. For rest of the program nodes,
we can use the transfer functions suggested by backward propaga-
tion enhanced with unification. This simple heuristic allows us to
prove the assertion = 2w in the example given in Figurg This
suggests that the unification based backward analysis procedure
proposed in this paper can be effective in practice.

8.2 Backward vs. Forward Analysis
The results in this paper advance the state of the art of back-

the program can encode large numbers succinctly) and hence toward analyses by establishing new techniques for backward pro-

get a true PTME procedure, we will have to resort to modulo
arithmetic and randomization. We remark here that the proof of

10

gram analysis based on unification algorithms. Couglofiormal-
ized the semantics of sound backward analyses as computing an
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over-approximation of the set of program states obtained by push-ing that we established in this paper resulted in a new approach to
ing the negation of the goal backwards (which is equivalent to computing precise procedure summaries for interprocedural analy-
under-approximation of the set of program states obtained by push-sis. Summary computation for procedures was easily observed to
ing the goal backwards). This assumes that the abstract domain isrequire backward propagation enhanced with context unification.
closed under negation. However, abstract domains are, in generalThis helped us partially solve the open problem of inter-procedural
not closed under negation, as is the case for all the equality basedglobal value numbering (i.e., assertion checking in the presence of
abstract domains that we consider in this paper. Additionally, most uninterpreted symbols). In particular, we gave a polynomial time
of these domains do not have precise transfer functions for for- algorithm for inter-procedural global value numbering in presence
ward analysis. Hence, there is no automatic recipe to construct al-of only unary uninterpreted functions.

gorithms for performing forward or backward analysis of arbitrary

abstract domains. The results in this paper show how to perform

precise backward analysis over a large class of abstract domains by9. Conclusion and Future Work

using unification algorithms from the corresponding logical theory. Unification theory plays a significant role in assertion checking.

Our algorithms for assertion checking are based on backward I h ; L .
analysis of programs. For several of these algorithms, we can argueThe unification type of a theory-unitary, bitary, or finitary—is

that they are better than forward analyses over corresponding pro_crltlcal in determining the complexity of the assertion checking

gram abstractions in terms of efficiency. This is because in order to problem—PTME ,hcol\'l1P-h§1rd, or decidable-modulo SOI’];]E minor
perform precise assertion checking, a forward analysis would need3SSumptions on the theories and certain restrictions on the program

h . . 2 L. models. These results uniformly generalize several known results
to discover all facts at each program point, since it is a-priori not y9

clear which facts would be useful to prove the assertion that occurs and also y_|eld se_veral newgnesl (see F_lgl)reh King i ible b
later in the code. For some of the program abstractions described Extension to interprocedural assertion checking is possible by
in this paper (in Sectio), the underlying abstract lattices over replacing regular unification by context unification to compute pro-
which the computations néed to be performed (to precisely decide cedure summaries. This observation explains the |ntel rm_prpcedural
the validity of the assertions) have infinite height. Hence, forward analy&s;lgolrlthm fo_r Ilneﬁr alil'thmeltlc a_nhd g']yes ﬁ neb in- f
analyses over those abstractions would not terminate unless widen-terproce ura asse(;tlon % LTC ',&g algorithm lor the abstraction o
ing techniques are used, which would lead to imprecision. However unary uninterpreted symbols. Moreover, it also opens up new av-
enues for building interprocedural analysis engines using context

(as surprising as it may be) the backward analyses that we describe” _.."7 . -
in Section6 terminate over the same abstractions since they only unification procedures and shared representation for tefifs [

attempts to decide the validity of given assertions (which are finite gr avr:l/eatr)w(glljs\,/ii ?:Vg%%l?tif?; szg/\éeeerncg;]elcgaegqtgrgi\ggi% fe?nci ﬁg\;
in number). Figurel presents one such example.

On the other hand, for some abstractions, we can argue that for_researchdin boctih the communities and increase cross-fertilization in

ward analyses are more suitable than backward analyses. For extnprece ented ways.

ample, abstractions that reason about pointers. Consider computing

the weakest pre-condition across the assignmgnt= g without
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A. Proof of Lemma 1

First we prove an important property of substitutions and the com-
plete set of unifiers.

LEMMA 7. If T = A, eic = €jo, thenT |= Unif (A, e; = €)o.

PROOF. Supposel = A\, eio = ejo. LetUnif(A, e; = ¢€]) =
o1V -+ Vog. Since{oy,...,o0r} is a complete set of unifiers
of \,ei = e;, it follows that there is somg s.t. o; is more
general tham, that is,c =t o;0’ for somes’. For any variable
x, we will show thatoc makesz and zo; equal, that is, we
will show that zoc =t zo;o. But in the theoryT, we have
xo =t zojo’ =t x0j0;0' =1 xOjo, USINg the facts that
o =t ojo’ and that substitutions are idempotent. This completes
the proof of the lemma.

O

We now prove Lemma.

PROOF. We need to prove thalif(e = €’) holds atr iff e = €’
holds atw. We will show thatin every runof the program,
Unif(e e’) holds atr iff e = ¢’ holds atw. Therefore,
consider an arbitrary run of the program. This will be given by
some straight-line programs. Letbe the substitution that maps
each program variable to the symbolic value of: (in terms of

12

the input variables of the program) at program peintbtained
by symbolic execution of the given straight-line program.

We need to show th&ll = e10 = e20 iff T |= Unif(er = e2)o.
The < direction is trivial sincéinif(e; = e2) impliese; = e
(in T). The= direction is a consequence of Lemma

O

B. Proof of Theorem 1

PROOF Since the program is of size, the number of variables

is bounded byn. Due to the strictness condition, each node in
the flowchart changes at mosttimes. Since there are at most

n nodes, there are at mosf changes. For each change, we
may have to visit allz nodes once. Hence, there até node
visits. In any such visitJPrune is the most complex operation we
could perform. In this operation, there are at m@stequations

to check for redundancy. The size of each equation, in shared
representation, is bounded by This is because some path in the
program itself contains a representation for the expression in an
equation. Thus, pruning takes at meat Ty.:: (n?)) time. Hence

the overall time complexity i€ (n* (Timiz (n?) + Tyaria(n?))).

C. Proof of Lemma 2
We first prove a useful lemma.

LEMMA 8. Let ¢; be a conjunction of equalities for all If the
formula ¢1 V ¢2 is valid in a convex theor{ then either¢, or
¢2 is valid inT. In general, if the formula/, ¢; is valid in T then
someg; is valid inT.

PROOF Suppose the claim is false. Lét be /\Z.EI1 ¢1:, andgs
be/\ieIQ b2, Wherep;, ¢o2; are equalities. Sincg; is not valid
in T, there is & € I such thatp;; is not valid inT. Similarly,
there is aj € I, such thatp,; is not valid inT. Therefore, by
convexity, the formulap:; V ¢2; is not valid inT. This means
that the formulap, V ¢ is not valid inT, which contradicts the
assumption. The second claim can be proved by generalizing the
same argument.

O

We are now ready to prove Lemrda

PROOF. (Lemmaz2) =: We need to prove tha{/, Unif(A; e;; =

er) holds atw. In other words, we need to show the formula
evaluates to trua every runof the program. Therefore, consider
an arbitrary run of the program. This will be given by some
straight-line code fragment. Let be the substitution that maps
each program variable to the symbolic value of: (in terms

of the program inputs or the initial values of program variables)
at program pointr obtained by symbolic execution of the given
straight-line program. Let, # e, k € K, be the symbolic
evaluations oéll the assume nodes in the straight-line code. Since
V. A\, eij = €i; holds atr, it follows that

T E /\keK er # e = (Vl /\j eijU:e;jU)
IFF T [ VkeK ex = eV (Vz /\j €ij0 = e;ja)
IFF T |k e, =¢)forsomekc K, OR

T E A, eijo = ejo forsomei € I

The last step is a consequence of Len8nid T = e, = e}, then
V, Unif(A; ei; = €i;) holds in this run, and we are done. In the
other case, we havé |= A ; eijo = e;;0, from which it follows
using Lemma thatT = Unif (A ei; = e5;)0.
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<«: This follows from the fact thal' |= Unif(A; ei; = €i;) =

A;eii = e;;, which is a consequence of the definition of unifiers.

O

D. Proof of Lemma 3

LEMMA 9. Let T be a bitary theory and Let = ¢’ be the cor-
responding equation. H1, ..., e, _1 denote the symbolic expres-
sions constructed by progratheckr, thenUnif(e; = e;[a/x])
andUnif (e} = ¢}[a/z]) are bothz = a.

PROOF. We prove by induction orj. For the base cage= 1

Unif(e; = ei]a/z])
& Unif(efr/y, a1/z,02/2) = elz/y, an /21, az/z][a/])
By definition
& r=aNap = o1
Using the technical side condition in definition of Bitary
= Tr =«

The other case can be obtained by replacity ¢’ in the above
proof. For the induction step,

Unif(ej+1 = ejt1[a/z])
& Unif(e[ej/%eé/zlvej[aju/x]/zﬂ=
ele/y, €j/ =1, eilajr2/a]/ z)[a/2])
& Unit(ely'/y, 21 /21, 2/ 2] = ely /y, 2 /21, 25/ 22
Yy =ejNz1=¢] A 25 = ejajr2/T]A
y" = ejla/a) A2 = ejla/a))
By introducing new equational definitions
& Unif(y =y " Azl =20 Ay =e; A2l =€jA
2 = ejlaj2/t] Ay = ejla/a] Azl = €fla/z])
Using the technical side condition in definition of Bitary
<  Unif(e; = ejla/z] A€ = ef[a/x])
Removing the dummy variables introduced above
<~ r=«
By induction hypothesis

The other case can be obtained by replacity ¢’ in the above
proof.
O

We use Lemma@ to prove Lemma below.

PROOF (Lemma3) We prove by induction op thatAssert(e; =
e}) holds iff Assert(\//X] z = a;) holds. Using Lemmal,
it suffices to prove that, it; and ¢} are the symbolic terms
represented by; andej, thenUnif(t; = t})is /72 =
a;. Forj = 1, sincelnif(e = €')isy = 21 Vy = 2
by assumption, it follows thatnif(e[%/y, YV 2, Y22 =
1%y, YV, “Yn))ist = a1 Vo = ap (by variable
renaming).

For the induction step, using the same argument, we observe that .,

Unif(e[ej/y7 e;/zl, € [ajJrz/x}/Zg] =
1%y, 6;'/21, ej[aj”/x]/@])

& Unif(e; = €}) VUnif(e; = e;[*+27]) Bitary
& Unif(e; =€) Vo =ajn By Lemma9
s (Viiz=w) Induction hyp.

O
E. Proof of Lemma 4

PROOF. We define measure of/ ¢ to be the multisefk— || :
=1
1 <0< mg,pf 2 false}, wherek is the total number of

13

PROOF. (Lemmab5) Sort the equation s.tC| < |Ca| < ---

variables, andyy¢| denotes the number of conjunctsif. Since
each! is a substitution mapping, this measure is a multiset
on natural numbers. We compare two measures using a multiset
extension of the ordering on natural numbers].

We now show that the measuref, , is smaller than that ap;.
Sincew; A iq1, there existd < ¢ < m; such thai)! % ol
forall 1 < j < n;. This implies that for alll < j < ny, if
¥i Aol is notfalse then|Unif (¢! Aa?)| > [4f]. Also, note that
forall 1 < ¢ < m;suchthat’ # ¢, if ¢ A« is notfalse then
[unif (! Aal)| > [¢f |foralll < j < n,. Hence, the measure
of ¢;+1 is smaller than that of;.

Since the multiset extension of a well-founded ordering is well-
founded p], the measure cannot infinitely decrease. Hence, the
chainC is finite.

O

F. Proofs of Section 7

We prove Lemm& by first showing how two equations of the form
Cxz = aC'y can be simplified.

LEMMA 10. The two equations};z = aCly fori = 1,2, either
have zero solutions, or exactly one solution, or all its solutions are
given bya = Eo’ wherea is constrained by two equations of the
formCz = o/C'yandDa’ = o' D'.

PROOF Wlog assumégC | < |Cs|. We split the proof into cases.
(1) C1 is a suffix ofCs. LetCy = D2 Ch.

Ciz = aCly, D2Cixz = aChy  Initial ¢
& Ciz = aCly, D2aCly = aChy UsingCrz — aCly
& Ciz = aCly, D2aC) = aC) Cancely

If C1 is not a suffix ofC%, then there are no solutions. Otherwise
the second equation can be written in the foflsa = aD’,
whereC% = D'Cy.
(2) C1 is not a suffix ofs. Let C' = lcs(Ch, C2) be thelargest
common suffiof Cy andCs. ThereforeC; = D1C andCs =
D> C for nonemptyD;, D». Now, there are two subcases.
(2a) C1 is not a suffix ofC5. Let C' = les(C1, C3). We will
haveC] = D{C’ andC% = D,C’ whereD, D5 are nonempty
strings.

D1Cx = aCly, D2Cx = aCly Initial v
& DiCx=aDiC'y, D:Cx = aD3C'y  C' = les(C1, Cy)
& Cx=C'y, D1 =aD}, D= aD} Choice ofC’, D’
These equations, if satisfiable, will have at most one solution for
« which can be easily computed from the above equations.

(2b) C1 is a suffix of C5. Let C, = DLCY.
D1Czx = aCly, D:Cx = aChy Initial ¥
D1Czx = aCly, D:Cx = aDYCly  UseCh = D5CY

Choosen’ s.t.a’Chy = Cx anda = Do/
& Cr=dCly, D:Cx = D1/ D5CLy  Supress defn aft
& Cx=dCly, D:c/ = D1a’' D5 CancelC1y

The second equation above has a solution onlifis a prefix
of Ds. In that case, it simplifies thha’ = o’ D}, whereD; D =
D5. This completes the proof.

O

< [Ckl.

We use Lemmad0 on the first two equations. If there is a unique
solution, we test if it makes all other equations valid. If the first
two equations have no solutions, then we are again done. If we
instead get backCz = o'C'y, Do’ = o/D’} anda = Ed/,

we replacex by Ec’ in all the other equations.
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We repeat the above process now on thg €&t = o’ C'y, Cix = (5) All cases above do not appln this case, we necessarily have
Ed'Cly,i = 3,...,k}. Note that|E| < |Ci| and hence Dy = AB, D} = B'A', D; = (AB)'AandD} = A'(B'A")".

this new equation set, if satisfiable, can be written in the form In the followi val ing t ; ti d
{Cz = a'C'y, Diz = o' Cly,i = 3,....,k}. n the following equivalence preserving transformations, we do

not show definitions (equations of the forn= ¢) to conserve
Since we reduce the number of equations by one in each step, after space. First assun&' B’ = B’ A’.
k — 1 steps, we will be left with at most one equation of the form

Dz = o/ D'y, at mostk — 1 equations of the forna’ = o' E/, ABa = O‘B:A:’ (AB)EAO‘ = O‘A/(,B:‘L}/)i Initial 4
and one equation = Fa’ that keeps track of the relationship of ~ < ABa = aB'A’, (AB) Aa = a(B'A’)' A
the current variable’ with the original variablex. UsingA'B" = B'A
0 & (AB)'a=a(B'A"), (AB)'Aa = o(B'A")'A’ Lem.11
. _ & (AB)a=a(B'A), Aa = oA’ Lem.12
We will next prove two useful lemmas about equations over . 1p. — aB'A, Aa = oA/ Lem.11

strings before proving Lemnta

LEMMA 11. The equatiorC8 = 3D has the same set of unifiers ~ If A'B" # B'A’, let C = lcp(A'B’,B'A’) and letD be
as the equatio©'3 = gD' forall I > 1. st.CD = B'A’. The equivalence preserving transformation

below shows that the set of all solutions fgr are given by

ProOF =: If Cp = 8D, thenCCB = CBD = DD and a = a1D(B'A")'", wherea is constrained by

applying this repeatedly we conclude ti@t3 = 3D". {ABay = a1 DC, Aa; = q A"}

<: We will show that every solution of!3 = D' is also a " , P gl - "

solution of C3 = BD. Let 8 be a solution of2! 3 = BD". First ?hneciéisligsg:ﬂtt;gﬂ forA'C’ = C’A”. Ifthere is no suchi™ then
; . > .

suppose that the length 8fis atmos{C|‘. Therefore3 is a prefix

of C! that is also a suffix oD!. Let C' = 83’. ThenD has to be ABa = aB'A', (AB)'Aa = aA'(B'A")!

B'B. Therefore, there ard, Bs.t.3 = C™A, 8’ = BC'~™"1, & (AB)a=a(B'A")!, (AB)'Aa = aA'(B'A")!

C = AB,andD = BA.NowC3 = ABC™A = C™'A Lem.11

andD = C™ABA = C™*'A and hence3 is a solution & (AB)ay =aC, a = a1D(B'A)',

for C8 = ABD. Finally, if length of 3 is more than/C|', then (AB)'Aa = aA'(B'A")!

necessarily3 = C™ 3, wherem > [ and length of3’ is less By choice ofa; andC

than|C|'. By previous case, we know th&s’ = 5’ D. Hence, it & (AB)'ay = a1 D(B'A") 1,

is easy to see thdt3 = 8D as well. (AB)'Aa1 D(B'A")'™' = a1 D(B'A") "t A/ (B'A")!
U Supressing definition af

& (AB)'ay = D(B'A)1C,
(AB)'Aay = a1 D(B'A")' 7T A'C
CancelD(B'A’)! !

LEMMA 12. The equation sefC3 = C’,C D3 = 3C'D'} has
the same unifiers as the gf'3 = 8C’, D3 = BD'}.

PROOF As far as the set of unifiers is concerned, note that Sincea; was chosen such thatl B) o is a prefix of(AB)'a;,
CB=3C', CDB = BC' D’ it follows that the right-hand side strings should also have the
& CB=pC", CD3=CBD' Replacing3C’ by C3 same relation.
& CB=pC', DB =pD’ CancellingC from both sides & (AB)'ar = a1 D(B'A)'7'C,
(AB) Aa; = a1 D(B'A)'=tC A"
g Necessarilyd’C = C' A" for someA”’

& (AB)'ay = a1 D(B'A)'7IC, Aoy = oy A"

PROOF. (Lemma6) Wlog assume thatD:| < |D.|. Note that Using Lemmal2
if |D1| # |Di| or [D2| # |Dj|, thenty has no solutions. & ABa=aB'A', Aa; = a1 A"
Henceforth, by convention, the length of the string represented Using definition ofo and Lemmal 1
by unprimed variable (e.g)-) will be always equal to the length & ABaiD(B'A)' = ayD(B'A'), Aay = ar A”
olf)Ehe string represented by tlwrrespondingprimed variable Usinga = a, D(B'A’)!
( 2)' <~ ABOzl = OleC, Aa1 = OélA”
We distinguish the following cases: CancelD(B'A")' !
(1) Dy is not a prefix of D2: In this case we should have
lep(Dy, D2) = alep(D1, D3), wherelcp returns thelargest In either case, note that the new pair of equation derived in the
common prefiof its arguments. This equation can have at most last step (which is equivalent to initial equations modulo the
one solution forx. Hencey has at most one solution. definition «) are smaller than the original set. In fact, the sum
(2) D1 is not a suffix ofD5: Similar to the previous case, in this of the lengths|AB| + |A| is at most half the sum of lengths
case we would necessarily haka (D1, D2)a = lcs(Dy, D3). |AB| + |AB|" + | A|. Hence, the number of times this procedure
This equation can have at most one solutiondoHencey has can be applied repeatedly is boundedlby of the maximum
at most one solution. length of input strings, which is bounded BY. As a result, after
(3) Either D! is not a prefix ofD, or D}" is not a suffix ofD}, at mostn iterations, we will terminate with just one equation
wherel = ||Dz|/|D1]]: Using Lemmall Do = oD is equiv- remaining (unless a unique solution is found or the equations are

alenttoDTa = aD; for all n > 1. Hence this case is similar to detected to be unsatisfiable at some intermediate step).
(1) and (2) above and we will have at most one solutiorofor

(4) Either D5 is not a prefix ofDﬁ+1 or D) is not a suffix of

D{"*', wherel = ||D,|/|D:|]: Similar to case (3), there is at

most one solution in this case.
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