Reducing Joinability to Confluence: How to Preserve Shallowness and Linearity¹

Luis Moraes and Rakesh Verma

University of Houston

September 8th, 2016

 $^{^{1}}$ Research supported in part by NSF Grants DUE 1241772 and CNS 1319212 $\checkmark \textcircled{P} \land @$

Motivation

- We have a reduction: $A \leq_P B$
- How is it helpful?
 - A is undecidable \implies B is undecidable.
 - *B* is decidable \implies *A* is decidable.
- A result for one property can be reused for another.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Preliminaries

- ▶ **Joinability:** Given a TRS \mathcal{R} and two terms *s*, *t*, does there exist a term *z* such that $s \xrightarrow{*} z \xleftarrow{*} t$?
- ► Confluence: Given a TRS R. For any two terms s, t that have a common ancestor (s ← a → t), does there exist a term z such that s → z ← t?

Preliminaries - cont.

- Linear TRS: A variable may only appear once on each side of a rule.
- Shallow TRS: Variables can only appear at depth 0 or 1 in a rule.

Reduction

Joinability : \mathcal{R} : $s \downarrow t$? \downarrow Confluence : \mathcal{R}' : confluent ?

Challenge is insuring: $s \downarrow t$ under $\mathcal{R} \iff \mathcal{R}'$ is confluent

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Previous Reduction – Verma [2009]

$$\begin{split} \Sigma' &= \Sigma \cup \{h, h', a\} \\ \mathcal{R}_1 &= \{c \to h'(h(s, t), c) | c \in \Sigma\} \\ &\cup \{f(x_1 \dots x_n) \to h'(h(s, t), f(x_1 \dots x_n))\} \\ \mathcal{R}' &= \mathcal{R} \cup \mathcal{R}_1 \cup \{h(x, x) \to a\} \cup \{h'(a, x) \to a\} \end{split}$$

Note: Any term *u* reaches h(h'(s, t), u). **Note 2:** If $s \downarrow t$ then $h'(s, t) \stackrel{*}{\rightarrow} a$. Any two terms join.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Previous Reduction – Verma [2009] – Problems

$$\Sigma' = \Sigma \cup \{h, h', a\}$$
$$\mathcal{R}_1 = \{c \to h'(h(s, t), c) | c \in \Sigma\}$$
$$\cup \{f(x_1 \dots x_n) \to h'(h(s, t), f(x_1 \dots x_n))\}$$
$$\mathcal{R}' = \mathcal{R} \cup \mathcal{R}_1 \cup \{h(x, x) \to a\} \cup \{h'(a, x) \to a\}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Violates right-shallow restriction

Previous Reduction – Verma [2009] – Problems

$$\begin{split} \Sigma' &= \Sigma \cup \{h, h', a\} \\ \mathcal{R}_1 &= \{c \to h'(h(s, t), c) | c \in \Sigma\} \\ &\cup \{f(x_1 \dots x_n) \to h'(h(s, t), f(x_1 \dots x_n))\} \\ \mathcal{R}' &= \mathcal{R} \cup \mathcal{R}_1 \cup \{h(x, x) \to a\} \cup \{h'(a, x) \to a\} \end{split}$$

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Violates right-shallow restriction Violates left-linear restriction Previous Reduction – Verma [2009] – Problems

- In Verma [2012], joinability was shown to be undecidable for linear and left-shallow TRS.
 - Not able to determine confluence for the same class through the reduction.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Another Reduction.

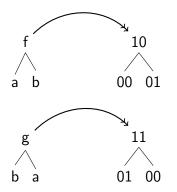
◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

- ▶ Suppose that instead of *s*, *t* we had 0, 1.
- Suppose we assigned each function symbol a binary string.

а	00
b	01
f	10
g	11

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- ▶ Suppose that instead of *s*, *t* we had 0, 1.
- Suppose we assigned each function symbol a binary string.

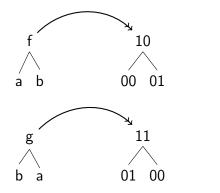


а	00
b	01
f	10
g	11

(日)、

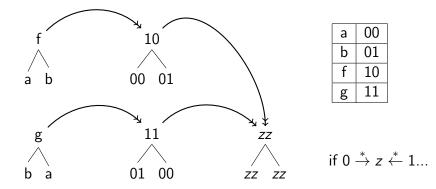
э

- ▶ Suppose that instead of *s*, *t* we had 0, 1.
- Suppose we assigned each function symbol a binary string.



if $0 \xrightarrow{*} z \xleftarrow{*} 1...$

- ▶ Suppose that instead of *s*, *t* we had 0, 1.
- Suppose we assigned each function symbol a binary string.



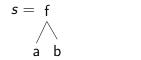
Flattening

- ▶ To use *s*, *t* as 0's and 1's we must flatten them.
- We introduce rules in a manner similar to tree automata.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

An example can be found in Godoy et al. [2003].

 C_{ς}

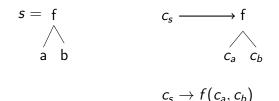


Flattening

- ▶ To use *s*, *t* as 0's and 1's we must flatten them.
- We introduce rules in a manner similar to tree automata.

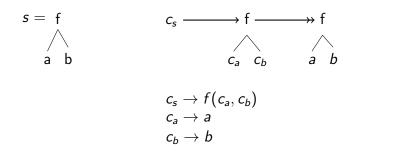
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

An example can be found in Godoy et al. [2003].



Flattening

- ▶ To use *s*, *t* as 0's and 1's we must flatten them.
- We introduce rules in a manner similar to tree automata.
- ► An example can be found in Godoy et al. [2003].



Flattening Rules and Common Ancestor

- We also add a common ancestor to c_s, c_t .
- Thus, we now have the following rules:

$$\begin{split} \Sigma_1 &:= \Sigma \cup \Sigma_{\textit{flat}} \cup \{\alpha : 0\} \\ \mathcal{R}_1 &:= \mathcal{R} \cup \mathcal{R}_{\textit{flat}} \cup \{\alpha \to c_{\mathsf{s}}, \ \alpha \to c_{\mathsf{t}}\} \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

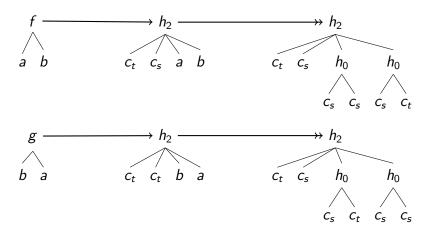
Code Rules

We use the first B positions of the h_i symbols to hold the binary string. h_i varies from 0 to M (max arity in Σ₁).

$$egin{aligned} \Sigma_{code} &:= \{h_i \colon B + i \mid 0 \leq i \leq M\} \ \mathcal{R}_{code} &:= \{f(x_1 \cdots x_n) o h_n(c_{f_1} \cdots c_{f_B}, x_1 \cdots x_n) | f \in \Sigma_1\} \ \Sigma_2 &:= \Sigma_1 \cup \Sigma_{code} \ \mathcal{R}_2 &:= \mathcal{R}_1 \cup \mathcal{R}_{code} \end{aligned}$$

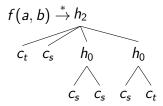
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

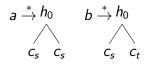
Code Rules – In Practice



If $c_s \downarrow c_t$ then $f(a, b) \downarrow g(b, a)$

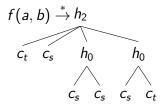
Structural Equivalence

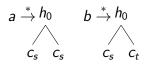




However, f(a, b) still cannot join a or b

Structural Equivalence





イロト 不得 トイヨト イヨト

э

However, f(a, b) still cannot join a or b Requires structural equivalence i.e. the same set of positions We introduce a *dummy symbol* that will be used to generate new positions.

$$\mathcal{R}_{ex} := \{h_n(x_1 \cdots x_{B+n}) \to h_{n+1}(x_1 \cdots x_{B+n}, \delta)\}$$
$$\Sigma' := \Sigma_2 \cup \{\delta : 0\}$$
$$\mathcal{R}' := \mathcal{R}_2 \cup \mathcal{R}_{ex}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

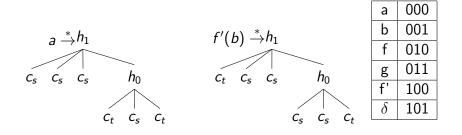
Extension Rules – In Practice

а	000
b	001
f	010
g	011
f'	100
δ	101

Extension Rules - In Practice

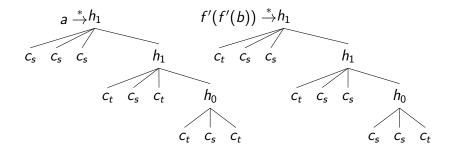
	а	000
ĺ	b	001
	f	010
	g	011
ĺ	f'	100
	δ	101

Extension Rules – In Practice



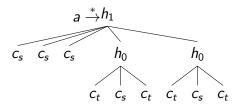
▲口 → ▲圖 → ▲ 臣 → ▲ 臣 → □ 臣 □

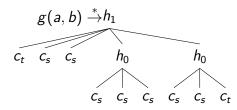
Extension Rules – In Practice



◆□> ◆□> ◆目> ◆目> ◆目 ● のへで

Extension Rules - In Practice





Proofs.

Proofs.

(Sketch)

<□ > < @ > < E > < E > E のQ @

Every Term Joins

Lemma Every term $t \in \mathcal{T}(\Sigma', X)$ reaches a code term.

Lemma

Any pair of code terms can be rewritten into structurally equivalent code terms.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Lemma

If $c_s \downarrow c_t$ then any two terms can be joined.

Definition

A derivation is a sequence of terms obtained through successive rewrite steps: $u_1 \rightarrow u_2 \rightarrow \cdots \rightarrow u_{n-1} \rightarrow u_n$.

Definition

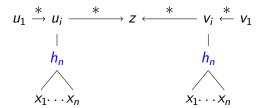
A minimal proof of joinability between two terms t_1, t_2 is a pair of derivations demonstrating $t_1 \xrightarrow{*} z \xleftarrow{*} t_2$ for some z such that there exists no other pair with a fewer number of rewrite steps.

Minimal Proofs - cont

Lemma

A minimal proof of joinability for $c_s \downarrow c_t$ performs no rewrites on binary string subterms.

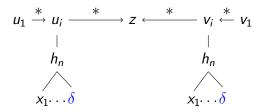
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ



Minimal Proofs - cont

Lemma

A minimal proof of joinability for $c_s \downarrow c_t$ performs no \mathcal{R}_{ex} rewrites.



Minimal Proofs – cont

Lemma $c_s \downarrow c_t \text{ under } \mathcal{R}_1 \text{ iff } c_s \downarrow c_t \text{ under } \mathcal{R}'.$

Use mapping π (maps to "pure" terms) to obtain a proof in \mathcal{R}_1 .

Minimal Proofs – cont

Lemma $c_s \downarrow c_t \text{ under } \mathcal{R}_1 \text{ iff } c_s \downarrow c_t \text{ under } \mathcal{R}'.$

Use mapping π (maps to "pure" terms) to obtain a proof in \mathcal{R}_1 .

Conclusion

Theorem

Joinability reduces to confluence while preserving linearity and shallowness restrictions.

Proof.

 (\implies) If $s \downarrow t$ under \mathcal{R} then any two terms join under \mathcal{R}' . In particular, terms with a common ancestor join. Thus, \mathcal{R}' is confluent. Since all the new rules are linear and flat, the resulting TRS preserves linearity and shallowness. (\Leftarrow) If \mathcal{R}' is confluent, then $c_s \downarrow c_t$ since they have a common ancestor. We know $s \downarrow t$ under \mathcal{R} (same as $c_s \downarrow c_t$ under \mathcal{R}_1).

References

- Guillem Godoy, Ashish Tiwari, and Rakesh Verma. On the confluence of linear shallow term rewrite systems. In *STACS* 2003, Symposium on Theoretical Aspects of Computer Science, Lecture Notes in Computer Science, 2003.
- Rakesh Verma. Complexity of normal form properties and reductions for term rewriting problems. *Fundamenta Informaticae*, 2009.
- Rakesh Verma. New undecidability results for properties of term rewrite systems. *Electronic Notes in Theoretical Computer Science*, 2012.