

Confluence Properties on Open Terms in the First-Order Theory of Rewriting

Franziska Rapp

joint work with

Aart Middeldorp

University of Innsbruck

IWC 2016, Obergurgl, September 8

FORT

decision mode

yes | no | ?

FORT

synthesis mode

no | ?

TRS

FORT

FORT is based on tree automata techniques (Dauchet and Tison, LICS 1990)

Outline

- First-Order Theory of Rewriting
- Automation
- Properties on Open Terms
- Experiments
- Future Work

• first-order logic over a language ${\mathcal L}$ without function symbols

- first-order logic over a language ${\mathcal L}$ without function symbols
- $\mathcal L$ contains the following binary predicate symbols:

$$\rightarrow \rightarrow^+ \rightarrow^* \rightarrow^! \implies \stackrel{\epsilon}{\rightarrow} \stackrel{\geq \epsilon}{\longrightarrow} \leftrightarrow \leftrightarrow^* \downarrow =$$

- first-order logic over a language ${\mathcal L}$ without function symbols
- $\mathcal L$ contains the following binary predicate symbols:

 $\rightarrow \quad \rightarrow^+ \quad \rightarrow^* \quad \rightarrow^! \quad \# \rightarrow \quad \stackrel{\epsilon}{\rightarrow} \quad \stackrel{>\epsilon}{\longrightarrow} \quad \leftrightarrow \quad \leftrightarrow^* \quad \downarrow \quad =$

• models of \mathcal{L} are finite left-linear right-ground TRSs

- first-order logic over a language ${\mathcal L}$ without function symbols
- \mathcal{L} contains the following binary predicate symbols:

- models of \mathcal{L} are finite left-linear right-ground TRSs
- set of ground terms serves as domain for variables in formulas over $\mathcal L$

- first-order logic over a language ${\mathcal L}$ without function symbols
- \mathcal{L} contains the following binary predicate symbols:

 $\rightarrow \rightarrow^+ \rightarrow^* \rightarrow^! \implies \stackrel{\epsilon}{\rightarrow} \xrightarrow{>\epsilon} \leftrightarrow \leftrightarrow^* \downarrow$

- models of \mathcal{L} are finite left-linear right-ground TRSs
- set of ground terms serves as domain for variables in formulas over ${\cal L}$

$$s \rightarrow^{*} t \iff s \rightarrow^{+} t \lor s = t \qquad s \leftrightarrow t \iff s \rightarrow t \lor t \rightarrow s$$

$$s \rightarrow^{!} t \iff s \rightarrow^{*} t \land \neg \exists u (t \rightarrow u) \qquad s \downarrow t \iff \exists u (s \rightarrow^{*} u \land t \rightarrow^{*} u)$$

$$CR(t) \iff \forall u \forall v (t \rightarrow^{*} u \land t \rightarrow v \implies u \downarrow v) \qquad CR \iff \forall t CR(t)$$

$$WCR(t) \iff \forall u \forall v (t \rightarrow u \land t \rightarrow v \implies u \downarrow v) \qquad WCR \iff \forall t WCR(t)$$

$$WN(t) \iff \exists u (t \rightarrow^{!} u) \qquad WN \iff \forall t WN(t)$$

$$UN(t) \iff \forall u \forall v (t \rightarrow^{!} u \land t \rightarrow^{!} v \implies u = v) \qquad UN \iff \forall t UN(t)$$

$$NFP(t) \iff \forall u \forall v (t \rightarrow u \land t \rightarrow^{!} v \implies u \rightarrow^{!} v) \qquad NFP \iff \forall t NFP(t)$$

$$NF(t) \iff \neg \exists u (t \rightarrow u)$$

$$UNC \iff \forall t \forall u (t \leftrightarrow^{*} u \land NF(t) \land NF(u) \implies t = u)$$

Outline

- First-Order Theory of Rewriting
- Automation
- Properties on Open Terms
- Experiments
- Future Work

- binary predicates are RR₂ relations and implemented via tree automata
 - ground tree transducers (GTTs) for \Rightarrow
 - RR_n automata for all relations

- binary predicates are RR₂ relations and implemented via tree automata
 - ground tree transducers (GTTs) for \twoheadrightarrow
 - RR_n automata for all relations
- implications and universal quantifiers are eliminated

$$\varphi \Rightarrow \psi \equiv \neg \varphi \lor \psi \qquad \qquad \forall x \varphi \equiv \neg \exists x \neg \varphi$$

- binary predicates are RR2 relations and implemented via tree automata
 - ground tree transducers (GTTs) for \twoheadrightarrow
 - RR_n automata for all relations
- · implications and universal quantifiers are eliminated

$$\varphi \Rightarrow \psi \equiv \neg \varphi \lor \psi \qquad \qquad \forall x \varphi \equiv \neg \exists x \neg \varphi$$

• negations are pushed inside and double negations are eliminated

- binary predicates are RR₂ relations and implemented via tree automata
 - ground tree transducers (GTTs) for \twoheadrightarrow
 - RR_n automata for all relations
- · implications and universal quantifiers are eliminated

$$\varphi \Rightarrow \psi \equiv \neg \varphi \lor \psi \qquad \qquad \forall x \varphi \equiv \neg \exists x \neg \varphi$$

- negations are pushed inside and double negations are eliminated
- remaining propositional connectives are implemented by corresponding closure operations on RR_n automata

- binary predicates are RR2 relations and implemented via tree automata
 - ground tree transducers (GTTs) for \twoheadrightarrow
 - RR_n automata for all relations
- · implications and universal quantifiers are eliminated

$$\varphi \Rightarrow \psi \equiv \neg \varphi \lor \psi \qquad \qquad \forall x \varphi \equiv \neg \exists x \neg \varphi$$

- negations are pushed inside and double negations are eliminated
- remaining propositional connectives are implemented by corresponding closure operations on RR_n automata
- existential quantifiers are implemented using projection

- binary predicates are RR2 relations and implemented via tree automata
 - ground tree transducers (GTTs) for \Rightarrow
 - RR_n automata for all relations
- · implications and universal quantifiers are eliminated

 $\varphi \Rightarrow \psi \equiv \neg \varphi \lor \psi \qquad \qquad \forall x \varphi \equiv \neg \exists x \neg \varphi$

- negations are pushed inside and double negations are eliminated
- remaining propositional connectives are implemented by corresponding closure operations on RR_n automata
- · existential quantifiers are implemented using projection

Remark

formulas are not transformed into prenex normal form, since this increases the dimension of involved relations

Outline

- First-Order Theory of Rewriting
- Automation
- Properties on Open Terms
- Experiments
- Future Work

TRS is confluent if
$$\forall s \forall t \forall u (s \rightarrow^* t \land s \rightarrow^* u \implies \exists v (t \rightarrow^* v \land u \rightarrow^* v))$$

TRS is confluent if
$$\forall s \forall t \forall u (s \rightarrow^* t \land s \rightarrow^* u \implies \exists v (t \rightarrow^* v \land u \rightarrow^* v))$$

Remarks

• variables s, t, u, v range over all terms

$$\mathsf{TRS} \text{ is confluent if } \forall \, s \, \forall \, t \, \forall \, u \, \big(s \rightarrow^* t \wedge s \rightarrow^* u \implies \exists \, v \, (t \rightarrow^* v \wedge u \rightarrow^* v) \big)$$

Remarks

- variables s, t, u, v range over all terms
- FORT is based on tree automata techniques and (hence) variables range over ground terms

$$\mathsf{TRS} \text{ is confluent if } \forall s \forall t \forall u (s \rightarrow^* t \land s \rightarrow^* u \implies \exists v (t \rightarrow^* v \land u \rightarrow^* v))$$

Remarks

- variables s, t, u, v range over all terms
- FORT is based on tree automata techniques and (hence) variables range over ground terms
- confluence \neq ground-confluence

$$\mathsf{TRS} \text{ is confluent if } \forall s \forall t \forall u (s \rightarrow^* t \land s \rightarrow^* u \implies \exists v (t \rightarrow^* v \land u \rightarrow^* v))$$

Remarks

- variables s, t, u, v range over all terms
- FORT is based on tree automata techniques and (hence) variables range over ground terms
- confluence \neq ground-confluence

FSCD 2016 submission

It should be stressed that the above properties are restricted to ground terms. So CR stands for ground-confluence, which is different from confluence, even in the presence of ground terms; consider e.g. the rules $f(x) \rightarrow x$ and $f(x) \rightarrow c$.

$$\mathsf{TRS} \text{ is confluent if } \forall s \forall t \forall u (s \rightarrow^* t \land s \rightarrow^* u \implies \exists v (t \rightarrow^* v \land u \rightarrow^* v))$$

Remarks

- variables s, t, u, v range over all terms
- FORT is based on tree automata techniques and (hence) variables range over ground terms
- confluence \neq ground-confluence

FSCD 2016 submission

It should be stressed that the above properties are restricted to ground terms. So CR stands for ground-confluence, which is different from confluence, even in the presence of ground terms; consider e.g. the rules $f(x) \rightarrow x$ and $f(x) \rightarrow c$. For (left-linear) right-ground TRSs there is no difference.

TRS

$$\mathsf{a} \to \mathsf{b} \qquad \qquad \mathsf{f}(\mathsf{a},x) \to \mathsf{b} \qquad \qquad \mathsf{f}(\mathsf{b},\mathsf{b}) \to \mathsf{b}$$

TRS

$$\mathsf{a} \to \mathsf{b}$$
 $f(\mathsf{a}, x) \to \mathsf{b}$ $f(\mathsf{b}, \mathsf{b}) \to \mathsf{b}$

is ground-confluent but not confluent

TRS

$$\mathsf{a}
ightarrow \mathsf{b} \qquad \qquad \mathsf{f}(\mathsf{a},x)
ightarrow \mathsf{b} \qquad \qquad \mathsf{f}(\mathsf{b},\mathsf{b})
ightarrow \mathsf{b}$$

is ground-confluent but not confluent

Confluence Related Properties

$$\mathsf{CR}: \quad \forall \, s \, \forall \, t \, \forall \, u \, \left(s \rightarrow^* t \, \land \, s \rightarrow u \implies t \downarrow u \right)$$

$$\mathsf{NCR}: \quad \forall \, s \, \forall \, t \, \forall \, u \, (s \to t \, \land \, s \to u \implies t \downarrow u)$$

$$\mathsf{UN}: \quad \forall s \,\forall t \,\forall u \; (s \rightarrow^! t \wedge s \rightarrow^! u \implies t = u)$$

$$\mathsf{UNC}: \qquad \forall t \,\forall \, u \, (t \leftrightarrow^* u \,\land\, \mathsf{NF}(t) \,\land\, \mathsf{NF}(u) \implies t = u)$$

$$\mathsf{NFP}: \quad \forall \, s \, \forall \, t \, \forall \, u \, \left(s \to t \, \land \, s \to^! u \implies t \to^! u \right)$$

$$\mathsf{SCR}: \quad \forall \, s \, \forall \, t \, \forall \, u \, (s \to t \, \land \, s \to u \implies \exists \, v \, (t \to^= v \, \land \, u \to^* v))$$

TRS

$$\mathsf{a} \to \mathsf{b}$$
 $\mathsf{f}(\mathsf{a}, x) \to \mathsf{b}$ $\mathsf{f}(\mathsf{b}, \mathsf{b}) \to \mathsf{b}$

is ground-confluent but not confluent

Confluence Related Properties

$$\mathsf{CR}: \quad \forall \, s \, \forall \, t \, \forall \, u \, \left(s \rightarrow^* t \, \land \, s \rightarrow u \implies t \downarrow u \right)$$

$$\mathsf{NCR}: \quad \forall \, s \, \forall \, t \, \forall \, u \, (s \to t \, \land \, s \to u \implies t \downarrow u)$$

$$\mathsf{UN}: \quad \forall \, s \, \forall \, t \, \forall \, u \, \left(s \rightarrow^! t \, \land \, s \rightarrow^! u \implies t = u \right)$$

$$\mathsf{UNC}: \qquad \forall t \,\forall \, u \, (t \leftrightarrow^* u \,\land\, \mathsf{NF}(t) \,\land\, \mathsf{NF}(u) \implies t = u)$$

$$\mathsf{NFP}: \quad \forall \, s \, \forall \, t \, \forall \, u \, \left(s \to t \, \land \, s \to^! u \implies t \to^! u \right)$$

$$\mathsf{SCR}: \quad \forall \, s \, \forall \, t \, \forall \, u \, (s \to t \, \land \, s \to u \implies \exists \, v \, (t \to^= v \, \land \, u \to^* v))$$

 $\mathfrak{P} = \{ \mathsf{CR}, \mathsf{WCR}, \mathsf{UN}, \mathsf{UNC}, \mathsf{NFP}, \mathsf{SCR} \}$

Relationships

Relationships

Notation

GP denotes property P restricted to ground terms

Relationships

Notation

GP denotes property P restricted to ground terms
Relationships

Notation

GP denotes property P restricted to ground terms

Relationships

Notation

GP denotes property P restricted to ground terms

Remark

 $\forall P \in \mathfrak{P} \quad \mathsf{G}P \implies P$

 \forall left-linear right-ground TRS (\mathcal{F}, \mathcal{R})

 $1 \quad (\mathcal{F}, \mathcal{R}) \vDash P \quad \iff \quad (\mathcal{F} \cup \{ c \}, \mathcal{R}) \vDash \mathsf{GP} \quad \forall P \in \mathfrak{P} \setminus \{ \mathsf{UNC} \}$

with fresh constant c

 \forall left-linear right-ground TRS (\mathcal{F}, \mathcal{R})

 $1 \quad (\mathcal{F},\mathcal{R})\vDash P \qquad \Longleftrightarrow \qquad (\mathcal{F}\cup \{ c \},\mathcal{R})\vDash \mathsf{G}P \qquad \forall P\in \mathfrak{P}\setminus \{\mathsf{UNC}\}$

2 $(\mathcal{F},\mathcal{R}) \vDash \mathsf{UNC} \iff (\mathcal{F} \cup \{c,c'\},\mathcal{R}) \vDash \mathsf{GUNC}$

with fresh constants c and c'

 \forall left-linear right-ground TRS (\mathcal{F}, \mathcal{R})

 $1 \quad (\mathcal{F},\mathcal{R})\vDash P \qquad \Longleftrightarrow \qquad (\mathcal{F}\cup \{ c \},\mathcal{R})\vDash \mathsf{G}P \qquad \forall P\in \mathfrak{P}\setminus \{\mathsf{UNC}\}$

2 $(\mathcal{F},\mathcal{R}) \vDash \mathsf{UNC} \iff (\mathcal{F} \cup \{c,c'\},\mathcal{R}) \vDash \mathsf{GUNC}$

with fresh constants c and c'

Example

left-linear right-ground TRS

 $\mathsf{a} \to \mathsf{b} \qquad \mathsf{f}(x,\mathsf{a}) \to \mathsf{f}(\mathsf{b},\mathsf{b}) \qquad \mathsf{f}(\mathsf{b},\mathsf{x}) \to \mathsf{f}(\mathsf{b},\mathsf{b}) \qquad \mathsf{f}(\mathsf{f}(x,y),z) \to \mathsf{f}(\mathsf{b},\mathsf{b})$

• does not satisfy UNC: $f(x,b) \leftarrow f(x,a) \rightarrow f(b,b) \leftarrow f(y,a) \rightarrow f(y,b)$

 \forall left-linear right-ground TRS (\mathcal{F}, \mathcal{R})

 $1 \quad (\mathcal{F},\mathcal{R})\vDash P \qquad \Longleftrightarrow \qquad (\mathcal{F}\cup \{c\},\mathcal{R})\vDash \mathsf{G}P \qquad \forall P\in\mathfrak{P}\setminus \{\mathsf{UNC}\}$

2 $(\mathcal{F},\mathcal{R}) \vDash \mathsf{UNC} \iff (\mathcal{F} \cup \{c,c'\},\mathcal{R}) \vDash \mathsf{GUNC}$

with fresh constants c and c'

Example

left-linear right-ground TRS

 $\mathsf{a} \to \mathsf{b} \qquad \mathsf{f}(x,\mathsf{a}) \to \mathsf{f}(\mathsf{b},\mathsf{b}) \qquad \mathsf{f}(\mathsf{b},\mathsf{x}) \to \mathsf{f}(\mathsf{b},\mathsf{b}) \qquad \mathsf{f}(\mathsf{f}(x,y),z) \to \mathsf{f}(\mathsf{b},\mathsf{b})$

- does not satisfy UNC: $f(x,b) \leftarrow f(x,a) \rightarrow f(b,b) \leftarrow f(y,a) \rightarrow f(y,b)$
- adding single fresh constant c is not enough to violate GUNC

 \forall left-linear right-ground TRS (\mathcal{F}, \mathcal{R})

 $1 \quad (\mathcal{F},\mathcal{R})\vDash P \qquad \Longleftrightarrow \qquad (\mathcal{F}\cup \{ c \},\mathcal{R})\vDash \mathsf{G}P \qquad \forall P\in \mathfrak{P}\setminus \{\mathsf{UNC}\}$

2 $(\mathcal{F},\mathcal{R}) \vDash \mathsf{UNC} \iff (\mathcal{F} \cup \{c,c'\},\mathcal{R}) \vDash \mathsf{GUNC}$

with fresh constants c and c'

Example

left-linear right-ground TRS

 $\mathsf{a} \to \mathsf{b} \qquad \mathsf{f}(x,\mathsf{a}) \to \mathsf{f}(\mathsf{b},\mathsf{b}) \qquad \mathsf{f}(\mathsf{b},\mathsf{x}) \to \mathsf{f}(\mathsf{b},\mathsf{b}) \qquad \mathsf{f}(\mathsf{f}(x,y),z) \to \mathsf{f}(\mathsf{b},\mathsf{b})$

- does not satisfy UNC: $f(x, b) \leftarrow f(x, a) \rightarrow f(b, b) \leftarrow f(y, a) \rightarrow f(y, b)$
- adding single fresh constant c is not enough to violate GUNC
- GUNC is violated by adding another fresh constant c':

 $f(c,b) \leftarrow f(c,a) \rightarrow f(b,b) \leftarrow f(c',a) \rightarrow f(c',b)$

• for termination (SN) and normalization (WN) no fresh constants are needed

- for termination (SN) and normalization (WN) no fresh constants are needed
- for other properties expressible in first-order theory of rewriting adding one or two constants may be insufficient

- for termination (SN) and normalization (WN) no fresh constants are needed
- for other properties expressible in first-order theory of rewriting adding one or two constants may be insufficient:

TRS consisting of rule $f(x) \rightarrow a$ satisfies

$$P: \neg \exists s \exists t \exists u \forall v (v \leftrightarrow^* s \lor v \leftrightarrow^* t \lor v \leftrightarrow^* u)$$

- for termination (SN) and normalization (WN) no fresh constants are needed
- for other properties expressible in first-order theory of rewriting adding one or two constants may be insufficient:

TRS consisting of rule $f(x) \rightarrow a$ satisfies

 $P: \neg \exists s \exists t \exists u \forall v (v \leftrightarrow^* s \lor v \leftrightarrow^* t \lor v \leftrightarrow^* u)$

but GP does not hold after adding additional constants c and c'

- for termination (SN) and normalization (WN) no fresh constants are needed
- for other properties expressible in first-order theory of rewriting adding one or two constants may be insufficient:

TRS consisting of rule $f(x) \rightarrow a$ satisfies

 $P: \neg \exists s \exists t \exists u \forall v (v \leftrightarrow^* s \lor v \leftrightarrow^* t \lor v \leftrightarrow^* u)$

but GP does not hold after adding additional constants c and c'

• adding fresh unary function symbol g and fresh constant c in order to create infinitely many ground normal forms

- for termination (SN) and normalization (WN) no fresh constants are needed
- for other properties expressible in first-order theory of rewriting adding one or two constants may be insufficient:

TRS consisting of rule $f(x) \rightarrow a$ satisfies

 $P: \neg \exists s \exists t \exists u \forall v (v \leftrightarrow^* s \lor v \leftrightarrow^* t \lor v \leftrightarrow^* u)$

but GP does not hold after adding additional constants c and c'

• adding fresh unary function symbol g and fresh constant c in order to create infinitely many ground normal forms is unsound in general:

consider $a \rightarrow b$ and $\forall s \forall t \ (s \rightarrow t \implies s \stackrel{\epsilon}{\rightarrow} t)$

Definition

signature \mathcal{F} is monadic if \mathcal{F} contains no function symbols of arity > 1

Definition

signature ${\mathcal F}$ is monadic if ${\mathcal F}$ contains no function symbols of arity > 1

Lemma

 \forall left-linear right-ground TRS (\mathcal{F}, \mathcal{R}) such that \mathcal{R} is ground or \mathcal{F} is monadic

$$(\mathcal{F},\mathcal{R})\vDash P \iff (\mathcal{F},\mathcal{R})\vDash \mathsf{G}P \qquad \forall P\in\mathfrak{P}$$

Definition

signature ${\mathcal F}$ is monadic if ${\mathcal F}$ contains no function symbols of arity >1

Lemma

 \forall left-linear right-ground TRS $(\mathcal{F}, \mathcal{R})$ such that \mathcal{R} is ground or \mathcal{F} is monadic

$$(\mathcal{F},\mathcal{R})\vDash P \iff (\mathcal{F},\mathcal{R})\vDash \mathsf{G}P \qquad \forall P\in\mathfrak{P}$$

Example

checking GCR of TRS

$f(f(f(x))) \to a$	$f(f(a)) \to a$	$f(a) \to a$
$f(f(g(g(x)))) \to f(a)$	$g(f(a)) \to a$	g(a) o a

takes 0.85 seconds but 1.73 seconds if fresh constant is added

Outline

- First-Order Theory of Rewriting
- Automation
- Properties on Open Terms
- Experiments
- Future Work

Relationships

Relationships

Relationships

Synthesis Experiments with FORT 0.2

-S -f "a:0 b:0 f:2"

"GWCR & ~WCR & ~GCR"

Relationships

Synthesis Experiments with FORT 0.2

 $\texttt{"GWCR \& ~WCR \& ~GCR"} \quad \mathsf{a} \to \mathsf{b} \quad \mathsf{f}(x,\mathsf{a}) \to \mathsf{a} \qquad \qquad \mathsf{a} \to \mathsf{f}(\mathsf{a},\mathsf{a}) \qquad 80\,s$

Relationships

Synthesis Experiments with FORT 0.2

"GWCR & ~WCR & ~GCR" $a \rightarrow b f(x, a) \rightarrow a$ $a \rightarrow f(a, a)$ 80 s

"GCR & ~CR & ~GSCR"

Relationships

Synthesis Experiments with FORT 0.2

"GWCR & ~WCR & ~GCR" $a \rightarrow b$ $f(x, a) \rightarrow a$ $a \rightarrow f(a, a)$ 80 s"GCR & ~CR & ~GSCR" $a \rightarrow b$ $f(x, a) \rightarrow b$ $b \rightarrow f(a, a)$ 109 s

Relationships

Synthesis Experiments with FORT 0.2

"GWCR & ~WCR & ~GCR" $a \rightarrow b$ $f(x, a) \rightarrow a$ $a \rightarrow f(a, a)$ 80 s"GCR & ~CR & ~GSCR" $a \rightarrow b$ $f(x, a) \rightarrow b$ $b \rightarrow f(a, a)$ 109 s

"GNFP & ~NFP & ~GCR"

Relationships

Synthesis Experiments with FORT 0.2

 $\label{eq:GWCR & ~WCR & ~GCR"} \begin{array}{ccc} \mathsf{a} \to \mathsf{b} & \mathsf{f}(x,\mathsf{a}) \to \mathsf{a} & \mathsf{a} \to \mathsf{f}(\mathsf{a},\mathsf{a}) & 80\,s \\ \\ \texttt{"GCR & ~CR & ~GSCR"} & \mathsf{a} \to \mathsf{b} & \mathsf{f}(x,\mathsf{a}) \to \mathsf{b} & \mathsf{b} \to \mathsf{f}(\mathsf{a},\mathsf{a}) & 109\,s \end{array}$

 $\texttt{"GNFP \& ~NFP \& ~GCR"} \quad \mathsf{a} \to \mathsf{b} \quad \mathsf{f}(\mathsf{x},\mathsf{a}) \to \mathsf{f}(\mathsf{a},\mathsf{a}) \quad \mathsf{f}(\mathsf{b},\mathsf{b}) \to \mathsf{f}(\mathsf{a},\mathsf{a}) \qquad 16\,s$

Relationships

Synthesis Experiments with FORT 0.2

- $\texttt{"GWCR \& ~WCR \& ~GCR"} \quad \mathsf{a} \to \mathsf{b} \quad \mathsf{f}(x,\mathsf{a}) \to \mathsf{a} \qquad \qquad \mathsf{a} \to \mathsf{f}(\mathsf{a},\mathsf{a}) \qquad \texttt{80}\, s$
- $\texttt{"GCR \& ~CR \& ~GSCR"} \qquad \mathsf{a} \to \mathsf{b} \quad \mathsf{f}(x,\mathsf{a}) \to \mathsf{b} \qquad \qquad \mathsf{b} \to \mathsf{f}(\mathsf{a},\mathsf{a}) \qquad 109\,s$

 $\texttt{"GNFP \& ~NFP \& ~GCR"} \quad \mathsf{a} \to \mathsf{b} \quad \mathsf{f}(\mathsf{x},\mathsf{a}) \to \mathsf{f}(\mathsf{a},\mathsf{a}) \quad \mathsf{f}(\mathsf{b},\mathsf{b}) \to \mathsf{f}(\mathsf{a},\mathsf{a}) \qquad 16\,\mathsf{s}$

"GUNC & ~UNC & ~GNFP"

Relationships

"GWCR & ~WCR & ~GCR"	$a\tob$	$f(x,a)\toa$	$a \to f(a,a)$	80 <i>s</i>
"GCR & ~CR & ~GSCR"	$a\tob$	$f(x,a)\tob$	$b\tof(a,a)$	109 <i>s</i>
"GNFP & ~NFP & ~GCR"	$a\tob$	$f(x,a)\tof(a,a)$	$f(b,b)\tof(a,a)$	16 s
"GUNC & ~UNC & ~GNFP"	$a\toa$	f(x,a) o a	$f(b,x)\tob$	95 <i>s</i>

Relationships

"GWCR & ~WCR & ~GCR"	$a\tob$	$f(x,a)\toa$	$a \to f(a,a)$	80 <i>s</i>
"GCR & ~CR & ~GSCR"	$a\tob$	$f(x,a)\tob$	$b\tof(a,a)$	109 <i>s</i>
"GNFP & ~NFP & ~GCR"	$a\tob$	$f(x,a)\tof(a,a)$	$f(b,b)\tof(a,a)$	16 s
"GUNC & ~UNC & ~GNFP"	$a\toa$	f(x,a) o a	$f(b,x)\tob$	95 <i>s</i>

Relationships

"GWCR & ~WCR & ~GCR"	$a\tob$	$f(x,a)\toa$	$a \to f(a,a)$	80 <i>s</i>
"GCR & ~CR & ~GSCR"	$a\tob$	$f(x,a)\tob$	$b\tof(a,a)$	109 <i>s</i>
"GNFP & ~NFP & ~GCR"	$a\tob$	$f(x,a)\tof(a,a)$	$f(b,b)\tof(a,a)$	16 <i>s</i>
"~GNFP & GUNC & ~UNC"	$a\toa$	f(x,a) o a	$f(b,x)\tob$	21 <i>s</i>

Relationships

"GWCR & ~WCR & ~GCR"	$a\tob$	$f(x,a)\toa$	$a \to f(a,a)$	8 - 20 <i>s</i>
"GCR & ~CR & ~GSCR"	$a\tob$	$f(x,a)\tob$	$b\tof(a,a)$	8-10 <i>s</i>
"GNFP & ~NFP & ~GCR"	$a\tob$	$f(x,a)\tof(a,a)$	$f(b,b)\tof(a,a)$	9-11 <i>s</i>
"~GNFP & GUNC & ~UNC"	$a\toa$	$f(x,a)\toa$	$f(b, x) \rightarrow b$	2- 4 <i>s</i>

"GUN & ~UN & ~GUNC"

$b\toa$	$d \to c$	$f(x,e)\toA$
$b\toc$	$d\toe$	$f(x,A)\toA$
c ightarrow c	$f(x,a)\toA$	$f(c,x)\toA$

"GUN & ~UN & ~GUNC"

$b\toa$	$d \to c$	$f(x,e)\toA$
$b\toc$	$d \to e$	$f(x, A) \rightarrow A$
$c\toc$	$f(x,a)\toA$	$f(c, x) \rightarrow A$

Comparison (GCR)

"GUN & ~UN & ~GUNC"

$b\toa$	$d\toc$	$f(x,e)\toA$
$b\toc$	$d\toe$	$f(x,A)\toA$
$c\toc$	$f(x,a)\toA$	$f(c, x) \rightarrow A$

Comparison (GCR)

65 TRSs	AGCP (Ø time)	FORT 0.2 (\emptyset time)	
yes	8 (0.02 <i>s</i>)	42 $(0.42 s)$	
no	-	14 $(3.88 s)$	
maybe	56 (0.19 <i>s</i>)	-	
timeout	1	9	
total time	71 <i>s</i>	612 <i>s</i>	

"GUN & ~UN & ~GUNC"

$b\toa$	$d \to c$	$f(x,e)\toA$
$b\toc$	$d\toe$	$f(x,A)\toA$
$c\toc$	$f(x,a)\toA$	$f(c,x)\toA$

Comparison (GCR)

65 TRSs	AGCP (Ø time)	FORT 0.2 (\emptyset time)	FORT 1.0 (\varnothing time)
yes	8 (0.02 <i>s</i>)	42 (0.42 <i>s</i>)	43 (0.26 <i>s</i>)
no	-	14 (3.88 <i>s</i>)	18 $(0.96 s)$
maybe	56 (0.19 <i>s</i>)	-	-
timeout	1	9	4
total time	71 <i>s</i>	612 <i>s</i>	268 s

65 TRSs	AGCP (Ø time)	FORT 0.2 (\varnothing time)	FORT 1.0 (\emptyset time)
yes	8 (0.02 <i>s</i>)	42 (0.42 <i>s</i>)	43 (0.26 <i>s</i>)
no	-	14 (3.88 <i>s</i>)	18 $(0.96 s)$
maybe	56 (0.19 <i>s</i>)	-	-
timeout	1	9	4
total time	71 <i>s</i>	612 <i>s</i>	268 <i>s</i>

Outline

- First-Order Theory of Rewriting
- Automation
- Properties on Open Terms
- Experiments
- Future Work
restriction to left-linear right-ground TRSs is hard to overcome because first-order theory of one-step rewriting (\rightarrow) is undecidable

restriction to left-linear right-ground TRSs is hard to overcome because first-order theory of one-step rewriting (\rightarrow) is undecidable

• ... even for linear non-erasing TRSs (Treinen, 1998)

restriction to left-linear right-ground TRSs is hard to overcome because first-order theory of one-step rewriting (\rightarrow) is undecidable

- ... even for linear non-erasing TRSs (Treinen, 1998)
- ... even for complete right-ground TRSs (Vorobyov, 2002)

restriction to left-linear right-ground TRSs is hard to overcome because first-order theory of one-step rewriting (\rightarrow) is undecidable

- ... even for linear non-erasing TRSs (Treinen, 1998)
- ... even for complete right-ground TRSs (Vorobyov, 2002)

Ongoing and Future Work

• generating witnesses for existential formulas and formulas with free variables

restriction to left-linear right-ground TRSs is hard to overcome because first-order theory of one-step rewriting (\rightarrow) is undecidable

- ... even for linear non-erasing TRSs (Treinen, 1998)
- ... even for complete right-ground TRSs (Vorobyov, 2002)

Ongoing and Future Work

- generating witnesses for existential formulas and formulas with free variables
- support for combinations of TRSs (e.g., to express commutation)

restriction to left-linear right-ground TRSs is hard to overcome because first-order theory of one-step rewriting (\rightarrow) is undecidable

- ... even for linear non-erasing TRSs (Treinen, 1998)
- ... even for complete right-ground TRSs (Vorobyov, 2002)

Ongoing and Future Work

- generating witnesses for existential formulas and formulas with free variables
- support for combinations of TRSs (e.g., to express commutation)
- incorporating rewrite strategies

restriction to left-linear right-ground TRSs is hard to overcome because first-order theory of one-step rewriting (\rightarrow) is undecidable

- ... even for linear non-erasing TRSs (Treinen, 1998)
- ... even for complete right-ground TRSs (Vorobyov, 2002)

Ongoing and Future Work

- generating witnesses for existential formulas and formulas with free variables
- support for combinations of TRSs (e.g., to express commutation)
- incorporating rewrite strategies
- formalizing underlying theory in Isabelle/HOL