
IWC 2016

5th International Workshop on Confluence

Proceedings

Editors: Beniamino Accattoli & Ashish Tiwari

Sep 8-9, 2016, Obergurgl, Austria

iii

Preface

This report contains the proceedings of the 5th International Workshop on Confluence (IWC
2016), which was held in Obergurgl, Austria on Sep 8-9, 2016. The workshop was part of the
Computational Logic in the Alps event. Previous IWC workshops were held in Nagoya (2012),
Eindhoven (2013), Vienna (2014), and Berlin (2015).

Confluence provides a general notion of determinism and has been conceived as one of the
central properties of rewriting. Confluence relates to many topics of rewriting (completion,
modularity, termination, commutation, etc.) and had been investigated in many formalisms
of rewriting such as first-order rewriting, lambda-calculi, higher-order rewriting, constrained
rewriting, conditional rewriting, etc. Recently there is a renewed interest in confluence research,
resulting in new techniques, tool supports, certification as well as new applications. The work-
shop promotes and stimulates research and collaboration on confluence and related properties.
In addition to original contributions, the workshop solicited short versions of recently published
articles and papers submitted elsewhere.

IWC 2016 received 12 submissions. Each submission was reviewed by 3 program commit-
tee members. After deliberations, the program committee decided to accept all submissions,
which are contained in this report. Apart from these contributed talks, the workshop had an
invited talk by Florent Jacquemard on Some Results on Confluence: Decision and What to do
Without, and a second invited talk by Paul-Andre Mellies on Five Basic Concepts of Axiomatic
Rewriting Theory. Their abstracts are also included in the report. Moreover, the 5th Conflu-
ence Competition (CoCo 2016) was held during the workshop and the results are available at
http://coco.nue.riec.tohoku.ac.jp/2016/.

Several persons helped to make IWC 2016 a success. We are grateful to the members of the
program committee for their work. We also thank the members of the Computational Logic in
the Alps (CLA) organizing committee for hosting IWC 2016 in Obergurgl.

August 2016 Beniamino Accattoli
Ashish Tiwari

iv

Organization

IWC 2016 was part of the Computational Logic in the Alps event (CLA 2016), which was
organized by the Computational Logic group of the University of Innsbruck.

Program Committee Chairs

Beniamino Accattoli INRIA, France
Ashish Tiwari SRI International, USA

Program Committee

Beniamino Accattoli INRIA, France
Bertram Felgenhauer University of Innsbruck, Austria
Yves Guiraud University of Paris 7, France
Nao Hirokawa JAIST, Japan
Koji Nakazawa Nagoya, Japan
Ashish Tiwari SRI International, Menlo Park, USA

Local Organisation Committee

• Martina Ingenhaeff-Falkner

• René Thiemann

• Benjamin Winder

Table of Contents

Abstracts of Invited Talks

Some results on confluence: Decision and what to do without. 1

Florent Jacquemard

Five Basic Concepts of Axiomatic Rewriting Theory. 6

Paul-André Melliès

Contributed Papers

Non-omega-overlapping TRSs are UN . 11

Stefan Kahrs and Connor Smith

Efficiently Deciding Uniqueness of Normal Forms and Unique Normalization for Ground
TRSs . 16

Bertram Felgenhauer

Reducing Joinability to Confluence: How to Preserve Linearity and Shallowness 21

Luis Moraes and Rakesh Verma

Confluence Properties on Open Terms in the First-Order Theory of Rewriting 26

Franziska Rapp and Aart Middeldorp

Ground Confluence Proof with Pattern Complementation . 31

Takahito Aoto and Yoshihito Toyama

An Algebraic Approach of Confluence and Completion . 36

Chenavier Cyrille

Decreasing Diagrams: Two Labels Suffice . 41

Joerg Endrullis, Jan Willem Klop, and Roy Overbeek

Coherence of quasi-terminating decreasing 2-polygraphs . 46

Clement Alleaume and Philippe Malbos

A Short Mechanized Proof of the Church-Rosser Theorem in Nominal Isabelle 55

Julian Nagele, Vincent van Oostrom, and Christian Sternagel

Formalized Confluence of Quasi-Reductive, Strongly Deterministic Conditional TRSs 60

Thomas Sternagel and Christian Sternagel

Notes on Confluence of Ultra-WLL SDCTRSs via a Structure-Preserving Transformation . 65

Naoki Nishida

Conditions for confluence of innermost terminating term rewriting systems 70

Sayaka Ishizuki, Masahiko Sakai and Michio Oyamaguchi

CoCo 2016 System Descriptions

ACP: System Description for CoCo 2016 . 75

Takahito Aoto and Yoshihito Toyama

ACPH: System Description for CoCo 2016 . 76

Kouta Onozawa, Kentaro Kikuchi, Takahito Aoto, and Yoshihito Toyama

v

AGCP: System Description for CoCo 2016 . 77

Takahito Aoto and Yoshihito Toyama

CoCo 2016 Participant: CeTA 2.28 . 78

Julian Nagele, Christian Sternagel, and Thomas Sternagel

CO3 (Version 1.3) . 79

Naoki Nishida, Takayuki Kuroda, and Karl Gmeiner

CoLL-Saigawa: A Joint Confluence Tool . 80

Nao Hirokawa and Kiraku Shintani

CoCo 2016 Participant: ConCon . 81

Thomas Sternagel and Aart Middeldorp

CoScart: Confluence Prover in Scala . 82

Karl Gmeiner

CRC: A Church-Rosser Checker Tool for Conditional Order-Sorted Equational Maude
Specifications . 83

Francisco Durán

CoCo 2016 Participant: CSI 0.6 . 84

Bertram Felgenhauer, Aart Middeldorp, and Julian Nagele

CoCo 2016 Participant: CSÎ ho 0.2 . 85

Julian Nagele

CoCo 2016 Participant: FORT 1.0 . 86

Franziska Rapp and Aart Middeldorp

Nrbox: System Description for CoCo 2016. 87

Takahito Aoto and Kentaro Kikuchi

vi

Some results on confluence:

decision and what to do without.

Florent Jacquemard1∗

INRIA – Sorbonne Universités
STMS (IRCAM-CNRS-UPMC), Paris

florent.jacquemard@inria.fr

Abstract

We recall first some decidability results on the confluence of TRS, and related prop-
erties about unicity of normal forms. In particular we put it in perspective old proofs of
undecidability of confluence for the class of flat systems with more recent results, in order
to discuss the importance of linearity wrt these decision problems.

Second, we describe a case study on musical rhythm notation involving modeling rewrite systems

which are not confluent. In this case, instead of applying rewrite rules directly, we enumerate the

equivalence class of a given term using automata-based representations and dynamic programming.

1 Confluence (un)decidability

When term rewriting systems (TRS) are used as models in fields such as functional programming
languages semantics, automated deduction or system or program verification, the application
of rewrite rules can be highly non-deterministic. Confluence permits to relax from this problem
by guaranteeing that divergent reduction will eventually converge to a canonical form, in case
of termination. It is therefore an crucial property to decide for TRS.

Decidability of confluence for linear TRS. Confluence of TRS is undecidable in general,
even for linear systems (every variable can occur at most once in every left- or right-hand-side
of rules) [28]. It has been shown decidable for ground TRS (rewrite rules without variables)
[18, 3] and for left-linear right-ground TRS [2]. Polynomial time decision procedures have been
proposed years later for ground TRS [1, 22], for left-shallow-linear and right-ground TRS (every
variable can occur at most once and at depth at most one in every left-hand-side of rule) [22],
for linear-shallow TRS (every variable occurs at most once in each rule and at depth at most
one) [22, 10], and for linear and shallow TRS (every variable occurs at most once and at depth
at most one in each side rule but can occur twice in a rule) [7].

Uniqueness of Normal Forms. The decidability of several alternatives to confluence has
been studied. A first alternative, uniqueness of normal forms (UN=), implied by confluence,
expresses that no two distinct normal forms (irreducible terms) can be equivalent modulo the
rewrite system considered. UN= has been shown decidable for ground TRS [28], and for shallow
TRS (without the restriction of linearity) [19]. It is also polynomial time decidable for shallow
and linear TRS [24]. It is undecidable for right ground TRS [26], for linear, non-collapsing (the
right-hand-side of rules cannot be a variable), variable-preserving, and depth-two TRS [25], for

∗co-authors for the results mentioned in §1: Ichiro Mitsuhashi, Michio Oyamaguchi, Guillem Godoy, and in
S2: Jean Bresson, Masahiko Sakai, Adrien Ycart, Adrien Maire, Pierre Donat Bouillud, Slawek Staworko.

Confluence: Decide or Escape F. Jacquemard

left-linear and left-flat TRS with with depth-two right-hand sides of rules [19] as well as for
right-ground, right-flat TRS [25].

A second alternative, unique normalization (UN) expresses that every term can reach at
most one normal form using the TRS considered. UN= implies UN but the converse is not true.
UN is decidable in polynomial time for ground TRS [27], and also for for shallow and linear
TRS [9]. On the negative side, UN is undecidable for right-ground TRS [23], for flat TRS (left-
and right- hand side of rules have depth at most one) [8], for linear and right-flat TRS [11] and
for flat and right-linear TRS [9].

Decidability of confluence for non-linear TRS The linearity is often considered as a
yardstick when considering decision of properties of TRS such as confluence, reachability or
joinability. For instance, tree automata based methods sometimes used in this context [18, 3,
2, 9] need, in case of non-linear TRS, generalized models with difficult decision problems.

Confluence is shown undecidable for flat (non-linear) TRS [14, 17] by reduction of reachabil-
ity, also shown undecidable in this case (note that this is in contrast with UN= [19]). The latter
proofs have been simplified drastically in [8]. However, confluence has been shown decidable
for some classes of TRS allowing non-linear rules, like right-ground TRS (without restriction
on the left-hand-sides of rules) [16], and shallow and right-linear TRS [12].

The latter proof uses decidability of reachability and joinability, both implied by regularity
preservation result. To our knowledge, it is an open question whether confluence is decidable
for other classes of TRS preserving regularity such as right-linear and finite-path-overlapping
TRS [21] (shallow right-linear TRS are a particular case) or Layer Transducing TRS [20]. It
is also interesting to consider the decision of confluence for particular rewriting strategies e.g.
bottom-up [5, 6]. Finally, it can be observed that collapsing (right-variable) rules are essential
in shifted pairing like constructions for undecidability proofs [14, 17, 8]. It is also unknown
whether confluence is decidable for shallow and non-collapsing TRS.

2 What to do when there is no confluence

Traditional music notation is since centuries the standard format for the communication, ex-
change, and preservation of musical works in Western musical practice. We have been working
recently on modeling the notation of rhythm (durations), following an approach based on formal
languages and term rewriting.

In common western music notation, durations values are expressed proportionally, by recur-
sive subdivisions of a unit (beat). This hierarchical definition induces naturally tree-structured
representations called rhythm trees (RT). Every position in a RT is associated to a duration
value. In a simple variant (see Figure 1), the root position is associated a fixed duration value
and every non-root position is associated the duration of its parent p0 divided by the number of
edges outgoing from p0. Moreover, if a leaf position p labeled by ◦, the the duration of p is added
to the duration of the next leaf p′ in depth-first-traversal (if it exists). The other leafs may
be labeled by symbols giving information on notes, rests etc, and the labels of inner positions
are not significant (here we use named after their arity 2, 3, 4 . . .). To a RT, we associate the
sequence of durations of the non-o leaves (in dfs). To capture more complex rhythm notations,
we use a dag representations not described here.

The RT representations are used in a new tool for the transcription of timestamped event
sequences into a music notation [29]. It is implemented as a library of the algorithmic compo-
sition framework OpenMusic (Figure 2). We are also developing Music Information Retrieval

2

Confluence: Decide or Escape F. Jacquemard

2

n 2

n n

1
2

1
4

1
4

2

2

n o

2

n n

1
4

1
2

1
4

2

n 3

o n n

1
2

1
3

1
6

Figure 1: Rhythm Trees with associated duration sequences (symbol n represents a note).

Figure 2: Transcription librairy for OpenMusic (Ircam). http://repmus.ircam.fr/cao/rq

tasks based on RT representations, in particular for querying bases of digital music scores (e.g.
by query by tapping) and for musicologist research, using similarity measures and tree edit
distances.

Structural theory of RT. For reasoning about rhythm notations in the above tasks, we
define an equivalence between RT with term rewriting rules [15, 4]. For instance, the rules
2(o, n) → n, 3(o, o, n) → n,. . . and 2(o, o) → o, . . . comply with the semantics of o presented
above, and rules of the form 3

(
2(x1, x2), 2(x3, x4), 2(x5, x6)

)
→ 2

(
3(x1, x2, x3), 3(x4, x5, x6)

)

can be used in order to simplify RT. The TRS containing these simple rules is not confluent.
For instance, starting from t = 3

(
2(o, o), 2(n, o), 2(o, n)

)
, we have the following non-joinable

critical peak:
3(o, 2(n, o), n)←−∗ t −→ 2

(
3(o, o, n), 3(o, o, n)

)
−→∗ 2(n, n).

Exploring sets of equivalent terms. Therefore, in order to to reason about sets of equiv-
alent terms (in particular the set JtK of terms equivalent to a given RT t), instead of applying
rewriting to reach a canonical normal form that does not exist, we use automata-based char-
acterizations. Some techniques like tree automata completion, can be used to compute a tree
automaton recognizing the rewrite closure of a given regular tree set (in particular recogniz-
ing JtK given {t}), by superposition of rewrite rules into tree automata transition rules. Such
techniques have been used for verify safety properties of program or systems modeled as TRS
(possibly not confluent) by reduction to the problem of emtiness of tree automata intersection
(regular tree model checking).

3

Confluence: Decide or Escape F. Jacquemard

With rewrite rules like the above ones, it is not easy to establish the termination of standard
tree automata completion procedures. Even though in our case in practice we only need to
consider terms of a bounded depth, hence finite set of terms, it is neither easy to reasonably
bound the size of the automaton obtained this way. As an alternative, we have developed an ad
hoc construction using the duration sequence associated to a given RT, and a tree automaton
representing the family of RT that we want to consider. Once an automaton recognizing JtK
is constructed, we use dynamic programming for the lazy enumeration of this set, according
to a measure of tree complexity, following techniques of k-best parsing [13]. This way, we can
enumerate efficiently the rhythms equivalent to a given rhythm, by increasing complexity.

References

[1] Hubert Comon, Guillem Godoy, and Robert Nieuwenhuis. The confluence of ground term rewrite
systems is decidable in polynomial time. In Proceedings of the 42nd IEEE symposium on Founda-
tions of Computer Science (FOCS), pages 298–307. IEEE Computer Society, 2001.

[2] Max Dauchet, Thierry Heuillard, Pierre Lescanne, and Sophie Tison. Decidability of the confluence
of finite ground term rewrite systems and of other related term rewrite systems. Inf. Comput.,
88(2):187–201, 1990.

[3] Max Dauchet and Sophie Tison. The theory of ground rewrite systems is decidable. In Proceed-
ings Fifth Annual IEEE Symposium on Logic in Computer Science (LICS), pages 242–248. IEEE
Computer Society, 1990.

[4] Pierre Donat-Bouillud, Florent Jacquemard, and Masahiko Sakai. Towards an equational theory
of rhythm notation. In Music Encoding Conference, 2015.

[5] Irène Durand, Géraud Sénizergues, and Marc Sylvestre. Termination of linear bounded term
rewriting systems. In Proceedings of the 21st Int. Conf. on Rewriting Techniques and Applications
(RTA), vol.6, pages 341–356 of Leibniz International Proceedings in Informatics (LIPIcs), 2010.

[6] Irène Durand and Marc Sylvestre. Left-linear Bounded TRSs are Inverse Recognizability Preserv-
ing. In 22nd RTA, volume 10 of LIPIcs, pages 361–376, 2011.

[7] G. Godoy, A. Tiwari, and R. Verma. On the confluence of linear shallow term rewrite systems.
In 20th Intl. Symposium on Theoretical Aspects of Computer Science (STACS), volume 2607 of
Lecture Notes in Computer Science, pages 85–96. Springer, 2003.

[8] Guillem Godoy and Hugo Hernández. Undecidable properties for flat term rewrite systems. Ap-
plicable Algebra in Engineering, Communication and Computing, 20(2):187–205, 2009.

[9] Guillem Godoy and Florent Jacquemard. Unique normalization for shallow trs. In 20th Interna-
tional Conference on Rewriting Techniques and Applications (RTA), volume 5595 of Lecture Notes
in Computer Science, pages 63–77. Springer, 2009.

[10] Guillem Godoy, Robert Nieuwenhuis, and Ashish Tiwari. Classes of term rewrite systems with
polynomial confluence problems. ACM Trans. Comput. Logic, 5(2):321–331, 2004.

[11] Guillem Godoy and Sophie Tison. On the normalization and unique normalization properties of
term rewrite systems. In Proc. 21st International Conference on Automated Deduction (CADE),
volume 4603 of Lecture Notes in Computer Science, pages 247–262. Springer, 2007.

[12] Guillem Godoy and Ashish Tiwari. Confluence of shallow right-linear rewrite systems. In 19th In-
ternational Workshop of Computer Science Logic, CSL, volume 3634 of Lecture Notes in Computer
Science, pages 541–556. Springer, 2005.

[13] Liang Huang and David Chiang. Better k-best parsing. In Proceedings of the Ninth Interna-
tional Workshop on Parsing Technology, Parsing ’05, pages 53–64, Stroudsburg, PA, USA, 2005.
Association for Computational Linguistics.

[14] Florent Jacquemard. Reachability and confluence are undecidable for flat term rewriting systems.
Information Processing Letters, 87(5):265–270, 2003.

4

Confluence: Decide or Escape F. Jacquemard

[15] Florent Jacquemard, Pierre Donat-Bouillud, and Jean Bresson. A Structural Theory of Rhythm
Notation based on Tree Representations and Term Rewriting. In 5th International Conference
on Mathematics and Computation in Music (MCM), volume 9110 of Lecture Notes in Artificial
Intelligence. Springer, 2015.

[16] Lukasz Kaiser. Confluence of right ground term rewriting systems is decidable. In International
Conference on Foundations of Software Science and Computation Structures (Fossacs), pages 470–
489. Springer, 2005.

[17] I. Mitsuhashi, M. Oyamaguchi, and F. Jacquemard. The confluence problem for flat TRSs. In
Proc. 8th Intl. Conf. on Artificial Intelligence and Symbolic Computation (AISC’06), volume 4120
of LNAI, pages 68–81. Springer, 2006.

[18] M. Oyamaguchi. The Church-Rosser property for ground term rewriting systems is decidable.
Theoretical Computer Science, 49:43–79, 1987.

[19] Nicholas Radcliffe and Rakesh M. Verma. Uniqueness of normal forms is decidable for shallow
term rewrite systems. In Conference on Conference on Foundations of Software Technology and
Theoretical Computer Science (FSTTCS), 2010.

[20] H. Seki, T. Takai, Y. Fujinaka, and Y. Kaji. Layered Transducing Term Rewriting System and
Its Recognizability Preserving Property. In Int. Conf. on Rewriting Techniques and Applications
(RTA), volume 2378 of Lecture Notes in Computer Science, pages 98–113. Springer, 2002.

[21] T. Takai, Y. Kaji, and H. Seki. Right-linear finite path overlapping term rewriting systems ef-
fectively preserve recognizability. In 11th Int. Conf. on Rewriting Techniques and Applications
(RTA), volume 1833 of Lecture Notes in Computer Science, pages 246–260. Springer, 2000.

[22] A. Tiwari. Deciding confluence of certain term rewriting systems in polynomial time. In IEEE
Symposium on Logic in Computer Science (LICS), pages 447–456. IEEE Society, 2002.

[23] R. Verma. Complexity of normal form properties and reductions for rewriting problems. Funda-
menta Informaticae, 2008.

[24] R. Verma and J. Zinn. A polynomial-time algorithm for uniqueness of normal forms of linear shal-
low term rewrite systems. In Symposium on Logic in Computer Science LICS (short presentation),
2006.

[25] Rakesh Verma. New undecidability results for properties of term rewrite systems. Electronic Notes
in Theoretical Computer Science, 290:69–85, 2008.

[26] Rakesh Verma. Complexity of normal form properties and reductions for term rewriting problems
complexity of normal form properties and reductions for term rewriting problems. Fundamenta
Informaticae, 92(1-2):145–168, 2009.

[27] Rakesh Verma and Ara Hayrapetyan. A new decidability technique for ground term rewriting
systems with applications. ACM Trans. Comput. Logic, 6(1):102–123, January 2005.

[28] Rakesh M. Verma, Michael Rusinowitch, and Denis Lugiez. Algorithms and reductions for rewrit-
ing problems. Fundam. Inf., 46:257–276, August 2001.

[29] Adrien Ycart, Florent Jacquemard, Jean Bresson, and Slawomir Staworko. A Supervised Ap-
proach for Rhythm Transcription Based on Tree Series Enumeration. In Proceedings of the 42nd
International Computer Music Conference (ICMC). ICMA, 2016.

5

Five Basic Concepts of Axiomatic Rewriting Theory

Paul-André Melliès

Institut de Recherche en Informatique Fondamentale (IRIF)
CNRS, Université Paris Diderot

Abstract

In this invited talk, I will review five basic concepts of Axiomatic Rewriting Theory, an axiomatic

and diagrammatic theory of rewriting started 25 years ago in a LICS paper with Georges Gonthier and

Jean-Jacques Lévy, and developed along the subsequent years into a fully fledged 2-dimensional theory

of causality and residuation in rewriting. I will give a contemporary view on the theory, informed by

my later work on categorical semantics and higher-dimensional algebra, and also indicate a number of

current research directions in the field.

A good way to understand Axiomatic Rewriting Theory is to think of it as a 2-dimensional
refinement of Abstract Rewriting Theory. Recall that an abstract rewriting system is defined
as a set V of vertices (= terms) equipped with a binary relation → ⊆ V × V . This abstract
formulation is convenient to formulate various notions of termination and of confluence, and to
compare them, typically:

strong normalisation vs. weak normalisation
confluence vs. local confluence

Unfortunately, the theory is not sufficiently informative to capture more sophisticated structures
and properties of rewriting systems related to causality and residuation, like

redexes and residuals
finite developments

standardisation
head rewriting paths

These structures and properties are ubiquitous in rewriting theory. They appear in conflict-
free rewriting systems like the λ-calculus as well as in rewriting systems with critical pairs,
like action calculi and bigraphs designed by Milner [9] as universal calculus integrating the
λ-calculus, Petri nets and process calculi, or the λσ-calculus introduced by Abadi, Cardelli,
Curien and Lévy [1] to express in a single rewriting system the various evaluation strategies of
an environment machine.

It thus makes sense to refine Abstract Rewriting Theory into a more sophisticated framework
where the causal structures of computations could be studied for themselves, in a generic way.
Intuitively, the causal structure of a rewriting path f : M � N is the cascade of elementary
computations implemented by that path. In order to extract these elementary computations
from the rewriting path f , one needs to trace operations (= redexes) inside it. This is achieved
by permuting the order of execution of independent redexes executed by f . An axiomatic
rewriting system is thus defined as a graph G = (V,E, ∂0, ∂1) consisting of a set V of vertices
(= the terms), a set E of edges (= the redexes) and a pair of source and target functions
∂0, ∂1 : E → V equipped moreover with a family of permutation tiles, satisfying a number of
axiomatic properties.

Five Basic Concepts of Axiomatic Rewriting Theory P.-A. Melliès

1. Permutation tiles. The purpose of permutation tiles is to permute the order of execution
of redexes. In our axiomatic setting, a permutation tile (f, g) is a pair of coinitial and cofinal
rewriting paths of the form:

f = M P Nv u′
g = M Q Nu h

where u, v, u′ are redexes and h is a rewriting path. The intuition is that h computes the
residuals of the redex v along the redex u. Two typical permutation tiles in the λ-calculus are
the following one:

u

v

Mλx.x �

�

x

Pλx.x �

�

x

u´

MM

MP

PP

v

1

2

v

y

u

v

Pλx.y �

�

Mλx.y �

�

u ´

where h = v1 · v2 on the left-hand side and h = id on the right-hand side.

2. Standardisation cells. The permutation tiles are oriented, and generate a 2-dimensional
rewriting system on the 1-dimensional rewriting paths. In order to distinguish this rewriting
system from the original rewriting system, we call it the standardisation rewriting system. A
standardisation path θ between 1-dimensional rewriting paths f, g : M � N is then written as

θ : f ⇒ g : M � N

The axioms of Axiomatic Rewriting Theory are designed to ensure that this 2-dimensional
rewriting system is weakly normalising and confluent. In order to establish weak normalisation,
one needs to clarify an important point: when should one consider that two standardisation
paths

θ, θ′ : f ⇒ g : M � N

are equal? The question looks a bit esoteric, but it is in fact fundamental! By way of illustration,
consider the following permutation tile in the λ-calculus:

MN PQ

PN

MQ

v u´

u v ´

(1)

where the two β-redexes u and v should be considered as syntactically disjoint because u is a
β-redex of the subterm M and v is a β-redex of the disjoint subterm N . If one does not want
to give a left-to-right precedence to the β-redex u over the β-redex v, one should equip the
axiomatic rewriting system with two permutation tiles

θ1 : v · u′ ⇒ u · v′ θ2 : u · v′ ⇒ v · u′.

7

Five Basic Concepts of Axiomatic Rewriting Theory P.-A. Melliès

The task of the permutation tile θ1 is to permute u before v, while the task of the permutation
tile θ2 is to permute v before u. It thus makes sense to require that their composite are equal
to the identity in the standardisation rewriting system:

θ1; θ2 = id : v · u′ ⇒ v · u′ θ2; θ1 = id : u · v′ ⇒ u · v′

Of course, this enforces that θ1 and θ2 are inverse. One declares in that case that the permu-
tation tile (1) is reversible. A standardisation path θ : f ⇒ g consisting only of such reversible
permutation tiles is called reversible, and one writes θ : f ' g in that case. A simple and elegant
way to describe the equational theory on standardisation paths is to equip every permutation
tile (f, g) with an ancestor function ϕ : [n] → [2] where [k] = {1, . . . , k} and n is the length of
the path g = u · h. The purpose of the function ϕ is to map the index of redex in g = u · h to
the index of its ancestor f = v · u′, in the following way:

u

v

Mλx.x �

�

x

Pλx.x �

�

x

u´

MM

MP

PP

v

1

2

v

y

u

v

Pλy.x �

�

Mλy.x �

�

u ´

MN PQ

PN

MQ

v u´

u v ´

By way of illustration, the permutation tiles equipped with their ancestor functions may be
composed in the following way in the λ-calculus:

u v

a

c

λx. x

�

λy. �

�

�MN

�

λy. �M N

M

�

λy. �M Qbλx. x

�

λy. �

�

�MQ

This leads us to identify two standardisation paths θ, θ′ : f ⇒ g when they produce the same
ancestor function. A standardisation cell is then defined as an equivalence class of standardisa-
tion paths θ, θ′ : f ⇒ g modulo this equivalence relation. Note in particular that the equivalence
relation identifies the standardisation path θ1; θ2 with the identity, and similarly for θ2; θ1.

In this way, one defines for every axiomatic rewriting system G a 2-category Std(G) of
whose objects are the vertices (= terms) of G, whose morphisms are the paths (= rewriting
paths) of G, and whose 2-cells are the standardisation cells. One declares that two rewriting
paths f, g : M � N are equivalent modulo redex permutation (noted f ∼ g) when f and g
are in the same connected component of the hom-category Std(G)(M,N) of rewriting paths
from M to N . This means that one can construct a zig-zag of standardisation paths between f
and g. We also like to say that the rewriting paths f and g are homotopy equivalent when
f ∼ g.

3. Standard rewriting paths. A rewriting path f : M � N is called standard when every
standardisation cell θ : f ⇒ g : M � N is reversible. The standardisation theorem states that

8

Five Basic Concepts of Axiomatic Rewriting Theory P.-A. Melliès

Standardisation Theorem. For every rewriting path f : M � N there exists a standardisation
cell θ : f ⇒ g to a standard rewriting path g : M � N . Moreover, this standard rewriting path
is unique in the sense that for every standardisation cell θ′ : f ⇒ g′ to a standard rewriting
path g′ : M � N , there exists a reversible standardisation path θ′′ : g′ ' g such that θ = θ′; θ′′.

The theorem is established in any axiomatic rewriting system G using the elementary axioms
on the permutation tiles provided by the theory. As a matter of fact, the property is even
stronger: it states that there exists a unique standardisation cell θ from f to the standard
rewriting path g. This means that every standard path g : M � N is a terminal object in its
connected component of rewriting paths f : M � N . See [3, 4, 8] for details.

4. External rewriting paths. An external rewriting path e : M � N is defined as a
rewriting path such that for every standard rewriting path f : N � P , the composite rewriting
path e·f : M � P is standard. Note in particular that every external rewriting path is standard.
Accordingly, a rewriting path m : M � N is called internal when for every standardisation cell
θ : m⇒ e · f where the rewriting path e is external, the rewriting path e is in fact the identity
on M . One establishes the following property in every axiomatic rewriting system, see [6] for
details:

Factorisation Theorem: For every rewriting path f : M � N , there exists a unique external
rewriting path e : M � P and a unique internal rewriting path m : P � N up to permutation
equivalence such that f ∼ e ·m. This factorization is moreover functorial.

5. Head-rewriting paths. The factorization theorem is supported by the intuition that only
the external part e : M � P of a rewriting path f : M � N performs relevant computations,
while the internal part m : P � N produces essentially useless extra computations. The
factorization property plays a fundamental role in the theory. In particular, it enables us
to establish a stability theorem which shows the existence of head-rewriting paths in every
axiomatic rewriting system, even the rewriting system is non-deterministic and has critical
pairs. The stability theorem states that under very general and natural assumptions on a set
H of head-values, see [7], the following property holds:

Stability Theorem: For every term M of the axiomatic rewriting system, there exists a cone of
external paths (called head-rewriting paths)

ei : M � Vi with Vi ∈ H

indexed by i ∈ I, which satisfies the following universality property: for every rewriting path
f : M � W reaching a head-value W ∈ H, there exists a unique index i ∈ I such that the
rewriting path f factors as

f ∼ ei · h : M �W

for a given rewriting path h : Vi � W . The rewriting path h : Vi � W is moreover unique
modulo permutation equivalence. In the case of axiomatic rewriting systems without critical
pairs, the theorem establishes the existence of a head-rewriting path e : M � V for every term
M which can be rewritten to a head-value W ∈ H. The stability theorem is particularly useful
in rewriting systems with critical pairs. By way of illustration, it enables one to describe the
head-rewriting paths ei : M � Vi which transport a λ-term M to its head-normal forms in the
λσ-calculus, see [5] for details.

9

Five Basic Concepts of Axiomatic Rewriting Theory P.-A. Melliès

References

[1] Martin Abadi, Luca Cardelli, Pierre-Louis Curien, Jean-Jacques Lévy. Explicit substitutions.
Conférence Principle Of Programming Languages, 1990.

[2] Georges Gonthier, Jean-Jacques Lévy, Paul-André Melliès. An abstract standardisation theorem.
Proceedings of the 7th Annual IEEE Symposium on Logic in Computer Science (LiCS), Santa
Cruz, 1992.

[3] Paul-André Melliès. Description abstraite des systèmes de réécriture. Thèse de doctorat, Université
Paris VII, 1996.

[4] Paul-André Melliès. Axiomatic Rewriting Theory I: An axiomatic standardisation theorem. Chap-
ter of the Festschrift in honour of Jan Willem Klop: Processes, Terms and Cycles: Steps on the
Road to Infinity. Edited by A. Middeldorp, V. van Oostrom, F. van Raamsdonk and R. de Vrijer.
Lecture Notes in Computer Science 3838, Springer Verlag (2006).

[5] Paul-André Melliès. Axiomatic Rewriting Theory II : The lambda-sigma calculus enjoys finite
normalisation cones. Journal of Logic and Computation, vol 10 No. 3, pp. 461-487, 2000.

[6] Paul-André Melliès. Axiomatic Rewriting Theory III : A factorisation theorem in Rewriting The-
ory. Proceedings of the 7th Conference on Category Theory and Computer Science (CTCS), Santa
Margherita Ligure, Lecture Notes in Computer Science 1290, pp. 49-68, Springer, 1997.

[7] Paul-André Melliès. Axiomatic Rewriting Theory IV : A stability theorem in Rewriting Theory.
Proceedings of the 13th Annual Symposium on Logic in Computer Science (LiCS), Indianapolis,
pp. 287-298, 1998.

[8] Paul-André Melliès. Une étude micrologique de la négation. Habilitation à Diriger des Recherches,
2016.

[9] Robin Milner. The Space and Motion of Communicating Agents. Cambridge University Press,
March 2009.

10

Non-ω-overlapping TRSs are UN

Stefan Kahrs and Connor Smith

School of Computing
University of Kent

Canterbury, United Kingdom
{S.M.Kahrs,cls204}@kent.ac.uk

Abstract

This paper solves problem #79 of RTA’s list of open problems [11] — in the positive. If the rules

of a TRS do not overlap w.r.t. substitutions of infinite terms then the TRS has unique normal forms.

We first reduce the problem to one of consistency for “similar” constructor term rewriting systems. To

prove consistency, we define a relation ⇓ that is consistent by construction for all TRSs, and which

— if transitive — would coincide with the rewrite system’s equivalence relation =R. We then prove

the transitivity of ⇓ by coalgebraic reasoning. This involves showing that it is transitive on any finite

Σ-coalgebra.

1 Introduction

Note: this is the short version of a paper that appeared in FSCD 2016 [6].
For over 40 years [10] it has been known that TRSs that are left-linear and non-overlapping

are confluent, and for over 30 years [5] that non-overlapping on its own may not even give us
unique normal forms:

Example 1. By Huet [5]: {F (x, x) → A,F (x,G(x)) → B,C → G(C)}. The term F (C,C)
possesses two distinct normal forms, A and B.

However, in a certain sense the first two rules overlap semantically: the infinite term
G(G(· · ·)) provides such an overlap, and in the world of infinitary rewriting [7] the term C
even rewrites to that term in the limit.

The notion of overlap is based on the notion of substitution. By changing the codomain of
the substitutions of concern from the set of finite terms to the set of infinitary (finite or infinite)
ones we arrive at the notion of ω-overlap. This creates the question: do non-ω-overlapping TRSs
have unique normal forms? This was first conjectured 27 years ago by Ogawa [9].

When making the step from a rewrite relation →R to its equivalence closure =R one is
typically interested in its consistency [2, p32ff], i.e. are there terms t, u such that ¬(t =R u)?
Both uniqueness of normal forms (UN) and consistency (CON) can be looked at as properties
of open terms or ground terms. We stick in this paper to the versions on open terms, as these
notions are unaffected by signature extensions.

For non-ω-overlapping systems UN and CON are closely related, as we can extend non-UN
systems in a seemingly harmless way to make them fail CON too:

Example 2. Add to the system of Example 1 the rewrite rules H(A, x, y)→ x and H(B, x, y)→
y. The system remains non-overlapping but it is now inconsistent.

As similar (non-ω-overlapping-preserving) modifications are always possible it suffices to
look at the consistency problem instead.

Even if a TRS is non-ω-overlapping, the reduction relation →R may still not be confluent
(and so we need a different approach to show consistency); this follows from a well-known
example by Klop [8]:

ω-overlapping TRSs are UN S. Kahrs and C. Smith

Example 3. {A→ C(A), C(x)→ D(x,C(x)), D(x, x)→ E}.

In this system we have A→∗R E and A→∗R C(E), but C(E) and E have no common reduct.
One can reduce the consistency problem for arbitrary TRSs to (a very similar version of)

the problem for constructor TRSs. The translation works by (i) doubling up the signature, so
that for each function symbol F we have both a constructor version Fc and a destructor Fd; (ii)
translating the rewrite rules to make them comply with the regime of Constructor TRSs; (iii)
adding further rules that make former patterns regain pattern status. Overall, this translation
preserves and reflects consistency of a TRS.

Example 4. If we take the rewrite rules of Combinatory Logic, A(A(K,x), y) → x and
A(A(A(S, x), y), z) → A(A(x, z), A(y, z)) and apply the translation, we end up with the fol-
lowing system:

Ad(Ac(Kc, x), y)→ x

Ad(Kc, x)→ Ac(Kc, x)

Kd → Kc

Ad(Ac(Ac(Sc, x), y), z)→ Ad(Ad(x, z), Ad(y, z))

Ad(Sc, x)→ Ac(Sc, x)

Ad(Ac(Sc, x), y)→ Ac(Ac(Sc, x), y)

Sd → Sc

The top two rules are the translated versions of the original rules, the ones below are their
respective pattern rules.

In Example 4, an orthogonal TRS was translated into an orthogonal Constructor TRS.
In general, this will not be the case, and non-ω-overlapping TRSs will not remain non-ω-
overlapping either. However, all overlaps created by the translation are benign, to an extent
that we choose to ignore the details here — which can be found in the full version [6].

At the heart of our overall proof is showing (for our rewrite systems in question) that the
equivalence closure =R of single rewrite steps is a subrelation of a consistent relation ⇓ and
therefore itself consistent. This relation ⇓ is defined using slightly stronger closure principles
than those that characterise the joinability relation ↓, however they remain weak enough to
ensure (for arbitrary TRSs) that ⇓ is consistent. Because ⇓ is closed under the same operations
as =R, except for transitivity, proving consistency of =R can be reduced to proving that ⇓ is
transitive.

2 Term-Coalgebras, and relations on them

Relations on terms can more generally be viewed as relations on or between Σ-coalgebras. This
can be useful to stratify the reasoning on terms, one finite Σ-coalgebra at a time.

In order to consider coalgebras of signatures Σ we would have to view signatures as functors
on the category Set. However, we only need here the following special instance of this concept:

Definition 1. Given a signature Σ, a term-coalgebra is a set A ⊆ Ter∞(Σ, ∅) which is closed
under subterms. It is called finite if it is a finite set, and strongly finite if in addition A ⊆
Ter(Σ, ∅).

More generally, Σ-coalgebras A would be characterized by a function υ : A → Σ(A) which
maps a node to a structure containing its root function symbol and the list of its subnodes.
We also allow for variables in term-coalgebras by “freezing” them, i.e. when considered as a
member of a term-coalgebra a variable is a nullary constructor. For heterogeneous relations

12

ω-overlapping TRSs are UN S. Kahrs and C. Smith

between term-coalgebras we must therefore have that the variable set X is the same, so that
they are coalgebras of the same functor.

One ingredient to define relations between or on term-coalgebras for a signature Σ we use
the following notation: if R ⊆ A × B, where A and B are term-coalgebras A and B then
R̃ ⊆ A×B is defined as follows:

∀t ∈ A. ∀u ∈ B. t R̃ u ⇐⇒ ∃F ∈ Σ. ∃a1, . . . , an ∈ A. ∃b1, . . . , bn ∈ B.
t = F (a1, . . . , an) ∧ u = F (b1, . . . , bn) ∧ ∀i. ai R bi

This concept was first used in [3, 4]; we modified it slightly by removing the reflexivity case. For

constructur signatures, we use the notations R and R̂ to mean R̃ for the subsignatures Σd and
Σc, respectively. In particular, t îd t iff the root symbol of t is a constructor, and so R̂ · S = ∅.
We still use R̃ for constructor signatures, to refer to the combined signature; hence R̃ = R∪ R̂.

Definition 2. A relation R between term-coalgebras is called Σ-closed iff R̃ ⊆ R.

Note: this is standard terminology taken from [1], except that we generalise it to coalgebras.
If idV is the coreflexive identity on variables then we can express consistency of a relation

R relation-algebraically as idV · R · idV ⊆ idV . However, we already have consistency issues
when a relation R relates any terms topped with distinct constructors. Relations that do not
do that we call “constructor-consistent”: îd · R · îd ⊆ 1̂, where “1” is top element of the lattice
of relations. To reason about pattern matching we need something even stronger than that:

Definition 3. A relation R between term-coalgebras is called constructor-compatible iff

îd · R · îd ⊆ R̂.

Constructor-compatible relations are preserved by arbitrary union; consequently, relations
defined as µx.f(x) are constructor-compatible whenever the function f preserves this property.

Proposition 1. Let a → b and c → d be two rewrite rules (of some constructor TRS) with
only trivial ω-overlaps. Let =S be a constructor-compatible and Σ-closed equivalence. Then
σ(a) =S θ(c) implies σ(b) =S θ(d).

The reason this is true is that (i) every equation derived via the ω-unification algorithm still
holds in =S , (ii) Σ-closed equivalences “are” algebras, so that we can “interpret” eventually
the anti-unifiers of b and d in =S-equivalent environments, giving =S-equivalent results.

Given a TRS with signature Σ, and a term-coalgebra A, the relation ⇓A is a relation on A
defined as follows:

⇓A .
= µx. x−1 ∪ ε→A· x ∪ x · x ∪ idA ∪ x̂

The relation ⇓ bears some similarity to joinability, but has one stronger feature: we have
⇓ · ⇓ ⊆ ⇓. Like joinability, ⇓ is also constructor-compatible (and therefore consistent), for any
rewrite system. It is also always Σ-closed.

3 Proof Graphs

We want to prove that in rewrite systems with only trivial ω-overlaps the relation ⇓ is transitive,
in fact that all ⇓A are transitive. For this it suffices to look at strongly finite A. For such
coalgebras we can build a “universal proof” for ⇓A as a union/find-structure, i.e. an equivalence
=E where t =E u ⇐⇒ t ⇓A u. Notice that there is some similarity to the reduction

13

ω-overlapping TRSs are UN S. Kahrs and C. Smith

graphs found in [12], which are essentially proof graphs for a different invariant relation, i.e.
for joinability. In other words, these concepts could be subjected to a generalisation, aiming at
a more general technique to prove invariants of TRSs by reasoning with equivalences on finite
coalgebras.

As nodes of this union/find-structure we use the nodes of the coalgebra A, edges express a

relation→e under which ⇓A is prefix-closed (i.e.→e · ⇓A ⊆ ⇓A) — such as ⇓A or
ε→A. Because

of that (and because ⇓A is reflexive and symmetric), any two elements of a connected compo-
nent of that structure are automatically in ⇓A-relation. For constructors, one can ensure that
=E is Σc-closed (and remains constructor-compatible) by adding the necessary edges between
constructor-topped terms.

To ensure =E is eventually Σ-closed we prioiritize adding edges of the form ⇓A over root-
rewrite steps. This way we can also ensure that any two nodes related by ⇓A

∗
are related by

=E . This leaves for any equivalence class of ⇓A
∗

at most one node to which we can attach a
redex-contraction edge.

After doing that we have a complete proof graph, i.e. one where we cannot add any further
(proof-carrying) edges to merge equivalence classes. The so-constructed relation =E is neces-
sarily a constructor-compatible congruence relation. Moreover, when the constructor TRS is
almost non-ω-overlapping then it coincides with ⇓A.

The reason for the latter is a fixpoint argument: suppose a rewrite step t
ε→A u had not

been added in the construction of the proof graph for =E . Then we have t ⇓A
∗
t′

ε→A u′

and t′ =E u′ for some t′, u′ — here t′ is the representative redex of its ⇓A-equivalence class.
Assuming (on subterms) that =E coincides with ⇓A we have t =E t′, and then we can apply
the argument from Proposition 1 to get u =E u′, and therefore t =E u.

To avoid this somewhat problematic fixpoint argument, one can instead maintain the prop-
erty that all edges of the form t ⇓A u also satisfy t =E u. However, such edges would not be
added to the graph inductively, but coinductively:

Example 5. Take the TRS with rules {A → F (A), B → F (B), F (x) → C}. Its (universal)

proof graph for the coalgebra {A,B, F (A), F (B), C} contains the rewrite steps for A
ε→ F (A),

B
ε→ F (B) and F (B)

ε→ C, as well as the “inner” step F (A) =E F (B). In a way, this inner
step justifies itself, because A and B become linked by the addition of this very edge.

This kind of co-inductive construction is sound, since we require that =E edges also satisfy
⇓A. For instance, that condition would fail in Example 5 if we replaced the rule F (x) → C
with F (x)→ x.

Theorem 1. Almost non-ω-overlapping Constructor TRSs have a consistent equational theory.

4 Future Work

We would like to extend the result to wider ranges of TRSs, in particular non-ω-overlapping as
the condition appears much stronger than needed. The reason is that we do not have to resolve
ambiguities in the theories in which they arise, we only have to resolve them eventually.

Moreover, it would be nice to apply the proof graph technique to other invariants than ⇓,
e.g. for invariants directly addressing confluence and unique normal forms — as ⇓ is primarily
a consistency invariant. This is likely to require a generalisation of the concept of “proof graph
extension”. For the construction shown here we merely allowed to extend a proof graph with
edges, merging its equivalence classes. Joinability (↓) is the natural invariant for confluence,

14

ω-overlapping TRSs are UN S. Kahrs and C. Smith

but for joinability proof graphs we would need the capability to extend a graph with nodes as
well.

References

[1] Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge University Press,
1998.

[2] Hendrik P. Barendregt. The Lambda-Calculus, its Syntax and Semantics. North-Holland, Ams-
terdam, 1984.

[3] Jörg Endrullis, Helle Hvid Hansen, Dimitri Hendriks, Andrew Polonsky, and Alexandra Silva. A
coinductive treatment of infinitary rewriting. In Workshop on Infinitary Rewriting, page 8, 2013.

[4] Jörg Endrullis, Dimitri Hendriks, Helle Hvid Hansen, Andrew Polonsky, and Alexandra Silva. A
coinductive framework for infinitary rewriting and equational reasoning. In Rewriting Techniques
and Applications, 2015.

[5] Gérard Huet. Confluent reductions: Abstract properties and applications to term rewriting sys-
tems. Journal of the ACM, 27:797–821, 1980.

[6] Stefan Kahrs and Connor Smith. Non-Omega-Overlapping TRSs are UN. In Delia Kesner and
Brigitte Pientka, editors, 1st International Conference on Formal Structures for Computation and
Deduction (FSCD 2016), volume 52 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 22:1–22:17, Dagstuhl, Germany, 2016. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[7] Richard Kennaway and Fer-Jan de Vries. Term Rewriting Systems, chapter Infinitary Rewriting,
pages 668–711. Cambridge University Press, 2003.

[8] Jan Willem Klop. Combinatory Reduction Systems. PhD thesis, Centrum voor Wiskunde en
Informatica, 1980.

[9] Mizuhito Ogawa and Satoshi Ono. On the uniquely converging property of nonlinear term rewriting
systems. Technical Report IEICE COMP89-7, NTT Software Laboratories, 1989.

[10] Barry K. Rosen. Tree-manipulating systems and Church-Rosser theorems. Journal of the ACM,
20:160–187, 1973.

[11] RTA. The RTA list of open problems.
http://www.win.tue.nl/rtaloop/index.html

[12] Masahiko Sakai, Michio Oyamaguchi, and Mizuhito Ogawa. Non-e-overlapping, weakly shallow,
and non-collapsing trss are confluent. In Amy P. Felty and Aart Middeldorp, editors, Automated
Deduction - CADE-25 - 25th International Conference on Automated Deduction, Berlin, Germany,
August 1-7, 2015, Proceedings, volume 9195 of Lecture Notes in Computer Science, pages 111–126.
Springer, 2015.

15

Efficiently Deciding Uniqueness of Normal Forms and

Unique Normalization for Ground TRSs∗

Bertram Felgenhauer

University of Innsbruck
bertram.felgenhauer@uibk.ac.at

Abstract

We present an almost linear time algorithm for deciding uniqueness of normal forms for ground

TRSs, and a cubic time algorithm for deciding unique normalization for ground TRSs.

1 Introduction

It is known that UN= and UN→ are decidable in polynomial time for ground TRSs. In this
note, we are interested in bounding the exponent of the polynomial, which is of great interest
to implementers. As far as we know, the best previous result for UN= is an almost quadratic
algorithm by Verma et al. [9] with O(||R||2 log ||R||) time complexity, where ||R|| denotes the
sum of the sizes of the sides of R. In Section 3 we present an algorithm that decides UN= in
O(||R|| log ||R|| time. In fact our algorithm is closely related to another algorithm by Verma
[8, Theorem 31], but some care is needed to achieve an almost linear bound.

In the case of UN→ for ground TRSs, Verma [8] and Godoy and Jacquemard [4] have
established that polynomial time algorithms exist, using tree automata techniques. No precise
bound is given by these authors. In Section 4 we will sketch (due to limited space) an O(||R||3)
time algorithm for deciding UN→, based on a rewriting analysis reminiscent of the cubic time
algorithm for confluence in [3].

2 Preliminaries

We assume familiarity with term rewriting and (bottom-up) tree automata, see [1, 2]. Fix a
finite signature Σ. A tree automaton A = (Q,Qf ,∆) consists of a finite set of states Q disjoint
from Σ, a set of final states Qf ⊆ Q, and a set ∆ of transitions f(q1, . . . , qn) → q and ε-
transitions p→ q, where f is an n-ary function symbol and q1, . . . , qn, p, q ∈ Q. A deterministic
tree automaton is an automaton without ε-transitions whose transitions have distinct left-hand
sides (we do not require deterministic tree automata to be completely defined). Note that ∆
can be viewed as a ground TRS over an extended signature that contains Q as constants. We
write →A for →∆, where we regard the transitions as rewrite rules. For a TRS R we define
R− = {r → ` | ` → r ∈ R}. We write t E R if t is a subterm of a side of a rule in R. The
size ||R|| of R is the sum of the sizes of the sides of R. The unique normal forms property
(convertible normal forms are equal) and the unique normalization property (no term reaches
two distinct normal forms) are denoted by UN= and UN→, respectively. For a relation →, →∥
denotes its parallel closure, →! denotes reduction to a normal form, and s↓ denotes a normal
form of s. In particular, s→! s↓.

∗This research was supported by FWF project P27528.

Efficiently Deciding UN= and UN→ for Ground TRSs B. Felgenhauer

3 Deciding UN=

We need some preparation before deciding UN=.

3.1 Currying

Currying allows us to turn an arbitrary TRS into one over constants and a single binary function
symbol, thereby bounding the maximum arity of the resulting TRS.

In order to curry a TRS R, we change all function symbols in Σ to be constants, and add a
fresh, binary function symbol ◦, which we write as a left-associative infix operator. We define

(f(t1, . . . , tn))◦ = f ◦ t◦1 ◦ · · · ◦ t◦n

The curried version of R is given by R◦ = {`◦ → r◦ | `→ r ∈ R}.
For ground systems, currying reflects and preserves UN→ and UN=. For reflection, a direct

simulation argument works (s→R t implies s◦ →R◦ t◦, and s◦ is a R◦-normal form if and only
if s is an R-normal form). For preservation, Kenneway et al. [5] show that UN→ is preserved
by currying for left-linear systems, and that UN= is preserved by currying for arbitrary TRSs.

3.2 Recognizing Normal Forms

With Q = Qf = {[s] | s E R} and ∆ = {f([s1], . . . , [sn])→ [f(s1, . . . , sn)] | f(s1, . . . , sn) E R}
we obtain a deterministic tree automaton that accepts the subterms of R. We modify this
automaton to recognize normal forms. To this end, let ? be a fresh constant and let

Q′ = Q′f = {[s] | s E R and s is R-normal form} ∪ {[?]}
∆′ = {f([s1], . . . , [sn])→ [f(s1, . . . , sn)] | [f(s1, . . . , sn)] ∈ Q′f} ∪

{f([s1], . . . , [sn])→ [?] | f ∈ Σ, [s1], . . . , [sn] ∈ Q′f , f(s1, . . . , sn) 6E R}

The state [?] accepts those R-normal forms that are not subterms of R.

Proposition 1. The automaton NR = (Q′, Q′f ,∆
′) recognizes the R-normal forms over Σ.

3.3 Congruence Closure

Congruence closure (introduced by Nelson and Oppen [6]; a clean and fast implementation can
be found in [7]) is an efficient method for deciding convertibility of ground terms modulo a set
of ground equations R.

The congruence closure consists of two phases. In the first phase, the procedure determines
the congruence classes (hence the name) among the subterms of the given set of equations,
where two subterms s and t are identified if and only if they are convertible, s↔∗R t. We write
[s]R for the convertibility class of s. In the second phase, given two terms u and v, we compute
the normal forms with respect to rules

C = {f([s1]R, . . . , [sn]R)→ [f(s1, . . . , sn)]R | f(s1, . . . , sn) E R}

The terms u and v are R-convertible if and only if u↓C = v↓C . We observe the following.

Proposition 2. If we regard [s]R for subterms s E R as fresh constants, the set C is an
orthogonal, ground TRS whose rules, as transitions of a tree automaton, are deterministic.

17

Efficiently Deciding UN= and UN→ for Ground TRSs B. Felgenhauer

1: compute CR and a representation of NR
2: for all constants c E R that are normal forms do
3: push ([c]R, [c]) to worklist
4: while worklist not empty do
5: (p, q)← pop worklist
6: if seen(p) is defined then
7: return UN=(R) is false
8: seen(p)← q
9: for all transitions p1 ◦ p2 → pr ∈ CR with p ∈ {p1, p2} do

10: if q1 = seen(p1) and q2 = seen(p2) are defined then
11: if there is a transition q1 ◦ q2 → qr ∈ NR then
12: push (pr, qr) to worklist
13: return UN=(R) is true

Figure 1: Deciding UN=(R)

Consequently, we may represent C as a deterministic tree automaton CR = (Q,Qf ,∆) with
Q = Qf = {[s]R | s E R} and ∆ = C. Each state [s]R accepts precisely the terms convertible
to s. Note that the automaton is not completely defined in general: Only terms s that allow a
conversion s↔∗R t with a root step are accepted.

3.4 Checking UN=

Given a ground TRS R, we want to decide UN=(R), that is, whether any two R-convertible
R-normal forms are equal.

First note that if we have two distinct convertible normal forms s ↔∗R t such that the
conversion does not contain a root step, then there are strict subterms of s and t that are
convertible and distinct. Therefore, UN=(R) reduces to the question whether any state of CR,
the automaton produced by the congruence closure of R, accepts more than one normal form.
Let CR ∩NR be the result of the product construction on CR and NR. We can decide UN= by
enumerating accepting runs t→∗CR∩NR (q1, q2) in a bottom-up fashion until either

• we obtain two distinct accepting runs ending in (q1, q2) and (q′1, q
′
2) with q1 = q2, in which

case UN=(R) does not hold; or

• we have exhausted all runs, in which case UN=(R) holds.

Assume thatR is curried. The enumeration of accepting runs can be performed by the algorithm
in Figure 1. The correctness of the procedure hinges on two key facts: First, the automaton
CR ∩NR is deterministic, which means that distinct runs result from distinct terms. Secondly,
the set of R normal forms is closed under subterms, so we can skip non-normal forms in the
enumeration.

Theorem 3. The algorithm in Figure 1 is correct and runs in O(||R|| log ||R||) time.

Proof. We have already argued correctness, so let us focus on the complexity. Let n = ||R||.
First we compute CR using the congruence closure algorithm from [7] in O(n log n) time. While
NR has quadratically many transitions, we can define the transitions as a partial function using
O(n log n) time for preparation and O(log n) time per invocation of the transition function. This
bound relies on currying, for constant size left-hand sides, and on perfect sharing of terms, for
O(log n) subterm tests. This covers line 1 of the algorithm. Lines 2 to 3 take O(n) time. Note

18

Efficiently Deciding UN= and UN→ for Ground TRSs B. Felgenhauer

that lines 8 to 12 are executed at most once per state of CR, i.e., O(n) times. The enumeration
on line 9 can be precomputed in O(n) time, by creating an array of lists of transitions indexed
by the states of CR and adding each transition q1 ◦ q2 → qr ∈ CR to the lists indexed by q1 and
q2 (if q1 6= q2). Because each transition is added to at most two lists, lines 10 to 12 are executed
at most twice per transition in CR, so O(n) times. The check on line 11 takes O(log n) time
per iteration, so O(n log n) time in total. Finally, we note that line 12 is executed O(n) times,
so no more than O(n) items are ever added to the worklist, which means that lines 4 to 7 are
executed O(n) times. Overall the algorithm executes in O(n log n) time, as claimed.

4 Deciding UN→

4.1 Preparation: Flattening, Rewrite Closure, Meetable Constants

To simplify the reachability analysis in the UN→ property, we flatten the ground TRS R, which
we assume to be curried. To this end, we add fresh constants [s] for s E R, and take the rules

E = {f([s1], . . . , [sn])→ [f(s1, . . . , sn)] | f(s1, . . . , sn) E R}
The flattened TRS is R′ = {[`]→ [r] | `→ r ∈ R} ∪ E . This system simulates rewriting by R.

Proposition 4. !
E−← ·→R′ · →!

E− ⊆ →R ⊆ →∗E · →R′ · ∗E←.

In the following, p and q range over [t] with t E R. Following [3, Section 3.2], we define the
rewrite closure F of R′ inductively by the following inference rules:

t E R
[t]→ [t] ∈ F refl

p1 ◦ p2 → p ∈ E p1 → q1 ∈ F p2 → q2 ∈ F q1 ◦ q2 → q ∈ E
p→ q ∈ F comp

p→ q ∈ R′
p→ q ∈ F base

p→ q ∈ F q → r ∈ F
p→ r ∈ F trans

Proposition 5 ([3, Lemma 3.4]). →∗R ⊆ →∗E∪F · ∗
E∪F−←.

We say two constants p and q are meetable if p ∗
E∪F← · →∗E∪F q. In this case we write p ↑ q.

The relation ↑ is dual to ↓ in [3, Section 3.5] and can be computed as follows.

t E R
[t] ↑ [t]

refl
p1 ◦ p2 → p ∈ E p1 ↑ q1 p2 ↑ q2 q1 ◦ q2 → q ∈ E

p ↑ q
comp

q → p ∈ F q ↑ r
p ↑ r transl

p ↑ q q → r ∈ F
p ↑ r transr

4.2 Peak Analysis

Using the rewrite closure, any peak s ∗
R← · →∗R t between normal forms s and t can be

decomposed as
s

∗−−−−→
E∪F−

· ∗←−−−
E∪F

· ∗−−−→
E∪F

· ∗←−−−−
E∪F−

t

If s and t are chosen to be of minimal size, then there must be a root step. Hence, without loss
of generality, there is a constant q such that

s
∗−−−−→

E∪F−
q

∗←−−−
E∪F

· ∗−−−→
E∪F

· ∗←−−−−
E∪F−

t (1)

Note the special case s→∗E∪F− q ∗
E∪F−← t, which implies that any q is reachable from at most

one normal form using rules from E ∪ F−.

19

Efficiently Deciding UN= and UN→ for Ground TRSs B. Felgenhauer

4.3 Checking UN→

The computation consists of several steps. Using the relation ↑, (1) becomes

s
∗−−−−→

E∪F−
q

∗←−−−
E∪F

C[q1, . . . , qn] ↑∥ C[p1, . . . , pn]
∗←−−−−

E∪F−
t (2)

First, we compute the partial function w(q) that maps q to the normal form s with s→∗E∪F−
q, the first part of the conversion (2). If any q is reachable from more than one normal form,
UN→ does not hold. To perform this computation efficiently, we make use of the automaton
NR that recognizes normal forms. The code is similar to Figure 1, lines 2 to 13, but using the
automaton A = (Q,Qf ,∆) given by Q = Qf = {[s] | s E R} and ∆ = E ∪ F− instead of
CR. Because the product automaton is no longer deterministic, we actually have to compute
witnesses and only fail in line 7 if the witnesses are different. Furthermore, in addition to
lines 9 to 12, we need a similar loop processing the ε-transitions (from F−). The latter change
increases the complexity from O(||R|| log ||R|| to O(||R||2).

Secondly, we analyze the right part of the conversion (2). To this end, we compute the
partial function w′(q) that maps q to the normal form t with q ∗

E∪F← · ↑∥ · ∗
E∪F−← t, or to∞ if

there is more than one such normal form. Note that by (2) with C = �, we have w(p) = w′(q)
or w′(q) =∞ whenever p ↑ q and w(q) is defined. Extending the base cases to larger contexts
requires analyzing the q ∗

E∪F← C[q1, . . . , qn] sequence and can be done almost the same way as
the computation of w(q), using E ∪ F instead of E ∪ F−. The complexity of this computation
is still O(||R||2), despite a subtlety: whereas w(q) is updated at most once, each w′(q) may be
updated twice: to record a witness, and to record that there is more than one witness.

The system has the UN→ property if w′(q) = w(q) whenever w(q) is defined. Overall,
the computation is dominated by the computation of the rewrite closure and the meetable
constants, which take O(||R||3) time [3]. Hence, UN→ can be decided in cubic time.

References

[1] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press, 1998.

[2] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, C. Löding, S. Tison, and M. Tom-
masi. Tree Automata Techniques and Applications. 2007. URL: http://tata.gforge.inria.fr.

[3] B. Felgenhauer. Deciding confluence of ground term rewrite systems in cubic time. In Proc.
23rd International Conference on Rewriting Techniques and Applications, volume 15 of Leibniz
International Proceedings in Informatics, pages 165–175, 2012.

[4] G. Godoy and F. Jacquemard. Unique normalization for shallow TRS. In Proc. 20th International
Conference on Rewriting Techniques and Applications, volume 5595 of Lecture Notes in Computer
Science, pages 63–77, 2009.

[5] R. Kennaway, J.W. Klop, M. Ronan Sleep, and F.-J. de Vries. Comparing curried and uncurried
rewriting. Journal of Symbolic Computation, 21(1):15–39, 1996.

[6] G. Nelson and D.C. Oppen. Fast decision procedures based on congruence closure. Journal of the
ACM, 27(2):356–364, 1980.

[7] R. Nieuwenhuis and A. Oliveras. Fast congruence closure and extensions. Information and Com-
putation, 205(4):557–580, 2007.

[8] R. Verma. Complexity of normal form properties and reductions for term rewriting problems.
Fundamenta Informaticae, 92(1–2):145–168, 2009.

[9] R.M. Verma, M. Rusinowitch, and D. Lugiez. Algorithms and reductions for rewriting problems.
Fundamenta Informaticae, 46(3):257–276, 2001.

20

Reducing Joinability to Confluence:

How to Preserve Linearity and Shallowness∗

Luis Moraes and Rakesh Verma

University of Houston, Houston, TX, USA
{ltdemoraes,rverma}@uh.edu

Abstract

We show how joinability can be reduced to confluence. In particular, our reduction preserves both

linearity and shallowness through a non-trivial construction. This allows us to extend the scope of

previous undecidability results.

1 Introduction

Term rewrite systems are a framework for modeling computations through a collection of rewrite
rules, l → r. For general term rewrite systems, many properties of interest are undecidable.
However, if we impose restrictions on the format of the rules that can be defined, these properties
can become decidable. Linear rules restrict variables to appear only once on each side. Shallow
rules restrict variables to appear only at depth zero or one. For term rewrite systems that
are both linear and shallow (composed of rules that conform to these constraints) nearly all
properties of interest are decidable.

Undecidability results are also interesting since they show we cannot do any better without
losing decidability. For instance, in [3] joinability is shown to be undecidable for linear and left-
shallow systems. If a reduction exists between properties, we can transfer decidability results
between them. A reduction usually introduces new rules that may alter which restrictions still
hold. In [2] joinability was reduced to confluence; however, the reduction did not preserve
linearity and shallowness. We show it is possible to preserve both properties, thus displaying
the deep connection between joinability and confluence. We present a non-trivial reduction
that extends the results in [3] which could not be extended by previous reductions.

2 Preliminaries

A signature is a set of distinct function symbols each assigned with an arity. For example,
Σ := {γ :n} for n ∈ N. The arity of a function symbol indicates the number of subterms, i.e.
arguments, it requires. Function symbols of arity zero are called constants. Let X be a set of
variables – constants not appearing in Σ. We now recursively define the set of Σ-terms:

Definition 1. Let T (Σ, X) be the set of Σ-terms. X ⊂ T (Σ, X). For all f : n ∈ Σ and
t1 . . . tn ∈ T (Σ, X) we have f(t1 · · · tn) ∈ T (Σ, X).

Terms have a tree structure. Each function symbol in a term appears at a unique position.
These are distinguished by the path taken from the root, the position of the outermost function
symbol. We denote as t|p the subterm of t found at position p. The symbol λ is used for
the root position: t|λ = t. Other positions are represented as a sequence of natural numbers.

∗Research supported in part by NSF Grants DUE 1241772 and CNS 1319212

Reducing Joinability to Confluence L. Moraes and R. Verma

The subterm at position p of t = f(t1 · · · tn) is found recursively: t|p = t|i.p′ = (t|i)|p′ = ti|p′
where 1 ≤ i ≤ n. Let Pos(t) denote the set of positions found within the term t. The height
of a term t is defined as follows: if t is a constant or variable, height(t) = 0. Otherwise, for
t = f(t1 · · · tn), height(t) = 1 + max(height(ti)) for 1 ≤ i ≤ n. A term is called flat if it has
height zero or one. We define the depth of a subterm according to the position in which it is
found. A subterm found at λ is at depth zero. If t = f(t1 · · · tn) is a subterm found at depth d,
then each ti is found at depth d+ 1. A term is called shallow if variables only occur at depth
zero or one. A term is called linear if each variable occurs only once.

A rewrite rule is defined as l→ r; the term l found on the left-hand side (LHS) is rewritten
to the term r found on the right-hand side (RHS). Rules can be applied to any subterm. Rules

are considered flat, shallow, or linear if both l and r satisfy these conditions. We write l
∗→ r if l

reaches r through zero or more rewrite steps. A sequence of terms obtained through successive
rewrite steps is called a derivation: u1 → u2 → · · · → un−1 → un. If there exists a term z

such that s
∗← z

∗→ t we write s ↑ t (joins above). Similarly, if there exists a term z such that

s
∗→ z

∗← t we write s ↓ t (joins below).

A term rewrite system (TRS) R is defined through a signature and a set of rewrite rules.
A TRS is confluent if for any pair of terms s, t that have a common ancestor these terms can
be joined, i.e. ∀s, t. s ↑ t =⇒ s ↓ t.

3 Reduction

We are given a joinability problem: a TRS R and terms s, t whose joinability is of interest. In
other words, we would like to know if s ↓ t. We will create a new TRS R′ that is an extension
of the original. Our construction will guarantee that R′ will be confluent if and only if the
terms s and t join under R. We shall construct R′ incrementally. Each step towards the final
TRS shall be denoted through intermediary symbols and rules, Σi and Ri.

3.1 Construction

First, we flatten s and t (see [1] for an example, although we only use backward rules). The
constant counterparts to s and t shall be denoted cs and ct. The flattening procedure generates
flat rules (Rflat) and constants (Σflat) that allow cs

∗→ s and ct
∗→ t in a manner similar to

a tree automaton. For all rules in Rflat, the LHS is a constant outside the original signature.
The joinability relation between terms of the original rewrite system is unchanged since Rflat
rules do not apply to those terms. Note that cs ↓ ct if and only if s ↓ t (we can easily modify
a proof of one into a proof of the other). We introduce the constant α to serve as a common
ancestor to both cs and ct. This guaratees that, if R1 is confluent, cs and ct must join.

Σ1 := Σ ∪ Σflat ∪ {α :0} R1 := R∪Rflat ∪ {α→ cs, α→ ct}

Now we create a set of function symbols hi that can serve as a substitute for any other
function symbol. These function symbols use the first B subterms as a code for which symbol
is being represented. Let M be the maximum arity among all function symbols in Σ1. For all
values i where 0 ≤ i ≤ M , we create a new function symbol hi with arity B + i. Thus, each
arity possible in Σ1 has a corresponding hi function symbol in Σ2.

Σcode := {hi :B + i | 0 ≤ i ≤M} Σ2 := Σ1 ∪ Σcode

22

Reducing Joinability to Confluence L. Moraes and R. Verma

We assign to each non-hi function symbol a binary string. Let B be the minimum length
for each string to be unique. Now we can abstract any function symbol f : i as an hi symbol
where the first B positions correspond to f ’s binary string. The trick is to use cs and ct to
denote 0 and 1.

Rcode := {f(x1 · · ·xn)→ hn(cf1 · · · cfB , x1 · · ·xn)} R2 := R1 ∪Rcode
for all f ∈ Σ1 where cfi ∈ {cs, ct}. The cs and ct subterms that serve as substitute for 0 and 1
shall be called binary string subterms.

If we replace all non-hi symbols with hi, we are left with a term that only makes use of hi,
cs, and ct – we call these code terms. Likewise, given a term with one or more hi symbols, we
can replace them with the f : i symbols they represent thus obtaining an hi-free term – we call
these pure terms. Finally, the terms that are neither code terms nor pure terms are referred to
as partial code terms since some, but not all, of the symbols have been replaced.

Suppose we have a correspondence {a : 00, b : 01, f : 10}. Thus, a can be represented

as h0(cs, cs), b as h0(cs, ct), and f as h1(ct, cs, x). Let cs
∗→ z

∗← ct. Then, many terms

already join, for instance we have a → h0(cs, cs)
∗→ h0(z, z)

∗← h0(cs, ct) ← b. Similarly,

f(a)
∗→ h1(z, z, h0(z, z))

∗← f(b). However, to ensure confluence, we want every term to join if

cs ↓ct. Thus, we must address the following case: f(a)
∗→ h1(z, z, h0(z, z)) 6= h0(z, z)

∗← b. It is
apparent that only structurally equivalent code terms can be joined under R2 if cs ↓ct.
Definition 2. Two terms t1, t2 are structurally equivalent if Pos(t1) = Pos(t2).

We introduce a dummy symbol δ to work around this issue. We adjust the value of B and
the binary strings assigned to each function symbol in order to accomodate δ. We also create
an Rcode rule for δ. The dummy symbol will be used to extend the structure of a code term.
Since what indicates the function symbol is the binary string, we keep the string intact while
adding a new position occupied by the dummy symbol.

Rex := {hn(x1 · · ·xB+n)→ hn+1(x1 · · ·xB+n, δ)}
Σ′ := Σ2 ∪ {δ :0} R′ := R2 ∪Rex

for 0 ≤ n ≤ M − 1. Now we can join terms of different arity, for instance: a
∗→ h0(z, z) →

h1(z, z, δ)
∗→ h1(z, z, h0(z, z))

∗← f(a). These rewrites can be chained to extend the arity of

a code term by more than one: a
∗→ h1(z, z, δ) → h2(z, z, δ, δ)

∗→ h2(z, z, h0(z, z), h0(z, z))
∗←

g(a, a). Furthermore, once the dummy symbol is rewritten to a code term, new positions

beneath it can be generated in the same manner: a
∗→ h1(z, z, δ)

∗→ h1(z, z, h0(z, z)) →
h1(z, z, h1(z, z, δ))

∗→ h1(z, z, h1(z, z, h0(z, z)))
∗← f(f(a)).

We are now ready to prove the correctness of this construction.

3.2 Proof of Correctness

These lemmas apply to R′. First we show how cs ↓ ct leads to all pairs of terms being joinable.

Lemma 1. Every term t ∈ T (Σ′, X) reaches a code term.

Proof. We proceed by induction on height(t). If t is a constant, then we can rewrite it to an
h0 term with the appropriate binary string. Assume the lemma holds for height(t) < n. For t
of height n, note its children will have height at most n − 1. We rewrite each child to a code
term by the inductive hypothesis if the child is not a code term already. Then, we perform an
Rcode rewrite at the root if necessary. Thus, t reaches a code term.

23

Reducing Joinability to Confluence L. Moraes and R. Verma

Lemma 2. Let P be the set of positions for an arbitrary code term t. Given a code term s
such that Pos(s) ⊆ P , we can rewrite s into s′ such that Pos(s′) = P .

Proof. We proceed by induction on height(t). The minimum height of t is that of a constant’s
code term. Because Pos(s) ⊆ P we know s is also a code term for a constant, thus structurally
equivalent. Assume the lemma holds for height(t) < n. For t of height n, note its children will
have height at most n − 1. We perform Rex rewrites on s at λ until it has the same number
of children as t at that position. We convert the new dummy symbols into code terms. By the
inductive hypothesis, we rewrite each child s|i to a term structurally equivalent to t|i. Both
terms now have the same set of positions.

For any pair of code terms (s, t) we can rewrite them to have the set of positions Pos(s) ∪
Pos(t). This set of positions corresponds to that of some code term reachable by δ. We arrive
at the following corollary:

Corollary 1. Any pair of code terms can be rewritten into structurally equivalent code terms.

Lemma 3. If cs ↓ ct then any two terms can be joined.

Proof. Suppose we have two terms: u, v. We know every term reaches a code term by Lemma 1
so u, v reach code terms u′, v′. If not already structurally equivalent we can make them so by
Corollary 1. It should be evident that structurally equivalent code terms are easily joined by
rewriting each cs, ct to the term that joins them.

We must now show the joinability relation between cs and ct remains unchanged under R′.
For the following lemmas it is important to understand how hi terms behave in a derivation.
Once a subterm is rewritten by Rcode that subterm is “locked”: no other rewrites can be
performed at that position except Rex rewrites, which preserve subterms. In fact, the hi
symbol works as a cap for the subterm: either rewrites are performed on subterms beneath it,
or the whole hi term must be beneath a variable (thus preserving its subterms).

Definition 3. A minimal proof of joinability between two terms t1, t2 is a pair of derivations
demonstrating t1

∗→ z
∗← t2 for some z such that there exists no other pair with a fewer number

of rewrite steps.

Lemma 4. A minimal proof of joinability for cs ↓ ct performs no rewrites on binary string
subterms.

Proof. Suppose we had a minimal proof of joinability for cs ↓ ct which did rewrite binary
string subterms. Consider the two corresponding hi subterms (one for each derivation) at their
inception, before any rewrites are performed on their binary string subterms.

Case 1: The binary strings are the same. Clearly the rewrites on the binary string subterms
are superfluous and may be safely removed from the derivations. The resulting proof is shorter,
thus violating the minimality of the proof in question.

Case 2: The binary strings are different. Since any rewrites that modify the binary string
subterms must be performed at or beneath their position, these by themselves constitute another
proof of cs ↓ ct. This proof is shorter since it is contained inside the proof in question, thus
violating minimality.

24

Reducing Joinability to Confluence L. Moraes and R. Verma

Lemma 5. A minimal proof of joinability for cs ↓ ct performs no Rex rewrites.

Proof. Suppose we had a minimal proof of joinability for cs ↓ ct which did performRex rewrites.
Consider the two corresponding hi subterms (one for each derivation) after extending their arity
with dummy symbols.

Case 1: Both terms have a dummy symbol in the same position. Clearly the rewrites are
superfluous and may be safely removed from the derivations. The resulting proof is shorter,
thus violating the minimality of the proof in question.

Case 2: One term has a dummy symbol and the other does not. Once converted to code
terms, the binary strings for these subterms will not match. However, all binary strings must
match since we cannot rewrite binary string subterms per Lemma 4.

Let π be a mapping from code terms (partial or otherwise) to pure terms. Given a term t,
π(t) = t′ is the term obtained when each hi symbol is replaced by its corresponding function
symbol in Σ1. This mapping is well defined only for (partial) code terms which have not
introduced any dummy symbols and whose binary string subterms are all cs or ct.

Lemma 6. cs ↓ ct under R1 iff cs ↓ ct under R′.
Proof. If a proof of joinability exists, then a minimal proof of joinability exists. By Lemmas 4
and 5 we are guaranteed the mapping π is well defined on terms of the minimal proof. Given a
proof that relies on Rcode rewrites we can obtain a proof without them by applying π to every
term of each derivation.

If ui → ui+1 is a step in one of the derivations that uses a rule from Rcode, then it can be
erased since π(ui) = π(ui+1). Similarly, if ui → ui+1 is a step in one of the derivations that
uses a rule from R1, then π(ui)→ π(ui+1) since hi symbols can only occur beneath a variable
(or otherwise in a position that does not interfere). Finally, nonlinearity is not an issue since
subterms that match before applying π will match afterwards as well.

Theorem 1. Joinability reduces to confluence while preserving linearity and shallowness re-
strictions.

Proof. (=⇒) If s ↓ t under R then by Lemma 3 any two terms join under R′. In particular,
terms with a common ancestor join. Thus, R′ is confluent. Since all the new rules are linear
and flat, the resulting TRS preserves linearity and shallowness.

(⇐=) If R′ is confluent, then cs ↓ ct since they have a common ancestor. By Lemma 6 we
know s ↓ t under R (same as cs ↓ ct under R1).

Other restrictions are also preserved such as: V ar(r) ⊂ V ar(l) and l 6∈ X for rules l → r.
These restrictions come into play when extending undecidability results through the reduction
(such as [2]).

References

[1] Guillem Godoy, Ashish Tiwari, and Rakesh Verma. On the confluence of linear shallow term rewrite
systems. In STACS 2003, Symposium on Theoretical Aspects of Computer Science, volume 2607 of
Lecture Notes in Computer Science, pages 85–96, 2003.

[2] Rakesh Verma. Complexity of normal form properties and reductions for term rewriting problems.
Fundamenta Informaticae, 92:145–168, 2009.

[3] Rakesh Verma. New undecidability results for properties of term rewrite systems. Electronic Notes
in Theoretical Computer Science, 290:69–85, 2012.

25

Confluence Properties on Open Terms

in the First-Order Theory of Rewriting∗

Franziska Rapp and Aart Middeldorp

Department of Computer Science, University of Innsbruck, Austria
{franziska.rapp|aart.middeldorp}@uibk.ac.at

Abstract

FORT is a decision and synthesis tool for the first-order theory of rewriting for finite left-linear

right-ground rewrite systems. We report on an extension that distinguishes between ground and open

terms for properties related to confluence.

1 Introduction

In a recent paper [5] we introduced FORT, a decision and synthesis tool for the first-order theory of
rewriting induced by finite left-linear right-ground rewrite systems. In this theory one can express
well-known properties like termination (SN), normalization (WN), and confluence (CR), but also
properties like strong confluence (SCR : ∀ s ∀ t ∀u (s→ t ∧ s→ u =⇒ ∃ v (t→= v ∧ u→∗ v)))
and the normal form property (NFP : ∀ s ∀ t ∀u (s→ t ∧ s→! u =⇒ t→! u)). The decision
procedure is based on tree automata techniques (Dauchet and Tison [3]). Tree automata operate
on ground terms. Consequently, variables in formulas range over ground terms and hence the
properties that FORT is able to decide are restricted to ground terms. Whereas for termination
and normalization this makes no difference, for other properties it does, even for left-linear
right-ground rewrite systems as will be shown below. This raises the question how one can use
FORT to decide properties on open terms. We show that for properties related to confluence
it suffices to add one or two fresh constants. We furthermore provide sufficient conditions
which obviate the need for additional constants. The proofs of these results are presented
in the next section. The results are incorporated in version 0.2 of FORT, which we briefly
describe in Section 3. We also provide a few rewrite systems that were synthesized by FORT.
Section 4 contains a comparison with AGCP (Aoto and Toyama [1]), a new tool for checking
ground-confluence of many-sorted rewrite systems.

We assume familiarity with first-order term rewriting [2]. In this paper we consider the
following properties, besides SCR and NFP:

CR : ∀ s ∀ t ∀u (s→∗ t ∧ s→ u =⇒ t ↓ u)

WCR : ∀ s ∀ t ∀u (s→ t ∧ s→ u =⇒ t ↓ u)

UN : ∀ s ∀ t ∀u (s→! t ∧ s→! u =⇒ t = u)

UNC : ∀ t ∀u (t↔∗ u ∧ NF(t) ∧ NF(u) =⇒ t = u)

Let P = {CR,SCR,WCR,NFP,UNC,UN}. In FORT 0.2 these properties are considered over all
terms. Let R consist of all (F ,R) where R is a finite left-linear right-ground TRSs over the
finite signature F which contains at least one constant.

∗This work is supported by FWF (Austrian Science Fund) project P27528.

FORT 0.2 F. Rapp and A. Middeldorp

2 Ground versus Non-Ground Properties

The properties supported in FORT 0.1 are restricted to ground terms. So CR in FORT 0.1 stands
for ground-confluence, which is different from confluence, even for left-linear right-ground TRSs.
The TRS

a→ b f(x, a)→ b f(b, b)→ b

is ground-confluent since all ground terms rewrite to b, but not confluent: b← f(x, a)→ f(x, b)
with normal forms b and f(x, b). The same example shows that for no property P ∈ P, GP
implies P , where GP denotes the property P restricted to ground terms. So how can we check a
property P ∈ P using tree automata techniques? The following result provides the answer.

Lemma 1. If (F ,R) ∈ R then

1. (F ,R) � P ⇐⇒ (F ∪ {c},R) � GP for all P ∈ P \ {UNC}
2. (F ,R) � UNC ⇐⇒ (F ∪ {c, c′},R) � GUNC

with fresh constants c and c′.

Proof. For the only-if directions we observe that all properties P ∈ P are preserved under
signature extension [4]. Moreover, (G,R) � P implies (G,R) � GP for all TRSs (G,R) and
properties P ∈ P. For the if-direction, we first consider P ∈ P\{UNC}. Suppose (F ∪{c},R) �
GP and let σ be the substitution that maps all variables to the constant c. Because R is
left-linear and c does not appear in the rules of R, the following property holds for all terms
t ∈ T (F ,V):

(a) if tσ →R u then t→R u′ with u′σ = u.

Moreover,

(b) if t→R u and p ∈ PosV(u) then u(p) = t(p).

This property relies on the right-groundness of R, which entails that the redex contracted in
t →R u cannot be above position p. The above properties allow us to prove (F ,R) � P for
P ∈ {CR,SCR,WCR}. Here we consider P = SCR and let s→R t and s→R u. Closure under
substitutions yields sσ →R tσ and sσ →R uσ. Because (F ∪ {c},R) satisfies GSCR, we obtain
a ground term v ∈ T (F ∪ {c}) such that sσ →=

R v and tσ →∗R v. Property (a) yields terms
v1, v2 ∈ T (F ,V) such that t →=

R v1 and u →∗R v2 with v1σ = v = v2σ. If v1 6= v2 then there
must be a position p ∈ PosV(v1) ∩ PosV(v2) such that v1(p) 6= v2(p). Repeated application of
(b) yields v1(p) = t(p) = s(p) and v2(p) = u(p) = s(p), which is impossible. Hence v1 = v2 and
thus (F ,R) � SCR. The proofs for P = CR and P = WCR are very similar. For P ∈ {UN,NFP}
we need the following additional observation:

(c) if t is a normal form then tσ is a normal form.

Consider P = UN and let s →!
R t and s →!

R u with s ∈ T (F ,V). We obtain sσ →!
R tσ and

sσ →!
R uσ from (c), and thus tσ = uσ because (F ∪ {c},R) satisfies GUN. We need to show

t = u. If this does not hold then there must be a position p ∈ PosV(t) ∩ PosV(u) such that
t(p) 6= u(p). This contradicts t(p) = s(p) and u(p) = s(p), which we obtain from (b). Next
consider P = NFP. So let s→R t and s→!

R u. We obtain sσ →R tσ and sσ →!
R uσ as before.

Hence tσ →∗ uσ because GNFP holds. From property (a) we obtain a term u′ such that t→∗R u′

and u′σ = uσ. Let p be any position in PosV(u′) ∩ PosV(u). Repeated application of property
(b) yields u′(p) = t(p) = s(p) = u(p). Hence u′ = u and thus t→∗R u as desired.

27

FORT 0.2 F. Rapp and A. Middeldorp

Finally we consider P = UNC. So suppose (F ∪ {c, c′},R) � GUNC and let t ↔∗R u with
normal forms t, u ∈ T (F ,V). If t and u are ground then t = u by GUNC. If one of the two
terms is ground, say t, and t 6= u then t 6= uσ and t ↔∗R uσ for the same substitution σ as
before, contradicting GUNC. If both t and u are non-ground and t 6= u then, because tσ = uσ
by GUNC and (c), there has to be a position p ∈ PosV(t) ∩ PosV(u) such that t(p) 6= u(p). In
this case a contradiction is obtained by considering the substitution σ′ that maps t(p) to c and
all other variables to c′.

The following example shows that adding a single fresh constant is insufficient for UNC.

Example 1. The left-linear right-ground TRS R consisting of the rules

a→ b f(x, a)→ f(b, b) f(b, x)→ f(b, b) f(f(x, y), z)→ f(b, b)

does not satisfy UNC since f(x, b)← f(x, a)→ f(b, b)← f(y, a)→ f(y, b) is a conversion between
distinct normal forms. Adding a single fresh constant c is not enough to violate GUNC as the last
two rewrite rules ensure that f(c, b) is the only ground instance of f(x, b) that is a normal form.
Adding another fresh constant c′, GUNC is lost: f(c, b)← f(c, a)→ f(b, b)← f(c′, a)→ f(c′, b).

For termination (SN) and normalizion (WN) there is no need to add fresh constants, since
these properties hold if and only if they hold for all ground terms. For other properties that can
be expressed in the first-order theory of rewriting, one or two fresh constants may be insufficient.
Consider e.g. the formula ϕ:

¬∃ s ∃ t ∃u ∀ v (v ↔∗ s ∨ v ↔∗ t ∨ v ↔∗ u)

which is satisfied on open terms (with respect to any (F ,R) ∈ R). For the TRS consisting of the
rule f(x)→ a and two additional constants c and c′, ϕ does not hold for ground terms because
every ground term is convertible to a, c or c′. It is tempting to believe that adding a fresh unary
symbol g in addition to a fresh constant c, in order to create infinitely many ground normal
forms which can replace variables that appear in open terms, is sufficient for any property P .
The formula ∀ s ∀ t (s→ t =⇒ s

ε−→ t) and the TRS consisting of the rule a→ b show that this
is incorrect.

It is interesting to note that the two properties in the preceding paragraph are not component-
closed [6], unlike the properties in P. This observation can be used to generalize Lemma 1 to
confluence-related properties outside P. The following result shows that for the properties in P
it is not always necessary to add fresh constants. Here a monadic signature consists of constants
and unary function symbols.

Lemma 2. Let (F ,R) ∈ R such that R is ground or F is monadic. For all P ∈ P

(F ,R) � P ⇐⇒ (F ,R) � GP

Proof. First assume that R is ground. In this case only ground subterms can be rewritten.
Given a term t ∈ T (F ,V), we write t = C[[t1, . . . , tn]] if t = C[t1, . . . , tn] and t1, . . . , tn are the
maximal ground subterms of t. So all variables appearing in t occur in C. The following property
is obvious:

1. if t = C[[t1, . . . , tn]]→∗R u then u = C[[u1, . . . , un]] and ti →∗R ui for all 1 6 i 6 n.

Suppose (F ,R) � GCR and consider s →∗R t and s →∗R u with s ∈ T (F ,V). Writing s =
C[[s1, . . . , sn]], we obtain t = C[[t1, . . . , tn]] and u = C[[u1, . . . , un]] with si →∗R ti and si →∗R ui
for all 1 6 i 6 n. GCR yields ti ↓ ui for all 1 6 i 6 n. Hence t ↓ u as desired. The proofs for the

28

FORT 0.2 F. Rapp and A. Middeldorp

other properties in P are equally easy. For UNC note that ↔∗R coincides with →∗R∪R−1 for the
ground TRS R∪R−1, where R−1 is obtained from R by reversing the rewrite rules.

Next suppose that F is monadic. Let (F ,R) � GP and let σ be the substitution that maps
all variables to some arbitrary but fixed ground term. In this case the following property holds:

2. if t ∈ T (F ,V) and t→ u then u ∈ T (F) and tσ → u.

We consider P = NFP and P = UNC and leave the proof for the other properties to the reader.
Let s→R t and s→!

R u. We obtain sσ →R t and sσ →!
R u from property 2. (Note that s 6= u.)

Hence t→∗R u follows from GNFP. Let t↔∗R u with normal forms t and u. If t and u are ground
terms then we obtain t = u from GUNC (after applying the substitution σ to all intermediate
terms in the conversion between t and u). Otherwise, the conversion between t and u must be
empty due to property 2 and the fact that t and u are normal forms. Hence also in this case
t = u.

FORT indeed benefits from this optimization. Checking for GCR of the TRS

f(f(f(x)))→ a f(f(a))→ a f(a)→ a f(f(g(g(x))))→ f(a) g(f(a))→ a g(a)→ a

whose signature is monadic takes 1.73 seconds if a fresh constant is added, compared to 0.85
seconds if Lemma 2 is used.

3 Synthesis Experiments with FORT 0.2

The results of the previous section are incorporated in version 0.2 of FORT. Compared to version
0.1, the properties in P now refer to open terms and we reserve GP with P ∈ P for properties
on ground terms. The property SCR, which is new in version 0.2, can also be used for parallel
rewriting (SCR(−→‖)) and the same holds for the diamond property (3(−→‖)), which is another
addition in FORT 0.2. Further additions can be found in the online documentation of FORT.
Precompiled binaries to run FORT 0.2 from the command line are available from

http://cl-informatik.uibk.ac.at/software/FORT

We report on some synthesis experiments that we performed in FORT 0.2, based on the following
diagram which summarizes the relationships between properties P and GP for P ∈ P:

WCR

SCR

CR NFP UNC UN

GSCR

GWCR GCR GNFP GUNC GUN

The following TRSs were produced by FORT 0.2 on the given formulas when restricting the
signature (using the option -f "f:2 a:0 b:0") to a binary function symbol f and two constants
a and b:

GWCR & ∼WCR & ∼GCR a→ b f(x, a)→ a a→ f(a, a)

GCR & ∼CR & ∼GSCR a→ b f(x, a)→ b b→ f(a, a)

GNFP & ∼NFP & ∼GCR a→ b f(x, a)→ f(a, a) f(b, b)→ f(a, a)

GUNC & ∼UNC & ∼GNFP a→ a f(x, a)→ a f(b, x)→ b

29

FORT 0.2 F. Rapp and A. Middeldorp

tool yes (∅ time) no (∅ time) maybe (∅ time) timeout total time

AGCP 8 (0.02 s) – 56 (0.19 s) 1 71 s

FORT 42 (0.37 s) 14 (3.31 s) – 9 602 s

Table 1: Comparison of AGCP and FORT 0.2 on 65 left-linear right-ground TRSs.

The reader is encouraged to verify that the synthesized TRSs indeed satisfy the indicated
properties. We do not know whether there exist TRSs over the restricted signature that satisfy
GUN & ∼UN & ∼GUNC. Human expertise was used to produce a witness over a larger signature,
which was subsequently simplified using the decision mode of FORT 0.2:

b→ a c→ c d→ c f(x, a)→ A f(x,A)→ A

b→ c d→ e f(x, e)→ A f(c, x)→ A

4 Comparison

The tool AGCP1 uses rewriting induction to automatically prove ground-confluence of many-
sorted TRSs (Aoto & Toyama [1]). In Table 1 we compare FORT 0.2 and AGCP on the
65 left-linear right-ground TRSs from the combined confluence2 and termination3 problem
databases. These TRSs were presented to AGCP as many-sorted TRSs having exactly one sort.
It is interesting to note that there is no difference between confluence and ground-confluence
on this database. We used a 60 seconds time limit. Unlike FORT, AGCP is not restricted to
left-linear right-ground TRSs. Moreover, AGCP is much faster than FORT. In the near future,
we plan to extend FORT to many-sorted TRSs in order to allow a fairer comparison to AGCP.

Acknowledgments Discussions with Bertram Felgenhauer and Vincent van Oostrom helped
to improve the paper. The same holds for the remarks by the anonymous reviewers.

References

[1] T. Aoto and Y. Toyama. Ground confluence prover based on rewriting induction. In Proc. 1st
FSCD, volume 52 of LIPIcs, pages 33:1–33:12, 2016. doi: 10.4230/LIPIcs.FSCD.2016.33.

[2] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press, 1998.

[3] M. Dauchet and S. Tison. The theory of ground rewrite systems is decidable. In Proc. 5th LICS,
pages 242–248, 1990. doi: 10.1109/LICS.1990.113750.

[4] A. Middeldorp. Modular Properties of Term Rewriting Systems. PhD thesis, Vrije Universiteit,
Amsterdam, 1990.

[5] F. Rapp and A. Middeldorp. Automating the first-order theory of left-linear right-ground
term rewrite systems. In Proc. 1st FSCD, volume 52 of LIPIcs, pages 36:1–36:12, 2016.
doi: 10.4230/LIPIcs.FSCD.2016.36.

[6] H. Zantema. Termination of term rewriting: Interpretation and type elimination. JSC, 17(1):23–50,
1994. doi: 10.1006/jsco.1994.1003.

1http://www.nue.ie.niigata-u.ac.jp/tools/agcp/
2http://cops.uibk.ac.at/
3http://termination-portal.org/wiki/TPDB

30

Ground Confluence Proof with Pattern Complementation∗

Takahito Aoto1 and Yoshihito Toyama2

1 Faculty of Engineering, Niigata University
aoto@ie.niigata-u.ac.jp
2 RIEC, Tohoku University

toyama@nue.riec.tohoku.ac.jp

Abstract

In (Aoto&Toyama, FSCD 2016), we gave a procedure for proving ground confluence of many-sorted

TRSs based on rewriting induction for proving bounded ground convertibility. The procedure needs to

find a strongly quasi-reducible terminating set of rules from the given input TRS to make the rewriting

induction work. It turns out, however, that such a subset of rewrite rules is often not present in the

input TRS. In this note, we propose an improvement of the procedure; in the new procedure, firstly

the lack of defining patterns is detected using pattern complementation procedure (Lazrek et al., I&C

1990), and then possible defining rules that can be appended to obtain a strongly quasi-reducible

terminating TRS are searched. The new procedure is useful to prove ground confluence of some TRSs

automatically which have been failed in the previous procedure.

1 Introduction

A term rewriting system (TRS for short) is ground confluent if all ground terms are confluent.
Procedures for proving ground confluence have been studied in e.g. [2, 5, 3, 4]. In [1], a procedure
for proving ground confluence of many-sorted TRSs based on rewriting induction, aiming for
proving bounded ground convertibility. For making the rewriting induction work, the procedure
needs to find a strongly quasi-reducible terminating set of rules from the given input TRS. It
turns out, however, that such a subset of rewrite rules is often not present in the input TRS.

In this note, we propose an improvement of the procedure. In our new procedure, firstly
the lack of defining patterns is detected using pattern complementation procedure [6]. Then
the rewrite rules to define such pattern are searched by combining multiple rewrite steps of
the input TRS. Then founded rewrite rules are added to the input TRS to form a strongly
quasi-reducible terminating subset of rewrite rules so that the rewriting induction can work on
it. We also report a result of preliminary experiment.

2 Preliminaries

We assume basic familiarity with (many-sorted) term rewriting (e.g. [7]).
The transitive reflexive (reflexive, symmetric, reflexive symmetric, equivalence) closure of a

relation → is denoted by
∗→ (resp.

=→, ↔,
=↔,

∗↔). For any quasi-order %, we put � = % \ -
and ≈ = % ∩-. A quasi-order % is well-founded if so is its strict part �.

Let S be a set of sorts. Each many-sorted function f is equipped with its sort declaration
f : α1 × · · · × αn → α0, where α0, . . . , αn ∈ S (n ≥ 0). The set of terms over the set of many-
sorted function symbols F and the set of variables V is denoted by T(F ,V). The set of function
symbols (variables) contained in a term t is denoted by F(t) (resp. V(t)). The set of ground

∗This work is partially supported by JSPS KAKENHI (Nos. 15K00003, 25280025).

Ground Confluence Proof with Pattern Complementation T. Aoto and Y. Toyama

terms over G ⊆ F is denoted by T(G). A ground substitution is a mapping from V to T(F).
A rewrite relation (quasi-order) is a relation (resp. quasi-order) on terms closed under contexts
and substitutions. A rewrite relation (quasi-order) is a reduction relation (resp. quasi-order) if
it is well-founded. (Indirected) equations l

.
= r and r

.
= l are identified. A directed equation

l → r is a rewrite rule if l /∈ V and V(l) ⊇ V(r) hold. A (many-sorted) term rewriting system
(TRS for short) is a finite set of rewrite rules. The smallest rewrite relation containing R is
denoted by →R. The set of critical pairs of a TRS R is denoted by CP(R).

Terms s and t are joinable w.r.t. the rewrite relation →R (denoted by s ↓R t) if s
∗→R u

and t
∗→R u for some u. A TRS R is (ground) confluent if s ↓R t holds for any (ground)

terms s, t such that u
∗→R s and u

∗→R t for some (resp. ground) term u. Terms s and t are

ground convertible if sσg
∗↔R tσg holds for any ground substitution σg. An equation s

.
= t is

an inductive theorem of a TRS R, or inductively valid in R, if s and t are ground convertible.
We write R |=ind E for a set E of equations (pairs, rewrite rules) if every equation s

.
= t is an

inductive theorem for any s
.
= t (〈s, t〉, s→ t) in E.

We consider a partition of function symbols into the set D of defined symbols, and the set C
of constructors i.e. F = D] C. Terms in T(C, V) are constructor terms. Then a mapping from
V to T(C) is called a ground constructor substitution. The set of ground basic terms is defined
by TB(D, C) = {f(c1, . . . , cn) | f ∈ D, ci ∈ T(C)}. A TRS R is said to be quasi-reducible if no
ground basic terms are normal. Clearly, if R is a quasi-reducible terminating TRS then for any
ground term s there exists t such that s

∗→ t ∈ T(C).

3 Ground Confluence Proof by Rewriting Induction

In [1], the authors give a system of rewriting induction for proving ground confluence of many-
sorted term rewriting systems. The procedure is described as follows:

GCR Procedure 1

Input: TRS R
Output: YES or MAYBE

1. Compute (possibly multiple) candidates for the partition F = D] C of function symbols.

2. Compute (possibly multiple) candidates for strongly quasi-reducible R0 ⊆ R.

3. Find a reduction quasi-order % such that R0 ⊆ �.

4. Run rewriting induction for proving bounded ground convertibility of CP(R0) with %.

5. Run rewriting induction for proving R0 |=ind (R \R0).

6. Return YES if it succeeds in steps 4 and 5, otherwise MAYBE.

Note here that strong quasi-reducibility [1] and quasi-reducibility coincide when constructors
are free, i.e.D = {l(ε) | l→ r ∈ R}. To make the explanation simple, here after we only consider
free constructors.

Proposition 1 ([1]). If GCR Procedure 1 returns YES then R is ground confluent.

As indicated above, for the procedure shown to work, it is required that there exists
(strongly) quasi-reducible and terminating subset R0 ⊆ R. Experiments in [1], however, reveal
that there are cases that there does not exist such an R0.

32

Ground Confluence Proof with Pattern Complementation T. Aoto and Y. Toyama

Example 2 (Cops 128). Let F = {plus : Nat× Nat→ Nat, s : Nat→ Nat, 0 : Nat} and

R =





plus(0, y) → y (a)
plus(x, s(y)) → s(plus(x, y)) (b)
plus(x, y) → plus(y, x) (c)





Then there exists no quasi-reducible and terminating subsets of R.

A natural candidate of quasi-reducible terminating R0 here would be

R0 =

{
plus(0, y) → y (a)
plus(s(x), y) → s(plus(x, y)) (b′)

}

Indeed, the rewrite rule (b′) is equationally valid as

plus(s(x), y)→(c) plus(y, s(x))→(b) s(plus(y, x))→(c) s(plus(x, y))

However, the rewrite rule (b′) is not contained in R and thus the procedure given in [1] fails to
prove ground confluence of this system.

4 Ground Confluence Proof with Pattern Complementa-
tion

A finite set P of basic terms is called a pattern. Intuitively, the set P can be regarded as
expressing a set of ground terms given as Inst(P) = {pσgc | p ∈ P, σgc : V → T(C)}. A finite set
Q of terms is said to be a complement (w.r.t. TB(D, C)) of P if Inst(P)] Inst(Q) = TB(D, C).
We denote Q as TB(D, C)	 P .

A pattern P is linear if so are all its elements. Theorem 1 of [6] gives an algorithm to
compute Q from P (complementation algorithm) for any linear pattern P .

Example 3. Let R be TRS in Example 2. Let P0 = {plus(0, y)} and P1 = {plus(x, s(y))}.
Then TB(D, C)	 P0 = {plus(s(x), y)} and TB(D, C)	 P1 = {plus(x, 0)}. Furthermore, we have
TB(D, C)	 (P0 ∪ P1) = {plus(s(x), 0)}.

GCR Procedure 2

Input: TRS R
Output: YES or MAYBE

1. Compute (possibly multiple) candidates for the partition F = D] C of function symbols.

2. Find left-linear R0 ⊆ R and a reduction quasi-order % such that R0 ⊆ �.

3. Compute a complement P = TB(D, C)	 lhs(R0), where lhs(R0) = {l | l → r ∈ R0}. For

each p ∈ P find p′ such that p
∗→R p′ and p � p′. Let R1 = R0 ∪ {p→ p′ | p ∈ P}.

4. Run rewriting induction for proving bounded ground convertibility of CP(R1) with %.

5. Run rewriting induction for proving R1 |=ind (R \R0).

6. Return YES if it succeeds in steps 4 and 5, otherwise MAYBE.

33

Ground Confluence Proof with Pattern Complementation T. Aoto and Y. Toyama

Table 1: Preliminary experiments

problem added equation(s)
steps

#1 #2 #3
Cops 128 +(s(x), 0)→ s(x) × X X

Cops 130





and3(F,T,T)→ F
and3(F,F,T)→ F
and3(T,F,T)→ F



 × × X

Cops 133 +(0, s(x))→ s(x) × X X
Cops 137 max(0, s(y))→ s(y) × X X
Cops 140 +(s(x), 0)→ s(x) × X X
Cops 146 +(0, s(x))→ s(x) × X X
Cops 165 max(0, s(y))→ s(y) × X X
Cops 174 +(0, s(x))→ s(x) × X X
Cops 180 +(s(x), 0)→ s(x) × X X
Cops 186 +(0, s(x))→ s(x) × X X
Cops 197 or(F,T)→ T × X X
Cops 210 +(s(x), 0)→ s(x) × X X
Cops 234 eq(0, 0)→ true X X X

total time (seconds) 32.694 32.620 33.052

Theorem 4. If GCR Procedure 2 returns YES then R is ground confluent.

Proof. Let R′ = R ∪ (R1 \ R0). Then we have →R ⊆ →R′ ⊆ ∗→R and thus the ground
confluence of R follows from that of R′.

Example 5. Let R be a TRS given in Example 2. Suppose - be the lpo based on the
precedence plus � s � 0. Then the GCR Procedure 2 puts R0 = {(a), (b)} and one has
P = TB(D, C) 	 lhs(R0) = {plus(s(x), 0)}. By plus(s(x), 0) → plus(0, s(x)) → s(x), one gets
R1 = R0∪{plus(s(x), 0)→ s(x)}. Then CP(R1) = ∅ and one successfully proves R1 |=ind {(c)}
by rewriting induction. Thus R is proved to be ground confluent.

5 Implementation and Experiment

A preliminary implementation has been done on AGCP so that when no strongly quasi-reducible
subset is found it computes a complement of the defining patterns and adds defining rules.
We used rewrite steps of length up to 7 to find p′ such that p

∗→R p′ in the Step 3 of the
GCR procedure 2. We tested our preliminary implementation on the collection of 121 ground
confluence problems given in [1].

We found that 13 new examples can be handled using our preliminary implementation. The
summary is presented in Table 1. Here, the column below “steps” shows results when length of
rewrite steps to find p′ are changed. Here, X shows success and and × shows failure. All these
examples are proved by ≤ 3 steps, one needs 3 steps only for Cops 130. Total time indicates
the time required for running the prover on the collection of 121 ground confluence problems.
Tests are performed on a PC with one 2.50GHz CPU and 4G memory. We impose 5 (resp. 1)
seconds time limit rewriting induction proof (resp. computation of constructors). It turns out
that changing the length from 1 step to 3 does not affect the total running time. However, with

34

Ground Confluence Proof with Pattern Complementation T. Aoto and Y. Toyama

length 7, the total time exceeds 2 minutes and with length 8 we cannot complete the experiment
within 10 minutes.

Example 6 (Cops 130). Let F = {and3 : Bool× Bool× Bool→ Bool,T : Bool,F : Bool} and

R =





and3(x, y,F) → F (a)
and3(T,T,T) → T (b)
and3(x, y, z) → and3(y, z, x) (c)





Let D = {and3} and C = {T,F}. Take R0 = {(a), (b)}. Then one obtains TB(D, C)	 lhs(R0) =
{and3(F,T,T), and3(F,F,T), and3(T,F,T)}. Then and3(F,T,T) →R and3(T,T,F) →R F and
and3(F,F,T)→R and3(F,T,F)→R F. But and3(T,F,T)→R and3(F,T,T)→R and3(T,T,F)→R
F. Let us consider multiset path ordering with and3 � T � F. Then considering 2 steps at p

∗→ p′

in the Step 3 of the procedure does not suffice as and3(T,F,T) 6�mpo and3(T,T,F). By consider-

ing 3 steps at p
∗→ p′ in the Step 3 of the procedure, we obtain a rewrite rule and3(T,F,T)→ F

such that and3(T,F,T) �mpo F.

Sometimes computation of p
∗→ p′ diverges. The next example illustrates this.

Example 7. Cops 62 contains the following rewrite rules:

mod(0, y) → 0 (a) mod(x, 0) → x (c)
mod(x, s(y)) → if(<(x, s(y)), x,mod(−(x, s(y)), s(y))) (b)

Then R0 = {. . . , (a), (c), . . .} and (b) /∈ R0 due to ordering restriction. Then mod(s(x), s(y)) ∈
P , and the procedure searches some rewrite rule mod(s(x), s(y)) → r. However, the set {r |
mod(s(x), s(y))

∗→R r} is infinite and there is no r satisfying mod(s(x), s(y)) � r.

6 Conclusion

We have shown how the procedure for proving ground confluence of many-sorted TRSs in [1]
is improved by constructing new rewrite rules necessary for making the rewriting induction
work. We have presented our new procedure and shown its correctness. We have reported on
our preliminary implementation and experiment. There are 13 new examples for which ground
confluence can be proved from the collection of 121 examples, where the previous procedure
can prove 86 problems.

References

[1] T. Aoto and Y. Toyama. Ground confluence prover based on rewriting induction. In Proc. of 1st
FSCD, volume 52 of LIPIcs, pages 33:1–12, 2016.

[2] K. Becker. Proving ground confluence and inductive validity in constructor based equational spec-
ifications. In Proc. of 4th TAPSOFT, volume 668 of LNCS, pages 46–60. Springer-Verlag, 1993.

[3] A. Bouhoula. Simultaneous checking of completeness and ground conflunce for algebraic specifica-
tions. ACM Transactions on Computational Logic, 10(2):20:1–33, 2009.

[4] H. Ganzinger. Ground term confluence in parametric conditional equational specifications. In Proc.
of 4th STACS, volume 247 of LNCS, pages 286–298, 1987.

[5] R. Göbel. Ground confluence. In Proc. of 2nd RTA, volume 256 of LNCS, pages 156–167, 1987.

[6] A. Lazrek, P. Lescanne, and J. J. Thiel. Tools for proving inductive equalities, relative completeness,
and ω-completeness. Information and Computation, 84:47–70, 1990.

[7] Terese. Term Rewriting Systems. Cambridge University Press, 2003.

35

An Algebraic Approach to Confluence and Completion
Cyrille Chenavier

INRIA, équipe πr2

Laboratoire IRIF
Université Paris-Diderot

chenavier@pps.univ-paris-diderot.fr

Abstract

We propose a functional description of rewriting systems where reduction rules are
represented by linear maps called reduction operators. We exhibit a lattice structure on
the set of reduction operators. Using this structure we formulate the equivalent notions
of confluence and Church-Rosser property. We relate these notions to the classical ones
coming from abstract rewriting theory. We also give an algebraic formulation of confluence.

1 Introduction

Reduction operators were introduced by Berger for finite dimensional vector spaces. His moti-
vation was to study the homology of a special class of algebras called finitely generated homoge-
neous algebras. The elements of these algebras are non-commutative polynomials over a finite
number of variables modulo the congruence spanned by a set of oriented homogeneous relations
having the same degree. By degree, we mean the one induced by the length of non-commutative
monomials. The latter are identified with words. Berger considered the linear endomorphism
mapping every left-hand side of a rewrite rule to its right-hand side. This is an endomorphism
of the vector space spanned by words whose length is the degree of the rewriting rules. The
number of variables being finite, this vector space is of finite dimension. It turns out that the
endomorphism described previously is a reduction operator. Berger also proved that the set
of reduction operators admits a lattice structure. We point out that in order to obtain this
structure, he needs to consider finite dimensional vector spaces. He deduces from this structure
a lattice formulation of the confluence for homogeneous rewriting systems. Using this point of
view, one can study the homological property of Koszulness ([1, 2, 3, 8, 6]). For the definition
of Koszulness, we refer the reader to [10] and [3].

In the next section, we propose to develop a notion of reduction operator for non-necessarily
finite dimensional vector spaces. Our motivation is that we want to use the theory of reduction
operators to study non-homogeneous algebras. For such algebras, we do not have any bound
for the degree of a word appearing in a rewrite rule. Hence, the operator described in the
previous paragraph is an endomorphism of the vector space spanned by all words which is
infinite dimensional. We consider vector spaces admitting a basis equipped with a well-founded
total order. We introduce a lattice structure on the set of reduction operators associated to
such a vector space and deduce an algebraic formulation of the confluence. This formulation
generalises the one obtained by Berger for finite sets.

In the last section, we relate our notion of confluence to the classical one coming from
rewriting theory. For that, we formulate the notion of Church-Rosser property in terms of
reduction operators which turns out to be equivalent to the one of confluence. We also formulate
the completion in terms of reduction operators. Classical completion algorithms exist: the
Knuth-Bendix completion algorithm [7] for term rewriting or the Buchberger algorithm [4, 5, 9]
for Gröbner bases. These algorithms add new rules to a rewriting system to obtain an equivalent

An Algebraic Approach to Confluence and Completion C. Chenavier

one which moreover is convergent. For reduction operators, our purpose is to complete a set F
of such operators. A completion of F is a confluent set F ′ containing F which is such that the
lower bounds of the sets F and F ′ are equal. We also study the question of the existence of a
completion. To this end, we introduce an operator CF called the F-complement and state that
the set F ∪

{
CF
}
is a completion of F .

2 Reduction Operators

2.1 First Definitions

2.1.1. Notations. We denote by K a commutative field. Throughout the paper, we fix a well-
ordered set (G,<). We denote by KG the vector space spanned by G: the non-zero elements
are the finite formal linear combinations of elements of G with coefficients in K. For every
v ∈ KG \ {0}, there exist a unique finite subset Sv of G, called the support of v, and a unique
family of non zero scalars (λg)g∈Sv

such that

v =
∑

g∈Sv

λgg.

2.1.2. Partial Order on the Vectors. The order on G being total, for every v ∈ KG, the
set Sv admits a greatest element, written lg (v). The element lg (v) is the leading generator of
v. We extend the order < on G into a partial order on KG in the following way: we have u < v
if u = 0 and v is different from 0 or if lg(u) < lg(v).

2.1.3. Reduction Operators. A linear endomorphism T of KG is a reduction operator rel-
ative to (G,<) if it is idempotent and if for every g ∈ G, we have T (g) ≤ g. We denote by
RO (G,<) the set of reduction operators relative to (G,<). Given a reduction operator T , a
generator g is said to be T-reduced if T (g) is equal to g. We denote by Red (T) the set of
T -reduced generators and by Nred (T) the complement of Red (T) in G.

2.1.4. Remark. Let T be a reduction operator relative to (G,<). The image of T is equal to
KRed (T).

2.2 Lattice Structure and Confluence

Our aim is to equip the set RO (G,<) with a lattice structure. To define it, let L (KG) be the
set of subspaces of KG. The following proposition extends the one obtained by Berger when G
is finite

2.2.1. Proposition. The map

RO (G,<) −→ L (KG) ,
T 7−→ ker (T)

is a bijection.

37

An Algebraic Approach to Confluence and Completion C. Chenavier

2.2.2. Remark. The hard part of the proof is to show that the restriction of the kernel map
to the set of reduction operators is onto. When G is finite and V is a subspace of KG, the
gaussian elimination enables us to construct the reduction operator with kernel V . For the non-
necessarily finite case, we need to consider an inductive construction to obtain this operator.
We point out that when G is finite this inductive construction is not the same algorithm than
the gaussian elimination.

2.2.3. Lattice Structure. The application mapping a subspace of KG to the operator whose
kernel is this subspace is written θ. We consider the binary relation on RO (G,<) defined by

T1 � T2 if and only if ker (T2) ⊂ ker (T1) .

This relation is reflexive and transitive. From Proposition 2.2.1, it is also anti-symmetric.
Hence, it is an order relation on RO (G,<). Let us equip RO (G,<) with a lattice structure.
The lower bound T1 ∧T2 and the upper bound T1 ∨T2 of two elements T1 and T2 of RO (G,<)
are defined in the following manner:

{
T1 ∧ T2 = θ (ker(T1) + ker(T2)) ,

T1 ∨ T2 = θ (ker(T1) ∩ ker(T2)) .

Our aim is to formulate the notion of confluence using this lattice structure. For that, we need
the following:

2.2.4. Lemma. Let T1 and T2 be two reduction operators relative to (G,<). Then, we have:

T1 � T2 =⇒ Red (T1) ⊂ Red (T2) .

2.2.5. Obstructions. Let F be a subset of RO (G,<). We let

Red (F) =
⋂

T∈F
Red (T) and ∧ F = θ

(∑

T∈F
ker (T)

)
.

For every T ∈ F , we have ∧F � T . Thus, from Lemma 2.2.4, the set Red (∧F) is included in
Red (T) for every T ∈ F , so that it is included in Red (F). We write

ObsFred = Red (F) \ Red (∧F) . (1)

2.2.6. Confluence. A subset F of RO (G,<) is said to be confluent if ObsFred is the empty
set.

3 Rewriting Properties and Completion

3.1 Reduction Operators and Abstract Rewriting
In this section, we explain how our notion of confluence is related to the one coming from
rewriting theory. For that, consider the abstract rewriting system

(
KG,−→

F

)
defined by v −→

F

v′ if and only if there exists T ∈ F such that v does not belong to im (T) and v′ is equal to
T (v).

38

An Algebraic Approach to Confluence and Completion C. Chenavier

3.1.1. Church-Rosser Property. We denote by 〈F 〉 the submonoid of (End (KG) , ◦) spanned
by F . Let v and v′ be two elements of KG. We say that v rewrites into v′ if there exists R ∈ 〈F 〉
such that v′ is equal to R(v). We say that F has the Church-Rosser property if for every v ∈ KG,
v rewrites into ∧F (v). The following result is the analogous of the Church-Rosser theorem for
reduction operators:

3.1.2. Theorem. A subset of RO (G,<) is confluent if and only if it has the Church-Rosser
property.

3.1.3. Equivalence Relations. We denote by ∗←→
F

the reflexive transitive symmetric closure

of −→
F

. We easily show that we have v ∗←→
F

v′ if and only if v − v′ belongs to the kernel of
∧F . We deduce that F has the Church-Rosser property if and only if it is so for −→

F
. From

Theorem 3.1.2, we get:

3.1.4. Proposition. Let F be a subset of RO (G,<). Then, F is confluent if and only if it
is so for −→

F
.

3.1.5. Multi-Set Order. Given an element v of KG, let Sv be the support of v. We introduce
the order <mul on KG defined in the following way: we have v <mul v

′ if for every g ∈ Sv such
that g does not belong to Sv′ , there exists an element g′ ∈ Sv′ not appearing in Sv, such that
g < g′.

3.1.6. Obstructions and Abstract Rewriting. For every v ∈ KG, ∧F (v) is the smallest
element v′ ∈ KG for <mul such that v− v′ belongs to the kernel of ∧F . Hence, denoting by [v]

the class of v for ∗←→
F

, we deduce from Proposition 3.1.4 that ∧F (v) is the smallest element of

[v] for <mul. In particular, ObsFred being the set of elements of G fixed by every element of T
but not fixed by ∧F , KObsFred is the set of normal forms for −→

F
which are not minimal in their

equivalence classes.

3.2 Completion

In this section, we investigate the notion of completion in terms of reduction operators.

3.2.1. Definition. Let F be a subset of RO (G,<).

1. A completion of F is a subset F ′ of RO (G,<), such that

(a) F ′ is confluent,
(b) F ⊂ F ′ and ∧F ′ = ∧F .

2. A complement of F is an element C of RO (G,<) such that

(a) (∧F) ∧ C = ∧F ,
(b) ObsFred ⊂ Nred (C).

A complement is said to be minimal if the inclusion 2b is an equality.

The link between a complement and a completion is the following:

39

An Algebraic Approach to Confluence and Completion C. Chenavier

3.2.2. Proposition. Let C ∈ RO (G,<) such that (∧F)∧C is equal to ∧F . The set F ∪{C}
is a completion of F if and only if C is a complement of F.

3.2.3. Remark. The operator ∧F is a complement of F . However, in general, this comple-
ment is not minimal. Our aim is to exhibit a minimal complement.

3.2.4. The F -Complement. Letting ∨F = θ (KRed (F)), the operator

CF = (∧F) ∨
(
∨F
)
,

is the F-complement.

3.2.5. Theorem. Let F be a subset of RO (G,<). The F-complement is a minimal comple-
ment of F.

References

[1] Roland Berger. Confluence and Koszulity. J. Algebra, 201(1):243–283, 1998.
[2] Roland Berger. Weakly confluent quadratic algebras. Algebr. Represent. Theory, 1(3):189–213,

1998.
[3] Roland Berger. Koszulity for nonquadratic algebras. J. Algebra, 239(2):705–734, 2001.
[4] Bruno Buchberger. Ein Algorithmus zum Auffinden der Basiselemente des Restklassenrings nach

einem nulldimensionalen Polynomideal. Universitat Innsbruck, Austria, Ph. D. Thesis, 1965.
[5] Bruno Buchberger. History and basic features of the critical-pair/completion procedure. J. Sym-

bolic Comput., 3(1-2):3–38, 1987. Rewriting techniques and applications (Dijon, 1985).
[6] Cyrille Chenavier. Confluence Algebras and Acyclicity of the Koszul Complex. Algebr. Represent.

Theory, 19(3):679–711, 2016.
[7] Donald E. Knuth and Peter B. Bendix. Simple word problems in universal algebras. In Com-

putational Problems in Abstract Algebra (Proc. Conf., Oxford, 1967), pages 263–297. Pergamon,
Oxford, 1970.

[8] Benoit Kriegk and Michel Van den Bergh. Representations of non-commutative quantum groups.
Proc. Lond. Math. Soc. (3), 110(1):57–82, 2015.

[9] Teo Mora. An introduction to commutative and noncommutative Gröbner bases. Theoret. Comput.
Sci., 134(1):131–173, 1994. Second International Colloquium on Words, Languages and Combina-
torics (Kyoto, 1992).

[10] Stewart B. Priddy. Koszul resolutions. Trans. Amer. Math. Soc., 152:39–60, 1970.

40

Decreasing Diagrams: Two Labels Suffice

Jörg Endrullis1, Jan Willem Klop1,2, and Roy Overbeek1

1 Vrije Universiteit Amsterdam,
Department of Computer Science,

Amsterdam, the Netherlands
2 Centrum Wiskunde & Informatica (CWI),

Amsterdam, the Netherlands

Abstract

The decreasing diagrams technique is one of the strongest and most versatile methods
for proving confluence of abstract reductions systems. The technique employs a labelling
of the steps → with labels from a well-founded order (I,<) in order to conclude confluence
of the underlying unlabelled relation.

Our point of departure was the following natural question: How does the size of the
label set I influence the strength of the decreasing diagrams technique? In particular, what
class of abstract reduction systems can be proven confluent using decreasing diagrams with
1 label, 2 labels, 3 labels, and so on? Surprisingly, we find that 2 labels are sufficient to
prove confluence for every abstract rewrite system having the cofinality property, thus in
particular every confluent, countable system.

1 Introduction

A binary relation → is called confluent if two co-initial reductions can always be extended to
co-final reductions, that is:

∀abc.
(
b� a� c⇒ ∃d. b� d� c

)
.

The method of choice for proving confluence is the decreasing diagrams technique. The
power of decreasing diagrams is witnessed by the fact that many well-known confluence criteria
are direct consequences of decreasing diagrams: the lemma of Hindley–Rosen [3, 7], Rosen’s
request lemma [7], Newman’s lemma [6], and Huet’s strong confluence lemma [4]. Moreover,
Van Oostrom has shown [10] that the decreasing diagrams technique is complete for systems
having the cofinality property [8, p. 766]. Thus, in particular for every confluent, countable
abstract reduction system, the confluence property can be proven using the decreasing diagrams
technique.

What makes the decreasing diagrams technique so powerful? The freedom to label the steps
sets decreasing diagrams apart from all other confluence criteria, with the exception of the
equally powerful weak diamond property [1, 2] by De Bruijn. This suggests that the power of
these techniques arises from the labelling. This naturally leads to the following questions. Can
the size of the label set I serve as a measure of difficulty of a confluence problem? What class
of abstract reduction systems can be proven confluent using decreasing diagrams with 1 label, 2
labels, 3 labels and so on?

More generally, we can define classes DCRα for every ordinal α as follows.

Definition 1.1. Let DCR denote the class of abstract reduction systems whose confluence can
be proven using decreasing diagrams. For ordinals α, let DCRα denote the class for which
confluence can be proven with label set {β | β < α} ordered by the usual order < on ordinals.

Decreasing Diagrams: Two Labels Suffice J. Endrullis, J. W. Klop and R. Overbeek

Note that DCR implies DCRα for some ordinal α. The reason is that any partial well-founded
order can be transformed into a total well-founded order (thus an ordinal).

Clearly, we have DCRα ⊆ DCRβ whenever α < β. But which of these inclusions are strict?
From the completeness proof in [10] it follows that all abstract reduction systems having the
cofinality property, including all countable systems, belong to DCRω.

Surprisingly, we find that all systems with the cofinality property are already in the class
DCR2. In particular, for proving confluence of countable abstract reduction systems it always
suffices to label steps with 0 or 1 using the order 0 < 1.

2 Preliminaries

Let A be a set. For a relation → ⊆ A×A we write →∗ or � for its reflexive transitive closure.
We write ≡ for the empty step, that is, ≡ = {(a, a) | a ∈ A}, and we define →≡ =→ ∪ ≡.

Definition 2.1 (Abstract Reduction System). An abstract reduction system (ARS) A = (A,→)
consists of a non-empty set A together with a binary relation→ ⊆ A×A. For B ⊆ A we define
A|B , the restriction of A to B, by A|B = (B, →∩ (B ×B)).

Definition 2.2 (Confluence). An ARS (A,→) is confluent (CR) if � ·� ⊆ � ·�, that is,
every pair of finite, co-initial rewrite sequences can be joined to a common reduct.

Definition 2.3 (Countable). An ARS (A,→) is countable (CNT) if there exists a surjective
function from the set of natural numbers N to A.

Definition 2.4 (Cofinal Reduction). Let A = (A,→) be an ARS. A set B ⊆ A is cofinal in A
if for every a ∈ A we have a � b for some b ∈ B. A finite or infinite reduction sequence
b0 → b1 → b2 → · · · is cofinal in A if the set B = { bi | i ≥ 0 } is cofinal in A.

Definition 2.5 (Cofinality Property). An ARS A = (A,→) has the cofinality property (CP) if
for every a ∈ A, there exists a reduction a ≡ b0 → b1 → b2 → · · · that is cofinal in A|{b | a�b}.

Lemma 2.6. Let A = (A,→) be a confluent ARS and a ∈ A. If a rewrite sequence is cofinal
in A|{b | a�b}, then it is also cofinal in A|{b | a↔∗b}.

Theorem 2.7 (Klop [5]). Every confluent countable ARS has the cofinality property.

Next, we introduce indexed ARSs and the decreasing diagrams technique.

Definition 2.8 (Indexed ARS). An indexed ARS A = (A, {→α}α∈I) consists of a non-empty
set A, and a family {→α}α∈I of relations →α ⊆ A×A indexed by some set I.

For an indexed ARS A = (A, {→α}α∈I) and a relation < ⊆ I × I, we define

→ =
⋃
α∈I →α →<β =

⋃
α<β →α →≤β =

⋃
α≤β →α

Moreover, we use →<α∪<β as shorthand for (→<α ∪ →<β).

Definition 2.9 (Decreasing Church–Rosser [9]). An ARS A = (A,) is called decreasing
Church–Rosser (DCR) if there exists an ARS B = (A, {→α}α∈I) indexed by a well-founded
partial order (I,<) such that =→ and every peak c←β a→α b can be joined by reductions
of the form shown in Figure 1.

Theorem 2.10 (Decreasing Diagrams – De Bruijn [1] & Van Oostrom [9]). If an ARS is
decreasing Church–Rosser, then it is confluent.

42

Decreasing Diagrams: Two Labels Suffice J. Endrullis, J. W. Klop and R. Overbeek

3 Decreasing Diagrams with Two Labels

a b

c d

α

β

< α

β or ≡

< α ∪ < β

< β α
or ≡

< α
∪ < β

Figure 1: Decreasing elementary diagram;
green lines stand for weak decrease (≥),
red arrows for strict decrease (>). Further-
more, multiple incoming arrows represent
choice, thus weakening the requirements.

In this section we show that two labels suffice for
proving confluence using decreasing diagrams for
any abstract reduction system having the cofinal-
ity property.

Let A = (A,→) be an ARS having the cofinal-
ity property. Note that, for defining the labelling,
we can consider connected components separately.
Thus assume that A consists of a single connected
component, that is, for every a, b ∈ A we have
a↔∗ b. By the cofinality property and Lemma 2.6
there exists a rewrite sequence

m0 → m1 → m2 → m3 → · · ·

that is cofinal in A; we call this rewrite sequence
the main road. Without loss of generality we may
assume that the main road contains no cycles, that
is, mi 6≡ mj whenever i 6= j.

The idea of labelling the steps in A is as follows. For every node a ∈ A, we label precisely
one of the outgoing edges with 0 and all others with 1. The edge labelled with 0 must be part
of a shortest path from a to the main road. For the case that a lies on the main road, the step
labelled 0 must be the step on the main road. This is illustrated in Figure 2.

m0
m1

m2

m3 m4

m5 · · ·
0

0

0
0

0
0

n0

n1
n2

n3

1

0

1
0

0

n4
n5

n6

10

1

0

0

0

1

n7

1 1

0

1

main road

minimizing

non-minimizing

Figure 2: Example labelling.

Note that there is a choice about which edge to label with 0 whenever there are multiple
outgoing edges that all start a shortest path to the main road. To resolve this choice, the
following definition assumes a well-order < on the universe A, whose existence is guaranteed
by the well-ordering theorem. Then, whenever there is a choice, we choose the edge for which
the target is minimal in this order.

Remark 3.1. Recall that the Axiom of Choice is equivalent to the well-ordering theorem. In
many practical cases, however, the existence of such a well-order does not require the Axiom
of Choice. If the universe is countable, then such a well-order can be derived directly from the
surjective counting function f : N→ A.

In the following definition we follow the proof in [8, Proposition 14.2.30, p. 766] employing
the notion of a cofinal sequence and the rewrite distance from a point to this sequence. While
the proof in [8] labels steps by their distance to the target node, we need a more sophisticated
labelling.

43

Decreasing Diagrams: Two Labels Suffice J. Endrullis, J. W. Klop and R. Overbeek

Definition 3.2. Let A = (A,→) be an ARS and M : m0 → m1 → m2 → · · · be a finite or
infinite rewrite sequence in A. For a, b ∈ A, we write

(i) a ∈M if a ≡ mi for some i ≥ 0, and

(ii) (a→ b) ∈M if a ≡ mi and b ≡ mi+1 for some i ≥ 0.

If M is cofinal in A, we define the distance d(a,M) as the least natural number n ∈ N such
that a→n m for some m ∈M . If M is clear from the context, we write d(a) for d(a,M).

Definition 3.3 (Labelling with Two Labels). Let A = (A,→) be an ARS equipped with a
well-order < on A such that there exists a cofinal reduction M : m0 → m1 → m2 → · · · that is
free of cycles (that is, for all i < j, mi 6≡ mj).

We say that a step a→ b is

(i) on the main road if (a→ b) ∈M ;

(ii) minimizing if d(a) = d(b) + 1 and b′ ≥ b for every a→ b′ with d(b′) = d(b).

We define an indexed ARS A{0,1} = (A, {→i}i∈I) where I = { 0, 1 } as follows:

a→0 b ⇐⇒ a→ b and this step is on the main road or minimizing

a→1 b ⇐⇒ a→ b and this step is not on the main road and not minimizing

for every a, b ∈ A.

Lemma 3.4. Let A = (A,→) be an ARS with a cofinal rewrite sequence M : m0 → m1 → · · ·
that is free of cycles (that is, for all i < j, mi 6≡ mj). Furthermore, let < be a well-order over
A. Then for A{0,1} = (A,→0,→1) we have:

(i) → = →0 ∪ →1 ;

(ii) for every a, b ∈M we have a�0 ·�0 b ;

(iii) for every a ∈ A, there is at most one b ∈ A such that a→0 b ;

(iv) for every a /∈M , there exists b ∈ A with a→0 b and d(a) > d(b) ;

(v) for every a ∈ A, there exists m ∈M such that a�0 m ;

(vi) every peak c←β a→α b can be joined according as in Figure 1.

Proof. Properties (i) and (ii) follow from the definitions.
For (iii) assume that b ←0 a →0 c. We show that b ≡ c. The steps a → b and a → c are

either minimizing or on the main road. We distinguish cases a ∈M and a 6∈M :

(i) Assume that a ∈ M . Then d(a) = 0, and thus neither a → b nor a → c is a minimizing
step. Hence (a→ b) ∈M and (a→ c) ∈M . Since M is free of cycles, we get b ≡ c.

(ii) If a /∈ M , both steps a → b and a → c must be minimizing. If d(b) 6= d(c), then we have
either d(a) 6= d(b) + 1 or d(a) 6= d(c) + 1, contradicting minimization. Thus d(b) = d(c).
Then by minimization we have b ≥ c and c ≥ b, from which we obtain b ≡ c.

For (iv), consider an element a /∈ M . Let B = {b′ | a → b′ ∧ d(a) = d(b′) + 1}. By definition
of the distance d(·), B 6= ∅. Define b as the least element of B in the well-order < on A. It
follows that a→ b is a minimization step. Hence a→0 b and d(a) > d(b). Property (v) follows
directly from (iv) using induction on the distance.

For (vi), consider a peak c←β a→α b. If b ≡ c, then the joining reductions are empty steps.
Thus assume that b 6≡ c. By (iii) we have either α = 1 or β = 1. By (v) there exist mb,mc ∈M
such that b�0 mb and c�0 mc. By (ii) we have mb �0 ·�0 mc. Hence b�0 ·�0 c. These
joining reductions are of the form required by Figure 1 since �0 =�<α∪<β .

44

Decreasing Diagrams: Two Labels Suffice J. Endrullis, J. W. Klop and R. Overbeek

Theorem 3.5. If an ARS A = (A,→) satisfies the cofinality property, then there exists an
indexed ARS (A, (→α)α∈{0,1}) such that → = →0 ∪ →1 and every peak c ←β a →α b can be
joined according to the elementary decreasing diagram in Figure 1.

Proof. It suffices to consider a connected component of A. Let B = (B,→) be a connected
component of A: we have a ↔∗ b for all a, b ∈ B. By the cofinality property and Lemma 2.6,
there exists a cofinal reduction m0 → m1 → · · · in B. By the well-ordering theorem, there
exists a well-order < over B. Then B has the required properties by Lemma 3.4(vi).

We note that Theorem 3.5 also holds for De Bruijn’s weak diamond property. However, when
restricting the index set I to a single label, the decreasing diagram technique is equivalent to
← · → ⊆ →≡ · ←≡, i.e. the diamond property for → ∪ ≡, while the weak diamond property
with one label is equivalent to strong confluence ← · → ⊆ →≡ ·�.

4 Conclusion

We have shown that all abstract reduction systems with the cofinality property (in particular, all
confluent, countable systems) can be proven confluent using the decreasing diagrams technique
with the almost trivial label set I = { 0, 1 }.

This raises the question whether there is an confluent, uncountable system that needs more
than 2 labels to establish confluence using decreasing diagrams? In other words, is there an
uncountable system that is DCR but not DCR2?

Is there a confluent, uncountable system that is CR but not DCR2? It is a long-standing
open problem whether the method of decreasing diagrams is complete for proving confluence
of uncountable systems [9], that is, whether CR implies DCR.

In general: which of the inclusions DCRα ⊆ DCRβ with α < β are strict?

References

[1] N.G. de Bruijn. A Note on Weak Diamond Properties. Memorandum 78–08, Eindhoven University
of Technology, 1978.

[2] J. Endrullis and J.W. Klop. De Bruijn’s weak diamond property revisited. Indagationes Mathe-
maticae, 24(4):1050 – 1072, 2013. In memory of N.G. (Dick) de Bruijn (1918–2012).

[3] J.R. Hindley. The Church–Rosser Property and a Result in Combinatory Logic. PhD thesis,
University of Newcastle-upon-Tyne, 1964.

[4] G.P. Huet. Confluent Reductions: Abstract Properties and Applications to Term Rewriting Sys-
tems. Journal of the ACM, 27(4):797–821, 1980.

[5] J.W. Klop. Combinatory Reduction Systems, volume 127 of Mathematical centre tracts. Mathe-
matisch Centrum, 1980.

[6] M.H.A. Newman. On Theories with a Combinatorial Definition of “Equivalence”. Annals of
Mathematics, 42(2):223–243, 1942.

[7] B.K. Rosen. Tree-manipulating systems and Church-Rosser theorems. Journal of the ACM,
20:160–187, 1973.

[8] Terese. Term Rewriting Systems, volume 55 of Cambridge Tracts in Theoretical Computer Science.
Cambridge University Press, 2003.

[9] V. van Oostrom. Confluence by Decreasing Diagrams. Theoretical Computer Science, 126(2):259–
280, 1994.

[10] V. van Oostrom. Confluence for Abstract and Higher-Order Rewriting. PhD thesis, Vrije Univer-
siteit Amsterdam, 1994.

45

Coherence of quasi-terminating decreasing 2-polygraphs

Clément Alleaume and Philippe Malbos

Univ de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5208,
Institut Camille Jordan, 43 blvd. du 11 novembre 1918, F-69622 Villeurbanne cedex, France

clement.alleaume@univ-st-etienne.fr, malbos@math.univ-lyon1.fr

Abstract

Craig Squier introduced a combinatorial method based on rewriting in order to describe relations

amongst relations for presentations of monoids. From a rewriting system he constructed a 2-dimensional

combinatorial complex whose 2-cells are generated by relations induced by the rewriting rules. When

the rewriting system is confluent and terminating, he characterized the homotopy of this complex in

term of confluence diagrams induced by the critical branchings. In this work, we weaken the termination

hypothesis and we prove such a result for quasi-terminating decreasing rewriting systems.

1 Introduction

At the end of the eighties, using a homological argument, Squier showed that there are finitely
presented monoids with a decidable word problem that do not admit a finite convergent presen-
tation, [7, 8]. He linked the existence of a finite convergent presentation for a finitely presented
monoid to a homological property by showing that the critical branchings of a convergent string
rewriting system generate the module of the 2-homological syzygies. Using this homological
property he proved that there are finitely presented monoids with a decidable word problem
that cannot be presented by a finite convergent string rewriting system. In [9], he linked the
existence of a finite convergent presentation to a new finiteness condition of finitely presented
monoids, called finite derivation type (FDT), that extends the properties of being finitely gen-
erated and finitely presented. FDT for a monoid is a finiteness property on a 2-dimensional
combinatorial complex associated to a presentation of the monoid.
Squier’s 2-dimensional complex. To a rewriting system Σ, Squier associated a 2-dimensional
cellular complex D(Σ), defined independently by Kilibarda [5] and Pride [6]. The complex
D(Σ) has only one 0-cell, its 1-cells are the strings in the free monoid Σ∗1 and the 2-cells
are induced by the rewriting rules α : u ⇒ v in Σ2 and their inverses α− : v ⇒ u in
Σ−2 . There is a 2-cell in D(Σ) between each pair of words with shape wuw′ and wvw′

such that Σ2 t Σ−2 contains a relation u ⇒ v. This 2-dimensional complex is extended with
3-cells, called Peiffer confluences, filling all the 2-spheres of the form of the following diagram

vu1v
′u2v′′

vu′1v
′u2v′′

vu′1v
′u′2v

′′

vu1v
′u′2v

′′

where u1 ⇒ u′1 and u2 ⇒ u′2 are in Σ2 t Σ−2 and v a string in
Σ∗1. These 3-cells make homotopic the 2-cells corresponding to
the application of rewriting step on non-overlapping strings.
Homotopy bases. A homotopy basis of Σ is defined as a set
Σ3 of additional 3-cells that makes the complex D(Σ) aspherical, that is any 2-dimensional
sphere can be “filled up” by the 3-cells of Σ3. The presentation Σ is called FDT if it is finite
and it admits a finite homotopy basis. Squier proved that the FDT property is an invariant
property for finitely presented monoids, that is, if Σ and Υ are two finite presentations of the
same monoid, then Σ has FDT if and only if Υ has FDT. Hence, the FDT property is an
intrinsic property of finitely presented monoids.
Squier’s completion. Given a convergent presentation Σ, Squier showed that it is sufficient
to consider one 3-cell filling the confluence diagram induced by each critical branching to get a

Coherence of quasi-terminating decreasing 2-polygraphs C. Alleaume and P. Malbos

homotopy basis of Σ. Such a set of 3-cells is called a family of generating confluences of Σ. In
others words, any diagram defined by two parallel rewriting paths can be filled up by confluence
diagrams induced by the critical branchings and by Peiffer confluences. This result corresponds
to a homotopical version of Newman’s Lemma. In particular, when the presentation is finite, it
has finitely many critical branchings, hence a finite family of generating confluences. This is a
way to prove that finite convergent presentations are FDT, [9]. Squier used this result to give
another proof that there exist finitely presented monoids with a decidable word problem that
do not admit a finite convergent presentation.
Squier’s completion without termination. After these works, Squier’s construction of
homotopy bases was applied to solve coherence problems, in particular for monoidal categories
[2], Artin monoids [1], or plactic monoids [3]. Squier’s construction starts from a convergent
presentation. However in many situations it can be improved to compute a homotopy basis from
a non terminating presentation. A characterization of a homotopy basis of a non terminating
confluent rewriting system in term of confluence diagrams of critical branchings is still an
open problem. In this work, we weaken the termination hypothesis and give a construction of
homotopy bases for decreasing and quasi-terminating string rewriting systems. As an example,
we construct a homotopy basis of the monoid B+

3 =
〈
s, t

∣∣ sts = tst
〉
. This monoid does not

admit a finite convergent presentation with only two generators, [4], and Squier’s construction
can only be used by adding a redundant generator. We show that a construction of a homotopy
basis of B+

3 without addition of generator can however be done with the following confluent and
quasi-terminating presentation Σ(B+

3) =
〈
s, t

∣∣ sts ⇒ tst, tst ⇒ sts
〉
. We obtain a homotopy

basis of the monoid B+
3 containing five 3-cells. This presentation can be reduced homotopically

to obtain an empty homotopy basis. We prove more generally that any decreasing quasi-
terminating string rewriting system such that Peiffer confluences are decreasing has a homotopy
basis given by a family of elementary loops and generating decreasing confluences of critical
branching.

2 Decreasing polygraphs

In this section, we define the notion of decreasing 2-polygraph from the corresponding notion
for abstract rewriting systems introduced by van Oostrom in [10] and we recall in this context
van Oostrom’s theorem showing that decreasingness implies confluence.
2-polygraphs. A 1-polygraph Σ is a directed graph made of a set of 0-cells Σ0, a set of 1-cells
Σ1 and source and target maps s0, t0 : Σ1 → Σ0. We denote by Σ∗1 the free category on Σ1. A
globular extension of the free category Σ∗1 is a set Σ2 equipped with two maps s1, t1 : Σ2 → Σ∗1
such that, for every β in Σ2, the pair (s1(β), t1(β)) is a 1-sphere in the category Σ∗1, that is,
s0s1(β) = s0t1(β) and t0s1(β) = t0t1(β). A 2-polygraph is a triple Σ = (Σ0,Σ1,Σ2), where
(Σ0,Σ1) is a 1-polygraph and Σ2 is a globular extension of Σ∗1, whose elements are called the
2-cells of the 2-polygraph. We denote by Σ∗2 the free 2-category on Σ and by Σ>2 the free
(2, 1)-category on Σ, that is the 2-category in which all the 2-cells are invertible.
Rewriting sequences. A rewriting step of Σ is a 2-cell of Σ∗2 of the form uϕv where u and
v are 1-cells in Σ∗1 and ϕ is a 2-cell of Σ2. We denote Σstp the set of rewriting steps of Σ.
For any 1-cells u and v, we say u rewrites into v if there is a 2-cell in Σ∗2 from u to v. The
2-polygraph Σ is terminating if there is no sequence (un)n∈N such that for each n ∈ N, there is
a rewriting step from the 1-cell un to the 1-cell un+1. The 2-polygraph Σ is quasi-terminating
if for each sequence (un)n∈N such that for each n ∈ N there is a rewriting step from un to un+1,
the sequence (un)n∈N contains an infinite number of occurrences of the same 1-cell. Any 2-cell
f in the 2-category Σ∗2 can be decomposed as a composite of rewriting steps: f = f1 ?1 . . . ?1 fp,

47

Coherence of quasi-terminating decreasing 2-polygraphs C. Alleaume and P. Malbos

with fi in Σstp. Note that, this decomposition is unique up to Peiffer relations. We define
the support of the 2-cell f as the multiset, denoted by Supp(f), consisting of the rules of the
rewriting steps occurring in any decomposition of f .
Branchings. A (finite) branching of Σ is a pair (f, g) of (finite) rewriting sequences of Σ such
that s1(f) = s1(g). The branching (f, g) is local (resp. aspherical) if f and g are in Σstp (resp.
f = g). A Peiffer branching of Σ is a local branching (fv, ug) with 1-source uv where u, v
are 1-cells and f, g are in Σstp. An overlapping branching of Σ is a local branching that is
not aspherical or Peiffer. An overlapping branching is called a critical branching if its source
is minimal. The 2-polygraph Σ is said to be confluent if each branching (f, g) of Σ can be
completed by two 2-cells f ′ : t1(f)⇒ v and g′ : t1(g)⇒ v with a common target.
Loops. A loop of Σ is a 2-cell f in Σ∗2 such that s1(f) = t1(f). Two loops f and g are equivalent
if there exists a circular permutation σ such that f = f1 ?1 . . . ?1 fp and g = fσ(1) ?1 . . . ?1 fσ(p).
We denote by L(f) the set of loops of Σ equivalent to the loop f . A loop f of Σ is minimal if
f = g ?1 h ?1 k, with h a loop, implies that h is either an identity or equal to f . A loop f is
elementary if it is minimal and there is no nonidentity loops g and h such that f = g ?0 h.
Labeled 2-polygraphs. A 2-polygraph Σ is labeled by a set W if there is a map ψ : Σstp −→W
that associates to a rewriting step f a label ψ(f). Given a rewriting sequence f = f1 ?1 . . . ?1 fk,
we denote by LW (f) = {ψ(f1), . . . , ψ(fk) } the set of labels of f . If the set W is provided with
a well-founded order ≺, we say (W,ψ,≺) is a well-founded labeling of the 2-polygraph Σ.
Decreasing 2-polygraph. Consider a 2-polygraph Σ with a well-founded labelling (W,ψ,≺).
A local branching (f, g) of Σ is decreasing if there is a confluence diagram of the following form

g

f

f ′

g′′

h1

g′ f ′′ h2

and such that the following properties hold

i) for each k ∈ LW (f ′), we have k ≺ ψ(f),

ii) for each k ∈ LW (g′), we have k ≺ ψ(g),

iii) f ′′ is an identity or a rewriting step labeled by ψ(f),

iv) g′′ is an identity or a rewriting step labeled by ψ(g),

v) for each k ∈ LW (h1) ∪ LW (h2), we have k ≺ ψ(f) or k ≺ ψ(g).

Such a diagram is then called a decreasing confluence diagram. A 2-polygraph Σ is decreasing
if there exists a well-founded labeling (W,ψ,≺) of Σ making all its local branching decreasing.
Decreasingness of Peiffer branchings. Given a Peiffer branching (αv, uβ), we will call

uv u′v

uv′ u′v′

αv

αv′

uβ u′β

Peiffer confluence of this branching the confluence diagram on the right.
If the 2-polygraph Σ is decreasing, all its Peiffer branchings can be com-
pleted into a decreasing confluence diagram. But, the Peiffer confluences
for this branching is not necessarily decreasing.
Example. Any 2-polygraph Σ such that any local branching (f, g) is
confluent using two rewriting steps f ′ : t1(f)⇒ v and g′ : t1(g)⇒ v is decreasing. An order on
Σstp making all local branchings decreasing is the empty order. In particular, the 2-polygraph
Σ(B+

3) is decreasing and not terminating.
As in the case of abstract rewriting systems, we show the following result.

Theorem 1. A decreasing 2-polygraph such that Peiffer confluences are decreasing is confluent.

3 Coherence by decreasingness

In this section, we introduce two globular extensions for 2-polygraphs. The first one is the
globular extension of loops, containing for each equivalence class of elementary loop, a 3-cell

48

Coherence of quasi-terminating decreasing 2-polygraphs C. Alleaume and P. Malbos

from an elementary loop to the corresponding identity 2-cell. This globular extension allows
us to construct a 3-cell from any loop to an identity 2-cell. The second globular extension
we introduce is the extension of generating decreasing confluences, containing for each critical
branching of Σ a decreasing confluence diagram. The union of those two globular extensions is
called van Oostrom-Squier’s completion. We prove that any van Oostrom-Squier’s completion of
a quasi-terminating 2-polygraph Σ such that all Peiffer confluences are decreasing is a coherent
presentation of the category presented by Σ.
Coherent presentations. A coherent presentation of a monoid M is a 2-polygraph Σ pre-
senting M extended by a globular extension Σ3 of the free (2, 1)-category Σ>2 , such that Σ3 is
a homotopy basis. That is, for every 2-sphere (f, g) of Σ>2 , there exists a 3-cell from f to g in
the free (3, 1)-category over the (3, 1)-polygraph (Σ>2 ,Σ3).
The cellular extension of loops. Let Σ be a 2-polygraph. Let L be the set of equivalence
classes of elementary loops of Σ∗2. We will denote by L(Σ)3 the globular extension of the (2, 1)-
category Σ>2 made of a family of 3-cells Aα : αV 1s1(α) indexed by exactly one α ∈ E for each

E in L. We will denote by L(Σ)> the free (3, 1)-category over the (3, 1)-polygraph (Σ,L(Σ)3).
Generating decreasing confluences. Let Σ be a decreasing 2-polygraph for a well-
founded labeling (W,Ψ,≺). A family of generating decreasing confluences of Σ is a globu-
lar extension of the (2, 1)-category Σ>2 that contains, for every critical branching (f, g) of Σ,

u

v

v′

u′Df,g

f

g

f ′

g′

one 3-cell Df,g of the form on the right and where the confluence
diagram (f ?1 f

′, g ?1 g′) is decreasing. Any decreasing 2-polygraph
admits such a family of generating decreasing confluences. Indeed,
any critical branching is local and thus confluent by decreasingness
hypothesis. Note that such a family is not unique in general.
van Oostrom-Squier’s completion. Let Σ be a decreasing 2-polygraph for a well-founded
labeling (W,Ψ,≺). A van Oostrom-Squier’s completion of Σ is a (3, 1)-polygraph, denoted by
D(Σ), and defined by D(Σ) = 〈Σ | O(Σ) ∪ L(Σ)3 〉, where O(Σ) is a chosen family of generat-
ing decreasing confluences. A van Oostrom-Squier’s decreasing completion of the 2-polygraph
Σ(B+

3) is given in Appendix.
Decreasingness from quasi-termination. Let Σ be a confluent and quasi-terminating 2-
polygraph. For any 1-cell u, we fix a semi-normal form ũ of u, that is a 1-cell ũ such that u
rewrites into ũ and for any 1-cell ũ′ such that u rewrites into ũ′, the 1-cell ũ′ rewrites into ũ.
We call distance from u to ũ, denoted by d(u, ũ), the length of the shortest rewriting sequence
from u to ũ. We choose ũ such that, for any 1-cells v, w and any 1-cells u1, u2 that rewrite into
ũ such that d(u1, ũ) ≥ d(u2, ũ), we have d(vu1w, vũw) ≥ d(vu2w, vũw). We define a labeling
to the semi-normal form, labeling SNF for short, (ψ,N) on Σ by setting, for any 2-cell f ,

ψ(f) = d(t1(f), t̃1(f)). In this way, Σ is decreasing for the labelling ψ. Indeed, for any local
branching leading to 1-cells u1 and u2, we have chosen a common semi-normal form ũ. We can
choose rewriting paths from u1 to ũ and from u2 to ũ of minimal length. Those paths yield a
confluence diagram, decreasing by construction. In particular, a labeling SNF makes all Peiffer
branchings decreasing. But, it does not necessarily make the Peiffer confluences decreasing. In
particular, it is not the case when the source uv of the Peiffer confluence is already the chosen
semi-normal form.

Theorem 2. Let Σ be a decreasing quasi-terminating 2-polygraph for a labeling SNF such that
all Peiffer confluences are decreasing. Any van Oostrom-Squier’s completion of Σ is a coherent
presentation of the category presented by Σ.

This theorem does not apply to Σ(B+
3) because no labeling SNF of Σ(B+

3) makes all its
Peiffer confluences decreasing. However, all Peiffer branchings of Σ(B+

3) have a decreasing

49

Coherence of quasi-terminating decreasing 2-polygraphs C. Alleaume and P. Malbos

diagram which can be tiled by two loops. This proves that van Oostrom-Squier’s completion of
Σ(B+

3) defined above is a homotopy basis of the free (2, 1)-category Σ(B+
3)>2 .

A counterexample without quasi-termination. Quasi-termination is a required condition
in Theorem 2. Indeed, consider Σ with no loop and containing two families (f ij)i∈N,i∈N,ij=0 and

(gij)i∈N,i∈N,ij=0 of 2-cells such that (see Figure A in Appendix)

• the sequences (f0n)n∈N, (fn0)n∈N, (g0n)n∈N and (gn0)n∈N are infinite rewriting paths,

• for any odd integer n, we have t1(fn0) = t1(gn0) and t1(f0n) = t1(g0n),

• for any even integer n, we have t1(fn0) = t1(f0n) and t1(gn0) = t1(g0n).

A family of generating confluences containing the 2-sphere (f00 ?1 f
1
0 , g

0
0 ?1 g

1
0) cannot be used

to construct a 3-cell from f00 ?1 f
0
1 to g00 ?1 g

0
1 . Indeed, the 2-sphere (f00 ?1 f

0
1 , g

0
0 ?1 g

0
1) is tiled

by an infinite family of 2-spheres containing the 2-sphere (f00 ?1 f
1
0 , g

0
0 ?1 g

1
0) and all 2-spheres

of the form (fn0 ?1 f
n+1
0 , f0n ?1 f

0
n+1) and of the form (gn0 ?1 g

n+1
0 , g0n ?1 g

0
n+1).

This does not make possible to construct a homotopy basis of Σ>2 by choosing only one
generating confluence for each critical branching. The 2-polygraph Σ is not quasi-terminating
because the source of the 2-cell f00 does not have any semi-normal form.
Decreasingness from termination. For a convergent 2-polygraph Σ, we define the label Ψ
by setting for each rewriting step ψ = uϕv, Ψ(ψ) is distance from t1(ψ) to its normal form.
This label makes Σ decreasing. Moreover, Σ being terminating it doe not have loop. As a
consequence of Theorem 2, we have Squier’s Theorem for convergent 2-polygraphs:

Corollary 1 ([9]). Let Σ be a convergent 2-polygraph. Any Squier’s completion S(Σ) of Σ is a
coherent presentation of the category presented by Σ.

References

[1] Stéphane Gaussent, Yves Guiraud, and Philippe Malbos. Coherent presentations of Artin monoids.
Compos. Math., 151(5):957–998, 2015.

[2] Yves Guiraud and Philippe Malbos. Coherence in monoidal track categories. Math. Structures
Comput. Sci., 22(6):931–969, 2012.

[3] Nohra Hage and Philippe Malbos. Coherent presentations of plactic monoids. preprint, 2016.

[4] Deepak Kapur and Paliath Narendran. A finite Thue system with decidable word problem and
without equivalent finite canonical system. Theoret. Comput. Sci., 35(2-3):337–344, 1985.

[5] Vesna Kilibarda. On the algebra of semigroup diagrams. Internat. J. Algebra Comput., 7(3):313–
338, 1997.

[6] Stephen J. Pride. Low-dimensional homotopy theory for monoids. Internat. J. Algebra Comput.,
5(6):631–649, 1995.

[7] Craig Squier and Friedrich Otto. The word problem for finitely presented monoids and finite
canonical rewriting systems. In Rewriting techniques and applications (Bordeaux, 1987), volume
256 of Lecture Notes in Comput. Sci., pages 74–82. Springer, Berlin, 1987.

[8] Craig C. Squier. Word problems and a homological finiteness condition for monoids. J. Pure Appl.
Algebra, 49(1-2):201–217, 1987.

[9] Craig C. Squier, Friedrich Otto, and Yuji Kobayashi. A finiteness condition for rewriting systems.
Theoret. Comput. Sci., 131(2):271–294, 1994.

[10] Vincent van Oostrom. Confluence by decreasing diagrams. Theoret. Comput. Sci., 126(2):259–280,
1994.

50

Coherence of quasi-terminating decreasing 2-polygraphs C. Alleaume and P. Malbos

Appendix

Example A. Consider the 2-polygraph Σ(B+
3). It has the following four critical branchings:

(αt, sβ), (tα, βs), (αts, stβ) and (tsα, βst). Each of these critical branchings is confluent using
two rewriting steps. Thus, a van Oostrom-Squier’s decreasing completion is given by

stst

tst2

s2ts

ststDαt,sβ

αt

sβ

βt

sα

tsts

sts2

t2st

tstsDtα,βs

βs

tα

αs

tβ

ststs

tst2s

st2st

ststsDαts,stβ

αts

stβ

βts

stα

tstst

sts2t

ts2ts

tststDtsα,βst

βst

tsα

αst

tsβ
sts

tst

sts
Eα?1β

α β

where Dαt,sβ , Dtα,βs, Dαts,stβ and Dtsα,βst are the generating decreasing confluences and Eα?1β
is an elementary loop of Σ.

Lemma 1. Let Σ be a decreasing 2-polygraph. Let b be a loop in Σ∗2. Then there exists a 3-cell
from f to 1s1(f) in L(Σ)>.

Proof. Any elementary loop f is equivalent to an elementary loop e such that the 3-cell e V
1s1(e) is in L(Σ)>. As a consequence, there exists a 3-cell from f to 1s1(f) in L(Σ)>. If f is
minimal, f is a 0-composition of elementary loops and identities. As a consequence, there exists
a 3-cell from f to 1s1(f) in L(Σ)>. In the general case, a non identity loop f can be written as
f1 ?1 f

′ ?1 f2 where f ′ is a minimal loop and f1 and f2 are 2-cells such that f1 ?1 f2 is a loop.
Thus, there exist a 3-cell from f to f1 ?1 f2. The support of f1 ?1 f2 is strictly included in the
support of f . This proves the lemma by induction on the support of f .

Lemma 2. Let Σ be a quasi-terminating 2-polygraph decreasing for a labeling SNF such that
all Peiffer confluences are decreasing. Let D(Σ) be a van Oostrom-Squier’s completion of Σ
associated. For any 2-sphere (f, g) in Σ∗2, there exists a 3-cell from f to g in D(Σ)>.

Proof. We proceed in two steps.

Step 1. We prove that, for every local branching (f, g) : u ⇒ (v, v′) of Σ, there exist 2-cells
f ′ : v ⇒ u′ and g′ : v′ ⇒ u′ in Σ∗2 and a 3-cell A : f ?1 f

′ V g ?1 g
′ in D(Σ)>. In the case of

an aspherical or Peiffer branching, we can choose f ′ and g′ such that f ?1 f
′ = g ?1 g

′ holds
in Σ∗2 and A is an identity 3-cell. If (f, g) is an overlapping branching that is not critical,
we have (f, g) = (whw′, wkw′) with (h, k) a critical branching. We consider the 3-cell Dh,k :
h ?1 h

′ V k ?1 k
′ of O(Σ) corresponding to the generating decreasing confluence of the critical

branching (h, k). Let define the 2-cells f ′ = wh′w′ and g′ = wk′w′ and the 3-cell A = wDh,kw
′.

The 2-polygraph Σ having a labeling SNF, the confluence diagram corresponding to the 3-cell
A is decreasing.

Step 2. Let (f, g) be a 2-sphere in Σ∗2. This 2-sphere defines a branching on s1(f) = s1(g).
We prove the lemma by well-founded induction on the measure |(f, g)| of the branching (f, g),
defined in the next paragraph. If f or g is an identity 2-cell, say g = 1, the 2-cell f is a loop.
By Lemma 1, there exists a 3-cell E : f V 1s1(f) obtained by composition of 3-cells of L(Σ)3.
Else, we have decompositions f = f1 ?1 f2 and g = g1 ?1 g2, where (f1, g1) is a local branching.
Note that f2 or g2 can be equal to an identity 2-cell. The branching (f1, g1) is confluent by
decreasingness. By Step 1, there exists a 3-cell A : f1 ?1 f

′
1 V g1 ?1 g

′
1 in D(Σ)> where the

confluence diagram (f1 ?1 f
′
1, g1 ?1 g

′
1) is decreasing. Peiffer confluences being decreasing, this

diagram is decreasing even if (f1, g1) is a Peiffer branching. The branching (f ′1, f2) is confluent

51

Coherence of quasi-terminating decreasing 2-polygraphs C. Alleaume and P. Malbos

by decreasingness, hence there exist 2-cells h and h′ as indicated in the following diagram:

f1

g1

f ′1

g′1

h h′
f2

g2

A

By the following Lemma 3, we have |(f ′1, f2)| ≺ |(f, g1)|. Moreover, by the following Lemma
4, we have |(f, g1)| = |(f1, g1)| = |(f, g)|, hence |(f ′1, f2)| ≺ |(f, g)|, where ≺ is the order on
measures of branchings. Hence by induction hypothesis, there exists a 3-cell B : f ′1?1hV f2?1h

′

in D(Σ)>. In the same way, we prove that there exists a 3-cell C : g′1 ?1 hV g2 ?1 h
′ in D(Σ)>.

This concludes the induction and proves that there is a 3-cell from f to g.

Proof of Theorem 2. Let (f, g) be a 2-sphere of Σ>2 . By definition of Σ>2 , the 2-cell f ?1 g
−

can be decomposed into a zigzag

f0

g0

f1

g1

f2

g2

. . .

. . .

fk

gl

fk−1

gl−1

fk−2

gl−2

∗

where the 2-cells f0, . . . , fk, g0, . . . , gl are 2-cells in Σ∗2. Note that some of those 2-cells can be
identities. By confluence of Σ, this 2-sphere can be filled up by a family of 2-spheres of Σ∗2. By
Lemma 2, these 2-spheres can be filled up by 3-cells of D(Σ)> whose the composition gives a
3-cell of D(Σ)> from f to g.

Measure of 2-cells and branchings. Let Σ be a 2-polygraph with a well-founded labeling
(W,ψ,≺). Consider i in W and a 1-cell w = w1 . . . wn in the free monoid W ∗, with wi in W .
We denote by w≥i the 1-cell w written without the 1-cells labeled by j such that j ≺ i, that is

w≥i = w1 . . . wn,

where wk = wk if ψ(wk) ≺ i and wk = 1 else. Given a 1-cell w′ in W ∗, we denote by w(w′) the
1-cell defined by

w(w′) = w1 . . . wn

such that for each 0 6 k 6 n, we have wk = 1 if the label ik of wk verifies ik ≺ j for some
j ∈ LW (w′) and wk = wk otherwise.

Let Σ be a decreasing 2-polygraph for a well-founded labeling (W,Ψ,≺). Following [10], we
consider the measure | · | from the free monoid W ∗ to the multiset Mult(W) over W defined as
follows:

i) if 1 is the empty word of the free monoid W ∗, then |1| is the empty multiset,

ii) for every i in W , the multiset |i| is the singleton {i},
iii) for every i in W and every 1-cell w in W ∗, twe have |iw| = |i| ∪ |w(i)|.

52

Coherence of quasi-terminating decreasing 2-polygraphs C. Alleaume and P. Malbos

The measure | · | is extended to the set of finite rewriting sequences of Σ by setting, for any
rewriting sequence f1 ?1 . . . ?1 fn, with fi labeled by ki, for all i, we have

|f1 . . . fn| = |k1 . . . kn|,

were the k1 . . . kn is a product in the monoid W ∗. Finally, the measure | · | is extended to the
set of finite branchings (f, g) of Σ, by setting

|(f, g)| = |f | ∪ |g|.

Note that for every words w1 and w2 in W ∗, we have: |w1w2| = |w1| ∪ |w(w1)
2 |.

We define a strict order ≺′ on the multisets over W . For any multisets M and N , we define
M ≺′ N if there exist multisets X, Y and Z such that:

M = Z ∪X, N = Z ∪ Y, Y is not empty,

and for every i in W such that M(i) 6= 0, there exists j in W such that N(j) 6= 0 and i ≺ j.
The order ≺′ is well-founded because ≺ is. We call 4′ the symmetric closure of ≺′.

Lemma 3 ([10], Lemma 3.6.). Let Σ be a decreasing 2-polygraph. For every diagram in Σ∗2

δ0

γ1

δ1

τ

γ2

such that |γ1 ?2 δ1| 4′ |δ0, γ1| and γ1 is not an identity, we have |δ1, γ2| ≺′ |δ0, γ1 ?2 γ2|.

Lemma 4. Let Σ be a decreasing quasi-terminating 2-polygraph with the labeling SNF. Then,
for all branchings (f1, g1) and all decreasing confluence diagrams leading to the semi-normal
form, we have |(f1, g1)| = |(f1 ?1 f ′1, g1 ?1 g′1)|.

Proof. All labels k of the rewriting sequence f ′1 verify k ≺ ψ(f1). All labels k of the rewriting
sequence g′1 verify k ≺ ψ(g1). Thus, |f1 ?1 f ′1| = |f1| and |g1 ?1 g′1| = |g1|. This implies
|(f1, g1)| = |(f1 ?1 f ′1, g1 ?1 g′1)|.

53

Coherence of quasi-terminating decreasing 2-polygraphs C. Alleaume and P. Malbos

Figure A.

f00

g00

f01

g01

f10

g10

f20 f02

g20 g02

f30 f03

g30 g03
· · ·

54

A Short Mechanized Proof of the Church-Rosser Theorem

by the Z-property for the λβ-calculus in Nominal Isabelle∗

Julian Nagele, Vincent van Oostrom, and Christian Sternagel

University of Innsbruck, Austria
{julian.nagele,vincent.van-oostrom,christian.sternagel}@uibk.ac.at

Abstract

We present a short proof of the Church-Rosser property for the lambda-calculus enjoying two distin-

guishing features: firstly, it employs the Z-property, resulting in a short and elegant proof; and secondly,

it is formalized in the nominal higher-order logic available for the proof assistant Isabelle/HOL.

1 Introduction

Dehornoy proved confluence for the rule of self-distributivity xyz → xz(yz)1 by means of a
novel method [3], the idea being to give a map • that is monotonic with respect to→∗ and that
yields for each object an upper bound on all objects reachable from it in a single step. Later,
this method was extracted and dubbed the Z-property [4], and applied to prove confluence of
various rewrite systems, in particular the λβ-calculus.

Here we present our Isabelle/HOL [8] formalization of part of the above mentioned work,2

in particular that the λβ-calculus is confluent since it enjoys the Z-property and that the
latter property is equivalent to an abstract version of Takahashi’s confluence method [10]. We
achieve a rigorous treatment of terms modulo α-equivalence by employing Nominal Isabelle [12],
a nominal higher-order logic based on Isabelle/HOL. Our formalization is available from the
archive of formal proofs [5]. Below, Isabelle code-snippets are in blue and hyperlinked.

2 Nominal λ-terms

In our formalization λ-terms are represented by the following nominal data type, where the an-
notation “binds x in t” indicates that the equality of such abstraction terms is up to renaming
of x in t:

nominal datatype term =
Var name
| App term term
| Abs x ::name t ::term binds x in t

For the sake of readability we will use standard notation, i.e., x instead of Var x, s t instead of
App s t, and λx. t instead of Abs x t, in the remainder. When defining (recursive) functions on
λ-terms, we may have to take care of so-called freshness constraints. A freshness constraint is
written x] t and states that x does not occur in t, or equivalently, x is fresh for t.

Definition 1. Capture-avoiding substitution is defined recursively by the following equations:

∗This work was partially supported by FWF (Austrian Science Fund) projects P27502 and P27528.
1Confluence of this single-rule term rewrite system is non-trivial: presently no tool can prove it automatically.
2The formalization follows the pen-and-paper proof exactly, except for one mistake in Lemma 9 (Rhs).

A Short Mechanized Proof of CR J. Nagele, V. van Oostrom, and C. Sternagel

y [x := s] = (if x = y then s else y)
(t u) [x := s] = t [x := s] u [x := s]
y] (x , s) =⇒ (λy. t) [x := s] = λy. t [x := s]

Due to the constraint, the final equation is only applicable when y is fresh for x and s.

In principle it is always possible to rename variables in terms (or any finitely supported
structure) apart from a given finite collection of variables. In order to relieve the user of doing
so by hand, Nominal Isabelle [12] provides infrastructure for defining nominal functions, giving
rise to strong induction principles that take care of appropriate renaming. (However, nominal
functions do not come for free: after stating the defining equations, we are faced with proof
obligations that ensure pattern-completeness, termination, equivariance, and well-definedness.
With the help of some home-brewed Eisbach [6] methods we were able to handle those obliga-
tions automatically.) We first consider the Substitution Lemma, cf. [2, Lemma 2.1.16].

Lemma 2. x] (y , u) =⇒ t [x := s] [y := u] = t [y := u] [x := s [y := u]]

Proof. In principle the proof proceeds by induction on t. However, for the case of λ-abstractions
we additionally want the bound variable to be fresh for s, u, x, and y. With Nominal Isabelle
it is enough to indicate that the variables of those terms should be avoided in order to obtain
appropriately renamed bound variables. We will not mention this fact again in future proofs.

• In the base case t = z for some variable z. If z = x then t [x := s] [y := u] = s [y := u] and
t [y := u] [x := s [y := u]] = s [y := u], since then z 6= y and thus z [y := u] = z. Otherwise
z 6= x. Now if z = y, then t [x := s] [y := u] = u and t [y := u] [x := s [y := u]] = u, since
x] u. If z 6= y then both ends of the equation reduce to z and we are done.

• In case of an application, we conclude by definition and twice the IH.

• Now for the interesting case. Let t = λz. v such that z] (s, u, x, y). Then

(λz. v) [x := s] [y := u] = λz. v [x := s] [y := u] since z] (s, u, x, y)

= λz. v [y := u] [x := s [y := u]] by IH

= (λz. v) [y := u] [x := s [y := u]] since z] (s [y := u], u, x, y)

where in the last step z] s [y := u] follows from z] (s, u, y) by induction on s.

Definition 3. We define β-reduction inductively by the compatible closure [2, Definition 3.1.4]
of the β-rule (in its nominal version):

x] t =⇒ (λx. s) t →β s [x := t]

The freshness constraint on the β-rule is needed to obtain an induction principle strong enough
with respect to avoiding capture of bound variables. The following standard “congruence prop-
erties” (cf. [2, Lemma 3.1.6 and Proposition 3.1.16]) will be used freely in the remainder:

s →∗β t =⇒ u →∗β v =⇒ s u →∗β t v
s →∗β t =⇒ λx. s →∗β λx. t
s →∗β s ′ =⇒ t →∗β t ′ =⇒ t [x := s] →∗β t ′ [x := s ′]

They are proven along the lines of their textbook proofs, the first two by induction on the
length and the last one by (nominal) induction on t followed by a nested (nominal) induction
on the definition of β-steps, using the Substitution Lemma. Furthermore we will make use of
the easily proven fact that β-reduction is coherent with abstraction:

λx. s →∗β t =⇒ ∃ u. t = λx. u ∧ s →∗β u

56

A Short Mechanized Proof of CR J. Nagele, V. van Oostrom, and C. Sternagel

3 Z

We present the Z-property for abstract rewriting, show that it implies confluence, and then
instantiate it for the case of (nominal) λ-terms modulo α equipped with β-reduction.

Definition 4. A relation → on A has the Z -property if there is a map • : A → A such that
a→ b =⇒ b→∗ a• ∧ a• →∗ b•.

If → has the Z-property then it indeed is monotonic, i.e., a→∗ b implies a• →∗ b•, which is
straightforward to show by induction on the length of the former.

Lemma 5. A relation that has the Z-property is confluent.

Proof. We show semi-confluence [1]. So assume a →∗ c and a → d. We show d ↓ c by case
analysis on the reduction from a to c. If it is empty there is nothing to show. Otherwise there
is a b with a →∗ b and b → c. Then by monotonicity we have a• →∗ b•. From a → d we have
d →∗ a• using the Z-property, so in total d →∗ b•. Since by applying the Z-property to b → c
we also get c→∗ b• we have d ↓ c as desired.

There are two natural choices for functions on λ-terms that yield the Z-property for →β ,
namely the full-development function and the full-superdevelopment function. The former maps
a term to the result of contracting all residuals of redexes in it [2, Definition 13.2.7] and the
latter also contracts the upward-created redexes, cf. [9, Section 2.7]. While Dehornoy and van
Oostrom developed both proofs [4], here we opt for the latter, which requires less case analysis.

Definition 6. We first define a variant of App with built-in β-reduction at the root:

x] u =⇒ (λx. s ′) ·β u = s ′ [x := u]
x ·β u = x u
(s t) ·β u = s t u

An easy case analysis on the first argument shows that this function satisfies the congruence-
like property s →∗β s ′ =⇒ t →∗β t ′ =⇒ s ·β t →∗β s ′ ·β t ′.

Definition 7. The full-superdevelopment function • on λ-terms is defined as follows:

x• = x
(λx. t)• = λx. t•

(s t)• = s• ·β t•

Below, we freely use the fact that s• t• →=
β (s t)•, which is shown by considering whether

or not s• is an abstraction. The structure of the proof that the λβ-calculus has the Z-property
follows that for self-distributivity in that it build on the Self- and Rhs-properties. The former
expresses that each term self -expands to its full-superdevelopment, and the latter that applying
• to the right-hand side of the β-rule, i.e., to the result of a substitution, “does more” than
applying the map to its components first. Each is proven by structural induction.

Lemma 8 (Self). For all terms t we have t →∗β t•.

Proof. By induction on t using an additional case analysis on t•1 in the case that t = t1 t2.

Lemma 9 (Rhs). For all terms t, s and all variables x we have t• [x := s•] →∗β t [x := s]•.

57

A Short Mechanized Proof of CR J. Nagele, V. van Oostrom, and C. Sternagel

Proof. By induction on t. The cases t = x and t = λy. t′ are straightforward. If t = t1 t2 we
continue by case analysis on t•1.

If t•1 = λy. u then λy. u [x := s•] = t•1 [x := s•] →∗β t1 [x := s]• by induction hypothesis.
Then, using coherence of β-reduction with abstraction, we can obtain a term v with t1 [x :=
s]• = λy. v and u [x := s•] →∗β v. We then have (t1 t2)• [x := s•] = u [y := t•2] [x := s•] =
u [x := s•] [y := t•2 [x := s•]], using the substitution lemma in the last step. Together with
u [x := s•] →∗β v and the induction hypothesis for t2 this yields (t1 t2)• [x := s•] →∗β v [y :=
t2 [x := s]•]. Since we also have (t1 t2) [x := s]• = (t1 [x := s] t2 [x := s])• = v [y := t2 [x := s]•]
we can conclude this case.

If t•1 is not an abstraction. then from the induction hypothesis we have (t1 t2)• [x := s•] =
t•1 [x := s•] t•2 [x := s•]→∗β t1 [x := s]• t2 [x := s]• →=

β (t1 t2) [x := s]•.

Lemma 10 (Z). The full-superdevelopment function • yields the Z-property for →β, i.e., we
have s →β t =⇒ t →∗β s• ∧ s• →∗β t• for all terms s and t.

Proof. Assume s→β t. We continue by induction on the derivation of →β .
If s →β t is a root step then s = (λx. s′) t′ and t = s′ [x := t′] for some s′ and t′. Then

s• = s′• [x := t′•] and thus t→∗β s• using Lemma 8 twice, so s• →∗β t• by Lemma 9.
The case where the step happens below an abstraction follows from the induction hypothesis.
If the step happens in the left argument of an application then s = s′ u and t = t′ u.

From the induction hypothesis and Lemma 8 we have t′ u →∗β s′• u• →=
β (s u)•. That also

(s′ u)• →∗β (t′ u)• follows directly from the induction hypothesis. The case where the step
happens in the right argument of an application is symmetric.

4 Perspective

This note originated from the bold and vague claim of Dehornoy and van Oostrom [4] that the
confluence proof for the λβ-calculus by establishing the Z-property for the full-superdevelopment
map, is the shortest. We present a brief qualitative and quantitative analysis of this claim.

Three major methods in the literature for showing confluence of the λβ-calculus are:

complete developments |= � =⇒ complete, full-developments |= 6 ⇐= full-developments |= Z

From left to right, that complete developments have the diamond (�) property is due to Tait
and Martin–Löf [2, Section 3.2], that complete developments have the angle (6) property with
respect to the full-development function is due to Takahashi [10] (cf. [11, Proposition 1.1.11]),
and that full-developments have the Z-property is due to [4]. From the fact that the second
method needs the concepts of both the others, it stands to reason that its formalization is not
the shortest, as confirmed by a formalization of Nipkow [7] and our quantitative analysis below.

Our proof varies on the above picture along yet another dimension, replacing developments
(due to Church and Rosser, cf. [2, Definition 11.2.11]) by superdevelopments (due to Aczel,
cf. [9, Section 2.7]). Where full-developments give a “tight” upper bound on the single-step
reducts of a given term, full-superdevelopments do not, and one may hope for a simplification
of the analysis because of it. This is confirmed by our quantitative analysis below. One may
vary along this dimension as well: any map • having the Z-property suffices as we show now.

Definition 11. A relation → on A has the angle property for a map • from A to A, and
relation →○ on A, if → ⊆→○ ⊆ →∗ and a→○ b implies b→○ a•.

Lemma 12. A relation → has the Z-property for map • if and only if it has the angle property
for map • and some relation →○ .

58

A Short Mechanized Proof of CR J. Nagele, V. van Oostrom, and C. Sternagel

Proof. First assume that →○ has the angle property for map • and relation →○ . To show that →
has Z assume a→ b. Then by assumption we also have a→○ b and hence b→○ a• and a• →○ b•,
by applying the angle property twice, which together with →○ ⊆ →∗ yields Z.

Now assume → has the Z-property. We define the •-development3 relation by a →○ b if
a→∗ b and b→∗ a•. Then → ⊆→○ ⊆ →∗ follows from the definition of →○ and the Z-property.
The angle itself directly follows from the definition of →○ and monotonicity of •.

We turn to the quantitative analysis of the claim of [4]. Formalizing confluence of the λβ-
calculus has a long history for which we refer the reader to [7]. We compare our formalization in
Isabelle to two other such, Nipkow’s formalization in Isabelle/HOL [7] (as currently distributed
with Isabelle) and Urban and Arnaud’s formalization in Nominal Isabelle.4 There are two
major differences of the present proof to Nipkow’s formalization. On the one hand Nipkow
uses de Brujin indices to represent λ-terms. This considerably increases the size of the formal
theories – almost 200 lines of the roughly 550 line development are devoted to setting up terms
and the required manipulations on indices. Our development is 300 lines (60 of which are used
for our ad hoc Eisbach methods). The second difference is the actual technique used to show
confluence: Nipkow proceeds by establishing the diamond property for complete developments.
Urban and Arnaud proceed by establishing the angle property for multisteps with respect to
the full-development function. This results in a 100 line increase compared to our formalization.

References

[1] F. Baader and T. Nipkow. Term Rewriting and All That. CUP, 1998.

[2] H. Barendregt. The Lambda Calculus: Its Syntax and Semantics, volume 103 of Studies in Logic
and the Foundations of Mathematics. North-Holland, 2nd revised edition, 1984.

[3] P. Dehornoy. Braids and Self-Distributivity, volume 192 of Progress in Mathematics. Springer,
2000. doi:10.1007/978-3-0348-8442-6.

[4] P. Dehornoy and V. van Oostrom. Z, proving confluence by monotonic single-step upperbound
functions. In LMRC, 2008. www.phil.uu.nl/~oostrom/publication/talk/lmrc060508.pdf.

[5] B. Felgenhauer, J. Nagele, V. van Oostrom, and C. Sternagel. The Z property. AFP, June 2016.
https://www.isa-afp.org/entries/Rewriting_Z.shtml, Formal proof development.

[6] D. Matichuk, T. Murray, and M. Wenzel. Eisbach: A proof method language for Isabelle. J.
Autom. Reasoning, 56(3):261–282, 2016. doi:10.1007/s10817-015-9360-2.

[7] T. Nipkow. More Church-Rosser proofs. J. Autom. Reasoning, 26(1):51–66, 2001. doi:10.1023/A:
1006496715975.

[8] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL - A Proof Assistant for Higher-Order
Logic, volume 2283 of LNCS. Springer, 2002. doi:10.1007/3-540-45949-9.

[9] F. van Raamsdonk. Confluence and Normalisation for Higher-Order Rewriting. PhD thesis, Vrije
Universiteit Amsterdam, 1996.

[10] M. Takahashi. Parallel reductions in λ-calculus. Inform. Comput., 118(1):120–127, 1995. doi:10.
1006/inco.1995.1057.

[11] Terese. Term Rewriting Systems, volume 55 of CTTCS. CUP, 2003.

[12] C. Urban and C. Kaliszyk. General bindings and alpha-equivalence in Nominal Isabelle. LMCS,
8(2):14:1–14:35, 2012. doi:10.2168/LMCS-8(2:14)2012.

3For the full-development map • such syntax-free •-developments may differ from the usual ones, e.g. for
(λy. I) ((λx. x x) I). We conjecture that on terminating, non-erasing and non-collapsing λ-terms they coincide.

4http://www.inf.kcl.ac.uk/staff/urbanc/cgi-bin/repos.cgi/nominal2/file/d79e936e30ea/Nominal/Ex/CR.thy

59

Formalized Confluence of Quasi-Decreasing,

Strongly Deterministic Conditional TRSs∗

Thomas Sternagel and Christian Sternagel

University of Innsbruck, Austria
{thomas,christian}.sternagel@uibk.ac.at

Abstract

We present an Isabelle/HOL formalization of a characterization of confluence for quasi-reductive

strongly deterministic conditional term rewrite systems, due to Avenhaus and Loŕıa-Sáenz.

1 Introduction

Already in 1994 Avenhaus and Loŕıa-Sáenz [1] proved a critical pair criterion for deterministic
conditional term rewrite systems with extra variables in right-hand sides, provided their rewrite
relation is decidable and terminating. We use this criterion in our conditional confluence checker
ConCon [6]. In the following we provide a description of our formalization of the conditional
critical pair criterion where we strengthened the original result from quasi-reductivity to
quasi-decreasingness. This is a first step towards certifying the confluence criterion that a
quasi-decreasing and strongly deterministic CTRS is confluent if all of its critical pairs are
joinable. The formalization described in this paper is part of a greater effort to formalize all
methods employed by ConCon to be able to certify its output.

Contribution. We have formalized Theorem 4.1 from Avenhaus and Loŕıa-Sáenz [1] in
Isabelle/HOL [4] as well as strengthened the original theorem from quasi-reductivity to quasi-
decreasingness. It is now part of the formal library IsaFoR [7] (the Isabelle Formalization of
Rewriting) and freely available online at:

http://cl2-informatik.uibk.ac.at/rewriting/mercurial.cgi/IsaFoR/file/dbc03280d673/

thys/Conditional_Rewriting/ALS94.thy

2 Preliminaries

We assume familiarity with the basic notions of (conditional) term rewriting [2, 5], but shortly
recapitulate terminology and notation that we use in the remainder. Given an arbitrary binary
relation →α, we write α←, →+

α , →∗α for the inverse, the transitive closure, and the reflexive
transitive closure of →α, respectively. We use V(·) to denote the set of variables occurring in a
given syntactic object, like a term, a pair of terms, a list of terms, etc. The set of terms T (F ,V)
over a given signature of function symbols F and set of variables V is defined inductively:
x ∈ T (F ,V) for all variables x ∈ V, and for every n-ary function symbol f ∈ F and terms
t1, . . . , tn ∈ T (F ,V) also f(t1, . . . , tn) ∈ T (F ,V). We say that terms s and t unify, written s ∼ t,
if sσ = tσ for some substitution σ. A substitution σ is normalized with respect to R if σ(x) is a
normal form with respect to→R for all x ∈ V . We call a bijective variable substitution π : V → V
a variable renaming or (variable) permutation, and denote its inverse by π−. A term t is strongly

∗The research described in this paper is supported by FWF (Austrian Science Fund) project P27502.

Conditional Critical Pair Criterion Formalized T. Sternagel and C. Sternagel

irreducible with respect to R if tσ is a normal form with respect to →R for all normalized
substitutions σ. A strongly deterministic oriented 3-CTRS (SDTRS) R is a set of conditional
rewrite rules of the shape ` → r ⇐ c where ` and r are terms and c is a possibly empty sequence
of pairs of terms s1 ≈ t1, . . . , sn ≈ tn. For all rules in R we have that ` 6∈ V, V(r) ⊆ V(`, c),
V(si) ⊆ V(`, t1, . . . , ti−1) for all 1 6 i 6 n, and ti is strongly irreducible with respect to R for all
1 6 i 6 n. We sometimes label rules like ρ : ` → r ⇐ c. For a rule ρ : ` → r ⇐ c of an SDTRS
R the set of extra variables is defined as EV(ρ) = V(c)− V(`). The rewrite relation →R is the
smallest relation → satisfying t[`σ]p → t[rσ]p whenever ` → r ⇐ c is a rule in R and sσ →∗R tσ
for all s ≈ t ∈ c. Two variable-disjoint variants of rules `1 → r1 ⇐ c1 and `2 → r2 ⇐ c2 in R
such that `1|p /∈ V and `1|pµ = `2µ with most general unifier (mgu) µ, constitute a conditional
overlap. A conditional overlap that does not result from overlapping two variants of the same
rule at the root, gives rise to a conditional critical pair (CCP) r1µ ≈ r1[r2]pµ ⇐ c1µ, c2µ. A
CCP u ≈ v ⇐ c is joinable if uσ ↓R vσ for all substitutions σ such that sσ →∗R tσ for all
s ≈ t ∈ c. We denote the proper subterm relation by B and define �st = (� ∪ B)+ for some
reduction order �. Let � be a reduction order on T (F ,V) then an SDTRS R is quasi-reductive
with respect to � if for every substitution σ and every rule `→ r ⇐ s1 ≈ t1, . . . , sn ≈ tn in R we
have sjσ � tjσ for 1 6 j 6 i implies `σ �st si+1σ, and sjσ � tjσ for 1 6 j 6 n implies `σ � rσ.1

On the other hand, an SDTRS R over signature F is quasi-decreasing if there is a well-founded
order � on T (F ,V) such that � = �st, →R ⊆ �, and for all rules `→ r ⇐ s1 ≈ t1, . . . , sn ≈ tn
in R, all substitutions σ : V → T (F ,V), and 0 6 i < n, if sjσ →∗R tjσ for all 1 6 j 6 i then
`σ � si+1σ . Quasi-reductivity implies quasi-decreasingness (cf. [5, proof of Lemma 7.2.40]).

3 Confluence of Quasi-Decreasing SDTRSs

The main result from Avenhaus and Loŕıa-Sáenz is the following theorem:

Theorem 1 (Avenhaus and Loŕıa-Sáenz [1, Theorem 4.1]). Let R be an SDTRS that is quasi-
reductive with respect to �. R is confluent if and only if all conditional critical pairs are
joinable.

That all critical pairs of any CTRS R (no need for strong determinism or quasi-reductivity)
are joinable if R is confluent is straight-forward so we will concentrate on the other direction.
Our formalization is quite close to the original proof. The good news is: we could not find any
errors (besides typos) in the original proof but as is often the case with formalizations there are
places where the paper proof is too vague or does not spell out the technical details in favor of
readability. A luxury we cannot afford. For example we heavily rely on an earlier formalization
of permutations [3] in order to formalize variants of rules up to renaming. Even the change from
quasi-reductivity to quasi-decreasingness did not pose a problem.

In the following we will give a description of the main theorem of our formalization and its
proof.

Theorem 2. Let R be an SDTRS that is quasi-decreasing with respect to � and where all
conditional critical pairs are joinable, then R is confluent.

1This is the definition from [1] which differs from the one in [5, Definition 7.2.36] in two respects. First � is a
reduction order (hence also closed under substitutions; this is needed in the proof of [1, Theorem 4.2]) whereas in
Ohlebusch � is a well-founded partial order that is closed under contexts. Moreover Ohlebusch allows a signature
extension for the substitutions σ which is not part of this definition.

61

Conditional Critical Pair Criterion Formalized T. Sternagel and C. Sternagel

s

t′ u′

·t u

·

·

IH

IH

st
≺ �

st
∗ ∗

∗

∗

∗

∗ ∗
∗

(a)

ti+1σ
′
1

si+1π
−σ1

si+1σ
′
1

si+1σ2

ti+1σ
′
2

·

·

IH

IH

∗ ∗ ∗ ∗

∗ ∗

∗
∗

(b)

Figure 1

Proof. Assume that all critical pairs are joinable. We will look at an arbitrary peak t ∗R← s→∗R u
and prove that t ↓R u by well-founded induction on the relation �st. If s = t or s = u then t
and u are trivially joinable and we are done. So we may assume that the peak contains at least
one step in each direction: t ∗R← t′ R← s→R u′ →∗R u.

We will proceed to prove that t′ ↓R u′ then t ↓R u follows by two applications of the
induction hypothesis as shown in Figure 1a. Assume that s = C[`1σ1]p →R C[r1σ1]p = t′

and s = D[`2σ2]q →R D[r2σ2]q = u′ for rules ρ1 : `1 → r1 ⇐ c1 and ρ2 : `2 → r2 ⇐ c2 in R,
contexts C and D, positions p and q, and substitutions σ1 and σ2 such that uσ1 →∗R vσ1 for
all u ≈ v ∈ c1 and uσ2 →∗R vσ2 for all u ≈ v ∈ c2. There are three possibilities: p ‖ q, p 6 q,
or q 6 p. In the first case t′ ↓R u′ holds because the two redexes do not interfere. The other
two cases are symmetric and we only consider p 6 q here. If s B s|p = `1σ1 then s �st `1σ1
(by definition of �st) and there is a position r such that q = pr and so we have the peak
r1σ1

∗
R← `1σ1 →∗R `1σ1[r2σ2]r which is joinable by induction hypothesis. But then the peak

t′ = s[r1σ1]p
∗
R← s[`1σ1]p →∗R s[`1σ1[r2σ2]r]q = u′ is also joinable (by closure under contexts)

and we are done. So we may assume that p = ε and thus s = `1σ1. Now, either q is a function
position in `1 or there is a variable position q′ in `1 such that q′ 6 q. In the first case we either
have a CCP which is joinable by assumption or we have a root-overlap of variants of the same
rule. Then ρ1π = ρ2 for some permutation π. Moreover, s = `1σ1 = `2σ2 and we have

xπ−σ1 = xσ2 for all variables x in V(`2). (1)

We will prove xπ−σ1 ↓R xσ2 for all x in V(ρ2). Since t′ = r1σ1 = r2π
−σ1 and u′ = r2σ2

this shows t′ ↓R u′. Because R is terminating (by quasi-decreasingness) we may define two
normalized substitutions σ′i such that

xπ−σ1
∗−→
R

xσ′1 and xσ2
∗−→
R

xσ′2 for all variables x. (2)

We prove xσ′1 = xσ′2 for x ∈ EV(ρ2) by an inner induction on the length of c2 = s1 ≈
t1, . . . , sn ≈ tn. If ρ2 has no conditions this holds vacuously because there are no extra variables.
In the step case the inner induction hypothesis is that xσ′1 = xσ′2 for x ∈ V(s1, t1, . . . , si, ti)−
V(`2) and we have to show that xσ′1 = xσ′2 for x ∈ V(s1, t1, . . . , si+1, ti+1) − V(`2). If x ∈
V(s1, t1, . . . , si, ti, si+1) we are done by the inner induction hypothesis and strong determinism
of R. So assume x ∈ V(ti+1). From strong determinism of R, (1), (2), and the induction
hypothesis we have that yσ′1 = yσ′2 for all y ∈ V(si+1) and thus si+1σ

′
1 = si+1σ

′
2. With this

we can find a join between ti+1σ
′
1 and ti+1σ

′
2 by applying the induction hypothesis twice as

62

Conditional Critical Pair Criterion Formalized T. Sternagel and C. Sternagel

shown in Figure 1b. Since ti+1 is strongly irreducible and σ′1 and σ′2 are normalized, this yields
ti+1σ

′
1 = ti+1σ

′
2 and thus xσ′1 = xσ′2.

We are left with the case that there is a variable position q′ in `1 such that q = q′r′ for some
position r′. Let x be the variable `1|q′ . Then xσ1|r′ = `2σ2, which implies xσ1 →∗R xσ1[r2σ2]r′ .
Now let τ be the substitution such that τ(x) = xσ1[r2σ2]r′ and τ(y) = σ1(y) for all y 6= x, and
τ ′ some normalization, i.e., yτ →∗R yτ ′ for all y. Moreover, note that

yσ1
∗−→
R

yτ for all y. (3)

We have u′ = `1σ1[r2σ2]q = `1σ1[xτ]q′ →∗R `1τ , and thus u′ →∗R `1τ
′. From (3) we have

r1σ1 →∗R r1τ and thus t′ = r1σ1 →∗R r1τ
′. Finally, we will show that `1τ

′ →R r1τ
′, concluding

the proof of t′ ↓R u′. To this end, let si ≈ ti ∈ c1. By (3) and the definition of τ ′ we obtain
siσ1 →∗R tiσ1 →∗R tiτ

′ and siσ1 →∗R siτ
′. But then, by induction hypothesis, siτ

′ ↓R tiτ
′, and

furthermore, since ti is strongly irreducible, siτ
′ →∗R tiτ

′.

4 Conclusion

Our formalization amounts to approximately 1800 lines of Isabelle. At some points we actually
had to use variants of rules where the original proof assumes two rules to be identical. Apart from
that the formalization was rather straight-forward. Also the modification from quasi-reductivity
to quasi-decreasingness did not pose a problem.

Future Work. Formalizing the conditional critical pair criterion was only the first step.
There are two challenges for automation: Checking if a term is strongly irreducible, and checking
if a conditional critical pair is joinable. Both of these are undecidable in general. Avenhaus and
Loŕıa-Sáenz employ absolute determinism [1, Definition 4.2] to tackle strong irreducibility as
well as contextual rewriting to handle joinability of conditional critical pairs. Then we have a
computable overapproximation. We already started to extend our formalization to facilitate
absolute determinism as well as contextual rewriting. It remains to provide check functions for
CeTA [7] and also the proper certifiable output for ConCon.

Acknowledgments. We thank the Austrian Science Fund (FWF project P27502) for
supporting our work. Moreover we would like to thank the anonymous reviewers for useful
suggestions.

References

[1] Jürgen Avenhaus and Carlos Loŕıa-Sáenz. On conditional rewrite systems with extra variables
and deterministic logic programs. In Proceedings of the 5th International Conference on Logic for
Programming, Artificial Intelligence, and Reasoning, volume 822 of Lecture Notes in Computer
Science, pages 215–229. Springer, 1994. doi:10.1007/3-540-58216-9_40.

[2] Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge University Press, 1998.

[3] Nao Hirokawa, Aart Middeldorp, and Christian Sternagel. A new and formalized proof of abstract
completion. In Proceedings of the 5th International Conference on Interactive Theorem Proving,
volume 8558 of Lecture Notes in Computer Science, pages 292–307. Springer, 2014. doi:10.1007/
978-3-319-08970-6_19.

63

Conditional Critical Pair Criterion Formalized T. Sternagel and C. Sternagel

[4] Tobias Nipkow, Lawrence Charles Paulson, and Makarius Wenzel. Isabelle/HOL - A Proof Assistant
for Higher-Order Logic, volume 2283 of Lecture Notes in Computer Science. Springer, 2002.
doi:10.1007/3-540-45949-9.

[5] Enno Ohlebusch. Advanced Topics in Term Rewriting. Springer, 2002.

[6] Thomas Sternagel and Aart Middeldorp. Conditional confluence (system description). In Proceedings
of the Joint 25th International Conference on Rewriting Techniques and Applications and 12th
International Conference on Typed Lambda Calculi and Applications, volume 8560 of Lecture Notes
in Computer Science, pages 456–465. Springer, 2014. doi:10.1007/978-3-319-08918-8_31.

[7] René Thiemann and Christian Sternagel. Certification of termination proofs using CeTA. In
Proceedings of the 22nd International Conference on Theorem Proving in Higher Order Logics,
volume 5674 of Lecture Notes in Computer Science, pages 452–468. Springer, 2009. doi:10.1007/
978-3-642-03359-9_31.

64

Notes on Confluence of Ultra-Weakly-Left-Linear

SDCTRSs via a Structure-Preserving Transformation

Naoki Nishida

Nagoya University, Nagoya, Japan
nishida@is.nagoya-u.ac.jp

Abstract

A structure-preserving transformation proposed by Şerbănuţă and Roşu for strongly or syntactically

deterministic conditional term rewriting systems (SDCTRSs) that are ultra-left-linear has been shown

to be applicable to weakly-left-linear (WLL) and ultra-WLL SDCTRSs without any change, and sound

for such DCTRSs even if they are not SDCTRSs. In this paper, we show a confluent, WLL, and

ultra-WLL DCTRS that is not an SDCTRS such that the transformed TRS is not confluent. We also

show that for a WLL and ultra-WLL SDCTRS, if the transformed TRS is confluent, then so is the

SDCTRS.

1 Introduction

Conditional term rewriting is known to be much more complicated than unconditional term
rewriting in the sense of analyzing properties (cf. [9]). A popular approach to the analysis
of conditional term rewriting systems (CTRS) is to transform a CTRS into an unconditional
term rewriting system (TRS) that is in general an overapproximation of the CTRS in terms
of reduction. This approach enables us to use techniques for the analysis of TRSs, which are
well investigated in the literature. There are two approaches to transformations of CTRSs into
TRSs: unravelings [6, 7] proposed by Marchiori (see, e.g., [2, 9]), and a transformation [16]
proposed by Viry (see, e.g., [13, 2]).

The latest transformation based on Viry’s approach is a computationally equivalent trans-
formation proposed by Şerbănuţă and Roşu [13, 14] (the SR transformation, for short), which
is one of structure-preserving transformations [4]. This transformation has been proposed for
normal CTRSs in [13]—started with this class to simplify the discussion—and then been ex-
tended for strongly or syntactically deterministic CTRSs (SDCTRSs) that are ultra-left-linear
(semilinear [14]). Here, for a syntactic property P, a CTRS is said to be ultra-P if its unrav-
eled TRS via Ohlebusch’s unraveling [12] has the property P. The transformation converts a
confluent, operationally terminating, and ultra-left-linear SDCTRS into a TRS that is com-
putationally equivalent to the CTRS. This means that such a converted TRS can be used to
exactly simulate any derivation of the original CTRS to a normal form.

Recently, it has been shown in [8, a revised version] that the SR transformation for ultra-left-
linear SDCTRSs is applicable to weakly-left-linear (WLL) and ultra-WLL SDCTRSs without
any change, and sound for such DCTRSs even if they are not SDCTRSs. From this result, one
may think that our target DCTRSs do not have to be strongly or syntactically deterministic.
However, we must take this property into account when we consider confluence.

In this paper, we show a confluent, WLL, and ultra-WLL DCTRS that is not an SDC-
TRS such that the transformed TRS is not confluent, i.e., confluence is not preserved by the
transformation. We also show that for a WLL and ultra-WLL SDCTRSs, if the transformed
TRS is confluent, then so is the SDCTRS. None of the results in this paper is new compared
to those in [14] and [10]. The contribution of this paper is to confirm that some results for
ultra-left-linear SDCTRSs also hold for WLL and ultra-WLL ones.

Notes on Confluence of Ultra-WLL SDCTRSs via a Structure-Preserving Transformation N. Nishida

2 Preliminaries

For the page limitation, we omit basic notions and notations for term rewriting [1, 12], and we
assume that the reader is familiar with them. This paper follows the previous work in [8]. In
this section, we briefly introduce very important notions to understand results in this paper.

An (oriented) conditional rewrite rule over a signature F is a triple (`, r, c), denoted by
`→ r ⇐ c, such that the left-hand side ` is a non-variable term in T (F ,V), the right-hand side
r is a term in T (F ,V), and the conditional part c is a sequence s1 � t1, . . . , sk � tk of term
pairs (k ≥ 0) where all of s1, t1, . . . , sk, tk are terms in T (F ,V). In particular, a conditional
rewrite rule is called unconditional if the conditional part is the empty sequence (i.e., k = 0),
and we may abbreviate it to ` → r. We sometimes attach a unique label ρ to the conditional
rewrite rule `→ r ⇐ c by denoting ρ : `→ r ⇐ c, and we use the label to refer to the rewrite
rule. An (oriented) conditional term rewriting system (CTRS) over a signature F is a set of
conditional rules over F . A term t is called strongly irreducible (w.r.t. R) if tσ is a normal form
w.r.t. R for every normalized substitution σ. The sets of defined symbols and constructors of R
are denoted by DR and CR, respectively: DR = {root(`) | `→ r ⇐ c ∈ R} and CR = F \ DR.

A CTRS R is called deterministic (DCTRS, for short) if for every rule ` → r ⇐ s1 �
t1, . . . , sk � tk ∈ R, Var(si) ⊆ Var(`, t1, . . . , ti−1) for all 1 ≤ i ≤ k. In this paper, we deal
with 3-DCTRSs, i.e., for `→ r ⇐ s1 � t1, . . . , sk � tk ∈ R, Var(r) ⊆ Var(`, s1, t1, . . . , sk, tk).
A DCTRS R is called strongly deterministic if for every rule ` → r ⇐ s1 � t1, . . . , sk � tk,
every term ti is strongly irreducible w.r.t. R, and called syntactically deterministic if for every
rule ` → r ⇐ s1 � t1, . . . , sk � tk, every term ti is a constructor term or a ground normal
form of the underlying unconditional system {` → r | ` → r ⇐ c ∈ R}. We simply call a
strongly or syntactically deterministic CTRS an SDCTRS. Note that every normal CTRS is an
SDCTRS. The number of occurrences of a variable x in a term sequence t1, . . . , tn is denoted by
|t1, . . . , tn|x. A conditional rewrite rule ρ : ` → r ⇐ s1 � t1, . . . , sk � tk is called weakly-left-
linear (WLL) [3] if |`, t1, . . . , tk|x = 1 for any variable x ∈ Var(r, s1, . . . , sk). Note that not all
left-linear (LL, for short) DCTRSs are WLL, e.g., f(x) → x ⇐ g(x) � x is LL but not WLL.
Regarding the simultaneous unraveling U [12], a DCTRS R is called ultra-left-linear w.r.t. U
(U-LL) if for every rule ` → r ⇐ s1 � t1, . . . , sk � tk, the sequence `, t1, . . . , tk is linear. In
addition, R is called ultra-weakly-left-linear w.r.t. U (U-WLL) [8] if all unconditional rules in
R are WLL and every conditional rule ` → r ⇐ s1 � t1, . . . , sk � tk (k > 0) in R satisfies
that the sequence `, t1, . . . , tk−1 is linear and |`, t1, . . . , tk|x ≤ 1 for any variable x ∈ Var(r).

3 The SR Transformation

In this section, we briefly introduce the SR transformation [14] and its properties. We often

denote a term sequence ti, ti+1, . . . , tj by
−→
ti..j . Moreover, for the application of a mapping τ

to
−→
ti..j , we denote the sequence τ(ti), . . . , τ(tj) by

−−−−→
τ(ti..j), e.g., for a substitution θ, we denote

the sequence tiθ, . . . , tjθ by
−−−−→
θ(ti..j). For a finite set X = {o1, o2, . . . , on} of objects, a sequence

o1, o2, . . . , on under some arbitrary but fixed total order on the objects is denoted by
−→
X . In

the following, we use the terminology “conditional” for a rewrite rule that has at least one
condition, and distinguish “conditional rules” and “unconditional rules”.

Before transforming a CTRS R, we first extend the signature of R as follows: We keep the
constructors of R, whereas we replace each n-ary constructor c by c having the arity n; The
arity n of defined symbol f is extended to n+m where f has m conditional rules in R, replacing
f by f having the arity n+m; A fresh constant ⊥ and a fresh unary symbol 〈·〉 are introduced;

66

Notes on Confluence of Ultra-WLL SDCTRSs via a Structure-Preserving Transformation N. Nishida

For every conditional rule ρ : `→ r ⇐ s1 � t1, . . . , sk � tk in R, we introduce k fresh symbols
[]ρ1, []ρ2, . . . , []ρk with the arities 1, 1 + |Var(t1)|, 1 + |Var(t1, t2)|, . . . , 1 + |Var(t1, . . . , tk−1)|. We
assume that for every defined symbol f, the conditional rules for f are ranked by some arbitrary
but fixed order. We denote the extended signature by F : F = {c | c ∈ CR} ∪ {f | f ∈
DR} ∪ {⊥, 〈·〉} ∪ {[]ρj | ρ : ` → r ⇐ s1 � t1, . . . , sk � tk ∈ R, 1 ≤ j ≤ k}. We introduce
a mapping ext to extend the arguments of defined symbols in a term as follows: ext(x) = x

for x ∈ V; ext(c(
−−→
t1..n)) = c(

−−−−−−→
ext(t1..n)) for c/n ∈ CR; ext(f(

−−→
t1..n)) = f(

−−−−−−→
ext(t1..n),−−→z1..m) for

f/n ∈ DR, where f has m conditional rules in R and z1, . . . , zm are fresh variables. To put
⊥ into the extended arguments, we define a mapping (·)⊥ that puts ⊥ to all the extended

arguments of defined symbols, as follows: (x)⊥ = x for x ∈ V; (c(
−−→
t1..n))⊥ = c((

−−→
t1..n)⊥) for

c/n ∈ CR; (f(
−−→
t1..n,

−−−→u1..m))⊥ = f((
−−→
t1..n)⊥,⊥, . . . ,⊥) for f/n ∈ DR; (〈t〉)⊥ = 〈(t)⊥〉; (⊥)⊥ = ⊥;

([. . .]ρj)
⊥ = ⊥. Now we define a mapping · from T (F ,V) to T (F ,V) as t = (ext(t))⊥. On

the other hand, the partial inverse mapping ·̂ for · is defined as follows: x̂ = x for x ∈ V;

ĉ(
−−→
t1..n) = c(t̂1, . . . , t̂n) for c/n ∈ CR;

̂
f(
−−→
t1..n, . . .) = f(t̂1, . . . , t̂n) for f/n ∈ DR; 〈̂t〉 = t̂ . Note

that in applying (·)⊥ or ·̂ to reachable terms defined later, the case of applying (·)⊥ to ⊥ or
[. . .]ρj never happens.

The SR transformation [14] for SDCTRSs is defined not only for U-LL SDCTRSs but also
for WLL and U-WLL SDCTRSs as follows [8].

Definition 1 (SR [14, 8]). Let R be a WLL and U-WLL SDCTRS and the extended signature
F mentioned above. Then, the i-th conditional f-rule ρ : f(−−−→w1..n) → r ⇐ s1 � t1, . . . , sk � tk
is transformed into a set of k + 1 unconditional rules as follows:

SR(ρ) =





f(
−−−→
w′1..n,

−−−−→z1..i−1, ⊥, −−−−→zi+1..m)→ f(
−−−→
w′1..n,

−−−−→z1..i−1, [〈s1〉,
−→
V1]ρ1,

−−−−→zi+1..m),

f(
−−−→
w′1..n,

−−−−→z1..i−1, [〈ext(t1)〉,−→V1]ρ1,
−−−−→zi+1..m)→ f(

−−−→
w′1..n,

−−−−→z1..i−1, [〈s2〉,
−→
V2]ρ2,

−−−−→zi+1..m),

...

f(
−−−→
w′1..n,

−−−−→z1..i−1, [〈ext(tk)〉,−→Vk]ρk,
−−−−→zi+1..m)→ 〈r〉





where
−−−→
w′1..n =

−−−−−−−→
ext(w1..n), Vj = Var(

−−−−→
t1..j−1) for all 1 ≤ j ≤ k, and z1, . . . , zi−1, zi, . . . , zm are

fresh variables. An unconditional rule in R is converted as follows: SR(` → r) = { ext(`) →
〈r〉 }. The set of auxiliary rules is defined as follows:

Raux = { 〈〈x〉〉 → 〈x〉 } ∪ { c(−−−−→x1..i−1, 〈xi〉,−−−−→xi+1..n)→ 〈c(−−→x1..n)〉 | c/n ∈ CR, 1 ≤ i ≤ n }
∪ { f(−−−−→x1..i−1, 〈xi〉,−−−−→xi+1..n,

−−→z1..m)→ 〈f(−−→x1..n,⊥, . . . ,⊥)〉 | f/n ∈ DR, 1 ≤ i ≤ n }

where x1, . . . , xn, z1, . . . , zm are distinct variables. The transformation SR is defined as follows:
SR(R) =

⋃
ρ∈R SR(ρ) ∪ Raux . We say that SR (and also SR(R)) is sound for R if, for any

term s ∈ T (F ,V) and for any term t ∈ T (F ,V), 〈s〉 →∗SR(R) t implies s→∗R t̂.

Note that to define the transformation itself, R does not need to be strongly or syntactically
deterministic. A term t in T (F ,V) is called reachable if there exists a term s in T (F ,V) such
that 〈s〉 →∗SR(R) t. It is clear that for any reachable term t ∈ T (F ,V), any term t′ ∈ T (F ,V)

with t →∗SR(R) t
′ is reachable, and also that any reachable term is not rooted by either ⊥ or

tuple symbols []ρj . In the following, for the extended signature F , we only consider reachable
terms because it suffices to consider them in discussing soundness and confluence below.

Theorem 2 ([14, Section 6]). Let R be a U-LL SDCTRS.

67

Notes on Confluence of Ultra-WLL SDCTRSs via a Structure-Preserving Transformation N. Nishida

(a) For all ground terms s, t ∈ T (F), if s→∗R t, then 〈s〉 →∗SR(R) 〈t〉.
(b) If SR(R) is ground confluent (on reachable terms), then R is ground confluent.

In Theorem 2, we do not have to take care of groundness as in [10].

Theorem 3 ([8, a revised version]). SR is sound for WLL and U-WLL SDCTRSs.

4 Confluence Criterion for WLL and U-WLL SDCTRSs

In the proof of Theorem 3, DCTRSs do not have to be strongly or syntactically deterministic,
i.e., SR is sound for WLL and U-WLL DCTRSs. On the other hand, confluence of WLL and
U-WLL DCTRSs is not always preserved by SR. In this section, we show a confluent, WLL,
and U-WLL DCTRS that is not an SDCTRS such that confluence is not preserved by SR. We
also show that for a WLL and U-WLL SDCTRS R, confluence of SR(R) ensures that of R.

Example 4. Consider the following confluent, WLL, and U-WLL DCTRS:

R1 = { a→ a, a→ b, g(g(x, x), x)→ b, ρ1 : f(x)→ f(a)⇐ x� a, ρ2 : f(x)→ b⇐ x� b }
R1 is transformed by SR as follows:

SR(R1) =





a→ 〈a〉, a→ 〈b〉, g(g(x, x), x)→ 〈b〉,
f(x,⊥, z2)→ f(x, [〈x〉]ρ11 , z2), f(x, z1,⊥)→ f(x, z1, [〈x〉]ρ21),

f(x, [〈a〉]ρ11 , z2)→ 〈f(a,⊥,⊥)〉, f(x, z1, [〈b〉]ρ21)→ 〈b〉,
〈〈x〉〉 → 〈x〉, f(〈x〉, z1, z2)→ 〈f(x,⊥,⊥)〉,

g(〈x〉, y)→ 〈g(x, y)〉, g(x, 〈y〉)→ 〈g(x, y)〉





R1 is not an SDCTRS due to the condition x � a, and SR(R1) is not confluent because
of a non-joinable critical peak f(x, [〈〈b〉〉]ρ11 , z2) ←SR(R1) f(x, [〈a〉]ρ11 , z2) →SR(R1) 〈f(a,⊥,⊥)〉.
Note that there is a non-joinable ground instance of this peak, and thus, SR(R1) is not ground
confluent. Note also that both confluence of R1 and non-confluence of SR(R1) have been
proved by the confluence prover ConCon [15]. On the other hand, the unraveled TRS obtained
by applying the improved version [5] of the simultaneous unraveling to R1 is confluent, and
hence we can prove confluence of R1 by means of the improved unraveling.

Finally, we show a confluence criterion for WLL and U-WLL SDCTRSs via SR. For normal
CTRSs, the following result has been shown in [10].

Theorem 5 ([10, Theorem 3]). For a normal CTRS R, if SR(R) is sound for R and confluent
(on reachable terms), then R is confluent.

The proof of Theorem 5 in [10] does not depend on the definition of SR, and thus, Theorem 5
holds for DCTRSs. As a trivial consequence of Theorems 3 and 5, Theorem 2 (b) holds for
WLL and U-WLL SDCTRSs since the proof does not depend on the U-LL property.

Theorem 6. For a WLL and U-WLL SDCTRS R, if SR(R) is (ground) confluent (on reach-
able terms), then R is (ground) confluent.

Proof. This proof is exactly the same as that of Theorem 5 in [10] for normal CTRSs. Let s, t1,
and t2 be (ground) terms in T (F ,V) such that t1 ←∗R s→∗R t2. It follows from Theorem 2 (a)
that 〈t1〉 ←∗SR(R) 〈s〉 →∗SR(R) 〈t2〉. It follows from (ground) confluence of SR(R) that there exists

a (ground) term u in T (F ,V) such that 〈t1〉 →∗SR(R) u ←∗SR(R) 〈t2〉. It follows from soundness

of SR(R) (i.e., Theorem 3) that t1 →∗R û←∗R t2. Therefore, R is (ground) confluent.

68

Notes on Confluence of Ultra-WLL SDCTRSs via a Structure-Preserving Transformation N. Nishida

Since Theorem 3 holds for WLL and U-WLL DCTRSs that are not SDCTRSs, Theorem 6 holds
not only for SDCTRSs but also for DCTRSs that are not SDCTRSs.

Every join 1 -CTRS R over a signature F can be transformed into a normal 1-CTRS R′
(= n(R)) such that →R = →R′ over T (F ,V) [12, Definition 7.1.6 and Proposition 7.1.7], and
by definition, it holds that if R is WLL (i.e., R′ is WLL), then R′ is U-WLL. Therefore, from
Theorem 6, it holds that if R is WLL and SR(R′) is confluent, then R is confluent.

It has not been shown yet that SR preserves confluence of WLL and U-WLL SDCTRSs.
One of future work is to prove this conjecture.

Acknowledgments We thank the anonymous reviewers very much for their useful comments
and suggestions to improve this paper.

References

[1] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press, 1998.

[2] K. Gmeiner and B. Gramlich. Transformations of conditional rewrite systems revisited. In Proc.
WADT 2008, volume 5486 of LNCS, pp. 166–186. Springer, 2009.

[3] K. Gmeiner, B. Gramlich, and F. Schernhammer. On soundness conditions for unraveling de-
terministic conditional rewrite systems. In Proc. RTA 2012, volume 15 of LIPIcs, pp. 193–208.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2012.

[4] K. Gmeiner and N. Nishida. Notes on structure-preserving transformations of conditional term
rewrite systems. In Proc. WPTE 2014, volume 40 of OASIcs, pp. 3–14. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2014.

[5] K. Gmeiner, N. Nishida, and B. Gramlich. Proving confluence of conditional term rewriting
systems via unravelings. In Proc. IWC 2013, pp. 35–39, 2013.

[6] M. Marchiori. Unravelings and ultra-properties. In Proc. ALP 1996, volume 1139 of LNCS,
pp. 107–121. Springer, 1996.

[7] M. Marchiori. On deterministic conditional rewriting. Computation Structures Group, Memo 405,
MIT Laboratory for Computer Science, 1997.

[8] R. Nakayama, N. Nishida, and M. Sakai. Sound structure-preserving transformation for ultra-
weakly-left-linear deterministic conditional term rewriting systems. In Informal Proc. WPTE
2016, pp. 61–75, 2016. A revised version is available from http://www.apal.i.is.nagoya-u.ac.

jp/~nishida/wpte16/.

[9] N. Nishida, M. Sakai, and T. Sakabe. Soundness of unravelings for conditional term rewriting
systems via ultra-properties related to linearity. Logical Methods in Computer Science, 8(3):1–49,
2012.

[10] N. Nishida, M. Yanagisawa, and K. Gmeiner. On proving confluence of conditional term rewriting
systems via the computationally equivalent transformation. In Proc. IWC 2014, pp. 24–28, 2014.

[11] E. Ohlebusch. Termination of logic programs: Transformational methods revisited. Appl. Algebra
Eng. Commun. Comput., 12(1/2):73–116, 2001.

[12] E. Ohlebusch. Advanced Topics in Term Rewriting. Springer, 2002.

[13] T.-F. Şerbănuţă and G. Roşu. Computationally equivalent elimination of conditions. In Proc.
RTA 2006, volume 4098 of LNCS, pp. 19–34. Springer, 2006.

[14] T.-F. Şerbănuţă and G. Roşu. Computationally equivalent elimination of conditions. Techni-
cal Report UIUCDCS-R-2006-2693, Department of Computer Science, University of Illinois at
Urbana-Champaign, 2006.

[15] T. Sternagel and A. Middeldorp. Conditional Confluence (System Description). In Proc. RTA-
TLCA 2014, volume 8560 of LNCS, pp. 456–465. Springer, 2014.

[16] P. Viry. Elimination of conditions. J. Symb. Comput., 28(3):381–401, 1999.

69

Conditions for confluence of

innermost terminating term rewriting systems

Sayaka Ishizuki, Michio Oyamaguchi, and Masahiko Sakai

Nagoya University, Nagoya, Japan

Abstract

We present a counterexample for the open problem whether innermost joinability of all critical pairs

ensures confluence of innermost terminating term rewriting systems. We then show that innermost

joinability of all normal instances of the critical pairs is a necessary and sufficient condition. We also

show a decidable sufficient condition for confluence of innermost terminating systems.

1 Introduction

B. Gramlich [2] has shown that innermost terminating, locally confluent overlay term rewriting
systems (TRSs) are terminating and confluent. But, in the case of non-overlay TRSs the same
condition does not necessarily ensure confluence or termination. E. Ohlebusch [4] has posed
an open problem concerning this subject: Is an innermost terminating TRS confluent when its
every critical pair is innermost joinable?

In this article, we give a negative answer to this open problem. We then give a necessary
and sufficient condition for confluence of innermost terminating TRSs. That is, an innermost
terminating TRS is confluent if and only if all normal substitution instances of its every critical
pair are innermost joinable. We also show a decidable sufficient condition for confluence of
innermost terminating TRSs by strengthening the condition.

2 Preliminaries

We follow [1] for fundamental notations and definitions. Pos(t) represents the set of positions
of a term t and PosF (t) represents the set of positions of function symbols of t. For positions
p and p′, we write p ≥ p′ when p = p′.q with some position q, and they are in parallel positions
if neither p ≥ p′ nor p ≤ p′ holds.

For a substitution σ, its domain is defined as Dom(σ) = {x ∈ V | xσ 6= x}. σ ≤ σ′

means that σθ = σ′ for some substitution θ. When Dom(σ) ∩ Dom(σ′) = ∅, the union of two
substitutions σ ∪ σ′ is naturally defined as: x(σ ∪ σ′) is xσ′ if x ∈ Dom(σ′), and xσ otherwise.

We write the rewrite relation of a term rewriting system (TRS) R by →R, where R can
be omitted as →. We write s ↔ t if either s → t or s ← t. We say that terms s and s′ are
joinable, written as s ↓ s′, if s

∗→ t and s′
∗→ t for some term t. A rewrite relation → is locally

confluent if (← ·→) ⊆ ↓, confluent if (
∗← · ∗→) ⊆ ↓, and Church-Rosser if

∗↔ ⊆ ↓. Confluence
and Church-Rosser properties are equivalent. A rewrite relation → is terminating if it admits
no infinite sequence t0 → t1 → · · · . A substitution is normal if all the substituted terms are
in normal form. A rewrite step t[lσ]p → t[rσ]p is innermost, if any proper subterm of lσ is in
normal form. We write →i if the step is innermost.

A substitution τ is a unifier of terms s and t if sτ = tτ . Let τ be a unifier of terms s and
t. If τ ≤ τ ′ for any unifier τ ′ of s and t, then we say τ a most general unifier (mgu for short)
of s and t. Let l1 → r1 and l2 → r2 be rules in a rewrite system whose variables have been

Confluence of innermost terminating TRSs S. Ishizuki, M. Oyamaguchi, and M. Sakai

renamed as Var(l1)∩Var(l2) = ∅. If for p ∈ PosF (l1) there exists an mgu τ of l1|p and l2, then
〈l1τ [r2τ]p,r1τ〉 is a critical pair. If p = ε, the pair is overlay. A TRS is called overlay if every
critical pair is overlay. We write CPR to indicate the set of critical pairs of TRS R.

For terms s, t, and parallel positions p0, . . . , pn ∈ Pos(s), if s = s[s0]p0 · · · [sn]pn , t =
s[t0]p0 · · · [tn]pn , and si ↔ ti (0 ≤ i ≤ n), then we write s↔q t, and call it a parallel step.

Example 1. The following R1 is innermost terminating, locally confluent, and not overlay,
but it is neither confluent nor terminating.

R1 = {f(c)→ g(c), g(c)→ f(c), c→ d}
CPR1 = {〈f(d), g(c)〉, 〈g(d), f(c)〉}

3 A counterexample to the conjecture

The following open problem is a variant of the famous result on the confluence for terminating
TRSs by Knuth and Bendix [3].

Conjecture 2 ([4]). Let R be an innermost terminating TRS. If u ↓i v for every critical pair
〈u, v〉 of R, then R is confluent.

This open problem is negatively solved by the following example.

Example 3.
R2 = { g(x)→ h(k(x)), g(x)→ x, h(k(x))→ f(x),

f(x)→ x, k(c)→ c, f(c)→ g(c)}
CPR2 = { 〈x, h(k(x))〉, 〈h(c), f(c)〉, 〈c, g(c)〉 }

R2 is innermost terminating and every critical pair of R2 is innermost joinable. R2 is, however,
not confluent, since c

∗↔ h(c) but c and h(c) are not joinable.

4 A necessary and sufficient condition for confluence of
innermost terminating TRSs

This section shows that an innermost terminating R is confluent if every critical pair 〈u, v〉 of
R is innermost joinable for normal instances (IJN); uσ ↓i vσ for any normal substitution σ.
Henceforth, we assume that R is innermost terminating.

First, we give a lemma that decomposes confluence to two properties.

Lemma 4. CR(→) if and only if CR(→i) and → ⊆ ↓i

Proof. Only-if-part. Suppose s→ t is a non-innermost step. Since R is innermost terminating,
we can write s′

∗←i s → t
∗→i t

′ for normal forms s′ and t′. From CR(→), s′ = t′ hence s ↓i t.
Similarly supposing s

∗↔i t, we obtain s′
∗←i s

∗↔i t
∗→i t

′ for normal forms s′ and t′, and s′ = t′.
Thus s

∗→i · ∗←i t.
If-part. We show that s

n↔ t implies s ↓i t by induction on n. Since the case n = 0 is trivial,

we consider n > 0. We can write s ↔ s′
n−1↔ t for some term s′. We obtain s ↓i s′ by → ⊆ ↓i.

and s′ ↓i t by the induction hypothesis. Since CR(→i), it follows that s ↓i t. Therefore CR(→)
holds.

71

Confluence of innermost terminating TRSs S. Ishizuki, M. Oyamaguchi, and M. Sakai

We define the following condition PIJN, which looks weaker than but is equivalent to IJN
for innermost terminating TRSs.

Definition 5. A critical pair 〈u, v〉 is pseudo-innermost-joinable for normal instances (PIJN)

if uσ
∗→i · =↔ · ∗←i vσ for every normal substitution σ. If all critical pairs of R are PIJN, R is

PIJN 1.

Lemma 6. Let l → r be a rule in R, and σ be a normal substitution. If lσ → rσ is a
non-innermost step, then there exist a critical pair 〈u, v〉 and a normal substitution θ such that

lσ →i uθ and rσ = vθ.

Proof. Since lσ → rσ is a non-innermost step and σ is a normal substitution, there exists an
innermost step lσ = lσ[l′σ′]p →i lσ[r′σ′]p for some rule l′ → r′ ∈ R, substitution σ′, and
rewriting position p > ε which is in PosF (l). This means that there exists an mgu τ of l|p and
l′ hence 〈lτ [r′τ]p, rτ〉 is a critical pair. Suppose σ′′ is a unifier of l|p and l′ such that σ′′ = σ∪σ′
where Dom(σ) ∩ Dom(σ′) = ∅. Since τ is an mgu and σ′′ is a unifier of l|p and l′, there exists
a substitution θ′ such that σ′′ = τθ′. This implies that

lσ = lσ[l′σ′]p = lτθ′[l′τθ′]p = (lτ [l′τ]p)θ
′, and

lσ = lτθ′.

Therefore,
lσ = (lτ [l′τ]p)θ

′ → (lτ [r′τ]p)θ
′, and

lσ = (lτ)θ′ → (rτ)θ′ = rσ.

Now we show that xθ′ is in normal form for any variable x ∈ Var(lτ [l′τ]p) ∪ Var(rτ).
Since Var(r) ⊆ Var(l), it is enough to show that yθ′ is in normal form for any variable
y ∈ Var(lτ [l′τ]p) ∪ Var(lτ) = Var(l′τ) ∪ Var(lτ). Dom(l′τ) = Dom(l|pτ) ⊆ Dom(lτ) hence
Dom(l′τ) ⊆ Dom(lτ). Thus we only need to see if yθ′ is in normal form where y ∈ Dom(lτ),
and in this case yθ′ is indeed in normal form since lσ = lτθ′ and σ is a normal substitution.
From this fact, a substitution θ such that θ = θ′|Var(lτ [r′τ]p)∪Var(rτ) is a normal substitution.

Lemma 7. Let R be PIJN. If s→ t, then s ↓i t.
Proof. We show that if s→ t then s ↓i t, by Noetherian induction on {s, t} with respect to the
multiset extension of

+→i. Here we write >i
mul for the multiset extension.

If s → t is an innermost step, it is trivial. Suppose s → t is not innermost. Then, for
a substitution σ and a rule l → r ∈ R, terms s and t are represented by s[lσ]p and s[rσ]p,
respectively.

If xσ is not in normal form for some x ∈ Var(l), there exists an innermost derivation s =
s[lσ]p

+→i s[lσ
′]p = s′ for some substitution σ′, hence the derivation t = s[rσ]p

∗→i s[rσ
′]p = t′

is also possible. Since s′ → t′ and {s, t} >i
mul {s′, t′}, we have s′ ↓i t′ by induction hypothesis.

Thus s ↓i t.
Otherwise, by Lemma 6, there exist a critical pair 〈u, v〉 and a normal substitution θ such

that s→i s[uθ]p and t = s[vθ]p. We use s′ to represent s[uθ]p. Since θ is a normal substitution,

s′
∗→i s

′′ =↔ t′
∗←i t holds for some terms s′′ and t′ from the PIJN property. In the case of

s′′ = t′, we have done. Otherwise, s′′ → t′ or t′ → s′′ hold. Since {s, t} >i
mul {s′′, t′}, by

induction hypothesis we have s′′ ↓i t′. Therefore s ↓i t.
1In the condition, we can restrict critical pairs to prime critical pairs [5]; a critical pair 〈u, v〉 is prime if

(u, v) ∈ (←i · →) Moreover,
=↔ can be relaxed to parallel step ↔q .

72

Confluence of innermost terminating TRSs S. Ishizuki, M. Oyamaguchi, and M. Sakai

Lemma 8. Let R be PIJN. If u←i · →i v, then u ↓i v.

Proof. If the rewriting steps to u and v occur at the same position by different rules, u and v
can be represented by u[u′θ]p and u[v′θ]p respectively for some 〈u′, v′〉 ∈ CPR and substitution
θ. Since u and v are obtained by innermost rewriting, θ is in normal form. (The proof is similar

to that of Lemma 6.) Hence, we have u = u[u′θ]p
∗→i · =↔ · ∗←i u[v′θ]p = v, so that by Lemma 7,

u ↓i v holds.
Otherwise, the rewriting steps to u and v occur at parallel positions. Therefore, there exists

a term t such that u→i t←i v.

Lemma 9. Let R be PIJN. Then CR(→i).

Proof. By the precondition, →i is terminating and we know that →i is locally confluent by
Lemma 8. By Newman’s lemma, →i is confluent. Hence, CR(→i).

Combining Lemmas 4, 7, and 9, the following theorem follows.

Theorem 10. Let a TRS R be innermost terminating. Then, R is confluent if and only if R
is PIJN, i.e., all critical pairs are pseudo-innermost-joinable for normal instances.

Corollary 11. Let a TRS R be innermost terminating. R is PIJN if and only if all normal
instances 〈uσ, vσ〉 of every critical pairs 〈u, v〉 of R are innermost joinable.

Proof. The if-part is obvious. The only-if-part is shown by Theorem 10.

This corollary shows a condition for confluence of innermost terminating TRSs, which has
a similar form to the condition suggested in the open problem.

5 A sufficient condition

At present, the problem deciding whether R is PIJN remains open. This section introduces a
decidable sufficient condition for confluence of innermost terminating TRSs.

If s = s[lσ]p →i s[rσ]p = t and lσ is a ground term, we write s→gi t.

Definition 12. A critical pair 〈u, v〉 is pseudo-innermost-ground-joinable (PIJ-ground) if
u
∗→gi · =↔ · ∗←gi v. If all critical pairs of R are PIJ-ground, R is PIJ-ground.

Since a PIJ-ground TRS is obviously PIJN, we have the following corollary.

Corollary 13. Let a TRS R be innermost terminating. Then, R is confluent if R is PIJ-
ground, i.e., all critical pairs are pseudo-innermost-ground-joinable.

Example 14. The following R3 is innermost terminating, and PIJ-ground, so that it is con-
fluent by the corollary.

R3 = { g(x)→ h(k(x), x), g(x)→ x, h(k(x), x)→ x,

k(c)→ c, h(k(c), c)→ g(c), h(c, c)→ c }
CPR3

= { 〈x, h(k(x), x)〉, 〈h(c, c), c〉, 〈h(c, c), g(c)〉, 〈c, g(c)〉}

Note that we have tried to show confluence of TRS R3 by confluence checker ACP [6] and
Saigawa [7], and both of them failed.

73

Confluence of innermost terminating TRSs S. Ishizuki, M. Oyamaguchi, and M. Sakai

6 Conclusion

We have given a negative answer to the open problem posed by E. Ohlebusch [4], and shown
some conditions necessary and sufficient for confluence of innermost terminating TRSs. Using
one of the conditions, we have given a decidable sufficient condition for the confluence. At
present, the problem of deciding whether an innermost terminating TRS is confluent, remains
open.

Acknowledgements

The authors are grateful to Yoshihito Toyama, Aart Middeldorp, Nao Hirokawa, Takahito Aoto,
and the anonymous reviewers for their valuable comments.

References

[1] N. Dershowitz, J.-P. Jouannaud, Rewrite Systems, in J. van Leeuwen, ed., Handbook of Theoretical
Computer Science , MIT Press, pp. 243–320, 1990.

[2] B. Gramlich, Abstract Relations between Restricted Termination and Confluence Properties of
Rewrite Systems, Fundamenta Informaticae 24, pp. 3–23, 1995.

[3] D. E. Knuth and P. B. Bendix, Simple Word Problems in Universal Algebras, in J. Leech, ed.,
Computational problems in abstract algebra, Pergamon Press, pp. 263–297, 1970.

[4] E. Ohlebusch, Advanced Topics in Term Rewriting, Springer, 2002.

[5] D. Kapur, D.R. Musser, and P. Narendran, Only prime superpositions need be considered in the
Knuth-Bendix completion procedure, Journal of Symbolic Computation 6 (1), pp. 19–36, 1988.

[6] T. Aoto, J. Yoshida, Y. Toyama, Proving confluence of term rewriting systems automatically, In
Proc. of RTA 2009, LNCS, 5595, pp. 93–102, 2009.

[7] N. Hirokawa and D. Klein, Saigawa: A confluence tool, In Proc. of 1st IWC, 49, 2012.

74

ACP: System Description for CoCo 2016

Takahito Aoto1 and Yoshihito Toyama2

1 Faculty of Engineering, Niigata University
aoto@ie.niigata-u.ac.jp
2 RIEC, Tohoku University

toyama@nue.riec.tohoku.ac.jp

ACP is an automated confluence prover for term rewriting systems (TRSs) that has been
developed in Toyama–Aoto group in RIEC, Tohoku University. ACP integrates multiple direct
criteria for guaranteeing confluence of TRSs. It incorporates divide–and–conquer criteria by
which confluence or non-confluence of TRSs can be inferred from those of their components.
Several methods for disproving confluence are also employed. A list of implemented criteria and
methods can be found on the website of ACP [1]. For a TRS to which direct confluence criteria
do not apply, the prover decomposes it into components using divide–and–conquer criteria, and
tries to apply direct confluence criteria to each component. Then the prover combines these
results to infer the (non-)confluence of the whole system.

ACP is written in Standard ML of New Jersey (SML/NJ) and is provided as a heap image
that can be loaded into SML/NJ runtime systems. It uses a SAT prover such as MiniSAT
and an SMT prover YICES as external provers. It internally contains an automated (relative)
termination prover for TRSs but external (relative) termination provers can be substituted
optionally. The input TRS is specified in the (old) TPDB format. Users can specify criteria
to be used so that each criterion or any combination of them can be tested. Several levels
of verbosity are available for the output so that users can investigate details of the employed
approximations for each criterion or can get only the final result of prover’s attempt. For some
criteria, it supports generation of proofs in CPF format that can be certified by certifiers. The
source code and a list of implemented criteria are found on the webpage [1].

The internal structure of the prover is kept simple and is mostly inherited from the version
0.11a, which has been described in [2]. No new (non-)confluence criterion has been incorporated
from the one submitted for CoCo 2015.

References

[1] ACP (Automated Confluence Prover). http://www.nue.riec.tohoku.ac.jp/tools/acp/.

[2] T. Aoto, J. Yoshida, and Y. Toyama. Proving confluence of term rewriting system automatically.
In Proc. of 20th RTA, volume 5595 of LNCS, pages 93–102. Springer-Verlag, 2009.

ACPH: System Description for CoCo 2016

Kouta Onozawa1, Kentaro Kikuchi1, Takahito Aoto2, and Yoshihito Toyama1

1 RIEC, Tohoku University
{ onozawa, kentaro, toyama }@nue.riec.tohoku.ac.jp

2 Faculty of Engineering, Niigata University
aoto@ie.niigata-u.ac.jp

Higher-order rewriting systems (HRSs) is a formalism of rewriting with variable binding
and higher-order functions [2]. Higher-order rewriting deals with simply-typed lambda-terms
with constants, which are identified modulo βη-equality. HRSs are a set of rewrite rules whose
left-hand sides are restricted to patterns.

ACPH (Automated Confluence Prover for HRSs) is a tool for proving confluence of HRSs. If
the tool succeeds to prove that an input HRS is confluent, it outputs YES. If the tool succeeds
to prove that an input HRS is not confluent, it outputs NO. If the tool can not determine
whether an input HRS is confluent or not, it outputs MAYBE. The tool uses following criteria
for proving confluence and non-confluence of HRSs [1].

• If a HRS R is weakly orthogonal (left-linear and all critical pairs are trivial), then R is
confluent.

• If a HRS R is terminating, then all critical pairs are joinable iff R is confluent.

The algorithms used in the program are based on those described in [1, 2]. For proving
termination of HRSs, a higher-order termination tool WANDA[3] is used. ACPH program is
written in Standard ML of New Jersey, and ACPH is provided as a heap image that can be
loaded into SML/NJ runtime systems. It can be used from the command line by typing the
following command:

$ sml @SMLload=acph.x86-linux <filename>

A bug that has been indentified at CoCo 2015 has been fixed in the submitted version.

References

[1] Tobias Nipkow, Functional unification of higher-order patterns, Proceedings of eighth annual IEEE
symposium on logic in computer science, pp.64-74, 1993.

[2] Richard Mayr, Tobias Nipkow, Higher-order rewrite systems and their confluence, Theoretical com-
puter science 192, pp. 3-29, 1998.

[3] WANDA: A Higher-Order Termination Tool, http://wandahot.sourceforge.net/index.html

AGCP: System Description for CoCo 2016

Takahito Aoto1 and Yoshihito Toyama2

1 Faculty of Engineering, Niigata University
aoto@ie.niigata-u.ac.jp
2 RIEC, Tohoku University

toyama@nue.riec.tohoku.ac.jp

A many-sorted term rewriting system is said to be ground confluent if all ground terms
are confluent. AGCP (Automated Groud Confluence Prover) [1] is a tool for proving ground
confluence of many-sorted term rewriting systems. AGCP is written in Standard ML of New
Jersey (SML/NJ). The tool is registered to the category of ground confluence of many-sorted
term rewriting systems that has been adapted as one of the demonstration categories in CoCo
2016.

AGCP proves ground confluence of many-sorted term rewriting systems based on two in-
gredients. One ingredient is to divide the ground confluence problem of a many-sorted term
rewriting system R into that of S ⊆ R and the inductive validity problem of equations u ≈ v
w.r.t. S for each u → r ∈ R \ S. Here, an equation u ≈ v is inductively valid w.r.t. S if all

its ground instances uσ ≈ vσ is valid w.r.t. S, i.e. uσ
∗↔S vσ. Another ingredient is to prove

ground confluence of a many-sorted term rewriting system via the bounded ground convertibility
of the critical pairs. Here, an equation u ≈ v is said to be bounded ground convertibile w.r.t. a
quasi-order % if uθg

∗←→
% R vθg for any its ground instance uσg ≈ vσg, where x

∗←→
%

y iff there

exists x = x0 ↔ · · · ↔ xn = y such that x % xi or y % xi for every xi.
Rewriting induction [2] is a well-known method for proving inductive validity of many-

sorted term rewriting systems. In [1], an extension of rewriting induction to prove bounded
ground convertibility of the equations has been reported. Namely, for a reduction quasi-order
% and a quasi-reducible many-sorted term rewriting system R such that R ⊆ �, the extension
proves bounded ground convertibility of the input equations w.r.t. %. The extension not only
allows to deal with non-orientable equations but also with many-sorted TRSs having non-free
constructors. AGCP uses this extension of the rewriting induction to prove not only inductive
validity of equations but also the bounded ground convertibility of the critial pairs.

References

[1] T. Aoto and Y. Toyama. Ground confluence prover based on rewriting induction. In Proc. of 1st
FSCD, volume 52 of LIPIcs, pages 33:1–33:12. Schloss Dagstuhl, 2016.

[2] U. S. Reddy. Term rewriting induction. In Proc. of CADE-10, volume 449 of LNAI, pages 162–177.
Springer-Verlag, 1990.

CoCo 2016 Participant: CeTA 2.28∗

Julian Nagele, Christian Sternagel, and Thomas Sternagel

Department of Computer Science, University of Innsbruck, Austria

Automatic provers have become popular in many areas like theorem proving, SMT, etc. Since
such provers are complex pieces of software, they might contain errors that lead to wrong answers,
i.e., incorrect proofs. Therefore, certification of the generated proofs is of major importance.

The tool CeTA [7] is a certifier that can be used to certify confluence and non-confluence proofs
of term rewrite systems (TRSs) and conditional term rewrite systems (CTRSs). Its soundness is
proven as part of IsaFoR, the Isabelle Formalization of Rewriting. The following techniques are
currently supported in CeTA—for further details we refer to the certification problem format (CPF)
and to the sources of IsaFoR and CeTA (http://cl-informatik.uibk.ac.at/software/ceta/).

Term rewrite systems. Since CeTA was originally conceived for termination analysis, our
first method is Newman’s lemma in combination with the critical pair theorem. For possibly non-
terminating TRSs, CeTA can ensure that weakly orthogonal, strongly closed, and almost parallel
closed TRSs are confluent [4], as well as check applications of the rule labeling heuristic [5]
and addition and removal of redundant rules [3]. To certify non-confluence one can provide
a divergence and a certificate for non-joinability. Here CeTA supports: distinct normal forms,
tcap, usable rules, discrimination pairs, argument filters and interpretations [1], and reachability
analysis using tree automata techniques [2].

Conditional term rewrite systems. Since last year CeTA also supports confluence criteria
for conditional rewriting. CeTA can certify that almost orthogonal, extended properly oriented,
right-stable 3-CTRSs are confluent, including support for infeasible critical pairs, where the
supported justification is a certificate for non-reachability using either tcap or tree automata [6].
The second supported technique for CTRSs is unraveling [8], transforming the system into a
TRS where then the aforementioned techniques can be certified.

References

[1] T. Aoto. Disproving confluence of term rewriting systems by interpretation and ordering. In FroCoS,
volume 8152 of LNCS, pages 311–326, 2013.

[2] B. Felgenhauer and R. Thiemann. Reachability, confluence, and termination analysis with state-
compatible automata. I&C, 2016. Available Online.

[3] J. Nagele, B. Felgenhauer, and A. Middeldorp. Improving automatic confluence analysis of rewrite
systems by redundant rules. In RTA, volume 36 of LIPIcs, pages 257–268, 2015.

[4] J. Nagele and A. Middeldorp. Certification of classical confluence results for left-linear term rewrite
systems. In ITP, volume 9807 of LNCS, pages 290–306, 2016.

[5] J. Nagele and H. Zankl. Certified rule labeling. In RTA, volume 36 of LIPIcs, pages 269–284, 2015.

[6] C. Sternagel and T. Sternagel. Certifying confluence of almost orthogonal CTRSs via exact tree
automata completion. In FSCD, volume 52 of LIPIcs, pages 29:1–29:16, 2016.

[7] R. Thiemann and C. Sternagel. Certification of termination proofs using CeTA. In TPHOLs, volume
5674 of LNCS, pages 452–468, 2009.

[8] S. Winkler and R. Thiemann. Formalizing soundness and completeness of unravelings. In FroCoS,
volume 9322 of LNCS (LNAI), 2015.

∗Supported by Austrian Science Fund (FWF), projects P27502, and P27528.

CO3 (Version 1.3)

Naoki Nishida1, Takayuki Kuroda1, and Karl Gmeiner2

1 Nagoya University, Nagoya, Japan
{nishida@, kuroda@apal.i.}is.nagoya-u.ac.jp

2 UAS Technikum Wien, Vienna, Austria
gmeiner@technikum-wien.at

CO3, a converter for proving confluence of conditional TRSs, is a tool for proving confluence
of conditional term rewriting systems (CTRS) by using a transformational approach. The tool
is based on the result in [6, 1, 4]: the tool first transforms a given weakly-left-linear (WLL)
and ultra-WLL 3-DCTRS into an unconditional term rewriting system (TRS) by using the
SR transformation SR [8, 9, 3] or the unraveling U [2, 7], and then verify confluence of the
transformed TRS. This tool is basically a converter of CTRSs to TRSs. The main expected use
of this tool is the collaboration with other tools for proving confluence of TRSs, and thus this tool
has very simple and lightweight functions to verify properties such as confluence and termination
of TRSs. The tool is available from http://www.trs.cm.is.nagoya-u.ac.jp/co3/.

The main technique for proving confluence of CTRSs is based on the following theorem: a
weakly left-linear normal 1-CTRS R is confluent if one of SR(R) and U(R) is confluent [6].
The other important features can be seen in a system description of the previous version [5].

The new feature is to adapt the main technique to WLL and ultra-WLL 3-DCTRSs. More
precisely, the implementation of the SR transformation and the unraveling are adapted to 3-
DCTRSs [3, 1], and the following theorems are introduced: a WLL 3-DCTRS R is confluent if
U(R) is confluent [1]; a WLL and ultra-WLL 3-DCTRS R is confluent if SR(R) is confluent [4].

References

[1] K. Gmeiner, N. Nishida, and B. Gramlich. Proving confluence of conditional term rewriting systems
via unravelings. In Proc. IWC 2013, pp. 35–39, 2013.

[2] M. Marchiori. Unravelings and ultra-properties. In Proc. ALP 1996, volume 1139 of LNCS, pp. 107–
121. Springer, 1996.

[3] R. Nakayama, N. Nishida, and M. Sakai. Sound structure-preserving transformation for ultra-
weakly-left-linear deterministic conditional term rewriting systems. In Informal Proc. WPTE 2016,
pp. 61–75, 2016.

[4] N. Nishida. Notes on confluence of ultra-WLL SDCTRSs via a structure-preserving transformation.
In Proc. IWC 2016, 2016. to appear.

[5] N. Nishida, T. Kuroda, M. Yanagisawa, and K. Gmeiner. CO3: a COnverter for proving COfluence
of COnditional TRSs (Version 1.2). In Proc. IWC 2015, p. 42, 2015.

[6] N. Nishida, M. Yanagisawa, and K. Gmeiner. On proving confluence of conditional term rewriting
systems via the computationally equivalent transformation. In Proc. IWC 2014, pp. 24–28, 2014.

[7] E. Ohlebusch. Termination of logic programs: Transformational methods revisited. Appl. Algebra
Eng. Commun. Comput., 12(1/2):73–116, 2001.

[8] T.-F. Şerbănuţă and G. Roşu. Computationally equivalent elimination of conditions. In Proc. RTA
2006, volume 4098 of LNCS, pp. 19–34. Springer, 2006.

[9] T.-F. Şerbănuţă and G. Roşu. Computationally equivalent elimination of conditions. Technical
Report UIUCDCS-R-2006-2693, Department of Computer Science, University of Illinois at Urbana-
Champaign, 2006.

CoLL-Saigawa: A Joint Confluence Tool∗

Nao Hirokawa and Kiraku Shintani

JAIST, Japan

CoLL-Saigawa is a tool for automatically proving or disproving confluence of (ordinary) term
rewrite systems (TRSs). The tool, written in OCaml, is freely available from:

http://www.jaist.ac.jp/project/saigawa/

The typical usage is: collsaigawa <file>. Here the input file is written in the standard WST
format. The tool outputs YES if confluence of the input TRS is proved, NO if non-confluence is
shown, and MAYBE if the tool does not reach any conclusion.

CoLL-Saigawa is a joint confluence tool of CoLL v1.1 [8] and Saigawa v1.8 [4]. If an input
TRS is left-linear, CoLL proves confluence. Otherwise, Saigawa analyzes confluence. CoLL is a
confluence tool specialized for left-linear TRSs. It proves confluence by using Hindley’s commu-
tation theorem [3] together with the three commutation criteria: Development closeness [2, 9],
rule labeling with weight function [10, 1], and Church-Rosser modulo A/C [6]. Saigawa can
deal with non-left-linear TRSs. The tool employs the four confluence criteria: The criteria
based on critical pair systems [5, Theorem 3] and on extended critical pairs [7, Theorem 2], rule
labeling [10], and Church-Rosser modulo AC [6]. Saigawa uses TTT2 and MU-TERM to check
(relative) termination.1 A suitable rule labeling is searched by using MiniSmt.2

This version of CoLL-Saigawa is still at the experimental stage. Full integration of the two
tools is planned for the next version.

References

[1] T. Aoto. Automated confluence proof by decreasing diagrams based on rule-labelling. In Proc.
21st RTA, volume 6 of LNCS, pages 7–16, 2010.

[2] T. Aoto, J. Yoshida, and Y. Toyama. Proving confluence of term rewriting systems automatically.
In Proc. 21st RTA, volume 5595 of LNCS, pages 93–102, 2009.

[3] J. R. Hindley. The Church-Rosser Property and a Result in Combinatory Logic. PhD thesis,
University of Newcastle-upon-Tyne, 1964.

[4] N. Hirokawa. Saigawa: A confluence tool. In 3rd Confluence Competition (CoCo 2014), pages
1–1, 2014.

[5] N. Hirokawa and A. Middeldorp. Commutation via relative termination. In Proc. 2nd IWC, pages
29–33, 2013.

[6] J.-P. Jouannaud and H. Kirchner. Completion of a set of rules modulo a set of equations. SIAM
Journal on Computing, 15(4):1155–1194, 1986.

[7] D. Klein and N. Hirokawa. Confluence of non-left-linear TRSs via relative termination. In Proc.
18th LPAR, volume 7180 of LNCS, pages 258–273, 2012.

[8] K. Shintani and N. Hirokawa. CoLL: A confluence tool for left-linear term rewrite systems. In
Proc. 25th CADE, LNAI, 2015. To appear.

[9] V. van Oostrom. Developing developments. Theoretical Computer Science, 175(1):159–181, 1997.

[10] V. van Oostrom. Confluence by decreasing diagrams converted. In A. Voronkov, editor, Proc. 19th
RTA, volume 5117 of LNCS, pages 306–320, 2008.

∗This work is partly supported by the JSPS Core-to-Core Program (A. Advanced Research Networks).
1http://colo6-c703.uibk.ac.at/ttt2/ and http://zenon.dsic.upv.es/muterm/
2http://cl-informatik.uibk.ac.at/software/minismt/

CoCo 2016 Participant: ConCon∗

Thomas Sternagel and Aart Middeldorp

Institute of Computer Science, University of Innsbruck, Austria
{thomas.sternagel, aart.middeldorp}@uibk.ac.at

ConCon is a fully automatic confluence checker for oriented first-order conditional term
rewrite systems (CTRSs). The tool implements three known confluence criteria:

(A) A quasi-decreasing strongly irreducible deterministic 3-CTRS R is confluent if and only
if all critical pairs are joinable [1].

(B) Almost orthogonal extended properly oriented right-stable 3-CTRSs are confluent [6].

(C) A weakly left-linear deterministic CTRS R is confluent if U(R) is confluent [2].

We refer to [4] for a more detailed description of the above results. ConCon is written in
Scala 2.11 and available under the LGPL license. It can be downloaded from:

http://cl-informatik.uibk.ac.at/software/concon/

A web interface can also be found there. For some of the methods ConCon issues calls to the
external unconditional confluence and termination checkers CSI and TTT2 as well as the theorem
prover Waldmeister.

To make criteria (A) and (B) more useful, we implemented a variety of methods to check
for infeasibility of conditional critical pairs, ranging from a simple technique based on the
tcap function, via tree automata completion, to equational reasoning. These are described
in [5]. ConCon can generate certifiable output for method (C),1 which is made possible due the
formalization efforts described in [7] as well as certifiable output for method (B) along with
most of the infeasibility methods due to the formalization described in [3]. We are currently
working on certifiable output for method (A).

References

[1] J. Avenhaus and C. Loŕıa-Sáenz. On Conditional Rewrite Systems with Extra Variables and De-
terministic Logic Programs. In Proc. 5th LPAR, volume 822 of LNAI, pages 215–229, 1994.

[2] K. Gmeiner, N. Nishida, and B. Gramlich. Proving Confluence of Conditional Term Rewriting
Systems via Unravelings. In Proc. 2nd IWC, pages 35–39, 2013.

[3] C. Sternagel and T. Sternagel. Certifying Confluence of Almost Orthogonal CTRSs via Exact Tree
Automata Completion. In Proc. 1st FSCD, volume 52 of LIPIcs, pages 29:1–29:16, 2016.

[4] T. Sternagel and A. Middeldorp. Conditional Confluence (System Description). In Proc. Joint 25th
RTA and 12th TLCA, volume 8560 of LNCS, pages 456–465, 2014.

[5] T. Sternagel and A. Middeldorp. Infeasible Conditional Critical Pairs. In Proc. 4th IWC, pages
13–17, 2015.

[6] T. Suzuki, A. Middeldorp, and T. Ida. Level-Confluence of Conditional Rewrite Systems with Extra
Variables in Right-hand Sides. In Proc. 6th RTA, volume 914 of LNCS, pages 179–193, 1995.

[7] R. Thiemann and S. Winkler. Formalizing soundness and completeness of unravelings. In Proc.
10th FroCoS, LNAI, 2015. To appear.

∗Supported by FWF (Austrian Science Fund) project P27502.
1We are grateful to Sarah Winkler for this extension.

CoScart: Confluence Prover in Scala

Karl Gmeiner1

UAS Technikum Wien, Vienna, Austria
gmeiner@technikum-wien.at

1 Overview

CoScart is a tool to prove confluence of first-order term rewrite systems and deterministic con-
ditional term rewrite systems automatically. It originates from the project KaRT, a collection
of Java classes for term rewriting focussing on comparin transformations of conditional term
rewrite systems and program transformations for functional programming languages. A first
version of KaRT was used to conduct the experiments in [2]. To speed up and simplify devel-
opment, in particular with focus on implementing CoScart, the whole project was ported to
Scala, a functional, object-oriented programming language that compiles to Java Bytecode.

CoScart also comes with an automated termination prover and thus is a stand-alone-tool
that does not rely on any other software.

2 Technical Details

The rewrite engine of Scart stores DAGs of terms that are collected in a linked list. This way
rewriting is very efficient.

In order to use the Knuth-Bendix method, Scart contains an automatic termination prover
(TeScart) for first-order TRSs that uses the dependency pairs method in combination with
argument filterings with the some more-heuristics of [1].

A web interface is planned. New features compared to last year use the latest result of [4]
that shows that confluence can be proved via transformations of CTRSs without considering
soundness.

Since CoScart is currently a one-man project, there are no sophisticated user interfaces yet,
but a web interface is planned.

CoScart proves confluence of (deterministic conditional) TRSs using the following methods:
Transformation of [3] from DCTRSs into TRSs, modularity of confluence, Knuth-Bendix, and
development-closed critical pairs of left-linear TRSs.

Scart is available at https://github.com/searles/RewriteTool/.

References

[1] N. Hirokawa and A. Middeldorp. Automating the Dependency Pair Method. In Proc. CADE 2003,
LNAI vol. 2741, pp. 32–46, Springer-Verlag, 2003.

[2] K. Gmeiner and B. Gramlich. Transformations of Conditional Rewrite Systems Revisited. In Proc.
WADT 2008, LNCS vol. 5486, pp. 166-186, Springer-Verlag, 2009.

[3] K. Gmeiner and N. Nishida. Notes on Structure-Preserving Transformations of Conditional Term
Rewrite Systems. In Proc. WPTE 2014, OASIcs vol. 40, pp. 3–14, 2014.

[4] K. Gmeiner. Confluence of Conditional Term Rewrite Systems via Transformations. In Proc. WPTE
2016, 2016.

CRC: A Church-Rosser Checker Tool for Conditional

Order-Sorted Equational Maude Specifications

Francisco Durán

Universidad de Málaga, Spain

The (ground) Church-Rosser and termination properties are essential for an equational
specification to have good executability conditions, and also for having a complete agreement
between the specification’s initial algebra, mathematical semantics, and its operational seman-
tics by rewriting. For order-sorted specifications, being Church-Rosser and terminating means
not only confluence, but also a descent property ensuring that the normal form will have the
least possible sort among those of all other equivalent terms.

The Maude Church-Rosser Checker tool (CRC) checks whether a (possibly conditional)
order-sorted equational specification modulo equational axioms satisfies the Church-Rosser
property. CRC is particularly well-suited for checking Maude specifications [1] with an initial
algebra semantics to be ground-Church-Rosser, although it can be used to check the Church-
Rosser property of conditional order-sorted specifications that do not have an initial algebra
semantics. If the specification cannot be shown to be Church-Rosser by the tool, proof obli-
gations are generated and are given back to the user, which can be used as a guide in the
attempt to establish the ground-Church-Rosser property. Specifically, the tool gives as output
a set of critical pairs and a set of membership assertions that must be shown, respectively,
ground-joinable, and ground-rewritable to a term with the required sort.

The CRC tool and the Maude Termination Tool [3] are both integrated in the Maude Formal
Environment [5], and can effectively deal with Maude equational specifications that are order-
sorted, conditional, possibly with extra variables in their conditions, and whose equations can be
applied modulo any combination of associativity, commutativity and identity axioms. Besides
its generality, the main features of the tool are: (i) the capacity to discharge unjoinable critical
pairs by proving them to be either unfeasible or context-joinable; and (ii) the capacity to deal
with any combination of associativity and/or commutativity and/or identity axioms. CRC can
be used on any Maude module, including structured modules, parameterized modules, etc.

CRC is available at http://maude.lcc.uma.es/CRChC. Its foundations, design and method-
ological guidelines can be found in [4]. The check of specifications with any combination of
associativity/commutativity/identity axioms has not been available until the release of Maude
2.7.1, which includes built-in support for unification modulo these combinations of theories [2].

References

[1] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and C. Talcott. All About
Maude - A High-Performance Logical Framework, LNCS 4350. Springer, 2007.

[2] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and C. Talcott. Maude 2.7.1
Manual. Available in http://maude.cs.uiuc.edu, July 2016.

[3] F. Durán, S. Lucas, C. Marché, J. Meseguer, and X. Urbain. Proving operational termination of
membership equational programs. Higher-Order and Symbolic Computation, 21(1-2):59–88, 2008.

[4] F. Durán and J. Meseguer. On the church-rosser and coherence properties of conditional order-
sorted rewrite theories. J. Log. Algebr. Program., 81(7-8):816–850, 2012.

[5] F. Durán, C. Rocha, and J. M. Álvarez. Tool interoperability in the Maude Formal Environment.
In A. Corradini, B. Klin, and C. Ĉırstea, ed., CALCO 2011. LNCS 6859: 400–406. Springer, 2011.

CoCo 2016 Participant: CSI 0.6∗

Bertram Felgenhauer, Aart Middeldorp, and Julian Nagele

Department of Computer Science, University of Innsbruck, Austria

CSI is an automatic tool for (dis)proving confluence of first-order term rewrite systems
(TRSs). Its name is derived from the Confluence of the rivers Sill and Inn in Innsbruck. The
tool is available from

http://cl-informatik.uibk.ac.at/software/csi

under a LGPLv3 license, where a web interface is provided as well. CSI is based on the ter-
mination prover TTT2. An overview of CSI’s implementation and core features can be found
in [10].

CSI is equipped with a strategy language for directing the proof search, allowing to configure
it flexibly. It features a modular implementation of the decreasing diagrams technique, decom-
posing TRSs into smaller TRSs based on ordered sorts [4], a cubic time decision procedure for
confluence of ground TRSs [1], and non-confluence checks based on tcap and tree automata [10].
Furthermore it adds and removes redundant rules [6]. For many techniques, CSI supports proof
output in cpf format that can be verified independently by certifiers like CeTA [9].

The 2016 version of CSI additionally supports labeling of multisteps [2] as well as critical-
pair-closing systems [8]. Furthermore, we added basic support for uniqueness of normal forms
with respect to conversions and reductions, including decision procedures for ground TRSs [3]
and the non-ω-overlapping criterion of [5]. We also provide cpf output for parallel closedness [7].

References

[1] B. Felgenhauer. Deciding confluence of ground term rewrite systems in cubic time. In Proc. 23rd
RTA, volume 15 of LIPIcs, pages 165–175, 2012.

[2] B. Felgenhauer. Labeling multi-steps for confluence of left-linear term rewrite systems. In Proc.
4th IWC, pages 33–37, 2015.

[3] B. Felgenhauer. Efficiently deciding uniqueness of normal forms and unique normalization for
ground TRSs. In Proc. 5th IWC, 2016. This volume.

[4] B. Felgenhauer, A. Middeldorp, H. Zankl, and V. van Oostrom. Layer systems for proving conflu-
ence. ACM TOCL, 16(2:14):1–32, 2015.

[5] S. Kahrs and C. Smith. Non-ω-overlapping TRSs are UN. In Proc. 1st FSCD, volume 52 of LIPIcs,
pages 22:1–22:17, 2016.

[6] J. Nagele, B. Felgenhauer, and A. Middeldorp. Improving automatic confluence analysis of rewrite
systems by redundant rules. In Proc. 26th RTA, volume 36 of LIPIcs, pages 257–268, 2015.

[7] J. Nagele and A. Middeldorp. Certification of classical confluence results for left-linear term rewrite
systems. In Proc. 7th ITP, volume 9807 of LNCS, pages 290–306, 2016.

[8] M. Oyamaguchi and N. Hirokawa. Confluence and critical-pair-closing systems. In Proc. 3rd IWC,
pages 29–33, 2014.

[9] R. Thiemann and C. Sternagel. Certification of termination proofs using CeTA. In Proc. 22nd
TPHOLs, volume 5674 of LNCS, pages 452–468, 2009.

[10] H. Zankl, B. Felgenhauer, and A. Middeldorp. CSI – A confluence tool. In Proc. 23rd CADE,
volume 6803 of LNCS (LNAI), pages 499–505, 2011.

∗Supported by the Austrian Science Fund (FWF) P27528.

CoCo 2016 Participant: CSÎ ho 0.2∗

Julian Nagele

Department of Computer Science, University of Innsbruck, Austria
julian.nagele@uibk.ac.at

Higher-order rewriting combines standard, first-order rewriting with notions and concepts
from the λ-calculus, resulting in rewriting systems with higher-order functions and bound
variables. CSÎ ho is a tool for automatically proving confluence of such higher-order systems,
specifically pattern rewrite systems (PRSs) as introduced by Nipkow [3, 5]. The restriction
to pattern left-hand sides is essential for obtaining decidability of unification and thus makes
it possible to compute critical pairs. To this end CSÎ ho implements a version of Nipkow’s
algorithm for higher-order pattern unification [6].

CSÎ ho is built on top of CSI [9], a powerful confluence prover for first-order term rewrite
systems. It is available from http://cl-informatik.uibk.ac.at/software/csi/ho/. Using
CSI as foundation, CSÎ ho inherits many of its attractions, in particular a strategy language, which
allows for flexible configuration of the proof search. CSÎ ho supports the following techniques:

2015 Knuth and Bendix’ criterion, that is, for terminating PRSs we decide confluence by
checking joinability of critical pairs [5]. For showing termination CSÎ ho uses a basic
higher-order recursive path ordering and static dependency pairs with dependency graph
decomposition and the subterm criterion. For potentially non-terminating PRSs it supports
weak orthogonality [8] and van Oostrom’s result on development closed critical pairs [7].

2016 As a first divide-and-conquer criterion CSÎ ho includes modularity of confluence for left-
linear PRSs—note that confluence of PRSs is not modular in general [1]. To improve
CSÎ ho on terminating systems, external termination tools like WANDA [2] can now be
used as a termination back-end. The final novelty this year is the simple technique of
adding and removing redundant rules [4], adapted for PRSs.

References

[1] C. Appel, V. van Oostrom, and J. G. Simonsen. Higher-order (non-)modularity. In Proc. 21st RTA,
volume 6 of LIPIcs, pages 17–32, 2010.

[2] Cynthia Kop. Higher Order Termination. PhD thesis, Vrije Universiteit, Amsterdam, 2012.

[3] R. Mayr and T. Nipkow. Higher-order rewrite systems and their confluence. TCS, 192(1):3–29, 1998.

[4] J. Nagele, B. Felgenhauer, and A. Middeldorp. Improving automatic confluence analysis of rewrite
systems by redundant rules. In Proc. 26th RTA, volume 36 of LIPIcs, pages 257–268, 2015.

[5] T. Nipkow. Higher-order critical pairs. In Proc. 6th LICS, pages 342–349, 1991.

[6] Tobias Nipkow. Functional unification of higher-order patterns. In Proc. 8th LICS, pages 64–74,
1993.

[7] V. van Oostrom. Developing developments. TCS, 175(1):159–181, 1997.

[8] V. van Oostrom and F. van Raamsdonk. Weak orthogonality implies confluence: The higher order
case. In Proc. 3rd LFCS, volume 813 of LNCS, pages 379–392, 1994.

[9] H. Zankl, B. Felgenhauer, and A. Middeldorp. CSI – A confluence tool. In Proc. 23rd CADE, volume
6803 of LNCS (LNAI), pages 499–505, 2011.

∗Supported by Austrian Science Fund (FWF), project P27528.

CoCo 2016 Participant: FORT 1.0∗

Franziska Rapp and Aart Middeldorp

Department of Computer Science, University of Innsbruck, Austria
{franziska.rapp|aart.middeldorp}@uibk.ac.at

FORT is a decision and synthesis tool for the first-order theory of rewriting for finite left-linear
right-ground rewrite systems. It implements the decision procedure for this theory, which uses
tree automata techniques and goes back to Dauchet and Tison [1]. In this theory confluence-
related properties on ground terms are easily expressible. The basic functionality of FORT is
described in [2] and in [3] we report on an extension to deal with non-ground terms.

FORT 1.0 is a completely new implementation in Java, for which the JAR file can be
downloaded from

http://cl-informatik.uibk.ac.at/software/FORT/

The tool participates in the demo categories GCR and UN at CoCo 2016. The former is about
ground-confluence of many-sorted rewrite systems. Since the set of well-typed terms according
to a many-sorted type discipline is accepted by a tree automaton, the modifications required in
FORT were straightforward.

The most significant change in FORT 1.0 is the support for parallelism, using the multi-
threading capabilities of Java. This greatly speeds up the synthesis of rewrite systems satisfying
certain properties expressible in the first-order theory of rewriting. Furthermore, we exploit this
functionality for the UN demo category. In this category tools report the strongest property
among CR, NFP, UNC and UN that can be established, or the answer NO if UN can be dis-
proved. For the given rewrite system FORT checks the four properties in parallel, reusing basic
automata constructions that can be shared among the properties. As soon as it has the required
information, it reports the optimal result. In case this information is not present shortly before
the time limit, it kills all remaining threads and reports the strongest result that was established.
This strategy can be illustrated quite well on COPS #215.1 Within 260 milliseconds FORT has
established NFP, while the thread checking for confluence is still running. Hence, we do not yet
know the exact answer. Shortly before the 60 seconds time limit FORT reports NFP. However,
this is not the optimal answer, since this system is actually confluent. As can be seen on this
and many other examples, confluence is often harder to verify than the other three properties.

References

[1] M. Dauchet and S. Tison. The theory of ground rewrite systems is decidable. In Proc. 5th IEEE
Symposium on Logic in Computer Science, pages 242–248, 1990. doi: 10.1109/LICS.1990.113750.

[2] F. Rapp and A. Middeldorp. Automating the first-order theory of left-linear right-ground term
rewrite systems. In Proc. 1st International Conference on Formal Structures for Computation and
Deduction, volume 52 of Leibniz International Proceedings in Informatics, pages 36:1–36:12, 2016.
doi: 10.4230/LIPIcs.FSCD.2016.36.

[3] F. Rapp and A. Middeldorp. Confluence properties on open terms in the first-order theory of
rewriting. In Proc. 5th International Workshop on Confluence, 2016. This volume.

∗Supported by FWF (Austrian Science Fund) project P27528.
1http://cops.uibk.ac.at/?q=215

Nrbox: System Description for CoCo 2016

Takahito Aoto1 and Kentaro Kikuchi2

1 Faculty of Engineering, Niigata University
aoto@ie.niigata-u.ac.jp
2 RIEC, Tohoku University

kentaro@nue.riec.tohoku.ac.jp

Nominal rewriting [4, 5] is a framework that extends first-order term rewriting by a binding
mechanism. A distinctive feature of the nominal approach is that α-conversion and capture-
avoiding substitution are not relegated to meta-level—they are explicitly dealt with at object-
level. This makes nominal rewriting significantly different from classical frameworks of higher-
order rewriting systems based on ‘higher-order syntax’.

Nrbox (Nominal rewriting toolbox) is an automated confluence prover for nominal rewrite
systems (NRSs). Nrbox is written in Standard ML of New Jersey (SML/NJ). The tool registered
to the category of confluence of nominal rewrite systems that has been adopted as one of the
demonstration categories in CoCo 2016. Nrbox proves whether input NRSs are Church-Rosser
modulo the α-equivalence (CR≈α) based on the following results (we refer to [1] for the notions
and notations):

Proposition 1 ([7]). Orthogonal and abstract skeleton preserving NRSs are CR≈α.

Proposition 2 ([8]). Linear uniform NRSs are CR≈α if Γ ` u →= ◦ ≈α ◦ ←∗ v and Γ `
u→∗ ◦ ≈α ◦ ←= v for any basic critical pair Γ ` 〈u, v〉.
Proposition 3 ([8]). Terminating uniform NRS are CR≈α iff all basic critial pairs are joinable.

Proposition 4 ([6]). Left-linear uniform NRSs are CR≈α if Γ ` u −→q ◦ ≈α v (u −→q ◦ ≈α

◦ ←∗ v) for any inner (resp. outer) basic critical pair Γ ` 〈u, v〉.
Termination of NRSs is proved by encoding the problem into the termination problem of

first-order term rewriting, which is explained in [1]. For the comptation of BCPs (basic critical
pairs), the equivariant unification algorithm [3] is required; our equivariant unification procedure
is based on the algorithm explained in [2].

References

[1] T. Aoto and K. Kikuchi. Nominal confluence tool. In Proc. of 8th IJCAR, volume 9706 of LNCS,
pages 173–182. Springer-Verlag, 2016.

[2] T. Aoto and K. Kikuchi. A rule-based equivariant unification procedure. In Proc. of 8th HOR,
2016.

[3] J. Cheney. Equivariant unification. J. of Automated Reasoning, 45:267–300, 2010.

[4] M. Fernández and M. J. Gabbay. Nominal rewriting. Inform. and Comput., 205:917–965, 2007.

[5] M. Fernández, M. J. Gabbay, and I. Mackie. Nominal rewriting systems. In Proc. 6th PPDP, pages
108–119. ACM Press, 2004.

[6] K. Kikuchi, T. Aoto, and Y. Toyama. Parallel closure theorem for left-linear nominal rewriting
systems. http://www.nue.riec.tohoku.ac.jp/user/kentaro/cr-nominal/pct.pdf.

[7] T. Suzuki, K. Kikuchi, T. Aoto, and Y. Toyama. Confluence of orthogonal nominal rewriting
systems revisited. In Proc. 26th RTA, volume 36 of LIPIcs, pages 301–317, 2015.

[8] T. Suzuki, K. Kikuchi, T. Aoto, and Y. Toyama. Critical pair analysis in nominal rewriting. In
Proc. 7th SCSS, volume 39 of EPiC, pages 156–168. EasyChair, 2016.

